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Abst rac t .  This paper describes the theory and a practical algorithm for 

the autocalibration of a moving projective camera, from m > 5 views of 

a planar scene. The unknown camera calibration, motion and scene ge- 

ometry are recovered up to scale, from constraints encoding the motion- 

invariance of the camera's internal parameters. This extends the domain 

of autocalibration from the classical non-planar case to the practically 

common planar one, in which the solution can not be bootstrapped from 

an intermediate projective reconstruction. It also generalizes Hartley's 

method for the internal calibration of a rotating camera, to allow cam- 

era translation and to provide 3D as well as calibration information. The 

basic constraint is that orthogonal directions (points at infinity) in the 

plane must project to orthogonal directions in the calibrated images. 

Abstractly, the plane's two circular points (representing its Euclidean 

structure) lie on the 3D absolute conic, so their projections must lie on 

the absolute image conic (representing the camera calibration). The re- 

sulting algorithm optimizes this constraint numerically over all circular 

points and all projective calibration parameters, using the inter-image 

homographies as a projective scene representation. 
Keywords :  Autocalibration, Euclidean structure, Absolute Conic &: 

Quadric, Planar Scenes. 

1 I n t r o d u c t i o n  

This paper describes a method of autocalibrating a moving projective camera 

with general, unknown motion and unknown intrinsic parameters, from m > 5 

views of a planar scene. Autocalibration is the recovery of metric information 

from uncalibrated images using geometric self-consistency constraints. For ex- 

ample, the internal and external calibration of a moving projective camera can 

be recovered from the knowledge that  the internal parameters are constant dur- 

ing the motion, and the inter-image consistency constraints that  this entails. 

Since the seminal work of Maybank & Faugeras [14, 3], a number of different ap- 

proaches have been developed [5, 6, 1, 26, 25, 2, 13, 9, 16, 15, 22, 10]. For the 'clas- 

sical' problem of a single perspective camera with constant but unknown internal 
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parameters moving with a general but unknown motion in a 3D scene, the orig- 

inal 'Kruppa equation'  approach [14] seems to be being displaced by methods 

based on the 'rectification' of an intermediate projective reconstruction [5, 9, 15, 

22, 10]. More specialized methods exist for particular types of motion and simpli- 

fied calibration models [6, 23, 1, 16]. Stereo heads can also be autocalibrated [26, 

11]. Limited variations of the intrinsic parameters can also be handled [9, 15]. 

Hartley [6] gives a particularly simple internal calibration method for a 'rotating 

camera'  - -  i.e. whose translation is known to be negligible relative to n _> 4 

distant, identifiable, real or synthetic points in the scene. Faugeras [2] advocates 

a 'stratification' paradigm based on such 'plane at infinity' constructs. The nu- 

merical conditioning of autocalibration is historically delicate. Although recent 

algorithms have improved the situation significantly [9, 15, 22], classical autocal- 

ibration still has some restrictive intrinsic degeneracies - -  classes of motion for 

which no algorithm can recover a full unique solution. Sturm [18, 19] gives a 

catalogue of these. At least 3 views, some translation and some rotation about 

at least two non-aligned axes are required. 

P l a n a r  A u t o c a l i b r a t i o n :  Existing approaches to classical autocalibration 

rely on information equivalent to a 3D projective scene reconstruction. In the 

Kruppa approach this is the fundamental matrices and epipoles, while for most 

other methods it is an explicit 3D reconstruction. This is a problem whenever 

planar or near-planar scenes occur, as projective reconstructions, fundamental 

matrices, etc., can not be estimated stably in th e near-planar case. In contrast, 

calibrated reconstruction from near-planar scenes is not difficult, so it is exactly 

here where projective methods fail, where autocalibration would be most useful. 

The current paper aims to rectify this, by providing methods which autocalibrate 

planar scenes by 'straightening' the inter-image homographies induced by the 

plane. A longer term goal is to find ways around the ill-conditioning of projective 

reconstruction for near-planar scenes, and also to develop 'structure-free'  internal 

calibration methods similar to Hartley's rotating camera one [6], but which work 

for non-zero translations. The hope is that  planar methods may offer one way 

to attack these problems. 

Planar autocalibration has other potential advantages. Planes are very com- 

mon in man-made environments, and often easily identifiable and rather accu- 

rately planar. They  are simple to process and allow very reliable and precise 

feature-based or intensity-based matching, by fitting the homographies between 

image pairs. They are also naturally well adapted to the calibration of lens dis- 

tortion, as some of the subtleties of 3D geometry are avoided 1. 

The main disadvantage of planar autocalibration (besides the need for a nice, 

flat, textured plane) seems to be the number of images required. Generically, 
n+4  m ~ [--5--] images are needed for an internal camera model with n free param- 

eters, e.g. m _> 5 for the classical 5 parameter  projective model (focal length f ,  

aspect ratio a, skew s, principal point (uo, v0)), or m > 3 if only focal length is 

1 We will ignore lens distortion throughout this paper. If necessary it can be corrected 
by a nominal model or - -  at least in theory - -  estimated up to an overall 3 x 3 
projectivity by a bundled adjustment over all the inter-image homographies. 
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estimated.  However for good accuracy and reliability, at least 8-10 images are 

recommended in practice. Almost any a t t empt  at algebraic elimination across 

so many  images rapidly leads to a combinatorial  explosion. Hence, the approach 

is resolutely numerical, and it seems impracticable to initialize the optimization 

from a minimal algebraic solution. Although in many  cases the numerical do- 

main of convergence is sufficient to allow moderately  reliable convergence from 

a fixed default initialization, and we have also developed several initialization 

search methods which may  be useful in some cases, occasional convergence to 

false minima remains a problem. 

Organization: Section 2 gives a direction-vector based formulation of auto- 

calibration, and discusses how planar  and non-planar autocalibrat ion can be ap- 

proached within this framework. Section 3 describes the stat ist ically-motivated 

cost function we optimize. Section 4 discusses the numerical algorithm, and the 

method used to initialize it. Section 5 gives experimental  results on synthetic 

and real images, and section 6 concludes the paper.  

Notation will be introduced as required. Briefly we use bold upright x, M 

for homogeneous 3D (4 component)  vectors and matrices; bold italic x, M for 

3 component  ones (homogeneous image, inhomogeneous 3D, 3-component parts  

of homogeneous 4-component  objects); P for image projections and H for inter- 

image homographies; K ,  C -- K -1 for upper  tr iangular camera  calibration 

and inverse calibration matrices; ~ *  and ~ for the absolute conic and dual 

(hyperplane) quadric; and w -1 --- C T C,  w = K K T = P / ~  pT- for their images. 

2 E u c l i d e a n  S t r u c t u r e  and  A u t o c a l i b r a t i o n  

To recover the metric information implicit in projective images, we need a projec- 

tive encoding of Euclidean structure.  The key to this is the dot product  between 

direction vectors ("points at infinity"), or dually the dot product  between hyper- 

plane normals. The former leads to the stratified "plane at infinity + absolute 

conic" (affine § metric structure) formulation [17], the lat ter  to the "absolute 

dual quadric" one [22]. These are just  dual ways of saying the same thing. The 

dual quadric formalism is preferable for 'pure '  autocalibrat ion where there is no 

prior decomposition into affine and metric s trata ,  while the point one may be 

simpler if such a stratification is given. 

Generalities: Consider k-dimensional Euclidean space. We will need the 

cases k = 2 (the planar scene and its 2D images) and k = 3 (ordinary 3D space). 

Introducing homogeneous Euclidean coordinates, points, displacement vectors 

and hyperplanes are encoded respectively as homogeneous k + 1 component  

column vectors x = (x,  1) T, t --- (t ,  0) 7- and row vectors p -- (n,  d). Here x, t 

and n are the usual k-D coordinate vectors of the point, the displacement, and 

the hyperplane normal,  and d is the hyperplane offset. Points and displacements 

on the plane satisfy respectively p - x = n �9 x + d = 0 and p �9 t = n �9 t = 0. 

Displacement directions can be appended to the point space, as a h y p e r p l a n e  at 

infinity poo of v a n i s h i n g  p o i n t s .  Projectively, poo behaves much like any other 

hyperplane. In Euclidean coordinates, poo = (0,  1) so tha t  p ~  �9 t = 0 for any 
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displacement t -- (t,  0). P r o j e c t i v e  t r a n s f o r m a t i o n s  mix finite and infinite 

points. Under a projective transformation encoded by an arbitrary nonsingular 

(k + 1) x (k + 1) matr ix T ,  points and directions (column vectors) transform 

c o n t r a v a r i a n t l y ,  i.e. by T acting on the left: x --~ T x ,  v --> T v .  To preserve 

the point-on-plane relation p �9 x -- n �9 x + d -- 0, hyperplanes (row vectors) 

transform c o v a r i a n t l y ,  i.e. by T -1 acting on the right: p -+ p T  -1. 

A b s o l u t e  C on i c  & D u a l  Q u a d r i c :  The Euclidean dot product  between 

hyperplane normals is nl �9 n2 = p l  s where the symmetric, rank k, posi- 

tive semidefinite matrix s = (Ik~ k 0 )  is called the a b s o l u t e  d u a l  q u ad r i c .  

s encodes the Euclidean structure in projective coordinates. Under projec- 

tive transformations it transforms contravariantly (i.e. like a point) in each 

of its two indices so that  the dot product  between plane normals is invari- 

ant: s -+ T s T T and Pi -+ p~ T -1, so Pl s P~- = nl �9 r~ is constant. s is 

invariant under Euclidean transformations, but  in a general projective frame it 

loses its diagonal form and becomes an arbi t rary symmetric positive semidefinite 

rank k matrix. In any frame, the Euclidean angle between two hyperplanes is 

cos ~ = (p s p,7-) / x / (P s pT) (p, s p,T),  and the plane at infinity is s unique 

null vector: Po~ s -- 0. When restricted to coordinates on p ~ ,  s becomes non- 

singular and can be dualized (inverted) to give the k x k symmetric positive 

definite a b s o l u t e  ( d i r e c t i o n )  con ic  s This measures dot products between 

displacement vectors, just as s measures them between hyperplane normals. s 

is defined only  on direction vectors, not on finite points, and unlike s it has no 

unique canonical form in terms of the unrestricted coordinates. 

D i r e c t i o n  bases :  In Euclidean coordinates, s can be decomposed as a sum 

of outer products of any orthonormal (in terms of s basis of displacement vec- 

tors: s k = ~ i=1  ~ x~ where zi s = 6~j. For example in 2D, s = ( I2x~ o ) = 
o 0 

~ -  + ~ ~7- where ~ = (1, 0, 0) T, ~ = (0, 1, 0) T, are the usual unit direction 

vectors. Gathering the basis vectors into the columns of a (k + 1) • k orthonor- 

mal rank k matr ix U we have s -- U U  T, p ~ o U  = 0 and UTs = Ik•  

The columns of U span poo. These relations remain valid in an arbi t rary pro- 

jective frame T and with an arbi t rary choice of representative for s except 

that  U -+ T U ceases to be orthonormal.  

U is defined only up to an arbi t rary k x k orthogonal mixing of its columns 

(redefinition of the direction basis) U --~ U I ~ k x  k . In a Euclidean frame U =- ( 0 V ) 

for some k x k rotation matrix V, so the effect of a Euclidean space transfor- 

mation is U --~ (o  R ~ ) U  = U / / '  where R '  = V T t l V  is the conjugate rotation: 

Euclidean transformations of direction bases (i.e. on the left) are equivalent to 

orthogonal re-mixings of them (i.e. on the right). This remains true in an arbi- 

t ra ry  projective frame, even though U and the space transformation no longer 

look Euclidean. Given a projective frame, this mixing freedom can be used to 

choose an associated direction basis in which the columns of U are numerically 

orthonormal up to a diagonal rescaling: simply take the SVD U ~ D V  T of U and 

discard the mixing rotation V r .  Equivalently, the eigenvectors and square roots 
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of eigenvalues o f / 2  can be used. Such orthogonal parametr izat ions  of U make 

good sense numerically, and we will use them below. 

C i r c u l a r  p o i n t s :  Given any two or thonormal  direction vectors x, y, the 
1 

x + / 2  x •  0. Abstractly, complex conjugate vectors x •  - ~ ( x  4- iy) satisfy ~" * = 

these complex directions lie on the absolute conic. Conversely, given any complex 

projective point lying on /2", its real and imaginary par ts  are two orthogonal 

direction vectors. In the 2D case there is only one such conjugate pair up to 

complex phase, and these c i r c u l a r  p o i n t s  characterize the Euclidean structure 

of the plane. The phase freedom in x•  corresponds to the 2 • 2 orthogonal mixing 

freedom of x and y. In the implementat ion we prefer to avoid complex numbers 

by using x and y ra ther  than  x+.  

The above parametr izat ions  of Euclidean structure are theoretically equiv- 

alent. Which is practically best depends on the problem. /2 is easy to use, ex- 

cept tha t  constrained optimization is required to handle the rank k constraint 

de t / 2  = 0. Direction bases U eliminate the constraint at  the cost of a k • k or- 

thogonal gauge freedom. The absolute conic/2* has neither constraint  nor gauge 

freedom, but  has significantly more complicated image projection properties and 

can only be defined once the plane at infinity p ~  is known and a projective co- 

ordinate system on it has been chosen (e.g. induced from one of the images). 

One can also use Cholesky-like decomposi t ions /2  = L L  ~- (e.g. the L par t  of the 

LQ decomposition of U) ,  al though pivoting is needed to avoid singularities at 

maximally non-Euclidean frames. 

I m a g e  P r o j e c t i o n s :  Since the columns of a 3D direction basis U are bona 

fide 3D direction vectors, its image projection is simply P U,  where P is the 

usual 3 • 4 point projection matrix.  Hence, the projection o f / 2  = U U T is the 

3 x 3 symmetr ic  positive definite contravariant  image matr ix  w = P / 2  P~'. Ab- 

stractly, this is the image line quadric dual to the image of the absolute conic. 

Concretely, given any two image lines/1,/2, w encodes the 3D dot product  be- 

tween their 3D visual planes Pi - / ~  P:  P l /2P~"  - - / 1 P / 2 P ~ - / 2  T = / 1  w/2 T. With  

the tradit ional Euclidean decomposition K / / (  I I - t) of P into an upper  trian- 

gular i n t e r n a l  c a l i b r a t i o n  m a t r i x  K ,  a 3 • 3 c a m e r a  o r i e n t a t i o n  (rotation) 

R and an o p t i c a l  c e n t r e  t, w becomes simply K K ' - .  w is invariant under cam- 

era displacements so long as K remains constant.  K can be recovered from w by 

Cholesky decomposition. Similarly, the Euclidean scene structure (in the form 

of a 'rectifying' projectivity) can be recovered f rom/2 .  The upper  t r iangular  in- 

v e r s e  c a l i b r a t i o n  m a t r i x  C = K -1 converts homogeneous pixel coordinates 

to optical ray directions in the Euclidean camera  frame, w -1 = C r C  is the 

image of the absolute conic. 

A u t o c a l i b r a t i o n :  Given several images taken with projection matrices P i  = 

Ki R i ( I  I - ti), and (in the same Euclidean frame) a orthogonal  direction basis 

U -- ( o V ), we find tha t  

Ci e i  U = R~ (1) 

where Ci -=- K (  ~ and R~ = Ri  V is a rotat ion matr ix  depending on the cam- 

era pose. This is perhaps  the most basic form of autocal ibrat ion constraint. I t  
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says tha t  the calibrated images (i.e. 3D directions in the camera frame) of an 

orthogonal direction basis must  remain orthogonal. It  remains true in arbi t rary  

projective 3D and image frames, as the projective deformations of P i  vs. U and 

Ci vs. Pi cancel each other out. Unfortunately, for projectively reconstructed 

projection matrices it is seldom possible to est imate scale factors consistent with 

those of their unknown Euclidean parents.  So in practice the autocalibrat ion con- 

straint can only be applied up to an unknown scale factor: Ci Pi U ,.~ R~. As 

always, the direction basis U is only defined up to an arb i t ra ry  3 • 3 orthogonal 

mixing U --+ U R. 

2.1 A u t o c a l i b r a t i o n  for N o n - P l a n a r  Scenes  

The simplest approaches to non-planar  autocalibration are based on (1), an in- 

termediate  projective reconstruction Pi ,  and some sort of knowledge about  the 

Ci (classically tha t  they are constant,  Ci = C for some unknown C).  Non- 

linear optimization or algebraic elimination are used to est imate the Euclidean 

structure ~2 or U, and the free parameters  of the Ci. Multiplying (1) either 

on the left or on the right by its t ranspose to eliminate the unknown rotation, 

and optionally moving the C ' s  to the right hand side, gives several equivalent 

symmetr ic  3 • 3 constraints linking $2 or U to wi, Ki or Ci 

T T - - I  
U Pi  ~ P i U  ,-~ /3• (2) 

CiPi  YIPT C~- "~ 13• (3) 

Pi J~ P-f "~ wi = Ki K i  r (4) 

In each case there are 5 independent constraints per image on the 8 non-Euclidean 

d.o.f, of the 3D projective s t ructure  2 and the _< 5 d.o.f, per image of the internal 

calibrations Ci. For example,  three images in general position suffice for clas- 

sical cons tan t -C  autocalibration.  In each case, the unknown scale factors can 

be eliminated by t reat ing the symmetr ic  3 • 3 left and right hand side matrices 

as ~ = 6 component  vectors, and either (i) cross-multiplying, or (ii) project- 

ing (say) the left hand side vectors orthogonally to the right hand ones (hence 

deleting the proport ional  components  and focusing on the constraint-violating 

non-proport ional  ones). Cross-multiplication gives 

u i  - v ~  - -  u i  . w ~  = v a  . w ~  - -  0 I lu i l / 2  = IIv~/I 2 = I l w i l l  2 ( 5 )  

( Ci Pi I2 P-{ Cir) AA = ( Gi Pi ~ P'[ G~-) BB 
(6) 

( Gi Pi ~ V'[ C J )  A B  = 0 

2 These can be counted as follows: 15 for a 3D projective transformation modulo 7 for 

a scaled Euclidean one; or 12 for a 4 • 3 U matrix modulo 1 scale and 3 d.o.f, for a 
3 • 3 orthogonal mixing; or 4 �9 5/2 = 10 d.o.f, for a 4 • 4 symmetric quadric matrix 

modulo 1 scale and 1 d.o.f, for the rank 3 constraint det g~ = 0; or 3 d.o.f, for po~ 
and 5 for the 3 �9 4/2 = 6 components of ~* modulo 1 scale. 
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(Pi/2 pT)CD (w)EF = (w)CD (Pi/2 p-[)EF (7) 

where (ui, vi, wi) = Ci Pi  U and A < B, C _< D, E _< F = 1 . . .  3. Several recent 

autocalibration methods (e.g. [22, 9]) are based implicitly on these constraints, 

parametrized by K or w and something equivalent 3 t o / 2  or U. All of these meth- 

ods seem to work well provided the intrinsic degeneracies of the autocalibration 

problem [18] are avoided. In contrast, methods based on the Kruppa equations 

[14, 3, 25] are not recommended for general use, because they add a serious addi- 

tional singularity to the already-restrictive ones intrinsic to the problem: if any 

3D point projects to the same pixel and is viewed from the same distance in 

each image, one focal length parameter  can not be recovered [19]. 

2.2 Autocalibration from Planar Scenes 

Now consider autocalibration from planar scenes. Everything above remains 

valid, except that  no intermediate 3D projective reconstruction is available from 

which to boots t rap the process. However autocalibration is still possible using the 

inter-image homographies. The Euclidean structure of the scene plane is given by 

any one of (i) a 3 x 3 rank 2 absolute dual (line) quadric Q; (ii) a 3 component 

line at infinity loo and its associated 2 x 2 absolute (direction) conic matrix; (iii) a 

3 x 2 direction basis matrix U = (x y); (iv) two complex conjugate circular 

1 + i y )  which also the two roots of the absolute conic o n / ~  points ~ = ~ ( ~  are 

and the factors of the absolute dual quadric Q = x x T + y y-r = x+xT_ + x_x~_. 

In each case the structure is the natural  restriction of the corresponding 3D one, 

re-expressed in the planar coordinate system. In each case it projects isomor- 

phically into each image, either by the usual 3 x 4 3D projection matr ix (using 

3D coordinates), or by the corresponding 3 • 3 world-plane to image-plane ho- 

mography H (using scene plane coordinates). Hence, each image inherits a pair 

of circular points Hi x• and the corresponding direction basis Hi (x  y) ,  line at 

infinity lo~ H (  1 and 3 • 3 rank 2 absolute dual quadric Hi Q H I .  The columns 

of the planar U matr ix still represent bona fide 3D direction vectors (albeit ex- 

pressed in planar coordinates), so their images still satisfy the autocalibration 

constraints (1): 

c i  Hi V ~ R3• (8) 

where R3• contains the first two columns of a 3 x 3 rotation matrix. Left 

multiplication by the transpose eliminates the unknown rotation (c.f. (2)): 

U T T --1 H i w i H i U  ~ 12• (9) 

Splitting this into components gives the form of the constraints used by our 

planar autocalibration algorithm: 

]lui]t 2 = ]lviH 2, ui" vi = 0 where (ui, vi) =- Ci Hi (x, y) (10) 

3 If the first camera projection is taken to be ( I t0) [5, 9], U can be chosen to have the 

form (_vIT) K where p ~  .-~ (pT,1), whence f~ ~ (_aT,, p---r=~) and ( cT o)  is 

a Euclideanizing projectivity. 
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These constraints say that  any two orthonormal directions in the world plane 

project (via CiHi) to orthonormal directions in the calibrated camera frame. 

Equivalently, the images of the circular points H = -~  (x + iy)  lie on the image 

of the absolute conic: 

(Hi  H )  (Hi  = I1 • = 0 where ui• --= C'i Hi x• (11) 

All of the above constraints are valid in arbi trary projective image and world- 

plane frames, except that  U = (x y) is no longer orthonormal.  As always, 

(~c, y) are defined only up to a 2 • 2 orthogonal mixing, and we can use this 

gauge freedom to require that  x �9 y = 0. 

Our planar autocalibration method is based on direct numerical minimiza- 

tion of the residual error in the constraints (10) from several images, over the 

unknown direction basis (x, y) and any combination of the five intrinsic calibra- 

tion parameters f ,  a, s, u0 and v0. The input data  is the set of world plane to 

image homographies Hi, expressed with respect to an arbi t rary projective frame 

for the world plane. In particular, if the plane is coordinatized by its projection 

into some key image (say image 1), the inter-image homographies Hi1 can be 

used as input. 

Four independent parameters are required to specify the Euclidean structure 

of a projective plane: the 6 components of (x,  y) modulo scale and the phase of 

a 2 • 2 rotation; or the 3 . 4 / 2  = 6 components of a 3 x 3 absolute dual quadric 

Q modulo scale and det Q -- 0; or the 2 d.o.f, of the plane's line at infinity, plus 

the 2 d.o.f, of two circular points on it. Since equations (9), (10) or (11) give two 

independent constraints for each image, n+4 [--5-] images are required to estimate 

the Euclidean structure of the plane and n intrinsic calibration parameters.  For 

known calibration, two images suffice (classical plane-based relative camera ori- 

entation). Three are required if the focal length is also estimated, four for the 

perspective f ,  u0, Vo model, and five if all 5 intrinsic parameters  are unknown. 

2.3 C a m e r a  Parametrizatlon 

We have not yet made the camera parametrization explicit, beyond saying that  

it is given by the upper triangular matrices K or C = K -1. For autocalibration 

methods which fix some parameters while varying others, it makes a difference 

which parametrization is used. I prefer the following form motivated by a zoom 

lens followed by an affine image-plane coordinatization: 

K =  f a  
0 

c = : ,al(  s01 sv0 aUO)vo, a 

Here, if s tandard pixel coordinates are used, f = c~ is the focal length in u-pixels, 

s = - t a n  ~skew is the dimensionless geometric skew, a = av/(a~ cos 0skew) is the 

dimensionless v : u aspect ratio, and (uo, v0) are the pixel coordinates of the prin- 

cipal point. However pixel coordinates are not used in the optimization routine 



97 

below. Instead, a nominal calibration is used to standardize the parameters to 

nominal values f = a -- 1, s = u0 = v0 = 0, and all subsequent fitting is done 

using the above model with respect to these values. 

3 Algebraic v s .  Statistical Error 

Many vision problems reduce to minimizing the residual violation of some vector 

of nonlinear constraints e(x, tt) ~ 0 over parameters tt, given noisy measure- 

ments x with known covariance V,,. Often, heuristic a l g e b r a i c  e r r o r  metrics 

like lie(x,/z)[[ 2 are minimized. However this is statistically sub-optimal, and if 

done uncritically can lead to both (i) very significant bias in the results and 

(ii) severe constriction of the domain of convergence of the optimization. Ap- 

propriate b a l a n c i n g  or p r e c o n d i t i o n i n g  (numerical scaling of the variables 

and constraints, as advocated in [7, 8] and any numerical optimization text) is 

one step towards eliminating such problems, but it is not the whole story. In 

any case it begs the question of what is "balanced". It is not always appropriate 

to scale all variables to O(1). In fact, in the context of parameter estimation, 

balanced simply means "close to an underlying statistical error metric" such as 
De V x  De T X 2 ~ e T V~ -1 e, where Ve ~ ~ ~ is the covariance 4 of e. 

Ideally one would like to minimize the underlying statistical error, but this 

can be complicated owing to the matrix products and (pseudo-)inverse. Simple 

approximations often suffice, and I feel that  this is the only acceptable way to 

introduce algebraic error measures - -  as explicit, controlled approximations to 

an underlying statistical metric. The extra computation required for a suitable 

approximation is usually minimal while the results can be substantially more 

accurate, so it makes little sense to use an arbitrary ad hoc error metric. 

One useful simplification ignores the dependence of V~ -1 on /z  in cost function 

derivatives. This gives s e l f - cons i s t en t  or i t e r a t i v e  r e - w e i g h t i n g  schemes (e.g. 

[12]), where Ve is treated as a constant within each optimization step, but 

updated at the end of it. One can show that  the missing terms effectively displace 

the cost derivative evaluation point from the measured x to a first order estimate 

of the true underlying value Xo [20]. For the most part this makes little difference 

unless the constraints are strongly curved on the scale of V,,. 

However, as I feel that  a final bundle adjustment is an essential part of any 

reconstruction or autocalibration technique, my current implementation uses a 

rather simplistic error model for the Hi. Firstly, I ignore the fact that  they are 

correlated through their mutual dependence on the base image, which is treated 

just like any other in the sum. This undoubtedly introduces some bias. Correcting 

it would significantly complicate the method, and require users to supply an 

inconvenient amount of inter-Hi covariance data. Secondly, the components of 

4 e is a random variable through its dependence on x. Assuming that the uncertainties 

are small enough to allow linearization and that x is centred on some underlying x0 

satisfying e(x0, t*o) = 0 for underlying parameters Do, e(x, Do) has mean 0 and the 
2 above covariance. It follows that e T V~ -1 e is approximately a Xrank(e) variable near 

tto, which can be minimized to find a maximum likelihood estimate of t*. 
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Hi are assumed to be i.i.d, in the nominally calibrated coordinate system: VH = 

( A H  A A H  C )  ,.,., s . (~AC . (~BD where e is a noise level 5. This could easily be 

corrected at the cost of a little extra linear algebra. 

From here, it is straightforward to find and invert the constraint covariance. 

For the planar autocalibration constraint (10), and assuming that we enforce the 

gauge constraint x �9 y = 0, the constraint covariance is 

X2 2 2 2 / ai + y bi (x2_y2) o~.bi 

(x2_v2) .b i x2b +y2a  , 

(a/, bi) - C [  (u/, vi) 

= ~71 Hi (x, y) 

In this case, numerical experience indicates that  the off-diagonal term is seldom 

more than a few percent of the diagonal ones, which themselves are approxi- 

mately equal for each image, but differ by as much as a factor of 2-3 between 

images 6. Hence, we drop the off-diagonal term to give an autocalibration method 

based on self-consistent optimization of the diagonal cost function 

i=l  

(12) 

where (u~, vi) -- Ci Hi (x, y). In our synthetic experiments, this statistically 

motivated cost function gives ground-truth standard deviations about 10% lower 

than even the most carefully normalized algebraic ones. This is a modest but 

useful improvement, obtained without any measurable increase in run time. The 

improvement would have been much larger had the error model been less uniform 

in the standardized coordinates. Perhaps most importantly, the statistical cost is 

almost completely immune to mis-scaling of the variables. This is certainly not 

true of the algebraic ones, which deteriorate very rapidly for mis-scaling factors 

greater than about 3. 

4 P l a n a r  A u t o c a l i b r a t i o n  A l g o r i t h m  

N u m e r i c a l  M e t h o d :  Our planar autocalibration algorithm is based on direct 

numerical minimization of the m-image cost function (12), with respect to the 

direction basis (x, y) and any subset of the 5 internal calibration parameters 

focal length f ,  aspect ratio a, skew s, and principal point (Uo, Vo). There are 4 

d.o.f, in (x, y) - -  6 components defined up to an overall rescaling and a 2 • 2 

Although balancing should make their variances similar, in reality the components 

are unlikely to be independent. At very least we should subtract a 'scale' term 
A C 

H~ H~,  as variations proportional to H make no projective difference. However this 

makes no difference here. A correctly weighted error metric e must be insensitive to 

rescalings of its projective-homogeneous parameters H.  Hence it has homogeneity 0 

in H - -  De . H = 0 - -  and Ve is unaffected by the 'scale' term. DH 
6 This was to be expected: we chose everything to be well-scaled except that the H 

normalizations may differ somewhat from their 'correct' Euclidean ones, and our 

noise model is uniform in an approximately calibrated frame. Relaxing any of these 

conditions would make the differences much greater. 
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orthogonal mixing - -  so the optimization is over 5-9 parameters in all. Numer- 

ically, the 6 component (x, y) vector is projected onto the subspace orthogonal 

to its current scaling and mixing d.o.f, by Householder reduction (i.e. effectively 

a mini QR decomposition). As mentioned in section 2, the mixing freedom al- 

lows us to enforce the gauge condition x .  y = 0. Although not essential, this 

costs very little (one Jacobi rotation) and we do it at each iteration as an aid to 

numerical stability. 

A fairly conventional nonlinear least squares optimization method is used: 

Gauss-Newton iteration based on Cholesky decomposition of the normal equa- 

tions. As always, forming the normal equations gives a fast, relatively simple 

method but  effectively squares the condition number of the constraint Jacobian. 

This is not a problem so long as intermediate results are stored at sufficiently 

high precision: double precision proves more than adequate here. 

As with any numerical method, care is needed to ensure stability should 

the numerical conditioning become poor. Our parametrization guarantees that  

all variables are of O(1) and fairly well decoupled, so preconditioning is not 

necessary. The Cholesky routine uses diagonal pivoting and Gill & Murray's [4] 

minimum-diagonal-value regularization to provide local stability. The regularizer 

is manipulated in much the same way as a Levenberg-Marquardt parameter  

to ensure that  each step actually reduces the cost function. We also limit the 

maximum step size for each variable, relatively for the positive, multiplicative 

parameters ] and a and absolutely for the others. Both the regularizer and 

the step size limits are activated fairly often in practice,  the regularizer at any 

time, and the step limit usually only during the first 1-2 iterations. The method 

terminates when the step size converges to zero, with additional heuristics to 

detect thrashing. Convergence within 5-10 iterations is typical. 

P r i o r  ove r  C a l i b r a t i o n s :  We also allow for a simple user-defined prior dis- 

tribution on the calibration parameters.  Even if there is no strong prior knowl- 

edge, it is often advisable to include a weak prior in statistical estimation prob- 

lems as a form of regularization. If there are nearly unobservable parameter  

combinations (i.e. which make little or no difference to the fit), optimal, unbi- 

ased estimates of these are usually extremely sensitive to noise. A weak prior 

has little influence on strong estimates, but significantly reduces the variability 

of weak ones by biasing them towards reasonable default values. A desire to 

keep the results unbiased is understandable, but  limiting the impact of large 

fluctuations on the rest of the vision system is often more important  in practice. 

Priors can also be used to ensure that  parameters retain physically meaning- 

ful values. For example, the multiplicative parameters f and a must lie in the 

range (0, oo), and we include weak heuristic priors of the form ( f / f o  - f o / f )  2 

(i.e. multiplicatively symmetric about f0) to ensure this. This is particularly 

important  for autocalibration problems, where degenerate motions occur fre- 

quently. In such cases the calibration can not  be recovered uniquely and a nu- 

merical method will converge to an arbitrary member of the family of possible 

solutions. For sanity, it pays to ensure that  this is a physically feasible solution 

not too far from the plausible range of values. A weak default prior is an effec- 
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tive means of achieving this, and seems no more unprincipled than  any other 

method.  (This is not to say tha t  degeneracies should be left unflagged, simply 

tha t  recovering from them is easier if it s tar ts  from reasonable default values). 

Initialization: The domain of convergence of the numerical method is rea- 

sonable and for many  applications it will probably be sufficient to initialize from 

fixed default values. The most  critical parameters  are the focal length f and the 

number  and angular spread of the views. For example, if / can only be  guessed 

within a factor of 2 and all 5 parameters  f ,  a, s, u0, v0 are left free, about  9-10 

images spread by more than  about  10 ~ seem to be required for reliable conver- 

gence to the true solution. Indeed, with 5 free parameters  and the theoretical 

minimum of only 5-6 images, even an exact initialization is not always sufficient 

to eliminate false solutions (i.e. whose residuals happen to be slightly smaller 

than  the true one). These figures assume tha t  the direction basis x, y is com- 

pletely unknown: constraints on it are potentially very valuable and should be 

used if available. Knowledge of the world-plane's horizon (line at infinity) re- 

moves 2 d.o.f, from x, y and hence reduces the number  of images required by 

one, and knowledge of its Euclidean s t ructure  (but not the positions of points 

on it) eliminates another  image. Even if not directly visible, horizons can be 

recovered from known 3D parallelism or texture  gradients, or bounded by the 

fact tha t  visible points on the plane must  lie inside them. We will not consider 

such constraints further here. 

If a default initialization is insufficient to guarantee convergence, several 

strategies are possible. One quite effective technique is simply to use a prelimi- 

nary  optimization over x, y or x,  y, f to initialize a full one over all parameters .  

More global searches over f ,  x,  y are also useful. Perhaps the easiest way to ap- 

proach this is to fix nominal values for all of the calibration parameters  except 

f ,  and to recover est imates for ~, y as a function of f f rom a single pair of im- 

ages as f varies. These values can then be substi tuted into the autocalibrat ion 

constraints for the other images, and the overall most consistent set of values 

chosen to initialize the optimization routine. The est imation of x ( f ) ,  y( f )  re- 

duces to the classical photogrammetr ic  problem of the relative orientation of two 

calibrated cameras from a planar  scene, as the Euclidean s t ructure  is easily re- 

covered once the camera  poses are known. In theory this problem could be solved 

in closed form (the most  difficult step being a 3 x 3 eigendecomposition) and 

optimized over f analytically. But  in practice this would be ra ther  messy and I 

have preferred to implement a coarse numerical search over f .  The search uses a 

new SVD-based planar relative orientation method [21] related to Wunderlich's 

eigendecomposition approach [24]. The camera pose and planar s tructure are 

recovered directly from the SVD of the inter-image homography. As always with 

planar relative orientation, there is a two-fold ambiguity in the solution, so both 

solutions are tested. In the implemented routine, the solutions for each image 

against the first one, and for each f in a geometric progression, are subst i tuted 

into the constraints from all the other images, and the most  consistent overall 

values are chosen. 
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If the full 5 parameter  camera model is to be fitted, Hartley's ' rotating cam- 

era'  method [6] can also be used for initialization. It works well prov ided  ( i)  the 

camera translations are smaller than or comparable to the distance to the plane; 

( i i )  no point on the plane is nearly fixated from a constant distance. (For such a 

point ~, ~ + t t x x  T is an approximate solution of Hartley's equation H w H  TM = w 

for any #, i .e. w can not be estimated uniquely, even for small translations). 

5 E x p e r i m e n t s  

S y n t h e t i c  da t a :  The method has been implemented in C and tested on both 

real and synthetic images. For the synthetic experiments, the camera roughly 

fixates a point on the plane from a constant distance, from randomly generated 

orientations varying by (by default) •  ~ in each of the three axes. The camera 

calibration varies randomly about  a nominal focal length of 1024 pixels and 

unit aspect ratio, by • in focal length f ,  •  in aspect ratio a, • in 

dimensionless skew s, and •  pixels in principal point (u0, vo). (These values are 

standard deviations of log-normal distributions for f ,  a and normal ones for s, 

uo, v0). The scene plane contains by default 40 visible points, projected into the 

512 x 512 images with a Gaussian noise of •  pixel. Before the homographies are 

estimated and the method is run, the pixel coordinates are centred and scaled to 

a nominal focal length of 1: (u, v) -~ (u -256 ,  v -256) /1024 .  The output  is classed 

as a 'success' or 'failure' according to fixed thresholds on the size of its deviation 

from the true value. Only successes count towards the accuracy estimates. The 

usual mode of failure is convergence to a false solution with extremely short focal 

length (say < 50 pixels). However when the angular spread of the views is small or 

there are only a few images, random fluctuations sometimes take a "correct" but  

highly variable solution outside the (generously set) thresholds. Conversely, there 

is occasionally convergence to a false solution within the threshold. Thus, when 

the failure rate is high, neither it nor the corresponding precision estimates are 

accurate. The optimization typically converges within 5-10 iterations, although 

more may be needed for degenerate problems. The run time is negligible: on 

a Pentium 133, about  0.5 milliseconds per image if the default initialization is 

used, or 2.0 with a fairly fine initialization search over f .  

Figure 1 gives some illustrative accuracy and reliability results, concentrating 

on the estimation of focal length f .  First consider the plots where all 5 calibra- 

tion parameters are estimated. The error scales roughly linearly with noise and 

inversely with the angular spread of the views. It drops rapidly as the first few 

images are added, but  levels off after about  10 images. The failure rate increases 

rapidly for more than about 2-3 pixels noise, and is also unacceptably high for 

near-minimal numbers of images (within 1-2 of the minimum) and small angular 

spreads (less than about 10~ however, it decreases rapidly as each of these vari- 

ables is increased. It seems to be difficult to get much below about 1% failure 

rate with the current setup. Some of the failures probably result from degen- 

eracies in the randomly generated problems, but  most of them are caused by 

convergence to a false solution with implausible parameters,  either very small f 
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Fig.  1. FocM length error and failure rate vs. image noise, number of images and 

angular spread of cameras, averaged over 1000 trials. The aspect ratio a, skew s, and 

principal point (u0, v0) are either fixed at their nominal values, or allowed to vary freely, 

as indicated. The method is initialized from the nominal calibration, except that  in the 

failure vs. images plot we also show the results for initialization by numerical search 

over f ,  and by a preliminary fit over f alone ('2-phase'). 

(less t han  abou t  50) or  a far f rom 1. The  init ialization me thod  has little impact  

on the reliability. In fact, in these experiments  the default  initialization proved 

more  reliable t han  either numerical  search over f ,  or an initial opt imizat ion over 

f alone. The  reason is s imply tha t  we do not  assume prior  knowledge of a n y  of 

the cal ibrat ion parameters .  An initialization search over f mus t  fix a, s, uo, v0 at 
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their inaccurate nominal values, and this is sometimes enough to make it miss 

the t rue solution entirely. This also explains the poor performance of the meth-  

ods which hold a, s, u0, Vo fixed and est imate f alone. As the graphs of error 

vs. noise and number  of images show, errors in a, s, Uo, v0 lead to a significant 

bias in f ,  but most  of this can be eliminated by est imating a as well as f .  The 

initialization search over f also becomes much more reliable (e.g. 0.05% failure 

rate for 10 images, 30 ~ spread and 1 pixel noise) if a and s are accurate to within 

a few percent. Here and elsewhere, it is only worthwhile to fix parameters  if they 

are reliably known to an accuracy bet ter  than  their measured variabilities, e.g. 
here for 1 pixel noise and 10 images, to about  0.003 for a, s or 20 pixels for uo, v0. 

For conventional calibration, f is often said the most  difficult pa ramete r  to 

estimate,  and also the least likely to be known a priori. In contrast,  a and s are 

said to be est imated quite accurately, while u0 and v0 - -  al though variable - -  

are felt to have little effect on the overall results. A more critical, quanti tat ive 

view is to compare the relative accuracy IAf / f [  to the dimensionless quantities 

]Aa], ]As], IAuo/fl and IAvo/ft. Errors in these contribute about  equally to 

the overall geometric accuracy (e.g. reconstruction errors of 3D visual ray direc- 

tions). Conversely, other things being equal, geometric constraints such as the 

autocalibration ones typically constrain each of these quantities to about  the 

same extent. A good rule of thumb is tha t  for auto- (and many  other types of) 

calibration, IAuo/fl and IAvo/fl are of the same order of magni tude as ] A f / f  I, 
while lad[ and [As[ are usually somewhat  smaller if there are strong aspect 

ratio constraints (e.g. cyclotorsion), but larger if there are none (e.g. motions 

tha t  leave a direction in the optical plane fixed). These rules are well borne out 

in all of the experiments reported here: we always find [Au0] ~ ]Avol ..~ IAf[, 
while IAal and IAsl are respectively about  one fifth, one half, and one tenth 

of IAf / f ]  for the synthetic experiments,  the real experiments  below, and the 

Faugeras-Toscani calibration used in the real experiments. 

R e a l  d a t a :  We have also run the method on parts  of a sequence of about  

40 real images of our t r i -planar calibration grid. Only the 49 (at most) points 

on the base plane of the grid are used. (The algorithm could easily be expanded 

to handle several planes, but  there seems little point as a non-planar  method 

could be used in this case). The motion was intended to be general within the 

limits of the 5 d.o.f, robot  used to produce it, but is fairly uniform within each 

subsequence. Visibility considerations limited the total  angular displacement to 

about  40 ~ and significantly less within each subsequence. Here are the sample 

means and s tandard deviations over a few non-overlapping subsequences for (i) f 

alone, and (ii) all 5 parameters .  The errors are observed sample scatters,  not 
estimates of absolute accuracy. 

,L Z only Z . I I v0 
calibration n 1515 4- 4 0.9968 4- 0.0002 - I 271 4- 3 [ 264 4- 4 

6 images I1584 4- 63 1595 + 63 0.9934 4- 0.0055 0.000 4- 0.001 268 4- 10 271 4- 22 

8 images 11619 + 25 1614 4- 42 (}.989{} 4- 0.{}058 -0.005 4- 0.005 289 4- 3 320 4- 26 

10 images ;1612 4- 19 1565 4- 41 1.0159 4- 0.0518 -0.004 + 0.006 273 4- 5 286 4- 27 
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The 'calibrated' values are the averaged results of several single-image Faugeras- 

Toscani calibrations using all visible points on the grid. Looking at the table, 

the results of the autocalibration method seem usable but not quite as good as I 

would have expected on the basis of the synthetic experiments. This may just be 

the effect of the small angular range within each subsequence, but the estimates 

of f seem suspiciously high and it may be that  some small systematic error has 

occurred during the processing. Further work is required to check this. Note that  

in this case, fixing a, s, Uo, Vo appears to have the desired effect of decreasing the 

variability of the estimated f without perturbing its value very much. 

6 Summary 

In summary, we have shown how autocalibration problems can be approached 

using a projective representation of orthogonal 3D direction frames, and used 

this to derive a practical numerical algorithm for the autocalibration of a moving 

projective camera viewing a planar scene. The method is based on the 'rectifi- 

cation' of inter-image homographies. It requires a minimum of 3 images if only 

the focal length is estimated, or 5 for all five internal parameters.  Using 9-10 

images significantly increases both reliability and accuracy. An angular spread 

between the cameras of at least 15-20 ~ is recommended. 

Priorities for future work are the initialization problem and the detection 

of false solutions (or possibly the production of multiple ones). Although the 

current numerical method is stable even for degenerate motions (and hence gives 

a possible solution), it does not a t tempt  to detect and flag the degeneracy. This 

can be done, e.g. by extracting the null space of the estimated covariance matrix. 

It would also be useful to have autocalibration methods that  could estimate lens 

distortion. This should be relatively simple in the planar case, as distortion can 

be handled during homography estimation. 
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