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Motivation

 SIMD (Single Instruction Multiple Data) exploits the 

natural parallelism of many applications by executing the 

same instruction on multiple data elements

 Most implementations of the SIMD model require data 

elements to be packed in vector registers

 SIMD memory architecture typically provides access to 

contiguous memory items only
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Approach
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 Goal: vectorization of computations that require data-

reordering techniques

 Optimized compiler for SIMD targets that

 solves data-reordering efficiently

 exploits data reuse

 is generic and multi-platform compatible



The Interleaving Problem
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 Example: complex multiplication

 Multiple occurrences of the same operation across 

consecutive iterations can be grouped into single SIMD 

instructions

for(int i = 0; i < len; i++) {
c[2i] = a[2i]*b[2i] - a[2i+1]*b[2i+1];
c[2i+1] = a[2i]*b[2i+1] + a[2i+1]*b[2i];

}



The Interleaving Problem
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 VF is the vectorization factor (number of elements that fit 

in a vector register)

for(int i = 0; i < len; i+=VF) {
vector abee = (a[2i] * b[2i], a[2i+2] * b[2i+2], ...,

a[2i+2(VF-1)] * b[2i+2(VF-1)];
vector aboo = (a[2i+1] * b[2i+1], a[2i+3] * b[2i+3], ...,

a[2i+2(VF-1)+1] * b[2i+2(VF-1)+1];
vector abeo = (a[2i] * b[2i+1], a[2i+2] * b[2i+3], ...,

a[2i+2(VF-1)]*b[2i+2(VF-1)+1];
vector aboe = (a[2i+1] * b[2i], a[2i+3] * b[2i+2], ...,

a[2i+2(VF-1)+1]*b[2i+2(VF-1)];

c[2i,2i+2,...,2i+2(VF-1)] = abee - aboo;
c[2i+1,2i+3,...,2i+2(VF-1)+1] = abeo + aboe;

}



The Interleaving Problem
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 Most SIMD architectures allow the loading and storing of 

multiple data from memory only if the addresses a(i) are 

consecutive

 addresses need to be in the form of 

a(i) = b + ui

 To allow vectorization, the memory accesses need to be 

reordered



The Interleaving Problem
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 Addresses transformed to form a(i) = b + δui

 δ is referred to as stride or interleaving factor

 Non-unit stride accesses with δ ≠ 1



Vectorizer Overview
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 GNU Compiler Collection (GCC) is used to implement the 

vectorization of computations that involve interleaved 

data

 GCC uses multiple levels of Intermediate Languages (IL) 

to translate source code to assembly code

 In this paper: focus on GIMPLE



Vectorizer Overview
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 GIMPLE supports Static Single Assignment (SSA)

 Translated code retains enough information to allow 

advanced data-dependence analysis and aggressive high-

level optimizations (e. g. auto-vectorization)

 Statements are then translated to Register Transfer 

Language (RTL) to optimize instruction scheduling and 

register allocation



Vectorizer Overview
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 GCC vectorizer follows the approach of loop- and 

dependence-based vectorization

 Applies an eight-step analysis to each loop, followed by 

the actual vector transformation

 Vectorizer of this paper modifies several steps to allow 

vectorization of interleaved data



Loop Analysis
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 Step 1:

 Identify inner-most, single basic block countable loops

(countable = the number of iterations can be determined 

prior to entering the loop)

 Step 2:

 Determine vectorization factor VF

(VF represents the number of data elements in a vector and 

is also the strip-mining factor of the loop)



Loop Analysis
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 Step 3:

 Find all memory references in the loop and check if they are 

“analyzable” (i.e. if a function can be constructed to 

describe memory accesses across iterations)

 Step 4:

 Examine dependence cycles that involve scalar variables 

(i.e. do not go through memory), such as reductions



Loop Analysis
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 Step 5:

 Check that the dependence distance between every pair of 

data references in the loop is either zero (loop-independent 

dependence) or at least VF

 Step 6:

 Check that the addresses of all memory accesses are 

consecutively increased

(This must be changed to support interleaved accesses!)



Loop Analysis
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 Step 7:

 Make sure that the alignment of all data references in the 

loop can be supported (e. g. by loop peeling)

 Step 8:

 Verify that every operation in the loop can be supported in 

vector form by the target architecture



Extending the Vectorizer
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 Goal: partition the set of load and store instructions with 

non-unit stride access into groups, where each group 

contains useful spatial locality

 Pair of loads or stores x, y

ax(i) = bx + δxuxi and ay(i) = by + δyuyi

exhibit spatial locality if

δxux = δyuy and |bx−by| is “sufficiently” small



Analyzing Interleaved Accesses
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 A new data structure to represent a group of load (or 

store) instructions with non-unit stride accesses is 

introduced

 All members of a group access the same array and have 

the same stride δ

 Each member x of a group is assigned an integer jx

(possibly negative), called the index, such that

jx−jy = bx−by for any two members x, y of a group



Analyzing Interleaved Accesses
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 The member with the smallest index (if δ > 0, or the 

largest if δ < 0) in a group is called the leader of the 

group

 The leader is later responsible (at the transformation 

stage) for loading or storing the data for the group

 The base address b of the leader determines the overall 

starting address



Analyzing Interleaved Accesses
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 All other members use the difference between their 

index and the leader’s index to determine their address

 For each load and store instruction, a pointer to its group 

and a field for storing its index is recorded

 These pointers enable group members to quickly navigate 

to their leader and their index.



Analyzing Interleaved Accesses
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 Previous example:

 Leads to three groups:

 loads from a[2i], a[2i+1]

 loads from b[2i], b[2i+1]

 stores to c[2i], c[2i+1]

for(int i = 0; i < len; i++) {
c[2i] = a[2i]*b[2i] - a[2i+1]*b[2i+1];
c[2i+1] = a[2i]*b[2i+1] + a[2i+1]*b[2i];

}



Extensions to Transformation Phase
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 When reaching the first member of a group having stride 

δ, a total of δ load or store statements starting from the 

address of the leader are created

 A set of δ log2 δ data reordering statements is generated:

 extract_even/odd (for loads)

 interleave_low/high (for stores)

 Statements can handle strides that are powers of 2



Extensions to Transformation Phase
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 Example: a(i) = b + 4i (assuming b is aligned)

 Each member of the group is then connected to the 

appropriate resultant  extract_odd/even statement, 

according to its index relative to the index of the group leader

vector b1 = load(b,b+1,...,b+VF-1);
vector b2 = load(b+VF,b+VF+1,...,b+2VF-1);
vector b3 = load(b+2VF,b+2VF+1,...,b+3VF-1);
vector b4 = load(b+3VF,b+3VF+1,...,b+4VF-1);
vector b12e = extract evens(b1,b2);
vector b34e = extract evens(b3,b4);
vector b1234ee = extract evens(b12e,b34e);



Estimated Profitability
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 A group of δ scalar-loads accessing δ data-elements  is 
interleaved by factor δ

 Vectorization transforms this into a group of δ vector-loads, 
accessing δ VF data elements followed by a tree of δ log2 δ 
extract operations

 There are therefore δ(1+log2 δ) vector operations compared 
to δ VF scalar operations (that correspond to VF scalar loop 
iterations)

 leads to a factor of VF / (1 + log2 δ)



Estimated Profitability
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δ VF = 4 VF = 8 VF = 16
1 4 8 16
2 2 4 8
4 1.3 2.6 5.3
8 1 2 4
16 0.8 1.6 3.2
32 0.6 1.2 2.4

Estimated improvement in number of instructions:
VF / (1 + log2 δ)



Experimental Results
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 Many tests were conducted, based on synthetic tests and 

real-world computations

 Speed-ups were measured in cases were data was

 aligned/unaligned

 had gaps/no gaps (= fully interleaved)

 Speed-ups up to 3.7 for strides as high as 8

(including increased overhead created by vectorization)



Experimental Results
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floating-point
and 32-bit integer kernels

(VF = 4)

short data type
kernels
(VF = 8)

char type kernels
(no gaps)
(VF = 16)

char type kernels
(gaps)

(VF = 16)



Summary

Auto-Vectorization of Interleaved Data for SIMD 26

 Extension of loop-based vectorizer to handle computation 

with non-unit stride accesses

 Strides are powers of 2

 First step towards a hybrid loop-aware SLP (Superword

Level Parallelism) vectorizer, which can exploit parallelism 

across loop iterations as well as inside loops
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Thank you
for your attention!
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