
Under review as a conference paper at ICLR 2021

AUTOBAYES: AUTOMATED BAYESIAN GRAPH EXPLO-
RATION FOR NUISANCE-ROBUST INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning data representations that capture task-related features, but are invariant to
nuisance variations1 remains a key challenge in machine learning. We introduce an
automated Bayesian inference framework, called AutoBayes, that explores different
graphical models linking classifier, encoder, decoder, estimator and adversarial net-
work blocks to optimize nuisance-invariant machine learning pipelines. AutoBayes
also enables learning disentangled representations, where the latent variable is split
into multiple pieces to impose various relationships with the nuisance variation
and task labels. We benchmark the framework on several public datasets, and
provide analysis of its capability for subject-transfer learning with/without varia-
tional modeling and adversarial training. We demonstrate a significant performance
improvement with ensemble learning across explored graphical models.

1 INTRODUCTION

The great advancement of deep learning techniques based on deep neural networks (DNN) has
enabled more practical design of human-machine interfaces (HMI) through the analysis of the user’s
physiological data (Faust et al., 2018), such as electroencephalogram (EEG) (Lawhern et al., 2018)
and electromyogram (EMG) (Atzori et al., 2016). However, such biosignals are highly prone to
variation depending on the biological states of each subject (Christoforou et al., 2010). Hence,
frequent calibration is often required in typical HMI systems.

Toward resolving this issue, subject-invariant methods (Özdenizci et al., 2019b), employing adversar-
ial training (Makhzani et al., 2015; Lample et al., 2017; Creswell et al., 2017) with the Conditional
Variational AutoEncoder (A-CVAE) (Louizos et al., 2015; Sohn et al., 2015) shown in Fig. 1(b), have
emerged to reduce user calibration for realizing successful HMI systems. Compared to a standard
DNN classifier C in Fig. 1(a), integrating additional functional blocks for encoder E , nuisance-
conditional decoder D, and adversary A networks offers excellent subject-invariant performance.
The DNN structure may be potentially extended with more functional blocks and more latent nodes
as shown in Fig. 1(c). However, such a DNN architecture design may rely on human effort and
insight to determine the block connectivity of DNNs. Automation of hyperparameter and architecture
exploration in the context of AutoML (Ashok et al., 2017; Brock et al., 2017; Cai et al., 2017; He
et al., 2018; Miikkulainen et al., 2019; Real et al., 2017; 2020; Stanley & Miikkulainen, 2002; Zoph
et al., 2018) can facilitate DNN design suited for nuisance-invariant inference. Nevertheless, without
proper reasoning, most of the search space for link connectivity will be pointless.

In this paper, we propose a systematic automation framework called AutoBayes, which searches for
the best inference graph model associated with a Bayesian graph model (also a.k.a. Bayesian network)
well-suited to reproduce the training datasets. The proposed method automatically formulates various
different Bayesian graphs by factorizing the joint probability distribution in terms of data, class
label, subject identification (ID), and inherent latent representations. Given Bayesian graphs, some
meaningful inference graphs are generated through the Bayes-Ball algorithm (Shachter, 2013) for
pruning redundant links to achieve high-accuracy estimation. In order to promote robustness against
nuisance variations such as inter-subject/session factors, the explored Bayesian graphs can provide

1For example of speech recognition, nuisance factors such as speaker’s attributes and recording environment
may change the task accuracy. For image recognition, ambient light conditions and image sensor conditions
may become inherent nuisance factors. In the context of this paper, nuisance variations mainly refer to subject
identities and biological states during recording sessions for physiological data learning.

1

Under review as a conference paper at ICLR 2021

X C Y

(a) Standard Classifier Net

X E Z C Y

S

A S′

D X ′

(b) Adversarial CVAE-Based Classifier Net

X E
Z1

Z2

C Y ′

S

A S′

N S′′

D X ′

Y

(c) Potentially Extended Classifier Net

Figure 1: Inference methods to classify Y given data X under latent Z and semi-labeled nuisance S.

 30

 40

 50

 60

 70

 80

 90

 100

QMNIST

Stress
RSVP

MI ErrP
FacesBasic

FacesNoisy

ASL

A
c
c
u

ra
c
y
 (

%
)

Standard Classifier
A-CVAE Classifier

AutoBayes
Ensemble AutoBayes

98.8

99.0

99.2

99.4

99.6

99.8

Figure 2: Model accuracy across different datasets. AutoBayes offers significant gain.

reasoning to use adversarial training with/without variational modeling and latent disentanglement.
We demonstrate that AutoBayes can achieve excellent performance across various public datasets, in
particular with an ensemble stacking of multiple explored graphical models.

2 KEY CONTRIBUTIONS

At the core of our methodology is the consideration of graphical models that capture the probabilistic
relationship between random variables representing the data features X , task labels Y , nuisance
variation labels S, and (potential) latent representations Z. The ultimate goal is to infer the task
label Y from the measured data feature X , which is hindered by the presence of nuisance variations
(e.g., inter-subject/session variations) that are (partially) labelled by S. One may use a standard
DNN to classify Y given X as shown in Fig. 1(a), without explicitly involving S or Z. Although
A-CVAE in Fig. 1(b) may offer nuisance-robust performance through adversarial disentanglement of
S from latent Z, there is no guarantee that such a model can perform well across different datasets.
It is exemplified in Fig. 2 where A-CVAE outperforms the standard DNN model for some datasets
(QMNIST, Stress, ErrP) while it does not for the other cases. This may be due to the underlying
probabilistic relationship of the data varying across datasets. Our proposed framework can construct
justifiable models, achieving higher performance for every dataset, as demonstrated in Fig. 2. It
is verified that significant gain is attainable with ensemble methods of different Bayesian graphs
which are explored in our AutoBayes. For example, our method with a relatively shallow architecture
achieves 99.61% accuracy which is close to state-of-the-art performance in QMNIST dataset.

The main contributions of this paper over the existing works are five-fold as follows:

2

Under review as a conference paper at ICLR 2021

Algorithm 1 Pseudocode for AutoBayes Framework

Require: Nodes set V = [Y,X, S1, S2, . . . , Sn, Z1, Z2, . . . , Zm], where Y denotes task labels, X
is a measurement data, S = [S1, S2, . . . , Sn] are (potentially multiple) semi-supervised nuisance
variations, and Z = [Z1, Z2, . . . , Zm] are (potentially multiple) latent vectors

Ensure: Semi-supervised training/validation datasets
1: for all permutations of node factorization from Y to X do
2: Let B0 be the corresponding Bayesian graph for the permuted full-chain factorization
3: for all combinations of link pruning on the full-chain Bayesian graph B0 do
4: Let B be the corresponding pruned Bayesian graph
5: Apply the Bayes-Ball algorithm on B to build a conditional independency list I
6: for all permutations of node factorization from X to Y do
7: Let F0 be the factor graph corresponding to a full-chain conditional probability
8: Prune all redundant links in F0 based on conditional independency I
9: Let F be the pruned factor graph

10: Merge the pruned Bayesian graph B into the pruned factor graph F
11: Attach an adversary network A to latent nodes Z for Zk ⊥ S ∈ I
12: Assign an encoder network E for p(Z| · · ·) in the merged factor graph
13: Assign a decoder network D for p(x| · · ·) in the merged factor graph
14: Assign a nuisance indicator network N for p(S| · · ·) in the merged factor graph
15: Assign a classifier network C for p(y| · · ·) in the merged factor graph
16: Adversary train the whole DNN structure to minimize a loss function in (5)
17: end for . At most (|V| − 2)! combinations
18: end for . At most 2|V|(|V|−1)/2 combinations
19: end for . At most (|V| − 2)! combinations
20: return the best model having highest task accuracy in validation sets

• AutoBayes automatically explores potential graphical models inherent to the data by combi-
natorial pruning of dependency assumptions (edges) and then applies Bayes-Ball to examine
various inference strategies, rather than blindly exploring hyperparameters of DNN blocks.

• AutoBayes offers a solid reason of how to connect multiple DNN blocks to impose condi-
tioning and adversary censoring for the task classifier, feature encoder, decoder, nuisance
indicator and adversary networks, based on an explored Bayesian graph.

• The framework is also extensible to multiple latent representations and nuisances factors.

• Besides fully-supervised training, AutoBayes can automatically build some relevant graphi-
cal models suited for semi-supervised learning.

• Multiple graphical models explored in AutoBayes can be efficiently exploited to improve
performance by ensemble stacking.

We note that this paper relates to some existing literature in AutoML, variational Bayesian infer-
ence (Kingma & Welling, 2013; Sohn et al., 2015; Louizos et al., 2015), adversarial training (Good-
fellow et al., 2014; Dumoulin et al., 2016; Donahue et al., 2016; Makhzani et al., 2015; Lample et al.,
2017; Creswell et al., 2017), and Bayesian network (Nie et al., 2018; Njah et al., 2019; Rohekar et al.,
2018) as addressed in Appendix A.1 in more detail. Nonetheless, AutoBayes is a novel framework
that diverges from AutoML, which mostly employs architecture tuning at a micro level. Our work
focuses on exploring neural architectures at a macro level, which is not an arbitrary diversion, but a
necessary interlude. Our method focuses on the relationships between the connections in a neural
network’s architecture and the characteristics of the data (Minsky & Papert, 2017). In addition to the
macro-level structure learning of Bayesian network, our approach provides a new perspective in how
to involve the adversarial blocks and to exploit multiple models for ensemble stacking.

3 AUTOBAYES

AutoBayes Algorithm: The overall procedure of the AutoBayes algorithm is described in the
pseudocode of Algorithm 1. The AutoBayes automatically constructs non-redundant inference factor
graphs given a hypothetical Bayesian graph assumption, through the use of the Bayes-Ball algorithm.

3

Under review as a conference paper at ICLR 2021

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 3: Bayes-Ball algorithm basic rules (Shachter, 2013). Conditional nodes are shaded.

Y S Z X

(a) Bayesian Model

X Z S YpZ pS pY

(b) Z-First Inference

X S Z YpS pZ pY

(c) S-First Inference

Figure 4: Full-chain Bayesian graph and inference models for Z-first or S-first factorizations.

Depending on the derived conditional independency and pruned factor graphs, DNN blocks for
encoder E , decoder D, classifier C, nuisance estimator N and adversary A are reasonably connected.
The entire network is trained with variational Bayesian inference and adversarial training.

The Bayes-Ball algorithm (Shachter, 2013) facilitates an automatic pruning of redundant links in
inference factor graphs through the analysis of conditional independency. Fig. 3 shows ten Bayes-Ball
rules to identify conditional independency. Given a Bayesian graph, we can determine whether
two disjoint sets of nodes are independent conditionally on other nodes through a graph separation
criterion. Specifically, an undirected path is activated if a Bayes ball can travel along without
encountering a stop symbol: in Fig. 3. If there are no active paths between two nodes when
some conditioning nodes are shaded, then those random variables are conditionally independent.

Graphical Models: We here focus on 4-node graphs. Let p(y, s, z, x) denote the joint probability
distribution underlying the datasets for the four random variables, i.e., Y , S, Z, and X . The chain
rule can yield the following factorization for a generative model from Y to X (note that at most 4!
factorization orders exist including useless ones such as with reversed direction from X to Y):

p(y, s, z, x) = p(y)p(s|y)p(z|s, y)p(x|z, s, y), (1)

which is visualized in Bayesian graph of Fig. 4(a). The probability conditioned on X can then be
factorized, e.g., as follows (among 3! different orders of inference factorization for four-node graphs):

p(y, s, z|x) =

{
p(z|x)p(s|z, x)p(y|s, z, x), Z-first-inference
p(s|x)p(z|s, x)p(y|z, s, x), S-first-inference

(2)

which are marginalized to obtain the likelihood: p(y|x) = Es,z|x
[
p(y, s, z|x)

]
. The above two

scheduling strategies in (2) are illustrated in factor graph models as in Figs. 4(b) and (c), respectively.

The graphical models in Fig. 4 do not impose any assumption of potentially inherent independency in
datasets and hence are most generic. However, depending on the underlying independency in datasets,
we may be able to prune some edges in those graphs. For example, if the data only follows the simple
Markov chain of Y −X , while being independent of S and Z, as shown in Fig. 5(a), all links except
one between X and Y will be unreasonable in inference graphs of Figs. 4(b) and (c), that justifies the
standard classifier model in Fig. 1(a). This implies that more complicated inference models such as
A-CVAE can be unnecessarily redundant depending on the dataset. This motivates us to consider
an extended AutoML framework which automatically explores the best pair of inference factor
graph and corresponding Bayesian graph models matching dataset statistics besides the micro-scale
hyperparameter tuning.

Methodology: AutoBayes begins with exploring any potential Bayesian graphs by cutting links of
the full-chain graph in Fig. 4(a), imposing possible (conditional) independence. We then adopt the
Bayes-Ball algorithm on each hypothetical Bayesian graph to examine conditional independence over

4

Under review as a conference paper at ICLR 2021

Y X

(a) Model A

Y Z X

(b) Model B

YS

X

(c) Model C

YS

Z

X

(d) Model D

YS

Z

X

(e) Model E

YS

Z

X

(f) Model F

YS

Z

X

(g) Model G

YS

Z

X

(h) Model H

YS

Z

X

(i) Model I

S Y

Z1 Z2

X

(j) Model J

S Y

Z1 Z2

X

(k) Model K

Figure 5: Example Bayesian graphs for data generative models under automatic exploration. Blue
arrows indicate generative graph for decoder networks. Thick circled S specifies the requirement of
S-conditional decoder, which is less-convenient when learning unlabeled nuisance datasets.

different inference strategies, e.g., full-chain Z-/S-first inference graphs in Figs. 4(b)/(c). Applying
Bayes-Ball justifies the reasonable pruning of the links in the full-chain inference graphs, and also the
potential adversarial censoring when Z is independent of S. This process automatically constructs
the connectivity of inference, generative, and adversary blocks with sound reasoning.

Consider an example case when the data adheres to the following factorization:

p(y, s, z, x) = p(y)p(s|�y)p(z|�s, y)p(x|z, s, �y), (3)

where we explicitly indicate conditional independence by slash-cancellation from the full-chain
case in (1). This corresponds to a Bayesian graphical model illustrated in Fig. 5(e). Applying the
Bayes-Ball algorithm to the Bayesian graph yields the following conditional probability:

p(y, s, z|x) = p(z|x)p(s|z, x)p(y|z, �s, �x), (4)

for the Z-first inference strategy in (2). The corresponding factor graph is then given in Fig. 6(c).
Note that the Bayes-Ball also reveals that there is no marginal dependency between Z and S, which
provides the reason to use adversarial censoring to suppress nuisance information S in the latent
space Z. In consequence, by combining the Bayesian graph and factor graph, we automatically obtain
A-CVAE model in Fig. 1(b). AutoBayes justifies A-CVAE under the assumption that the data follows
the Bayesian model E in Fig. 5(e). As the true generative model is unknown, AutoBayes explores
different Bayesian graphs like in Fig. 5 to search for the most relevant model. Our framework is
readily applicable to graphs with more than 4 nodes to represent multiple Y , S, and Z. Models J and
K in Fig. 5 are such examples having multiple latent factors Z1 and Z2. Despite the search space
for AutoBayes will rapidly grow with the number of nodes, most realistic datasets do not require a
large number of neural network blocks for macro-level optimization. See Appendix A.2 for more
detailed descriptions for some Bayesian graph models to construct factor graphs like in Fig. 6. Also
see discussions of graphical models suitable for semi-supervised learning in Appendix A.4.

Training: Given a pair of generative graph and inference graph, the corresponding DNN structures
will be trained. For example of the generative graph model K in Fig. 5(k), one relevant inference
graph Kz in Fig. 6(k) will result in the overall network structure as shown in Fig. 7, where adversary
network is attached as Z2 is (conditionally) independent of S. This 5-node graph model justifies a
recent work on partially disentanged A-CVAE by Han et al. (2020). Each factor block is realized
by a DNN, e.g., parameterized by θ for pθ(z1, z2|x), and all of the networks except for adversarial
network are optimized to minimize corresponding loss functions including L(ŷ, y) as follows:

min
θ,ψ,µ

max
η

E
[
L(ŷ, y) + λsL(ŝ, s) + λxL(x̂′, x) + λzKL(z1, z2‖N (0, I))− λaL(ŝ′, s)

]
, (5)

(z1, z2) = pθ(x), ŷ = pφ(z1, z2), ŝ = pψ(z1), x̂′ = pµ(z1), ŝ′ = pη(z2), (6)

where λ∗ denotes a regularization coefficient, KL is the Kullback–Leibler divergence, and the adver-
sary network pη(s′|z2) is trained to minimize L(ŝ′, s) in an alternating fashion (see the Adversarial
Regularization paragraph below).

5

Under review as a conference paper at ICLR 2021

X

Z

S Y

(a) Model Dz

X

S

Z Y

(b) Model Ds

X

Z

S Y

(c) Model Ez

X

Z

S

Y

(d) Model Es

X

Z

S Y

(e) Model Fz

X

S

Z Y

(f) Model Fs

X

Z

S Y

(g) Model Gz

X

S

Z Y

(h) Model Gs

X

Z1 Z2

S Y

(i) Model Jz

X S

Z1

Z2 Y

(j) Model Js

X

Z1 Z2

S Y

(k) Model Kz

X S

Z1

Z2 Y

(l) Model Ks

Figure 6: Z-first and S-first inference graph models relevant for generative models D–G, J, and K.
Green arrows indicate feature extraction graph for encoder networks. Thick circled S specifies the
end node of inference, which is convenient when learning unlabeled nuisance datasets.

Inference

Adversary

Generative

X pθ(z1, z2|x)

Z1

Z2 pφ(y|z1, z2) Y

pψ(s|z1) S

pη(s′|z2) S′

pµ(x′|z1, z2) X ′ L(x̂′, x)

L(ŝ, s)

L(ŷ, y)

L(ŝ′, s)

Figure 7: Overall network structure for pairing generative model K and inference model Kz.

The training objective can be formally understood from a likelihood maximization perspective,
in manner that can be seen as a generalization of the VAE Evidence Lower Bound (ELBO) con-
cept (Kingma & Welling, 2013). Specifically, it can be viewed as the maximization of a variational
lower bound of the likelihood pΦ(x, y, s) that is implicitly defined and parameterized by the networks,
where Φ represents the collective parameters of the network modules (e.g., Φ = (φ, ψ, µ) in the
example of equation 5) that specify the generative model pΦ(x, y, s|z), which implies the likelihood
pΦ(x, y, s), as given by

pΦ(x, y, s) =

∫
pΦ(x, y, s|z)p(z) dz.

However, since this expression is generally intractable, we introduce qθ(z|x, y, s) as a variational
approximation of the posterior pΦ(z|x, y, s) implied by the generative model (Kingma & Welling,
2013; Ranganath et al., 2014):

1

n

n∑
i=1

log pΦ(xi, yi, si)=
1

n

n∑
i=1

[
log pΦ(xi, yi, si|zi)−log

qθ(zi|xi, yi, si)
p(zi)

+log
qθ(zi|xi, yi, si)
pΦ(zi|xi, yi, si)

]

≈ 1

n

n∑
i=1

[log pΦ(xi, yi, si|zi)]−KL(qθ(z|x, y, s)‖p(z)) + KL(qθ(z|x, y, s)‖pΦ(z|x, y, s))

≥ 1

n

n∑
i=1

[log pΦ(xi, yi, si|zi)]−KL(qθ(z|x, y, s)‖p(z)), (7)

where the samples zi ∼ qθ(z|xi, yi, si) are drawn for each training tuple (xi, yi, si), and the final
inequality follows from the non-negativity of KL divergence.

6

Under review as a conference paper at ICLR 2021

Table 1: Parameters of Public Dataset Under Investigation

Dataset Modality Dimension Nuisance (|S|) Classes (|Y |) Samples Reference

QMNIST Image 28× 28 836 10 70,000 Yadav & Bottou (2019)
Stress Temperature etc. 7× 1 20 4 24,000 Birjandtalab et al. (2016)
RSVP EEG 16× 128 10 4 41,400 Orhan et al. (2012)

MI EEG 64× 480 106 4 9,540 Goldberger et al. (2000)
ErrP EEG 56× 250 27 2 9,180 Margaux et al. (2012)

Faces Basic ECoG 31× 400 14 2 4,100 Miller et al. (2015; 2016)
Faces Noisy ECoG 39× 400 7 2 2,100 Miller et al. (2015; 2017)

ASL EMG 16× 100 5 33 9,900 Günay et al. (2019)

Ultimately, the minimization of our training loss function corresponds to the maximization of the
lower bound in (7), which corresponds to maximizing the likelihood of our implicit generative model,
while also optimizing the variational posterior qθ(z|x, y, s) toward the actual posterior for the latent
representation pΦ(z|x, y, s), since the gap in the bound is given by KL(qθ(z|x, y, s)‖pΦ(z|x, y, s)).
Further factoring of log pΦ(x, y, s|z) yields the multiple loss-terms and network modules.

Adversarial Regularization: We can utilize adversarial censoring when Z and S should be
marginally independent, e.g., such as in Fig. 1(b) and Fig. 7, in order to reinforce the learning
of a representation Z that is disentangled from the nuisance variations S. This is accomplished by
introducing an adversarial network that aims to maximize a parameterized approximation q(s|z) of
the likelihood p(s|z), while this likelihood is also incorporated into the loss for the other modules with
a negative weight. The adversarial network, by maximizing the log likelihood log q(s|z), essentially
maximizes a lower-bound of the mutual information I(S;Z), and hence the main network is regu-
larized with the additional term that corresponds to minimizing this estimate of mutual information.
This follows since the log-likelihood maximized by the adversarial network is given by

E[log q(s|z)] = I(S;Z)−H(S)−KL
(
p(s|z)‖q(s|z)

)
, (8)

where the entropy H(S) is constant.

Ensemble Learning: We further introduce ensemble methods to make best use of all Bayesian
graph models explored by the AutoBayes framework without wasting lower-performance models.
Ensemble stacked generalization works by stacking the predictions of the base learners in a higher
level learning space, where a meta learner corrects the predictions of base learners (Wolpert, 1992).
Subsequent to training base learners, we assemble the posterior probability vectors of all base learners
together to improve the prediction. We compare the predictive performance of a logistic regression
(LR) and a shallow multi-layer perceptron (MLP) as an ensemble meta learner to aggregate all
inference models. See Appendix A.5 for more detailed description of the stacked generalization.

4 EXPERIMENTAL EVALUATION

Datasets: We experimentally demonstrate the performance of AutoBayes for publicly available
datasets as listed in Table 1. Note that they cover a wide variety of data size, dimensionality,
subject scale, and class levels as well as sensor modalities including image, EEG, EMG, and
electrocorticography (ECoG). See more detailed information of each dataset in Appendix A.6.

Model Implementation: All models were trained with a minibatch size of 32 and using the Adam
optimizer with an initial learning rate of 0.001. The learning rate is halved whenever the validation
loss plateaus. A compact convolutional neural network (CNN) with 4 layers is employed as an
encoder network E to extract features from C × T data. Each convolution is followed by batch
normalization (BN) and rectified linear unit (ReLU) activation. The AutoBayes chooses either a
deterministic latent encoder or variational latent encoder under Gaussian prior. The original data is
reconstructed by a decoder network D that applies transposed convolutions. All of our experiments
were run for 20 epochs on NVIDIA Tesla K80 12GB GPU. See Appendix A.7 for more details.

Results: Fig. 8(a) shows the performance of QMNIST across 39 different inference models explored
in AutoBayes including 2 ensemble models. Over 37 base models, some outperforms the standard

7

Under review as a conference paper at ICLR 2021

 98

 99

 100

A B B
-v

a
r

C
s

C
y

D
s

D
s
-v

a
r

D
z

D
z
-v

a
r

E
s

E
s
-v

a
r

E
z

E
z
-v

a
r

F
s

F
s
-v

a
r

F
z

F
z
-v

a
r

G
s

G
s
-v

a
r

G
z

G
z
-v

a
r

H
s

H
s
-v

a
r

H
z

H
z
-v

a
r

Is Is
-v

a
r

Iz Iz
-v

a
r

J
s

J
s
-v

a
r

J
z

J
z
-v

a
r

K
s

K
s
-v

a
r

K
z

K
z
-v

a
r

E
n

s
-L

R
E

n
s
-M

L
P

Standard Classifier

A-VAE
A-CAE

Ensemble AutoBayes

A
c
c
u

ra
c
y
 (

%
)

(a) QMNIST (±0.23%)

 20

 30

 40

 50

 60

 70

 80

A
c
c
u

ra
c
y
 (

%
)

 60

 70

 80

 90

A
c
c
u

ra
c
y
 (

%
)

 25

 30

 35

 40

 45

 50

 55

 60

A
c
c
u

ra
c
y
 (

%
)

(b) MI (±13.1%), ErrP (±7.0%), ASL (±12.0%)

Figure 8: Task classification accuracy across different graphical models (with standard deviation).

A B
B-

va
r Cs Cy Ds

Ds
-v

ar Dz
Dz

-v
ar Es

Es
-v

ar Ez
Ez

-v
ar Fs

Fs
-v

ar Fz
Fz

-v
ar Gs

Gs
-v

ar Gz
Gz

-v
ar Hs

Hs
-v

ar Hz
Hz

-v
ar Is

Is-
va

r Iz
Iz-

va
r Js

Js-
va

r Jz
Jz-

va
r Ks

Ks
-v

ar Kz
Kz

-v
ar

En
s-

LR
En

s-
M

LP

80

90

100

Ac
cu

ra
cy

 (%
)

Standard Classifier

A-CVAEA-VAE
Ensemble AutoBayes

(a) Subject Variation Robustness

104 105

70

80

90

Number of Parameters

A
cc

ur
ac

y
(%

)

Ensemble AutoBayes
AutoBayes
A-VAE
Standard Classifier

(b) Accuracy vs. Space Complexity

Figure 9: Task classification accuracy for Stress dataset.

classifier model A, whereas the rest of the models underperform. We observe a large gap of 1.0%
between the best and worst models with a standard deviation of 0.23% across all Bayesian graph
models. This indicates that we may have a potential risk that one particular model may lose up to
1.0% accuracy if we do not explore different models.

Similar behaviors with a huge deviation can be seen for different datasets as shown in Fig. 8(b). It
was shown that the best inference strategy highly depends on datasets. Specifically, the best model at
one dataset does not perform best for different datasets. This suggests that we must consider different
inference strategies for each target dataset and our AutoBayes provides such an adaptive framework
across datasets. More detailed results are found in Appendix A.8.

Remarkably, the ensemble of base learners further enhances the performance regardless of the choice
from LR or MLP as the meta learner, as illustrated in Fig. 2 across all the datasets. For some low-
performing datasets such as ErrP, MI and Faces (Noisy), ensemble learning significantly improves the
accuracy by 15.3%, 19.3% and 13.2% at the expense of more storage and computational resources.

Exploring different models has actually a significant benefit in improving nuisance robustness as
shown in Fig. 9(a), where box-whisker plots are present to show the quartile distribution of the subject
variation for the Stress dataset having |S| = 20 users. We can observe that the standard classification
(Model A) has a wider distribution; the best subject achieves an accuracy grater than 96%, whereas
the worst-case user has lower than 82% accuracy. Except for model A, the other models from B
to Kz take the subject ID (S) into consideration to extract nuisance-robust feature, which leads to
significant improvement for the worst-case user performance not only for the mean or median. The

8

Under review as a conference paper at ICLR 2021

Table 2: Task classification performance of AutoBayes compared to state-of-the-art.

Method QMNIST Stress RSVP MI ErrP Faces Basic Faces Noisy ASL

Ensemble AutoBayes (Meta-MLP) 99.61 98.98 99.99 76.71 91.21 78.36 89.71 55.06

Ensemble AutoBayes (Meta-LR) 99.55 98.96 99.98 77.14 88.54 75.68 88.40 54.98

Best of AutoBayes 99.54 95.35 93.42 57.83 75.91 67.31 76.58 51.12

State-of-the-art (SOTA) 99.84 85.30 71.60 63.8 48.80 — — —

ensemble stacking further improves the subject variation robustness, achieving the worst-case user
performance of at least 94%. Additional results per user are found in Appendix A.9.

Despite the performance gain, the nuisance-robust models tend to have higher complexity. Fig. 9(b)
shows the trade-off between the accuracy and the space complexity. Here, we varied the number
of hidden layers and hidden nodes for the models A, B, and Js to adjust the space complexity. The
Pareto front over the finite set of DNN configurations is indicated with lines. It is observed that the
standard classifier model A has superior performance only at low complexity regimes, while it does
not improve performance beyond 95% accuracy even with increased complexity. The Pareto front of
AutoBayes is thus better than the individual models at higher accuracy regimes. See Appendix A.10
for an additional analysis of time complexity.

We finally compare the performance of AutoBayes with the benchmark competitor models from
(Byerly et al., 2020; Han et al., 2020; Özdenizci et al., 2019c;b;a) in Table 2. It can be seen
that AutoBayes outperforms the state-of-the-art in all datasets except QMNIST. Consequently,
we can see a great advantage of AutoBayes with exploring different graphical models. Even for
QMNIST, AutoBayes meta-MLP model, achieving 99.61% accuracy, ranks 17 in the published
leaderboard. Note that performing better than 99.84% is nearly impossible, since some numbers are
illegible or mislabeled. Also note that we have not specifically designed AutoBayes architecture for
image classification but for spatio-temporal signal applications and hyper-parameters were not fully
optimized yet.

AutoBayes can be readily integrated with AutoML to optimize any hyperparameters of individual
DNN blocks. Nevertheless, as our primary objective was to show a proof-of-concept benefit from
solely graphical model exploration of AutoBayes, we leave more rigorous analysis to optimize DNN
parameters such as network depths, widths, activation, augmentation, etc. as a future work.

5 CONCLUSION AND FUTURE WORK

We proposed a new concept called AutoBayes which explores various different Bayesian graph
models to facilitate searching for the best inference strategy, suited for nuisance-robust deep learning.
With the Bayes-Ball algorithm, our method can automatically construct reasonable link connections
among classifier, encoder, decoder, nuisance estimator and adversary DNN blocks. As a proof-
of-concept analysis, we demonstrated the benefit of AutoBayes for various public datasets. We
observed a huge performance gap between the best and worst graph models, implying that the use
of one particular model without graph exploration can potentially suffer a poor classification result.
In addition, the best model for one dataset does not always perform best for different data, which
encourages us to use AutoBayes for adaptive model generation given target datasets. We further
improved the performance approaching the state-of-the-art accuracy by exploiting multiple graphical
models explored in AutoBayes through the use of ensemble stacking. The ensemble AutoBayes
offers significant gain in nuisance robustness by improving the worst-case user performance. Even
though additional computations are required, we showed that AutoBayes can still achieve the superior
Pareto front in the trade-off between complexity and accuracy. We are extending the AutoBayes
framework to integrate AutoML to optimize hyperparameters of each DNN block. How to handle
the exponentially growing search space of possible Bayesian graphs along with the number of
random variables remains a challenging future work. It should require more sophisticated metrics
like Bayesian information criterion for efficient graph exploration.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, and Kris M Kitani. N2N learning: Network to
network compression via policy gradient reinforcement learning. arXiv preprint arXiv:1709.06030,
2017.

Manfredo Atzori, Matteo Cognolato, and Henning Müller. Deep learning with convolutional neural
networks applied to electromyography data: A resource for the classification of movements for
prosthetic hands. Frontiers in neurorobotics, 10:9, 2016.

Justin Bayer, Daan Wierstra, Julian Togelius, and Jürgen Schmidhuber. Evolving memory cell
structures for sequence learning. In International Conference on Artificial Neural Networks, pp.
755–764. Springer, 2009.

Javad Birjandtalab, Diana Cogan, Maziyar Baran Pouyan, and Mehrdad Nourani. A non-EEG biosig-
nals dataset for assessment and visualization of neurological status. In 2016 IEEE International
Workshop on Signal Processing Systems (SiPS), pp. 110–114. IEEE, 2016.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model
architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

Adam Byerly, Tatiana Kalganova, and Ian Dear. A branching and merging convolutional network
with homogeneous filter capsules. arXiv preprint arXiv:2001.09136, 2020.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Reinforcement learning for
architecture search by network transformation. arXiv preprint arXiv:1707.04873, 2017.

Luis M de Campos. A scoring function for learning bayesian networks based on mutual information
and conditional independence tests. Journal of Machine Learning Research, 7(Oct):2149–2187,
2006.

Christoforos Christoforou, Robert M Haralick, Paul Sajda, and Lucas C Parra. The bilinear brain:
towards subject-invariant analysis. In 2010 4th International Symposium on Communications,
Control and Signal Processing (ISCCSP), pp. 1–6. IEEE, 2010.

Antonia Creswell, Anil A Bharath, and Biswa Sengupta. Conditional autoencoders with adversarial
information factorization. arXiv preprint arXiv:1711.05175, 2017.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. AutoAugment:
Learning augmentation strategies from data. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 113–123, 2019.

James Cussens, Matti Järvisalo, Janne H Korhonen, and Mark Bartlett. Bayesian network structure
learning with integer programming: Polytopes, facets and complexity. Journal of Artificial
Intelligence Research, 58:185–229, 2017.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky,
and Aaron Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704, 2016.

Oliver Faust, Yuki Hagiwara, Tan Jen Hong, Oh Shu Lih, and U Rajendra Acharya. Deep learning
for healthcare applications based on physiological signals: A review. Computer methods and
programs in biomedicine, 161:1–13, 2018.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
physiotoolkit, and physionet: components of a new research resource for complex physiologic
signals. circulation, 101(23):e215–e220, 2000.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

10

Under review as a conference paper at ICLR 2021

Sezen Yağmur Günay, Mathew Yarossi, Dana H Brooks, Eugene Tunik, and Deniz Erdoğmuş.
Transfer learning using low-dimensional subspaces for EMG-based classification of hand posture.
In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 1097–1100.
IEEE, 2019.

Mo Han, Ozan Özdenizci, Ye Wang, Toshiaki Koike-Akino, and Deniz Erdogmus. Disentangled ad-
versarial autoencoder for subject-invariant physiological feature extraction. IEEE Signal Processing
Letters, pp. 1565–1569, 2020.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: AutoML for model
compression and acceleration on mobile devices. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 784–800, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent
network architectures. In International conference on machine learning, pp. 2342–2350, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic Denoyer, and
Marc’Aurelio Ranzato. Fader networks: Manipulating images by sliding attributes. In Advances in
Neural Information Processing Systems, pp. 5967–5976, 2017.

Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P Hung, and
Brent J Lance. EEGNet: a compact convolutional neural network for EEG-based brain–computer
interfaces. Journal of neural engineering, 15(5):056013, 2018.

Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational fair
autoencoder. arXiv preprint arXiv:1511.00830, 2015.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Perrin Margaux, Maby Emmanuel, Daligault Sébastien, Bertrand Olivier, and Mattout Jérémie.
Objective and subjective evaluation of online error correction during P300-based spelling. Advances
in Human-Computer Interaction, 2012, 2012.

Thomas Miconi. Neural networks with differentiable structure. arXiv preprint arXiv:1606.06216,
2016.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon, Bala
Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving deep neural networks. In
Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp. 293–312. Elsevier,
2019.

Kai J Miller, Dora Hermes, Nathan Witthoft, Rajesh PN Rao, and Jeffrey G Ojemann. The phys-
iology of perception in human temporal lobe is specialized for contextual novelty. Journal of
neurophysiology, 114(1):256–263, 2015.

Kai J Miller, Gerwin Schalk, Dora Hermes, Jeffrey G Ojemann, and Rajesh PN Rao. Spontaneous
decoding of the timing and content of human object perception from cortical surface recordings
reveals complementary information in the event-related potential and broadband spectral change.
PLoS computational biology, 12(1), 2016.

Kai J Miller, Dora Hermes, Franco Pestilli, Gagan S Wig, and Jeffrey G Ojemann. Face percept
formation in human ventral temporal cortex. Journal of neurophysiology, 118(5):2614–2627, 2017.

Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to computational geometry.
MIT press, 2017.

11

Under review as a conference paper at ICLR 2021

Siqi Nie, Meng Zheng, and Qiang Ji. The deep regression Bayesian network and its applications:
Probabilistic deep learning for computer vision. IEEE Signal Processing Magazine, 35(1):101–111,
2018.

Hasna Njah, Salma Jamoussi, and Walid Mahdi. Deep bayesian network architecture for big data
mining. Concurrency and Computation: Practice and Experience, 31(2):e4418, 2019.

Umut Orhan, Kenneth E Hild, Deniz Erdoğmuş, Brian Roark, Barry Oken, and Melanie Fried-Oken.
RSVP keyboard: An EEG based typing interface. In 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 645–648. IEEE, 2012.

Ozan Özdenizci, Barry Oken, Tab Memmott, Melanie Fried-Oken, and Deniz Erdogmus. Adversarial
feature learning in brain interfacing: An experimental study on eliminating drowsiness effects.
arXiv preprint arXiv:1907.09540, 2019a.

Ozan Özdenizci, Ye Wang, Toshiaki Koike-Akino, and Deniz Erdoğmuş. Transfer learning in
brain-computer interfaces with adversarial variational autoencoders. In 2019 9th International
IEEE/EMBS Conference on Neural Engineering (NER), pp. 207–210. IEEE, 2019b.

Ozan Özdenizci, Ye Wang, Toshiaki Koike-Akino, and Deniz Erdoğmuş. Adversarial deep learning
in eeg biometrics. IEEE Signal Processing Letters, 26(5):710–714, 2019c.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and
Quoc V Le. SpecAugment: A simple data augmentation method for automatic speech recognition.
arXiv preprint arXiv:1904.08779, 2019.

Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress,
2000.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In Artificial
Intelligence and Statistics, pp. 814–822. PMLR, 2014.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V
Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pp. 2902–2911. JMLR. org, 2017.

Esteban Real, Chen Liang, David R So, and Quoc V Le. AutoML-Zero: Evolving machine learning
algorithms from scratch. arXiv preprint arXiv:2003.03384, 2020.

George Rebane and Judea Pearl. The recovery of causal poly-trees from statistical data. arXiv
preprint arXiv:1304.2736, 2013.

Raanan Y Rohekar, Shami Nisimov, Yaniv Gurwicz, Guy Koren, and Gal Novik. Constructing
deep neural networks by Bayesian network structure learning. In Advances in Neural Information
Processing Systems, pp. 3047–3058, 2018.

Marco Scutari. Bayesian network constraint-based structure learning algorithms: Parallel and
optimised implementations in the bnlearn r package. arXiv preprint arXiv:1406.7648, 2014.

Ross D Shachter. Bayes-Ball: The rational pastime (for determining irrelevance and requisite
information in belief networks and influence diagrams). arXiv preprint arXiv:1301.7412, 2013.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In Advances in neural information processing systems, pp.
3483–3491, 2015.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary computation, 10(2):99–127, 2002.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

Chhavi Yadav and Léon Bottou. Cold case: The lost MNIST digits. In Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019.

12

Under review as a conference paper at ICLR 2021

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

13

Under review as a conference paper at ICLR 2021

APPENDICES

A.1 RELATED WORK

We note that this paper relates to some existing literature as follows.

• AutoML: Searching DNN models with hyperparameter optimization has been intensively
investigated in a framework called AutoML (Ashok et al., 2017; Brock et al., 2017; Cai
et al., 2017; He et al., 2018; Miikkulainen et al., 2019; Real et al., 2017; 2020; Stanley
& Miikkulainen, 2002; Zoph et al., 2018). The automated methods include architecture
search (Zoph et al., 2018; Real et al., 2017; He et al., 2018; Real et al., 2020), learning rule
design (Bayer et al., 2009; Jozefowicz et al., 2015), and augmentation exploration (Cubuk
et al., 2019; Park et al., 2019). Most work used either evolutionary optimization or reinforce-
ment learning framework to adjust hyperparameters or to construct network architecture
from pre-selected building blocks. (Miconi, 2016) gradually increases the size of an RNN
starting from only one node by incorporating structural parameters into model training,
which are optimized along with the model weights. (Zoph & Le, 2016) uses reinforcement
learning to find the optimal neural network architecture based on actor-critic framework. The
method uses an LSTM as a controller and critic to explore the hyperparameter configurations
for each layer (number of filters, kernel size and stride) based on the validation error of
the output architecture that corresponds to reward. The recent AutoML-Zero (Real et al.,
2020) considers an extension to preclude human knowledge and insights for fully automated
designs from scratch.

• Variational Bayesian Inference: The VAE (Kingma & Welling, 2013) introduced vari-
ational Bayesian inference methods, incorporating autoassociative architectures, where
generative and inference models can be learned jointly. This method was extended with
the CVAE (Sohn et al., 2015), which introduces a conditioning variable that could be used
to represent nuisance variations, and a regularized VAE in (Louizos et al., 2015), which
considers disentangling the nuisance variable from the latent representation.

• Adversarial Training: The concept of adversarial networks was introduced with Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014), and has been adopted into myriad
applications. The simultaneously discovered Adversarially Learned Inference (ALI) (Du-
moulin et al., 2016) and Bidirectional GAN (BiGAN) (Donahue et al., 2016) propose an
adversarial approach toward training an autoencoder. Adversarial training has also been
combined with VAE to regularize and/or disentangle the latent representations (Makhzani
et al., 2015; Lample et al., 2017; Creswell et al., 2017).

• Bayesian Network Structure Learning: Deep Bayesian network (Nie et al., 2018; Njah
et al., 2019; Rohekar et al., 2018) has been studied to learn probabilistic relationships
between random variables. Learning model structure of a Bayesian network is a problem
that has long been studied, e.g., recovery algorithm (Rebane & Pearl, 2013), scoring
methods (Campos, 2006), and constraint methods (Scutari, 2014; Pearl et al., 2000). Scoring
methods commonly use the posterior probability of the Bayesian network given training data,
such as Bayesian information criterion (BIC). Although the complexity of an exhaustive
search is superexponential in the number of variables, recent approaches (Cussens et al.,
2017) showed capability to learn structure of Bayesian network with up to 100 variables
using integer programming. Constraint-based methods use conditional independence tests
between pairs of variables, commonly mutual information test or the Student’s t-test for
correlation. All constraint-based methods entail three phases: i.e., (i) learning Markov
blankets of each variable, (ii) learning neighbors (parents and children) of each variable that
identifies which arcs are present in a Bayesian network, and (iii) establishing arc directions.

Compared to the existing AutoML literature, our method provides more systematic framework to
explore justifiable network architectures from a macro view. Although related Bayesian network
was studied to design DNN architecture, our method extends it to realize nuisance robustness by
reasonably involving adversarial networks. In addition, ensemble stacking was first introduced in
AutoML framework where multiple architectures can be reused to improve the performance over
every individual model.

1

Under review as a conference paper at ICLR 2021

A.2 BAYESIAN GRAPH AND INFERENCE MODELS

Given measurement data, we never know the true joint probability beforehand, and therefore we shall
assume one of several possible generative models. AutoBayes aims to explore such potential graph
models to match the measurement distributions. As the maximum possible number of graphical
models is huge even for a four-node case involving Y , S, Z and X , we restrict our focus to a few
meaningful graphs-of-interest shown in Fig. 5. Each Bayesian graph corresponds to the following
assumption of the joint probability factorization (p(x| · · ·) term specifies a generative model of X):

p(y, s, z, x) =

p(y)p(s|�y)p(z|�s, �y)p(x|�z, �s, y), Model-A
p(y)p(s|�y)p(z|�s, y)p(x|z, �s, �y), Model-B
p(y)p(s|�y)p(z|�s, �y)p(x|�z, s, y), Model-C
p(y)p(s|�y)p(z|s, y)p(x|z, �s, �y), Model-D
p(y)p(s|�y)p(z|�s, y)p(x|z, s, �y), Model-E
p(y)p(s|�y)p(z|s, �y)p(x|z, �s, y), Model-F
p(y)p(s|�y)p(z|s, y)p(x|z, s, �y), Model-G
p(y)p(s|�y)p(z|s, y)p(x|z, �s, y), Model-H
p(y)p(s|�y)p(z|s, y)p(x|z, s, y), Model-I
p(y)p(s|�y)p(z1|s, �y)p(z2|��z1, �s, y)p(x|z2, z1, �s, �y), Model-J
p(y)p(s|�y)p(z1|s, �y)p(z2|z1, �s, y)p(x|z2, z1, �s, �y), Model-K

(9)

where we explicitly indicate independence by slash-cancelled factors from the full-chain case in equa-
tion 1. Blue-colored terms correspond to the blue arrows in Figs. 5 for generative graph of decoder
networks. Depending on the assumed Bayesian graph, the relevant inference strategy will vary as
some variables may be conditionally independent, which enables pruning links in the inference factor
graphs. As shown in Fig. 6, the reasonable inference graph model can be automatically generated by
the Bayes-Ball algorithm (Shachter, 2013) on each Bayesian graph hypothesis inherent in datasets.
Specifically, the conditional probability p(y, s, z|x) can be obtained for each model as below.

Bayesian Graph Model A (Direct Markov): The simplest model between X and Y would be
single Markov chain without any dependency of S and Z, shown in Bayesian graph of Fig. 5(a). This
model puts an assumption that the data are nuisance-invariant. For this case, there is no reason to
employ complicated inference models such as A-CVAE since most factors will be independent as
p(y, s, z|x) = p(z|�x)p(s|�z, �x)p(y|�s, �z, x). We hence should use a standard classification method, as
in Fig. 1(a), to infer Y given X , based on the inference model p(y|x) without involving S and Z.

Bayesian Graph Model B (Markov Latent): Assuming a latent Z can work in a Markov
chain of Y − Z − X shown in Fig. 5(b), we obtain a simple inference model: p(y, s, z|x) =
p(z|x)p(s|�z, �x)p(y|�s, z, �x). Note that this model assumes independence between Z and S, and thus
adversarial censoring (Makhzani et al., 2015; Creswell et al., 2017; Lample et al., 2017) can make it
more robust against nuisance. This model is hence based on A-VAE.

Bayesian Graph Model C (Subject-Dependent): We may model the case when the data X
directly depends on subject S and task Y , shown in Fig. 5(c). For this case, we may consider the
corresponding inference models due to the Bayes-Ball:

p(y, s, z|x) =

{
p(s|x)p(z|�s, �x)p(y|s, �z, x), Model-Cs
p(y|x)p(s|y, x)p(z|�s, �y, �x). Model-Cy

(10)

Note that this model does not depend onZ, and thusZ-first inference strategy reduces to S-first model.
As a reference, we here consider additional Y -first inference strategy to evaluate the difference.

Bayesian Graph Model D (Latent Summary): Another graphical model is shown in Fig. 5(d),
where a latent space bridges all other random variables. Bayes-Ball yields the following models:

p(y, s, z|x) =

{
p(z|x)p(s|z, �x)p(y|s, z, �x), Model-Dz
p(s|x)p(z|s, x)p(y|z, s, �x), Model-Ds

(11)

whose graphical models are depicted in Figs. 6(a) and (b), respectively.

2

Under review as a conference paper at ICLR 2021

Bayesian Graph Model E (Task-Summary Latent): Another graphical model involving latent
variables is shown in Fig. 5(e), where a latent space only summarizes Y . Bayes-Ball yields the
following inference models:

p(y, s, z|x) =

{
p(z|x)p(s|z, x)p(y|z, �s, �x), Model-Ez
p(s|x)p(z|s, x)p(y|�s, z, �x), Model-Es

(12)

which are illustrated in Figs. 6(c) and (d). Note that the generative model E has no marginal
dependency between Z and S, which provides the reason to use adversarial censoring to suppress
nuisance information S in the latent space Z. In addition, because the generative model of X is
dependent on both Z and S, it is justified to employ the A-CVAE classifier shown in Fig. 1(b).

Bayesian Graph Model F (Subject-Summary Latent): Consider Fig. 5(f), where a latent variable
summarizes subject information S. The Bayes-Ball provides the inference graphs shown in Figs. 6(e)
and (f), which respectively correspond to:

p(y, s, z|x) =

{
p(z|x)p(s|z, �x)p(y|�s, x, z), Model-Fz
p(s|x)p(z|s, x)p(y|x, �s, z). Model-Fs

(13)

Bayesian Graph Model G: Letting the joint distribution follow the model G in Fig. 5(g), we obtain
the following inference models via the Bayes-Ball:

p(y, s, z|x) =

{
p(z|x)p(s|z, x)p(y|s, z, �x), Model-Gz
p(s|x)p(z|s, x)p(y|z, s, �x), Model-Gs

(14)

whose graphical models are described in Figs. 6(g) and (h). Note that the inference model Gs in
Fig. 6(h) is identical to the inference model Ds in Fig. 6(b). Although the inference graphs Gs and Ds
are identical, the generative model of X is different as shown in Figs. 5(g) and (d). Specifically, VAE
decoder for the model G should feed S along with variational latent space Z, and thus using CVAE
is justified for the model G but D. This difference of the generative models can potentially make a
different impact on the performance of inference despite the inference graph alone is identical.

Bayesian Graph Models H and I: Both the generative models H and I shown in Figs. 5(h) and (i)
have the fully-connected inference strategies as given in (2), whose graphs are shown in Figs. 4(b)
and (c), respectively, since no useful conditional independency can be found with the Bayes-Ball.
Analogous to the relation of models Ds and Gs, the inference graph can be identical for Bayesian
graphs H and I, whereas the generative model of X is different as shown in Figs. 5(h) and (i).

Bayesian Graph Model J (Disentangled Latent): We can also consider multiple latent vectors to
generalize the Bayesian graph with more vertices. We here focus on two such examples of graph
models with two-latent spaces as shown in Figs. 5(j) and (k). Those models are identical class of
the model D, except that a single latent Z is disentangled into two parts Z1 and Z2, respectively
associated with S and Y . Given the Bayesian graph of Fig. 5(j), the Bayes-Ball yields some inference
strategies including the following two models:

p(y, s, z1, z2|x) =

{
p(z1, z2|x)p(s|z1,��z2, �x)p(y|�s,��z1, z2, �x), Model-Jz
p(s|x)p(z1|s, x)p(z2|�s, z1, x)p(y|�s,��z1, z2, �x), Model-Js

(15)

which are shown in Figs. 6(i) and (j). Note that Z2 is marginally independent of the nuisance variable
S, which encourages the use of adversarial training to be robust against subject/session variations.

Bayesian Graph Model K (Conditionally Disentangled Latent): Another modified model in
Fig. 5(k) linking Z1 and Z2 yields the following inference models:

p(y, s, z1, z2|x) =

{
p(z1, z2|x)p(s|z1,��z2, �x)p(y|�s, z1, z2, �x), Model-Kz
p(s|x)p(z1|s, x)p(z2|�s, z1, x)p(y|�s, z1, z2, �x), Model-Ks

(16)

as shown in Figs. 6(k) and (l). The major difference from the model J lies in the fact that the inference
graph should use Z1 along with Z2 to infer Y .

3

Under review as a conference paper at ICLR 2021

A.3 BACKGROUND ON VARIATIONAL BAYESIAN INFERENCE

Variational AE AutoBayes may automatically construct autoencoder architecture when latent
variables are involved, e.g., for the model E in Fig. 5(e). For this case, Z represents a stochastic
node to marginalize out for X reconstruction and Y inference, and hence VAE will be required. In
contrast to vanilla autoencoders, VAE uses variational inference by assuming a marginal distribution
for latent p(z). In variational approach, we reparameterize Z from a prior distribution such as
the normal distirbution to marginalize. Depending on the Bayesian graph models, we can also
consider reparametering semi-supervision on S (i.e., incorporating a reconstruction loss for S) as a
conditioning variable. Conditioning on Y and/or S should depend on consistency with the graphical
model assumptions. Since VAE is a special case of CVAE, we will go into further detail about the
more general CVAE below.

Conditional VAE When X is directly dependent on S or Y along with Z in the Bayesian graph,
the AutoBayes gives rise the CVAE architecture, e.g., for the models E/F/G/H/I in Fig. 5. For those
generative models, the decoder DNN needs to feed S or Y as a conditioning parameter. Even for
other Bayesian graphs, the S-first inference strategy will require conditional encoder in CVAE, e.g.,
the models Ds/Es/Fs/Gs/Js/Ks in Fig. 6, where latent Z depends on S.

Consider the case when S plays as the conditioning variable in a data model with the factorization:

p(s, x, z) = p(s)p(z)p(x|s, z), (17)

where we directly parameterize p(x|s, z), set p(z) to something simple (e.g., isotropic Gaussian), and
leave p(s) arbitrary (since it will not be directly used). The CVAE is trained according to maximizing
the likelihood of data tuples (s, x) with respect to p(x|s), which is given by

p(x|s) =

∫
p(x|s, z)p(z) dz, (18)

which is intractable to compute exactly given the potential complexity of the parameterization of
p(x|s, z). While it could be possible to approximate the integration with sampling of Z, the crux of
the VAE approach is to utilize a variational lower-bound of the likelihood that involves a variational
approximation of the posterior p(z|s, x) implied by the generative model. With q(z|s, x) representing
the variational approximation of the posterior, the Evidence Lower-Bound (ELBO) is given by

log p(x|s) ≥ Ez∼q(z|s,x)[log p(x|s, z)]−KL
(
q(z|s, x)‖p(z)

)
. (19)

The parameterization of the variational posterior q(z|s, x) may also be decomposed into parameterized
components, e.g., q(z|s, x) = q(s|x)q(z|s, x) such as in the S-first models shown in Fig. 6. Such
decomposition also enables the possibility of semi-supervised training, which can be convenient when
some of the variables, such as the nuisances variations, are not always labeled. For data tuples that
include s, the likelihood q(s|x) can also be directly optimized, and the given value for s is used an
input to the computation of q(z|s, x). However, for tuples where s is missing, the component q(s|x)
can be used to generate an estimate of s to be input to q(z|s, x). We further discuss semi-supervised
learning and the sampling methods for categorical nuisance variables in Appendix A.4 below.

A.4 SEMI-SUPERVISED LEARNING: CATEGORICAL SAMPLING

Graphical Models for Semi-Supervised Learning Nuisance values S such as subject ID or
session ID may not be always available for typical physiological datasets, in particular for the
testing phase of an HMI system deployment with new users, requiring semi-supervised methods.
We note that some graphical models are well-suited for such semi-supervised training. For example,
among the Bayesian graph models in Fig. 5, the models C/E/G/I require the nuisance S to reproduce
X . If no ground-truth labels of S are available, we need to marginalize S across all possible
categories for the decoder DNN D. Even for other Bayesian graphs, the corresponding inference
factor graphs in Fig. 6 may not be convenient for the semi-supervised settings. Specifically, for models
Ez/Fz/Jz/Kz have an inference of S at the end node, whereas the other inference models use inferred
S for subsequent inference of other parameters. If S is missing or unknown as a semi-supervised
setting, those inference graphs having S in a middle node are inconvenient as we need sampling
over all possible nuisance categories. For instance, the model Kz shown in Fig. 7 does not need S
marginalization, and thus readily applicable to semi-supervised datasets.

4

Under review as a conference paper at ICLR 2021

Variational Categorical Reparameterization In order to deal with the issue of categorical sam-
pling, we can use the Gumbel-Softmax reparameterization trick (Jang et al., 2016), which enables
differentiable approximation of one-hot encoding. Let [π1, π2, . . . , π|S|] denote a target probability
mass function for the categorical variable S. Let g1, g2, . . . , g|S| be independent and identically
distributed samples drawn from the Gumbel distribution Gumbel(0, 1).2 Then, generate an |S|-
dimensional vector ŝ = [ŝ1, ŝ2, . . . , ŝ|S|] according to

ŝk =
exp((log(πk) + gk)/τ)∑|S|
i=1 exp((log(πi) + gi)/τ)

, (20)

where τ > 0 is a softmax temperature. As the softmax temperature τ approaches 0, samples from the
Gumbel-Softmax distribution become one-hot and the distribution becomes identical to the target
categorical distribution. The temperature τ is usually decreased across training epochs as an annealing
technique, e.g., with exponential decaying.

A.5 ENSEMBLE LEARNING: STACKED GENERALIZATION

To achieve higher predictive performance, we construct ensembles from the output posterior class
probabilities of all graphical models. Let D0 = {(xn, yn, sn)|n = 1 : N} denote a data set, where
xn is a data instance, yn is the task label, sn is the nuisance (subject) label and N is the number
of samples in the dataset. We randomly split the data into training set Dtrain and validation set Dtest.
Given 37 graphical models, which we call base learners, we induce a decision algorithmMk, for
k = 1, . . . , 37 by invoking the kth graphical model on the data in Dtrain. For each xn in Dtrain,
graphical modelMk generates a class probability vector for task and nuisance label prediction. Let
Pky(xn) = {P (y1|xn), . . . , P (yi|xn), . . . , P (yNy

|xn)} denote the posterior probability distribution
over Ny task labels and Pks(xn) = {P (s1|xn), . . . , P (si|xn), . . . , P (sNs

|xn)} denote the posterior
probability distribution over Ns nuisance labels produced by model Mk given data instance xn.
Ensemble generalization works by stacking the predictions of the base learners in a higher level
learning space, where meta learner, denoted as M̃k, corrects the predictions of base learners (Wolpert,
1992). Subsequent to training base learners, we assemble the posterior probability vectors of all
base learners together: Py(xn) = {Pky(xn)} and Ps(xn) = {Pks(xn)}, where k = 1 : 37. M̃k is
trained using the predictions from all base learners as input attributes: D̃in

train = {(Py(xn), Ps(xn))}
and correct labels as output: D̃out

train = {(yn, sn)}, where n = 1 : Ntrain. Hold-out Dtest is used to
measure the classification performance of both base and meta learners. To make best use of the base
learners, we compare the predictive performance of a LR model and a shallow MLP as a meta learner
in Table 2.

A.6 DATASETS DESCRIPTION

We used publicly available physiological datasets as well as a benchmark MNIST as follows. The
parameters of datasets are also summarized in Table 1.

• QMNIST: A hand-written digit image MNIST with extended label information including
a writer ID number (Yadav & Bottou, 2019).3 There are |S| = 539 writers for classify-
ing |Y | = 10 digits from grayscale 28 × 28 pixel images over 60,000 training samples.
Additional 297 writers provide 10,000 test samples.

• Stress: A physiological dataset considering neurological stress level (Birjandtalab et al.,
2016).4 It consists of multi-modal biosignals for |Y | = 4 discrete stress states from |S| = 20
healthy subjects, including physical/cognitive/emotional stresses as well as relaxation. The
data were collected by C = 7 sensors, i.e., electrodermal activity, temperature, three-
dimensional acceleration, heart rate, and arterial oxygen level. For each stress status, a
corresponding task of 5 minutes long (i.e., T = 300 time samples with 1 Hz down-sampling)
was assigned to subjects for a total of 4 trials.

2The Gumbel(0, 1) distribution can be sampled by drawing e ∼ Exp(1) and computing g = − log(e).
3QMNIST dataset: https://github.com/facebookresearch/qmnist
4Stress dataset: https://physionet.org/content/noneeg/1.0.0/

5

https://github.com/facebookresearch/qmnist
https://physionet.org/content/noneeg/1.0.0/

Under review as a conference paper at ICLR 2021

• RSVP: An EEG-based typing interface using rapid serial visual presentation (RSVP)
paradigm (Orhan et al., 2012).5 |S| = 10 healthy subjects participated in the experi-
ments at three sessions performed on different days. The dataset consists of 41,400 epochs
of C = 16 channel EEG data for T = 128 samples, which were collected by g.USBamp
biosignal amplifier with active electrodes during RSVP keyboard operations. |Y | = 4 labels
for emotion elicitation, resting-state, or motor imagery/execution task.

• MI: The PhysioNet EEG Motor Imagery (MI) dataset (Goldberger et al., 2000).6 Excluding
irregular timestamp, the dataset consists of |S| = 106 subjects’ EEG data. During the
experiments, subjects were instructed to perform cue-based motor execution/imagery tasks
while C = 64 channels were recorded at a sampling rate of 160 Hz. Focusing on motor
imagery tasks, we use the EEG data for three seconds of post-cue interval data (i.e., T = 480
time samples). The subject performed |Y | = 4-class tasks; either right hand motor imagery,
left hand motor imagery, both hands motor imagery, or both feet motor imagery. This
resulted in a total of 90 trials per subject.

• ErrP: An error-related potential (ErrP) of front-central EEG dataset (Margaux et al., 2012).7
The dataset consists of EEG data recorded from |S| = 16 healthy subjects participating in
an offline P300 spelling task, where visual feedback of the inferred letter is provided to the
user at the end of each trial for 1.3 seconds to monitor evoked brain responses for erroneous
decisions made by the system. EEG data were recorded from C = 56 channels for epoched
1.25 seconds at a sampling rate of 200 Hz (i.e., T = 250). Across five recording sessions,
each subject performed a total of 340 trials. Since it was an offline copy spell task, binary
|Y | = 2 labels were provided as erroneous or correct feedback.

• Faces Basic: An implanted electrocorticography (ECoG) array dataset for visual stimulus
experiments (Miller et al., 2015; 2016).8 ECoG arrays were implanted on the subtemporal
cortical surface of |S| = 14 epilepsy patients. |Y | = 2 classes of grayscale images, either
faces or houses, were displayed rapidly in random sequence for 400 ms each with black-
screen intervals of 400 ms. The ECoG potentials were measured with respect to a scalp
reference and ground, at a sampling rate of 1000 Hz. Subjects performed a basic face and
house discrimination task. There were 3 sessions for each patient, with 50 house pictures
and 50 face pictures in each run, in total 4,100 samples. We use the first C = 31 channels to
analyze for T = 400. Reusing the public dataset requires the ethics statement information.9

• Faces Noisy: The implanted ECoG arrays dataset for visual stimulus experiments (Miller
et al., 2015; 2017). The experiment is similar to Faces Basic dataset, while pictures of faces
and houses are randomly scrambled. There are |S| = 7 subjects with C = 39 channels.
Refer ethics statement to reuse the dataset.10

• ASL: An EMG dataset for finger gesture identification for American Sign Language
(ASL) (Günay et al., 2019).11 |S| = 5 healthy, right-handed, subjects participated in
experiments with surface EMG (Delsys Inc. Trigno) recorded at 2 kHz from |C| = 16
lower-arm muscles. Subjects shaped their right hand into letters and numbers of the ASL
posture set presented as pictures on a computer screen (|Y | = 33 postures, 3 trials per

5RSVP dataset: http://hdl.handle.net/2047/D20294523
6MI dataset: https://physionet.org/physiobank/database/eegmmidb/
7ErrP dataset: https://www.kaggle.com/c/inria-bci-challenge/
8Faces dataset: https://exhibits.stanford.edu/data/catalog/zk881ps0522
9Ethics statement: All patients participated in a purely voluntary manner, after providing informed written

consent, under experimental protocols approved by the Institutional Review Board of the University of Washing-
ton (#12193). All patient data was anonymized according to IRB protocol, in accordance with HIPAA mandate.
These data originally appeared in the manuscript “Spontaneous Decoding of the Timing and Content of Human
Object Perception from Cortical Surface Recordings Reveals Complementary Information in the Event-Related
Potential and Broadband Spectral Change” published in PLoS Computational Biology in 2016 (Miller et al.,
2016).

10All patients participated in a purely voluntary manner, after providing informed written consent, under
experimental protocols approved by the Institutional Review Board of the University of Washington (#12193).
All patient data was anonymized according to IRB protocol, in accordance with HIPAA mandate. These data
originally appeared in the manuscript “Face percept formation in human ventral temporal cortex” published in
Journal of Neurophysiology in 2017 (Miller et al., 2017).

11ASL Dataset: http://hdl.handle.net/2047/D20294523

6

http://hdl.handle.net/2047/D20294523
https://physionet.org/physiobank/database/eegmmidb/
https://www.kaggle.com/c/inria-bci-challenge/
https://exhibits.stanford.edu/data/catalog/zk881ps0522
http://hdl.handle.net/2047/D20294523

Under review as a conference paper at ICLR 2021

Table 3: DNN model parameters in Fig. 7; Conv(h,w)cg denotes 2D convolution layer with kernel
size of (h,w) for output channel of c over group g. FC(h) denotes fully-connected layer with h
output nodes. BN denotes batch normalization.

Classifier C Encoder E Decoder D Nuisance N Adversary A
FC(2|Z|) Conv(1, 15)50 FC(20T) FC(2|Z|) FC(2|Z|)
BN+ReLU BN+ReLU ReLU BN+ReLU BN+ReLU
FC(|Y |) Conv(1, 7)50 Conv(C, 1)50 FC(|S|) FC(|S|)

BN+ReLU BN+ReLU
Conv(1, 3)50 Conv(1, 3)50

BN+ReLU BN+ReLU
Conv(C, 1)50

50 Conv(1, 7)50

FC(|Z|) BN+ReLU
Conv(1, 15)50

posture). Dynamic letters ‘J’ and ‘Z’ were omitted, along with the number ‘0’, which is
visually the same as the letter ‘O’. The participants were given 2 seconds to form the posture,
6 seconds to maintain it, and 2 seconds to rest between trials. The signal is decimated to be
T = 100.

A.7 DNN MODEL PARAMETERS

For 2D datasets, we use deep CNN for the encoder E and decoder D blocks. For the classifier C,
nuisance estimator N , and adversary A, we use a multi-layer perceptron (MLP) having three layers,
whose hidden nodes are doubled from the input dimension. We also use batch normalization (BN)
and ReLU activation as listed in Table 3. Note that for a tabular data such as Stress datasets, CNN
was replaced with 3-layer MLP having ReLU activation and dropout with a ratio of 20%. Also the
MLP classifier was replaced with CNN for 2D input dimension cases such as in the model A. The
number of latent dimensions was chosen |Z| = 64. When we need to feed S along with 2D data
of X into the CNN encoder such as in the model Ds, dimension mismatch poses a problem. We
address this issue by using one linear layer to project S into the temporal dimensional space of X
and another linear layer to project it into the spatial dimensional space of X . The dot product of
those two projected vectors is concatenated as additional channel input. We use λ∗ = 0.01 for the
regularization coefficient. We leave hyperparameter exploration to integrate AutoML and AutoBayes
as a remaining future work.

A.8 PERFORMANCE RESULTS

The additional results for the all datasets are listed in Table 4. The results suggest that the best
inference strategy highly depends on datasets. Specifically, the best model at one dataset does not
perform best for different datasets; e.g., the model non-variational Is was best for ASL dataset, while
the model variational Ds was best for RSVP dataset. It suggests that we shall consider different
inference strategies for each target dataset and AutoBayes provides such an adaptive framework.
Also note that reconstruction loss may not be a good indicator to select the graph model. In addition,
a huge performance gap between the best and worst models was observed for some datasets. For
example, the task accuracy of 76.4% was achieved with model non-variational Dz for Faces (Noisy)
dataset, whereas the model variational B offers 51.4%. This implies that we may have a potential risk
that one particular model cannot achieve good performance if we do not explore different models.

A.9 SUBJECT VARIATION PERFORMANCE

For Stress dataset, there are |S| = 20 subjects. As we have shown in Fig. 9(a), we demonstrated that
AutoBayes can improve robustness against the nuisance variation, i.e., subject ID S. In Fig. 10, we
show that the task classification accuracy highly depends on the subject ID S. Here, the box-whisker
plots shows the accuracy distribution over different models from A to Kz. The outliers are identified
by a whisker factor of 2.4 with respective to an inter-quartile range. It is seen that some users (e.g.,

7

Under review as a conference paper at ICLR 2021

Table 4: Performance of datasets: the reconstruction loss, the scores of nuisance classification and
task classification in variational/non-variational and adversarial/non-adversarial setting.

Dataset Method Reconstruction Loss (dB) Nuisance Classification (%) Task Classification (%) Model Complexity

Non-Variational Variational Non-Variational Variational Non-Variational Variational No. of Parameters Clock Time

QMNIST

Model A −51.73 — — — 99.02 — 290K 01 : 10 : 51

Model B −65.68 −61.62 — — 98.72 99.44 978K 01 : 58 : 51

Model Cs −66.38 — 13.12 — 99.32 — 3.56M 01 : 50 : 08

Model Cy −67.74 — 12.17 — 99.30 — 3.53M 01 : 48 : 47

Model Ds −57.14 −41.43 10.55 9.90 99.35 99.23 3.43M 01 : 54 : 06

Model Dz −65.04 −66.74 0.44 0.46 99.16 99.27 1.03M 01 : 21 : 37

Model Es −65.35 −66.56 11.77 10.51 99.44 99.21 4.17M 01 : 55 : 15

Model Ez −65.51 −61.41 2.55 14.95 99.35 99.13 4.15M 02 : 41 : 13

Model Fs −57.39 −43.39 14.94 16.50 99.34 99.40 3.49M 02 : 22 : 03

Model Fz −65.85 −43.42 1.80 9.03 99.08 99.41 1.09M 02 : 55 : 13

Model Gs −64.88 −61.51 9.78 10.25 98.54 98.88 4.23M 01 : 53 : 51

Model Gz −65.68 −42.05 9.71 12.36 99.12 98.73 4.20M 01 : 58 : 44

Model Hs −66.02 −43.32 15.94 16.56 99.18 99.39 3.49M 02 : 24 : 17

Model Hz −65.85 −43.45 13.20 14.70 99.47 99.28 3.49M 02 : 24 : 37

Model Is −65.35 −45.41 15.96 18.57 99.46 99.32 4.28M 02 : 26 : 26

Model Iz −65.84 −45.46 14.97 15.45 99.54 99.28 4.28M 02 : 23 : 56

Model Js −59.02 −57.3 11.41 11.21 99.47 99.39 4.11M 02 : 19 : 28

Model Jz −67.96 −61.51 6.44 5.02 98.85 99.46 1.71M 02 : 14 : 30

Model Ks −65.51 −63.35 11.59 1.16 99.49 99.10 4.12M 02 : 21 : 54

Model Kz −67.33 −61.20 6.32 6.94 99.15 99.15 1.71M 02 : 14 : 24

Stress

Model A −56.31 — — — 85.87 — 32.7K 00 : 00 : 35

Model B −66.56 −59.41 — — 94.79 92.67 97.0K 00 : 01 : 32

Model Cs −67.74 — 59.46 — 93.48 — 50.0K 00 : 00 : 50

Model Cy −66.56 — 75.77 — 91.93 — 48.0K 00 : 00 : 55

Model Ds −61.94 −36.04 59.90 28.37 93.26 83.70 95.3K 00 : 01 : 02

Model Dz −66.02 −48.40 81.17 36.21 94.22 79.76 99.0K 00 : 01 : 03

Model Es −66.38 −63.35 54.21 79.76 94.00 92.05 95.3K 00 : 01 : 08

Model Ez −64.73 −59.25 90.35 91.92 95.02 30.00 99.7K 00 : 01 : 46

Model Fs −64.73 −38.68 68.45 40.74 94.07 87.80 94.4K 00 : 01 : 04

Model Fz −66.94 −38.57 83.25 5.18 94.92 87.24 98.1K 00 : 01 : 40

Model Gs −67.96 −64.73 53.94 25.88 93.61 86.56 97.3K 00 : 01 : 11

Model Gz −65.85 −39.16 82.86 69.26 94.11 89.04 102K 00 : 01 : 01

Model Hs −65.04 −38.47 78.36 72.42 94.72 92.86 94.4K 00 : 01 : 04

Model Hz −66.38 −38.37 84.10 71.07 94.57 90.73 101K 00 : 01 : 06

Model Is −66.74 −47.94 79.51 74.38 94.74 91.94 96.4K 00 : 01 : 04

Model Iz −67.96 −47.98 84.46 68.63 94.80 90.52 103K 00 : 01 : 04

Model Js −67.13 −36.17 79.36 92.47 95.35 30.00 140K 00 : 01 : 21

Model Jz −66.74 −54.02 86.27 58.59 95.17 86.99 135K 00 : 02 : 07

Model Ks −68.64 −51.50 73.57 87.33 94.65 86.74 146K 00 : 01 : 20

Model Kz −66.56 −51.94 85.00 61.84 94.35 86.34 141K 00 : 02 : 05

RSVP

Model A −30.69 — — — 93.07 — 268K 00 : 48 : 25

Model B −34.27 −35.36 — — 93.06 91.89 1.87M 01 : 00 : 35

Model Cs −31.33 — 90.12 — 91.56 — 437K 00 : 55 : 35

Model Cy −31.57 — 90.38 — 91.54 — 435K 00 : 54 : 29

Model Ds −35.61 −30.17 91.33 84.77 91.16 93.42 2.01M 00 : 56 : 05

Model Dz −35.27 −35.37 92.42 86.84 92.44 92.71 1.87M 00 : 48 : 35

Model Es −35.61 −31.44 91.74 90.46 93.23 92.99 2.02M 00 : 54 : 43

Model Ez −35.62 −35.52 94.26 93.01 92.65 91.99 2.03M 01 : 16 : 32

Model Fs −35.60 −30.17 91.03 90.38 92.15 93.27 2.06M 01 : 00 : 52

Model Fz −32.94 −30.16 9.57 9.88 90.21 91.04 1.93M 01 : 08 : 24

Model Gs −35.78 −31.24 92.17 92.90 89.83 86.82 2.03M 00 : 57 : 25

Model Gz −35.28 −30.34 91.27 90.18 92.15 91.31 2.03M 00 : 52 : 22

Model Hs −35.40 −30.18 93.89 91.31 93.05 91.22 2.06M 01 : 04 : 10

Model Hz −35.39 −30.18 91.49 89.84 92.65 92.76 2.06M 01 : 04 : 20

Model Is −35.37 −30.35 93.37 90.32 92.94 91.60 2.08M 01 : 04 : 16

Model Iz −35.37 −30.36 91.36 90.96 91.41 91.92 2.08M 01 : 00 : 53

Model Js −36.10 −36.09 92.78 9.92 90.82 92.74 3.64M 01 : 02 : 55

Model Jz −35.82 −36.65 93.60 82.62 93.12 92.85 3.49M 01 : 01 : 37

Model Ks −35.65 −36.05 90.93 92.86 93.19 90.54 3.65M 01 : 01 : 11

Model Kz −35.53 −36.01 91.99 82.10 92.81 93.03 3.50M 00 : 58 : 04

8

Under review as a conference paper at ICLR 2021

Table 4: Performance of datasets (continued)

Dataset Method Reconstruction Loss (dB) Nuisance Classification (%) Task Classification (%) Model Complexity

Non-Variational Variational Non-Variational Variational Non-Variational Variational No. of Parameters Clock Time

MI

Model A −30.28 — — — 55.85 — 454K 02 : 47 : 39

Model B −32.17 −32.24 — — 56.32 47.61 6.29M 03 : 53 : 06

Model Cs −32.12 — 35.99 — 52.65 — 5.89M 03 : 35 : 09

Model Cy −32.15 — 43.60 — 52.98 — 5.84M 03 : 34 : 53

Model Ds −31.34 −20.20 74.15 1.14 24.26 24.89 10.9M 03 : 25 : 51

Model Dz −32.14 −35.92 4.82 9.01 55.26 51.80 6.30M 02 : 57 : 19

Model Es −32.22 −30.90 61.95 0.74 44.74 24.85 11.7M 03 : 25 : 11

Model Ez −32.52 −30.82 5.77 8.21 54.12 48.65 11.7M 04 : 43 : 56

Model Fs −30.36 −20.35 38.60 0.66 48.90 51.91 11.2M 04 : 16 : 05

Model Fz −31.86 −29.77 3.05 0.96 57.83 25.40 6.54M 04 : 24 : 11

Model Gs −32.16 −30.07 33.97 0.55 53.01 24.82 11.7M 03 : 30 : 57

Model Gz −32.31 −30.06 4.82 0.96 52.61 26.40 11.7M 03 : 30 : 49

Model Hs −32.11 −30.08 88.42 57.87 52.68 49.04 11.2M 04 : 15 : 27

Model Hz −31.99 −30.02 43.93 1.07 57.21 25.96 11.2M 04 : 15 : 56

Model Is −32.27 −30.08 85.55 54.99 55.00 24.26 12.0M 04 : 00 : 46

Model Iz −32.35 −30.09 48.49 1.03 53.57 26.03 12.0M 03 : 59 : 26

Model Js −30.29 −30.10 49.19 0.80 41.54 24.93 17.0M 04 : 01 : 20

Model Jz −32.88 −35.14 43.64 31.10 57.50 44.93 12.3M 03 : 59 : 00

Model Ks −30.79 −30.18 81.18 0.77 23.79 25.18 17.0M 04 : 00 : 59

Model Kz −32.27 −32.44 29.26 28.31 48.12 48.79 12.3M 03 : 43 : 01

ErrP

Model A −31.04 — — — 69.89 — 301K 00 : 48 : 18

Model B −41.26 −39.79 — — 71.81 71.39 3.40M 01 : 05 : 07

Model Cs −39.26 — 94.95 — 63.68 — 1.05M 00 : 56 : 24

Model Cy −41.51 — 98.98 — 70.07 — 1.05M 00 : 59 : 07

Model Ds −39.44 −29.92 98.68 7.69 69.11 69.77 4.04M 00 : 56 : 40

Model Dz −42.52 −39.46 97.30 68.93 68.09 75.91 3.41M 00 : 47 : 42

Model Es −39.49 −38.91 97.12 92.91 70.01 65.38 4.14M 00 : 59 : 27

Model Ez −41.17 −41.98 47.18 99.64 70.91 72.42 4.15M 01 : 18 : 58

Model Fs −39.54 −30.00 98.32 6.73 71.45 70.07 4.13M 01 : 09 : 08

Model Fz −41.35 −30.10 93.33 8.35 66.71 70.19 3.50M 01 : 17 : 28

Model Gs −40.23 −33.96 97.00 0.42 70.85 70.31 4.14M 00 : 56 : 57

Model Gz −41.02 −29.94 96.57 98.68 69.23 67.31 4.15M 00 : 57 : 12

Model Hs −40.03 −28.32 98.14 98.02 67.85 29.93 4.13M 01 : 10 : 47

Model Hz −41.19 −29.90 96.81 97.12 68.81 69.11 4.13M 01 : 05 : 37

Model Is −38.09 −30.07 98.26 96.33 59.62 67.31 4.23M 01 : 07 : 48

Model Iz −40.54 −29.99 96.21 96.33 70.25 66.95 4.23M 01 : 10 : 42

Model Js −40.33 −34.44 98.20 6.07 68.57 68.03 7.21M 01 : 11 : 08

Model Jz −42.40 −41.27 99.04 95.13 72.54 69.29 6.54M 01 : 06 : 01

Model Ks −38.85 −37.71 98.86 5.77 68.63 69.29 7.22M 01 : 09 : 38

Model Kz −42.48 −40.05 98.32 95.01 72.36 69.65 6.55M 01 : 05 : 53

9

Under review as a conference paper at ICLR 2021

Table 4: Performance of datasets (continued)

Dataset Method Reconstruction Loss (dB) Nuisance Classification (%) Task Classification (%) Model Complexity

Non-Variational Variational Non-Variational Variational Non-Variational Variational No. of Parameters Clock Time

Faces Basic

Model A −29.95 — — — 63.30 — 332K 00 : 40 : 22

Model B −33.68 −30.10 — — 48.56 51.12 5.27M 00 : 57 : 51

Model Cs −32.18 — 80.45 — 64.50 — 960K 00 : 46 : 11

Model Cy −32.96 — 87.26 — 65.62 — 954K 00 : 46 : 07

Model Ds −32.99 −30.10 92.23 7.69 62.74 48.08 5.80M 00 : 48 : 29

Model Dz −31.68 −23.37 88.70 7.77 66.99 49.28 5.28M 00 : 40 : 52

Model Es −31.98 −30.08 92.95 6.73 50.96 53.12 5.88M 00 : 47 : 36

Model Ez −31.84 −30.03 38.94 97.60 50.96 51.36 5.91M 01 : 05 : 37

Model Fs −33.32 −30.11 96.07 8.09 61.14 62.82 5.93M 00 : 54 : 31

Model Fz −32.95 −28.80 49.60 10.02 61.30 61.14 5.40M 01 : 06 : 39

Model Gs −32.56 −29.76 91.11 7.05 63.38 49.92 5.89M 00 : 46 : 34

Model Gz −33.13 −30.11 85.02 83.41 63.86 64.02 5.91M 00 : 46 : 19

Model Hs −32.03 −30.08 98.00 86.22 61.14 64.42 5.93M 00 : 51 : 52

Model Hz −33.29 −29.41 91.11 83.81 65.46 61.94 5.93M 00 : 54 : 32

Model Is −31.63 −30.11 97.92 94.39 62.34 61.94 6.01M 00 : 54 : 30

Model Iz −33.20 −30.06 91.67 89.10 63.94 67.31 6.01M 00 : 51 : 56

Model Js −33.28 −30.12 94.87 8.33 51.04 52.23 10.9M 00 : 53 : 17

Model Jz −32.21 −29.50 93.83 7.29 65.79 51.28 10.3M 00 : 56 : 36

Model Ks −31.12 −29.88 88.94 7.45 51.92 53.85 10.9M 00 : 55 : 41

Model Kz −32.69 −30.09 93.43 7.93 51.76 51.84 10.3M 00 : 56 : 37

Faces Noisy

Model A −30.09 — — — 75.94 — 333K 00 : 24 : 12

Model B −30.35 −30.09 — — 73.59 51.41 5.27M 00 : 33 : 07

Model Cs −30.10 — 95.62 — 75.16 — 664K 00 : 30 : 04

Model Cy −30.56 — 96.56 — 71.56 — 662K 00 : 27 : 47

Model Ds −30.22 −27.90 82.34 13.28 74.84 51.72 5.55M 00 : 27 : 45

Model Dz −30.11 −30.09 96.09 14.38 76.41 53.91 5.28M 00 : 24 : 18

Model Es −30.09 −28.70 91.09 13.28 74.38 52.50 5.59M 00 : 27 : 45

Model Ez −30.47 −28.58 21.41 93.75 70.94 52.97 5.61M 00 : 40 : 16

Model Fs −30.14 −30.08 95.62 13.75 71.88 75.62 5.68M 00 : 32 : 51

Model Fz −29.96 −27.76 27.50 17.03 72.50 72.19 5.40M 00 : 40 : 20

Model Gs −28.46 −30.15 93.75 13.91 71.56 52.50 5.59M 00 : 30 : 07

Model Gz −30.59 −30.09 94.53 80.94 75.00 75.16 5.61M 00 : 27 : 52

Model Hs −30.04 −30.08 98.49 88.59 75.59 69.06 5.68M 00 : 31 : 14

Model Hz −30.30 −30.06 95.94 91.09 75.47 76.09 5.68M 00 : 32 : 58

Model Is −30.10 −30.04 97.97 96.88 68.91 69.53 5.72M 00 : 31 : 27

Model Iz −30.62 −29.86 88.91 87.19 74.06 72.50 5.72M 00 : 33 : 43

Model Js −30.08 −28.72 95.69 15.94 65.31 53.59 10.6M 00 : 33 : 16

Model Jz −30.57 −30.03 96.62 14.22 71.56 52.66 10.3M 00 : 35 : 01

Model Ks −30.29 −30.14 65.62 15.52 54.06 53.44 10.6M 00 : 31 : 34

Model Kz −30.12 −28.45 94.84 12.66 76.56 54.23 10.3M 00 : 34 : 54

ASL

Model A −24.22 — — — 41.69 — 588K 01 : 18 : 06

Model B −23.89 −24.08 — — 3.03 37.80 1.53M 01 : 34 : 55

Model Cs −24.07 — 93.63 — 38.35 — 726K 01 : 26 : 27

Model Cy −24.14 — 94.63 — 38.28 — 729K 01 : 26 : 31

Model Ds −24.07 −24.08 93.74 94.29 39.23 41.32 1.63M 01 : 32 : 02

Model Dz −24.47 −24.69 95.99 95.10 43.83 40.89 1.53M 01 : 16 : 50

Model Es −24.07 −24.07 94.00 93.60 40.07 40.38 1.65M 01 : 32 : 04

Model Ez −24.96 −24.10 43.16 85.45 43.56 37.23 1.65M 01 : 55 : 58

Model Fs −24.07 −24.08 93.93 97.58 38.75 42.27 2.00M 01 : 39 : 40

Model Fz −24.08 −24.08 9.99 10.79 28.25 42.16 1.89M 01 : 50 : 56

Model Gs −24.07 −24.08 94.45 93.81 38.81 39.83 1.65M 01 : 29 : 42

Model Gz −24.50 −24.81 95.69 94.76 47.43 43.32 1.65M 01 : 27 : 01

Model Hs −25.10 −24.08 96.61 94.26 49.30 36.39 2.00M 01 : 39 : 54

Model Hz −24.87 −24.08 94.77 94.20 48.31 37.33 2.00M 01 : 45 : 32

Model Is −24.87 −24.08 96.54 94.37 51.12 38.31 2.01M 01 : 39 : 47

Model Iz −24.74 −25.03 95.81 93.98 49.47 38.45 2.01M 01 : 45 : 43

Model Js −24.07 −24.11 93.64 97.09 38.39 36.77 2.92M 01 : 47 : 38

Model Jz −24.09 −24.11 14.27 96.44 6.24 37.25 2.79M 01 : 35 : 45

Model Ks −24.11 −24.05 93.10 16.26 38.07 8.19 2.93M 01 : 39 : 54

Model Kz −24.22 −24.22 12.34 95.83 3.03 37.75 2.80M 01 : 40 : 42

10

Under review as a conference paper at ICLR 2021

S = 8) have superior performance whereas classification task is harder for some other users (e.g.,
S = 6). Our AutoBayes can well resolve the issues of such a nuisance variation by linking the
adversarial block for S-independent latent variables Z to generate subject-invariant feature.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Subject ID

80

90

100

Ac
cu

ra
cy

 (%
)

Figure 10: Task classification accuracy across subject ID for Stress dataset.

A.10 TIME COMPLEXITY ANALYSIS

In Fig. 9(b), we have shown the accuracy vs. the space complexity. In this section, we evaluate the
time complexity in Figs. 11(a) and (b), which show the task classification accuracy as a function of
computation time for training and testing, respectively, for the Stress dataset. As in the same setting
of Fig. 9(b), we explored different DNN configurations for the models A, B, and Js, by sweeping the
number of hidden layers and hidden nodes. Some Pareto-front DNN configurations having lower
complexity and higher accuracy are connected with lines. We used pytorch on NVIDIA Tesla K80
GPU with CUDA 10.1. It is seen that the standard classifier model A outperforms the other models in
lower complexity regimes, whereas our AutoBayes can achieve better Pareto front for higher accuracy
regimes. It should be also noted that the increase of the time complexity is not so significant (by a
few folds) in comparison to that of the space complexity (by a few magnitudes) in Fig. 9(b).

50 100 150 200 250 300

70

80

90

Training Clock (s)

A
cc

ur
ac

y
(%

)

Ensemble AutoBayes
AutoBayes
A-VAE
Standard Classifier

5 10 15 20

70

80

90

Testing Clock (s)

A
cc

ur
ac

y
(%

)

Ensemble AutoBayes
AutoBayes
A-VAE
Standard Classifier

Figure 11: Task classification accuracy as a function of time complexity for Stress dataset.

11

	Introduction
	Key Contributions
	AutoBayes
	Experimental Evaluation
	Conclusion and Future Work
	Related Work
	Bayesian Graph and Inference Models
	Background on Variational Bayesian Inference
	Semi-Supervised Learning: Categorical Sampling
	Ensemble Learning: Stacked Generalization
	Datasets Description
	DNN Model Parameters
	Performance Results
	Subject Variation Performance
	Time Complexity Analysis

