
Auto-Vectorization of
Interleaved Data for SIMD

Dorit Nuzman, Ira Rosen, Ayal Zaks (IBM Haifa Labs) – PLDI ’06

Presented by Bertram Schmitt – 2011/04/13

Motivation

 SIMD (Single Instruction Multiple Data) exploits the

natural parallelism of many applications by executing the

same instruction on multiple data elements

 Most implementations of the SIMD model require data

elements to be packed in vector registers

 SIMD memory architecture typically provides access to

contiguous memory items only

2Auto-Vectorization of Interleaved Data for SIMD

Approach

Auto-Vectorization of Interleaved Data for SIMD 3

 Goal: vectorization of computations that require data-

reordering techniques

 Optimized compiler for SIMD targets that

 solves data-reordering efficiently

 exploits data reuse

 is generic and multi-platform compatible

The Interleaving Problem

Auto-Vectorization of Interleaved Data for SIMD 4

 Example: complex multiplication

 Multiple occurrences of the same operation across

consecutive iterations can be grouped into single SIMD

instructions

for(int i = 0; i < len; i++) {
c[2i] = a[2i]*b[2i] - a[2i+1]*b[2i+1];
c[2i+1] = a[2i]*b[2i+1] + a[2i+1]*b[2i];

}

The Interleaving Problem

Auto-Vectorization of Interleaved Data for SIMD 5

 VF is the vectorization factor (number of elements that fit

in a vector register)

for(int i = 0; i < len; i+=VF) {
vector abee = (a[2i] * b[2i], a[2i+2] * b[2i+2], ...,

a[2i+2(VF-1)] * b[2i+2(VF-1)];
vector aboo = (a[2i+1] * b[2i+1], a[2i+3] * b[2i+3], ...,

a[2i+2(VF-1)+1] * b[2i+2(VF-1)+1];
vector abeo = (a[2i] * b[2i+1], a[2i+2] * b[2i+3], ...,

a[2i+2(VF-1)]*b[2i+2(VF-1)+1];
vector aboe = (a[2i+1] * b[2i], a[2i+3] * b[2i+2], ...,

a[2i+2(VF-1)+1]*b[2i+2(VF-1)];

c[2i,2i+2,...,2i+2(VF-1)] = abee - aboo;
c[2i+1,2i+3,...,2i+2(VF-1)+1] = abeo + aboe;

}

The Interleaving Problem

Auto-Vectorization of Interleaved Data for SIMD 6

 Most SIMD architectures allow the loading and storing of

multiple data from memory only if the addresses a(i) are

consecutive

 addresses need to be in the form of

a(i) = b + ui

 To allow vectorization, the memory accesses need to be

reordered

The Interleaving Problem

Auto-Vectorization of Interleaved Data for SIMD 7

 Addresses transformed to form a(i) = b + δui

 δ is referred to as stride or interleaving factor

 Non-unit stride accesses with δ ≠ 1

Vectorizer Overview

Auto-Vectorization of Interleaved Data for SIMD 8

 GNU Compiler Collection (GCC) is used to implement the

vectorization of computations that involve interleaved

data

 GCC uses multiple levels of Intermediate Languages (IL)

to translate source code to assembly code

 In this paper: focus on GIMPLE

Vectorizer Overview

Auto-Vectorization of Interleaved Data for SIMD 9

 GIMPLE supports Static Single Assignment (SSA)

 Translated code retains enough information to allow

advanced data-dependence analysis and aggressive high-

level optimizations (e. g. auto-vectorization)

 Statements are then translated to Register Transfer

Language (RTL) to optimize instruction scheduling and

register allocation

Vectorizer Overview

Auto-Vectorization of Interleaved Data for SIMD 10

 GCC vectorizer follows the approach of loop- and

dependence-based vectorization

 Applies an eight-step analysis to each loop, followed by

the actual vector transformation

 Vectorizer of this paper modifies several steps to allow

vectorization of interleaved data

Loop Analysis

Auto-Vectorization of Interleaved Data for SIMD 11

 Step 1:

 Identify inner-most, single basic block countable loops

(countable = the number of iterations can be determined

prior to entering the loop)

 Step 2:

 Determine vectorization factor VF

(VF represents the number of data elements in a vector and

is also the strip-mining factor of the loop)

Loop Analysis

Auto-Vectorization of Interleaved Data for SIMD 12

 Step 3:

 Find all memory references in the loop and check if they are

“analyzable” (i.e. if a function can be constructed to

describe memory accesses across iterations)

 Step 4:

 Examine dependence cycles that involve scalar variables

(i.e. do not go through memory), such as reductions

Loop Analysis

Auto-Vectorization of Interleaved Data for SIMD 13

 Step 5:

 Check that the dependence distance between every pair of

data references in the loop is either zero (loop-independent

dependence) or at least VF

 Step 6:

 Check that the addresses of all memory accesses are

consecutively increased

(This must be changed to support interleaved accesses!)

Loop Analysis

Auto-Vectorization of Interleaved Data for SIMD 14

 Step 7:

 Make sure that the alignment of all data references in the

loop can be supported (e. g. by loop peeling)

 Step 8:

 Verify that every operation in the loop can be supported in

vector form by the target architecture

Extending the Vectorizer

Auto-Vectorization of Interleaved Data for SIMD 15

 Goal: partition the set of load and store instructions with

non-unit stride access into groups, where each group

contains useful spatial locality

 Pair of loads or stores x, y

ax(i) = bx + δxuxi and ay(i) = by + δyuyi

exhibit spatial locality if

δxux = δyuy and |bx−by| is “sufficiently” small

Analyzing Interleaved Accesses

Auto-Vectorization of Interleaved Data for SIMD 16

 A new data structure to represent a group of load (or

store) instructions with non-unit stride accesses is

introduced

 All members of a group access the same array and have

the same stride δ

 Each member x of a group is assigned an integer jx

(possibly negative), called the index, such that

jx−jy = bx−by for any two members x, y of a group

Analyzing Interleaved Accesses

Auto-Vectorization of Interleaved Data for SIMD 17

 The member with the smallest index (if δ > 0, or the

largest if δ < 0) in a group is called the leader of the

group

 The leader is later responsible (at the transformation

stage) for loading or storing the data for the group

 The base address b of the leader determines the overall

starting address

Analyzing Interleaved Accesses

Auto-Vectorization of Interleaved Data for SIMD 18

 All other members use the difference between their

index and the leader’s index to determine their address

 For each load and store instruction, a pointer to its group

and a field for storing its index is recorded

 These pointers enable group members to quickly navigate

to their leader and their index.

Analyzing Interleaved Accesses

Auto-Vectorization of Interleaved Data for SIMD 19

 Previous example:

 Leads to three groups:

 loads from a[2i], a[2i+1]

 loads from b[2i], b[2i+1]

 stores to c[2i], c[2i+1]

for(int i = 0; i < len; i++) {
c[2i] = a[2i]*b[2i] - a[2i+1]*b[2i+1];
c[2i+1] = a[2i]*b[2i+1] + a[2i+1]*b[2i];

}

Extensions to Transformation Phase

Auto-Vectorization of Interleaved Data for SIMD 20

 When reaching the first member of a group having stride

δ, a total of δ load or store statements starting from the

address of the leader are created

 A set of δ log2 δ data reordering statements is generated:

 extract_even/odd (for loads)

 interleave_low/high (for stores)

 Statements can handle strides that are powers of 2

Extensions to Transformation Phase

Auto-Vectorization of Interleaved Data for SIMD 21

 Example: a(i) = b + 4i (assuming b is aligned)

 Each member of the group is then connected to the

appropriate resultant extract_odd/even statement,

according to its index relative to the index of the group leader

vector b1 = load(b,b+1,...,b+VF-1);
vector b2 = load(b+VF,b+VF+1,...,b+2VF-1);
vector b3 = load(b+2VF,b+2VF+1,...,b+3VF-1);
vector b4 = load(b+3VF,b+3VF+1,...,b+4VF-1);
vector b12e = extract evens(b1,b2);
vector b34e = extract evens(b3,b4);
vector b1234ee = extract evens(b12e,b34e);

Estimated Profitability

Auto-Vectorization of Interleaved Data for SIMD 22

 A group of δ scalar-loads accessing δ data-elements is
interleaved by factor δ

 Vectorization transforms this into a group of δ vector-loads,
accessing δ VF data elements followed by a tree of δ log2 δ
extract operations

 There are therefore δ(1+log2 δ) vector operations compared
to δ VF scalar operations (that correspond to VF scalar loop
iterations)

 leads to a factor of VF / (1 + log2 δ)

Estimated Profitability

Auto-Vectorization of Interleaved Data for SIMD 23

δ VF = 4 VF = 8 VF = 16
1 4 8 16
2 2 4 8
4 1.3 2.6 5.3
8 1 2 4
16 0.8 1.6 3.2
32 0.6 1.2 2.4

Estimated improvement in number of instructions:
VF / (1 + log2 δ)

Experimental Results

Auto-Vectorization of Interleaved Data for SIMD 24

 Many tests were conducted, based on synthetic tests and

real-world computations

 Speed-ups were measured in cases were data was

 aligned/unaligned

 had gaps/no gaps (= fully interleaved)

 Speed-ups up to 3.7 for strides as high as 8

(including increased overhead created by vectorization)

Experimental Results

Auto-Vectorization of Interleaved Data for SIMD 25

floating-point
and 32-bit integer kernels

(VF = 4)

short data type
kernels
(VF = 8)

char type kernels
(no gaps)
(VF = 16)

char type kernels
(gaps)

(VF = 16)

Summary

Auto-Vectorization of Interleaved Data for SIMD 26

 Extension of loop-based vectorizer to handle computation

with non-unit stride accesses

 Strides are powers of 2

 First step towards a hybrid loop-aware SLP (Superword

Level Parallelism) vectorizer, which can exploit parallelism

across loop iterations as well as inside loops

Auto-Vectorization of Interleaved Data for SIMD 27

Thank you
for your attention!

	Auto-Vectorization of Interleaved Data for SIMD
	Motivation
	Approach
	The Interleaving Problem
	The Interleaving Problem
	The Interleaving Problem
	The Interleaving Problem
	Vectorizer Overview
	Vectorizer Overview
	Vectorizer Overview
	Loop Analysis
	Loop Analysis
	Loop Analysis
	Loop Analysis
	Extending the Vectorizer
	Analyzing Interleaved Accesses
	Analyzing Interleaved Accesses
	Analyzing Interleaved Accesses
	Analyzing Interleaved Accesses
	Extensions to Transformation Phase
	Extensions to Transformation Phase
	Estimated Profitability
	Estimated Profitability
	Experimental Results
	Experimental Results
	Summary
	Foliennummer 27

