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Abstract

We present a technique for modeling non-central catadiop-

tric cameras consisting of perspective cameras and curved

mirrors. The real catadioptric cameras have to be treated

as non-central cameras, since they do not possess a sin-

gle viewpoint. We present a method for solving the corre-

spondence problem, auto-calibrating cameras, and comput-

ing a 3D metric reconstruction automatically from two un-

calibrated non-central catadioptric images. The method is

demonstrated on spherical, parabolic, and hyperbolic mir-

rors.

We observed that the reconstruction & auto-calibration

with non-central catadioptric cameras is as easy (or as dif-

ficult) as with central catadioptric cameras, provided that

the correspondence problem can be solved with a suitable

approximate central model. It turns out that it is the num-

ber of parameters of the camera model that matters rather

than the exact centrality of the projection. Our technique al-

lows to autocalibrate catadioptric cameras even with gen-

uinely non-central mirrors such as spheres (simple model,

low blur, easy to manufacture) or uniform resolution mir-

rors (optimized projection).

1. Introduction
Omnidirectional cameras have large field of view, provide

stable ego-motion estimation [5] and very complete 3D re-

construction from few (usually 2) images. There exist om-

nidirectional catadioptric cameras exploiting mirrors [3] or

purely dioptric fish-eye lenses [20].

Some catadioptric cameras, consisting, e.g., of a

parabolic, a hyperbolic, or an elliptical mirror, can be

aligned with a central camera in such a way that they pos-

sess a single projection center [2]. Such catadioptric cam-

eras can be treated as central cameras and the theory of cen-

tral catadioptric cameras [2, 3, 9, 10, 21] can be employed.

In practice, however, catadioptric cameras are not cen-

tral. The most common reasons are that i) a non-telecentric

lens is used for a parabolic mirror or the lens and the
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Figure 1: The bird’s eye views of the 3D reconstructions

of a square room. Top Left: A skewed reconstruction. A

central model for a real para-catadioptric (PCD) camera

was used. Top Right: The correct reconstruction. A non-

central PCD camera model was used. Bottom: Input im-

age pair showing manually marked rectangular regions and

point matches established automatically by [14].

parabolic mirror axes are not aligned properly, ii) a perspec-

tive camera is not placed in one of the focal length points of

hyperbolic or elliptical mirror, or iii) the mirror shape, e.g.

a sphere or uniform resolution mirrors [13, 8], are designed

so that they do not posses a single viewpoint property. All

the above may cause that the catadioptric camera becomes

non-central and there is no single viewpoint from which all

rays would emanate.

Using the central camera model for a non-central cam-

era leads to an inaccurate determination of 3D rays corre-

sponding to image points and consequently to a skewed 3D

reconstruction as Fig. 1 (top left) shows. A remedy is to de-



rive the correct non-central camera model capturing the true

distribution of reflected rays.

To build a 3D reconstruction from automatically es-

tablished point correspondences contaminated by mis-

matches, we need to be able to incorporate the autocali-

bration procedure into some robust estimation technique,

e.g. RANSAC [12]. However, there is a price to pay for

the accuracy. A non-central model is often very complex

with large number of parameters and it is often impossible

(or very computationally complex) to use the non-central

model in a RANSAC based estimation of multiple-view ge-

ometry. Thus, we are facing a problem: “To be accurate, we

have to use a complex non-central model. To be automatic,

we cannot use a complex model.”

We show in this work how to solve the above problem

by constructing a hierarchy of camera models. The hierar-

chy starts with a simplified model that is accurate enough to

distinguish between correct (inliers) and incorrect (outliers)

correspondences and simple enough to provide a tractable

optimization problem when using the RANSAC. In all cases

presented here, the simplified model is central. The sim-

plified model allows to recover inliers automatically. Sec-

ondly, an accurate and complex non-central model is fitted

to the correspondences validated in the first step. The non-

central model allows to reconstruct scene geometry accu-

rately. The art is to find i) a simplified model that is accu-

rate enough to reject outliers but simple enough to provide a

tractable RANSAC estimation problem and ii) a sufficiently

accurate non-central model providing an accurate 3D recon-

struction from correct image correspondences.

When an imaging system does not maintain a single

viewpoint, a caustic, a locus of viewpoints in three dimen-

sions is formed and the system has to be treated as non-

central. Previous work related to the non-central cameras

can be found in [4, 6, 11, 17, 19, 22]. In most relevant pa-

pers, [11, 22], the non-central devices like curved mirrors,

meniscus lenses, camera clusters, or compound cameras

were represented by points on the caustic and directional

vectors towards scene points. These models capture geo-

metrical, radiometrical, and optical properties of the om-

nidirectional camera. Our approach to modeling the optics

differs in that we represent the catadioptric camera by points

on the mirror surface (not on the caustic). Our model cap-

tures the geometric (not radiometric and optical) properties

of the camera what is sufficient for doing 3D reconstruc-

tion. Since the caustic does not have to be computed, the

derivation of our model is simpler and the computation of

the Jacobian, as in [22], is not necessary. Moreover, our

model can be estimate from point correspondences only.

In [6], the non-central spherical catadioptric camera is

approximated by a camera with a single viewpoint (the top

of the mirror) to construct perspective images. We also

use a central approximate model of the spherical catadiop-
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Figure 2: Left: Coordinate system of the spherical catadiop-

tric camera. The origin is located in F . Right: A coordinate

system in an acquired image.

tric camera. However, we chose the position of the center,

which minimizes the sum of squares of angular differences

between approximated rays and the correct ones.

The structure of the paper is the following. The non-

central and the approximate central model, the autocalibra-

tion and the 3D reconstruction method are derived in full

detail for the spherical mirror. For parabolic and a hyper-

bolic mirrors, the procedure is analogical, therefore only fi-

nal equations, results, and observations are given.

2. Non-central model

The advantage of the spherical mirror is that it is readily

available, provides images with little blur, has large field of

view (∼ 250◦), and the equation of the surface is simple

(one-parametric). However, the spherical mirror does not

possess a single projection center when observed by any

central (perspective or orthographic) camera. To derive an

appropriate central model, an approximation has to be used.

Let us derive a general imaging model for a non-central

spherical catadioptric camera. The technique of the deriva-

tion is in some steps similar to the derivation of the cen-

tral catadioptric camera models [21]. A sphere in the origin

with center F and radius a can be expressed as

(x⊤ 1) Q

(

x

1

)

= 0, (1)

where

Q = diag(1, 1, 1,−a2) (2)

and x = (x, y, z)⊤ is a point on the sphere.

Suppose a Cartesian world coordinate system W . A

Cartesian coordinate system of a mirror, placed in the cen-

ter of the sphere F , is rotated and translated by Rm ∈ R
3×3

and tm ∈ R
3×1 w.r.t. W . A Cartesian coordinate system
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of a perspective camera, placed in the optical center C, is

related to the mirror coordinate system by Rc and tc, see

Fig. 2.

2.1. From image point to its projection ray

A conventional perspective camera projects a 3D point x

on the mirror surface into the image plane by the standard

projection equation [12]

u =
1

λ
KRc[I| − tc]

(

x

1

)

, (3)

where K is a 3 × 3 upper triangular camera calibration ma-

trix [12], u ∈ R
3 and λ ∈ R\{0}.

The ray ν emanating from camera center C in the direc-

tion u can be parametrized by λ and written, using (3), as

ν = λR⊤c K
−1u + tc = λv + tc, (4)

where v = (r, s, t)⊤ and tc = (k, l, m)⊤. Substituting (4)
and (2) into the mirror equation (1) yields

(r2+s
2+t

2)λ2+2(ls+kr+mt)λ+(k2−a
2+m

2+l
2) = 0. (5)

Solving quadratic equation (5) gives two solutions for λ.

Going from C in direction u, we are interested in the inter-

section which is closer to the point C. Therefore the smaller

λ is the correct solution.

Substituting λ from Eq. (5) into (4) yields the point on

the mirror surface. This point x = λR⊤c K
−1u + tc is ex-

pressed in the world coordinate system W as

xw = R
−1
m x + tm = R

−1
m

(

λR⊤c K
−1u + tc

)

+ tm. (6)

The ray ν is reflected at the point x by the mirror such

that the angles γ of incident and coincident rays to the sur-

face normal are equal. The normal to the mirror surface in

mirror point x, i.e. n = ( ∂z
∂x

, ∂z
∂y

,−1)⊤, is given by

n =

(

−x
√

a2 − x2 − y2
,

−y
√

a2 − x2 − y2
,−1

)⊤

. (7)

If the normal vector n is normalized to n̂ = n
‖n‖ of unit

length, the directional vector of the reflected ray p can be

computed as

p = v − 2(v · n̂) · n̂
= R

⊤
c K

−1u− 2
((

R
⊤
c K

−1u
)

· n̂
)

· n̂. (8)

Vector p, expressed in the world coordinate system W , i.e.
pw = R−1

m p, is given by

pw = R
−1

m

(

R
⊤

c K
−1

u − 2

(

(

R
⊤

c K
−1

u

)

· n

‖n‖

)

· n

‖n‖

)

. (9)

Eq. (6) and (9) represent a complete mapping from an image

point u in the camera coordinate system to a pair (xw;pw)
in a world coordinate system. The pair (xw;pw) consists of

the point xw on the mirror surface and the directional vector

pw pointing towards a scene point X. A simulation of the

derived model shows the corresponding caustic, see Fig. 3.
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Figure 3: Rays reflected by the mirror are tangent to a caus-

tic surface. Left: A perspective camera looking at a spher-

ical mirror. Right top: An approximation of a non-central

spherical model by a central one with a fictive viewpoint F ′.

Right bottom: A detail view of the caustic.

2.2. Projection of a scene point to an image

Given a scene point X, there is no closed-form solution for

its image projection u. It can be easily designed as an itera-

tive method incorporating the mapping from an image point

to its projection ray (derived in subsection 2.1).

First, the initial image u of X is obtained using a cen-

tral model (derived later), for which a direct solution ex-

ists. Second, the iterative method is used. The iterative

method minimizes (over coordinates of u) the distance be-

tween a ray, computed from u by the non-central model

from Sec. 2.1, and the 3D point X. The method converges

very quickly thanks to a good initial estimate of u provided

by the approximate central model.

3. Approximation by a central model

A non-central model can be approximated by a central one

in order to find a sufficiently simple model which is accu-

rate enough to distinguish between correct (inliers) and in-

correct (outliers) point matches and which can be used to

obtain an initial estimate of camera motion.

Suppose that the optical axis of a perspective camera

goes through the center of the spherical mirror, i.e. Rc =
diag(−1, 1,−1) (image is mirrored), tc = (0, 0, z)⊤, and

the whole spherical mirror is visible in the image.

Since the rim of the mirror is visible in the image, the

principal point [12] can easily be estimated by fitting an

ellipse to the image of the mirror rim. The center of the
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ellipse can be regarded as the principal point. The ellipse

can be transformed to a circle to obtain radially symmetric

image appropriate for the approximate precalibrated central

model. In this precalibrated image, the calibration matrix

becomes K = diag (f, f, 1). In all central models in the rest

of the paper, an image point u stands for the image point in

the precalibrated image.

3.1. From image point to its projection ray

Suppose a fictive optical center F ′ moved by h a from the

center of a sphere, see Fig. 3. Unknown parameters are: f
(focal length of the perspective camera), z (distance cam-

era – mirror), a (mirror parameter, radius of the sphere), h
(position of the fictive center).

The matrix Q of a sphere with the origin in the fictive

point F ′ in Eq. (1) becomes

Q =







1 0 0 0
0 1 0 0
0 0 1 ha

0 0 ha (ha)2 − a2






. (10)

It follows from perspective projection, see Fig. 3 (right

top), that the focal length

f = rm

√

(z

a
+ h
)2

− 1 (11)

is a function of z, a, h. It holds in the precalibrated image

that

v = R
⊤
c K

−1u = (−u/f, v/f,−1)
⊤

. (12)

Substituting (10) and (4) with v from (12) and λ from (5)

where k, l = 0 (aligned optical axes), into the mirror equa-

tion (1) yields the vector p going towards a scene point

p ≃ λ





−u
f
v
f

−1



+





0
0
b



 =





px

py

pz



 , (13)

with

λ =

b + h−

√

(b + h)2 −
(

r2

f2
+ 1

)

(b2 + 2hb + h2
− 1)

r2

f2
+ 1

,

where r =
√

u2 + v2 is the radius of an image point, f is

from (11), and b = z
a

is a new parameter absorbing z and a.

Unknown parameters are reduced to the ratio z
a

and h.

Let us investigate the relationship of the distance h of the

fictive center F ′ and the ratio z
a

. We minimized (over h) the

sum of squares of angular differences between real 3D rays

reflected by a mirror surface to scene points and the approx-

imated rays emanating from the fictive center F ′, see Fig. 4.

It can be seen that the distance of the fictive center is chang-

ing moderately. Small change of h does not affect signif-

icantly the error arised by approximating the non-central
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Figure 4: The position h of the fictive center F ′ as a func-

tion of the ratio b = z
a

.

model by the central one. Therefore we fixed h = 0.64.

By that we reduced the number of parameter to one, b = z
a

.

3.2. Projection of a scene point to an image

Let X ∈ R
3 be a scene point, and Rm, tm, Rc, tc, K be as

before. The intersection of a ray going from X towards a

fictive center F ′ with the mirror surface, Eq. (10), can be

computed from Eq. (1)

[

λ[Rm,−Rmtm]X
1

]⊤

Q

[

λ[Rm,−Rmtm]X
1

]

= 0

as the smaller λ from two solutions of the quadratic equa-

tion

(r2 + s2 + t2)λ2 + 2 t h aλ + h2a2 − a2 = 0, (14)

where (r, s, t)⊤ = [Rm,−Rmtm]X. A point on the mirror

surface, written in the camera coordinate system,

xc = (xc, yc, zc)
⊤ = Rc (λ[Rm,−Rmtm]X − tc) (15)

with λ from (14) is projected to the image as u = K
1
zc

xc.

4. Autocalibration from EG

Suppose that we have two images of a rigid scene acquired

by the same spherical catadioptric camera from two differ-

ent positions. Assume that automatically established ten-

tative point correspondences contaminated by outliers are

available. We know neither the internal calibration parame-

ters of the catadioptric camera, nor the position of cameras.

We want to validate the tentative correspondences (mark

inliers/outliers), estimate parameter b in Eq. (13), and find

the relative position of the second camera w.r.t. the first one,

i.e. Rm, tm. To do so, we will use the approximated central

model derived in Sec. 3.

The basic property of central cameras is that they possess

a single viewpoint and therefore the epipolar geometry can

be formulated for vectors p in the 1st camera and p̌ in the

2nd one

p̌⊤
Fp = 0. (16)
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The autocalibration method based on epipolar constraint is

motivated by papers [7, 15]. In order to obtain a direct so-

lution of F and b, a linearization of the vector p in b0 in

Eq. (13) is performed using the Taylor series

p ≈





px

py

pz





b=b0

+ (b − b0)





ṗx

ṗy

ṗz





b=b0

=

=





px − ṗxb0

py − ṗyb0

pz − ṗzb0





b=b0

+ b





ṗx

ṗy

ṗz





b=b0

= q + b s, (17)

where vectors q = (p, q, r)⊤ and s = (s, t, u)⊤ are com-

puted directly from known image coordinates, and ṗi, i =
{x, y, z}, stand for ∂pi

∂b
. The epipolar constraint, Eq. (16),

can be written as

(q̌ + bš)
⊤
F (q + bs) = 0.

Gathering the point coordinates into three design matrices,

we obtain an equation that is quadratic in parameter b and

linear in f ,
(

D1 + bD2 + b2
D3

)

f = 0, (18)

known as the Quadratic Eigenvalue Problem (QEP) [1]. Ef-

ficient algorithms are available, e.g. MATLAB solves QEP

by the function polyeig.

Every point correspondence adds one row into the ma-

trices Di. The unknown vector f (created from the matrix

F) and one row of three design matrices Di composed from

image points coordinates have the following form:

f = [ F11, F12 . . . F33 ]⊤

D1 = [ p̌p p̌q p̌r q̌p q̌q q̌r řp řq řr ]

D2 = [ p̌s + šp p̌t + šq p̌u + šr q̌s + ťp q̌t + ťq

q̌u + ťr řs + ǔp řt + ǔq řu + ǔr ]

D3 = [ šs št šu ťs ťt ťu ǔs ǔt ǔu ]. (19)

The matrices Di have to be square. Therefore, the mini-

mum number of correspondences is 9. Usage for 9 matches:

polyeig(D3, D2, D1). If more than 9 points are to be used,

the least-squares solution can be obtained by premultipli-

cation by D⊤i . It does not change the solution, but allows

square solvers to be used. Usage for more than 9 matches:

polyeig(D⊤1 D3, D
⊤
1 D2, D

⊤
1 D1).

As a result of solving Eq. (18), there are 18 solutions

for b and their corresponding F’s. Many of the solutions

are zero, infinite or complex. In practice, no more than one

solution is considerable. If there are more then one solution,

the one with the minimal angular error (the sum of angles

between an epipolar plane and 3D vectors p [18]) is chosen.

The most important property of this autocalibration

method is that the direct solution of Eq. (18) allows to incor-

porate the autocalibration method into a RANSAC robust es-

timation technique and thus to handle outliers. As the result

Figure 5: Outlier detection during the calibration process.

Left: An acquired image from a stereo pair with all tenta-

tive correspondences found by [14]. Circles mark points in

the image, lines join them to their matches in the next one.

Right: The same image with the validated inliers only and

their matches in the next image.

of the autocalibration, the essential matrix (stronger than

the fundamental one, allowing a metric reconstruction), the

camera parameter b, and the inliers, see Fig. 5, are obtained.

The reconstruction error (explained later), computed by

using estimated b, F (Rm, tm) and the non-central cam-

era model, derived in Sec. 2.1, is used as the criterion in

RANSAC to classify a point match to be an inlier or an out-

lier.

The linearization was done in the point b0 = 10, what is

a typical ratio of camera distance to the radius of a sphere in

which it is possible to focus whole mirror surface. A rough

initial estimate of b0 is sufficient.

5. 3D reconstruction

Every ith point correspondence can be represented by

(xi
w;pi

w) in the first camera and by (x̌i
w ; p̌i

w) in the sec-

ond one, computed from Eq. (6) and (9). The reconstructed

3D point X for one point match (xi
w;pi

w) ↔ (x̌i
w; p̌i

w) is

obtained as the point in the center of the shortest transversal

of the respective projection rays

di =
|
(

xi
w − x̌i

w

)

·
(

pi
w × p̌i

w

)

|
|pi

w × p̌i
w|

. (20)

The final metric reconstruction RM is obtained by min-

imizing the sum of squared lengths of shortest transversals

RM = argmin
b,Rc,tc,Rm,tm,K

N
∑

i=1

d2
i , (21)

where N is the number of point matches. This is al-

most equivalent to minimizing the image reprojection errors

since our cameras are calibrated.
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Figure 6: Reflected rays by a parabolic (left) and a hyper-

bolic (right) non-central catadioptric camera create caustics.

6. Other mirrors

6.1. Parabolic mirror

If a standard lens with a large focal length is used instead

of an ideal telecentric lens or if the orthographic projec-

tion is not exactly parallel with the axis of symmetry of

the parabolic mirror, the para-catadioptric camera becomes

non-central, see Fig. 6 (left).
Suppose a paraboloid of revolution with equation z =

a2−‖u‖
2a

with the origin located at the focal point of the
paraboloid, where a is the parameter of the paraboloid and
u is an image point. Analogically to Eq. (4) we have

(−r
2−s

2)λ2 +2(−kr−at− ls)λ+(a2−k
2− l

2 −2am) = 0,

what gives the solution for λ in (6). Substituting λ and the

normal vector to the parabolic mirror surface at the mirror

point x, i.e. n =
(

−x
a

, −y
a

,−1
)⊤

, into (6) and (9) gives the

non-central para-catadioptric camera model.

The autocalibration method from automatically estab-

lished point matches for central para-catadioptric cam-

eras, analogical to the method described in Sec. 4, can be

used to solve the correspondence problem and to obtain

an initial estimate of camera model and motion [16]. The

method leads to the Polynomial Eigenvalue Problem of de-

gree 5 [16] .

The parabolic mirror has an advantage over a spherical

one since the auto-calibration method does not require a

linearization of the camera model and thus an initial esti-

mate of a point of the linearization is not needed. However,

the parabolic mirror provides more blurred images than the

spherical one.

6.2. Hyperbolic mirror

If the optical center of a perspective camera is not placed

in the second focal length of the hyperbola precisely the

camera becomes non-central, see Fig. 6 (right).
Suppose a hyperboloid of revolution with equation

(z−e)2

a2 − x2+y2

b2
= 1 with the origin located in the first fo-

cal point of the hypeboloid, where a, b are parameters of the

hyperboloid and e =
√

a2 + b2 is the eccentricity. Analog-
ically to Eq. (4) we have

(t2b2 − s
2
a
2 − r

2
a
2)λ2 + 2(mtb

2 − etb
2 − lsa

2 − 2kra
2)λ+

+(m2
b
2 − k

2
a
2 − 2meb

2 − l
2
a
2 + b

4) = 0, (22)

what gives the solution for λ in (6). Substituting λ and

the normal vector to the mirror surface at the mirror point

x, i.e. n ≃
(

−a
b
x,−a

b
y,−

√

b2 + x2 + y2
)⊤

, into (6)

and (9) gives the non-central hyperbolic catadioptric cam-

era model.

We designed an autocalibration method analogical to the

methods for spherical and parabolic mirrors. The method

assumes the central model with the center of perspective

camera placed into the second focal length of the hyper-

boloid.

Substituting λ, computed from Eq. (22) for k, l = 0
(aligned optical axes), m = 2e (central camera), and
R⊤c K

−1u from Eq. (12) to Eq. (4), yields the vector p

p ≃
c2

(√
1 + c2 +

√

r2

f2 + 1
)

c2 − r2

f2





−u
f
v
f

−1



 +





0
0

2
√

1 + c2



 ,

(23)

where r =
√

u2 + v2 is the radius of the image point u
w.r.t. the principal point, c = b

a
is unknown parameter, and

f is the focal length of the perspective camera. The focal
length f can be expressed as a function of c, rm (radius of a
view field circle), and g (the ratio height/width of a mirror)
as

f = −rm(g2c2 − 1)

2gc2

(

√

1 + c2 − 2g2c2

g2c2 − 1
+ 1

)

. (24)

The vector p in Eq. (23) can thus be expressed as a one-

parametric function of parameter c and represents the cen-

tral model of a hyperbolic catadioptric camera.

To derive the autocalibration method, the procedure from

Sec. 4 can be directly applied. The difference from the

spherical mirror is that the linearization, Eq. (17), of p in

Eq. (23) with substituted f , Eq. (24), is done at the point c0

(instead of b0). The method leads to the Quadratic Eigen-

value Problem and a 9-point RANSAC.

There is a disadvantage in comparison to the spherical or

parabolic mirror: the ratio height/width of the mirror needs

to be known to arrive at a 9-point RANSAC. If the ratio

is unknown, the vector p in Eq. (23) is a two-parametric

function of c and g. The method would then lead to the QEP

again, but to a 15-point RANSAC, what is computationally

much more demanding.

7. Experiments

We acquired two images by a catadioptric camera consisting

of a perspective camera (Canon PowerShot G2) and spheri-

cal, parabolic and hyperbolic mirrors, respectively. The size

in pixels of the minimal image containing a view field circle

was 1042× 1042 ∼ 252◦ for the spherical, 1474× 1474 ∼
210◦ for the parabolic, and 1560 × 1560 ∼ 186◦ for the

hyperbolic mirror.

The tentative correspondences between the gravity cen-

ters of feature regions were obtained by [14]. As a result

6



Figure 7: Middle left: 3D metric reconstruction from

two uncalibrated spherical catadioptric images. Top right:

Bird’s eye view of the room. Bottom: Input image pair to-

gether with manually marked rectangular regions and auto-

matically detected point correspondences[14].

of applying the calibration method based on central mod-

els (described in detail for spherical mirror in Sec. 4), ini-

tial camera models and the corresponding essential matrices

were obtained, and outliers were rejected, see Fig. 5 and

8 (2nd row).

The camera model parameters and relative camera po-

sitions obtained from the estimated essential matrix were

used to compute an initial 3D reconstruction as Sec. 5

describes. The 3D reconstruction was improved by the

non-linear bundle adjustment, Eq. (21), assuming the non-

central model and tuning the second camera matrix P2 =
[Rm | tm] (the first camera was fixed to P1 = [I |0]) and

internal camera model parameters, same for both cameras.

The internal camera model parameters are i) the center of

radial symmetry in the image (u0, v0)
⊤, i.e. the intersection

of the mirror axis with the image plane, ii) mirror shape

parameters a, b, iii) perspective camera orientation and po-

sition w.r.t. the mirror coordinate system Rc, tc, and iv) the

focal length of the perspective camera f . The square pixel

and zero skew of the perspective camera were assumed.

To show the quality of the 3D reconstruction, some rect-

angular regions have been marked manually. The estimated

parameters of the non-linear camera model were used for

the reconstruction these regions.

Results in Fig. 7 and 8 show that the method leads to an

accurate 3D metric reconstruction (for a very small resolu-

tion) what can be easily verified on bird’s eye views that the

reconstructed rooms is indeed rectangular. Notice thus for

a spherical mirror, 1024pxl for the FOV 252◦ corresponds

to 182pxl for the FOV 45◦ of a typical perspective camera.

8. Conclusion

We derived accurate non-central and suitable approximate

central models for spherical, parabolic, and hyperbolic mir-

rors. We designed a method allowing to build a 3D metric

reconstruction from two uncalibrated non-central catadiop-

tric images. One can observe that an accurate and quite

complete 3D reconstruction of surrounding scene can be ob-

tained already from two views.

The proposed autocalibration and 3D reconstruction

technique is not restricted to the three mirrors presented

in the paper. The same procedure can be applied for non-

central catadioptric cameras composed of uniform resolu-

tion mirrors especially designed to fulfil a given type of pro-

jection [13, 8].

Two important conclusions follow from our work. First,

the correspondences between catadioptric images can (and

need to) be validated using an approximation of the non-

central camera model by a suitable central one. Second, the

non-central camera model has to be used to get a geometri-

cally correct 3D metric reconstruction.
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