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Abstract

It has been shown that under a small number of assumptions, observa-
tions of people can be used to obtain metric calibration information of a
camera, which is particularly useful for surveillance applications. How-
ever, previous work had to exclude the common criticial configuration
of the camera’s principal point falling on the horizon line and very long
focal lengths, both of which occur commonly in practise. Due to noise,
the quality of the calibration quickly degrades at and in the vicinity
of these configurations. This paper provides a robust solution to this
problem by incorporating information about the motion of people into
the estimation process. It is shown that under the assumption that
people walk with a constant velocity, calibration performance can be
improved significantly. In addition to solving the above problem, the
incorporation of temporal data also helps to take correlations between
subsequent detections into consideration, which leads to an up-front re-
duction of the noise in the measurements and an overall improvement
in auto-calibration performance.

1 Introduction

The usefulness of surveillance systems can be greatly improved if metric informa-
tion can be extracted from a scene, such as the velocity or size of tracked targets or
their proximity to points of interest. To obtain such information, a necessary step
is that of camera calibration, which can be performed under somewhat controlled
conditions and using knowledge of the geometry of the scene [3, 18], or by trading
this knowledge for assumptions on the camera motion and the rigidity of the scene
[13, 14], in an approach generally known as camera autocalibration.

In surveillance systems targeted at tracking people one of the most conspicu-
ous features available in the images are, hopefully, the tracked people themselves.
Previous works have demonstrated that the use of people as calibration objects
yields, under practical conditions, useful results [11, 12]. A common theme among
these works is the modeling of people as vertical sticks walking along a planar
surface and observed by a pinhole camera. Under such assumptions the problem
of calibration from images of people can be mapped into that of calibration from

vanishing points [4, 5], a technique which, despite its geometric elegance, is no-
toriously sensitive to noise. This issue has been tackled by the work in [11], but
some difficulties remain. One problem is that of critical configurations for cali-
bration from vanishing points, which is akin to that of critical camera motions
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in autocalibration. A second problem is the use of information provided by the
tracking system as a set of independent detections, neglecting the continuity of
the tracks. This work demonstrates how to incorporate continuity constraints on
human motion for the latter problem, which also yields a solution to the former.

SQ 1 SQ 2

Figure 1: Nearly Horizontal Camera Views. Two cam-
era views that approach zero tilt angles, a critical configuration
for autocalibration from people detections. The left view has
a tilt angle of about 4.5±0.7 degrees. The right camera has a
tilt angle of about 1.6±1.1 degrees.

The difficulty with
calibration from van-
ishing points is due to
its reliance on the in-
tersection of lines that
are, in practice, nearly
parallel. For a cam-
era with zero skew
and unit aspect ra-
tio, the principal point
will fall on the or-
thocenter of the trian-
gle formed by vanish-
ing points correspond-
ing to three orthogo-
nal directions [4]. Fur-
thermore, the square of
the focal length will be
given by the distance between such orthocenter and an arbitrary side of the tri-
angle multiplied by the distance between the orthocenter and the vertex opposite
to the chosen side [4]. For a pinhole camera viewing a ground plane, a possible
choice for this arbitrary side is the horizon of the ground plane, which is the image
of the line at infinity contained in that plane, and the opposite vertex will be the
vanishing point corresponding to the image of the point at infinity in the direction
orthogonal to the ground plane. If the viewing direction of the camera is parallel
to the ground plane (e.g., Fig. 1), the distance between the principal point and
the horizon will be zero, and the distance between the principal point and the
opposite vertex will be infinite; the focal length will be, therefore, undetermined.
For illustration consider the calibration in Figure 2, which is close to a critical con-
figuration. Standard autocalibration significantly overestimates the focal length
of the scene, leading to an elongation of trajectories away from the camera, see
Figure 2 (left).

This problem cannot be overcome unless further information about the scene or
the camera is provided, which, in this work, comes in the form of the assumption
of constant velocity for the people being tracked. The approach presented in this
paper enables to deal with data as in Figure 1 (right) to obtain the result in Figure
2 (right). An additional benefit of considering tracks of person detections is that
filtering can be applied to the observations, resulting in less noisy data. In order to
appropriately handle the remaining uncertainty, a Bayesian framework is used to
perform the estimation of the relevant camera parameters, taking the noise of the
measurements into consideration in a principled way and allowing for the handling
of nonlinearities in the motion as well as the observation models.
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Figure 2: Challenging Scene. Calibration of scene with horizon near the principal
point as in Figure 1 (right). Left: Calibration without the use of motion information.
The scale in the y-direction is incorrect due to poor estimation of the focal length. Right:
Calibration using motion of the target as described in this work. The estimation of the
focal length is much more accurate and the scale in y-direction more plausible. Blue
dots denote foot detections projected into the ground plane, green tracks denote forward
estimated trajectories. Red tracks denote backward filtered MAP trajectories. See section
3 for details.

2 Related Work

A number of previous works have made use of camera or scene motion models to
solve the structure-from-motion (SFM) problem, as well as for camera calibration.
A particularly relevant example is the work by Han and Kanade [7], which uses a
second-order motion model in conjunction with a projective factorization method
to simultaneously recover structure, camera motion and intrinsic parameters in
a scene with multiple constant-speed rectilinear motions. Kahl and Heyden [10]
demonstrate how the incorporation of a smoothness constraint on the camera
motion allows for stable solutions for SFM even in the presence of critical camera
motions [17, 19] while avoiding problems caused by local minima and coupling
of camera intrinsic and extrinsic parameters, such as focal length and forward
motion. The motion model used in that work was simply a first-order Markov
process, but, as the authors pointed out, the procedure could be straightforwardly
extended to incorporate higher-order models. In [1] the problem is attacked in
a recursive manner with the use of an extended Kalman filter and a first-order
Markov process. A Bayesian approach with, again, a first-order Markov process,
was used in [15].

None of the approaches above is applicable to the case of a static camera, which
is the problem tackled in the present work. In this case scene constraints must
be used, such as those adopted in [4, 5], but these works cannot cope with the
levels on noise present in our data, although [5] does employ a simple covariance
propagation technique. The work by Lv et al [12] deals with the particular problem
of calibrating a static camera by tracking people, but it is based on an ad-hoc
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approach that fails to account for the uncertainty in the data. Recently, a novel
camera calibration technique based on tracking people was introduced [11]. The
method deals with realistic noise levels and provides error bounds for the estimates
of the relevant camera parameters. However, it does not make full use of the tracks,
which are dealt with as if they were independent detections, and, as with [12], it
fails when the viewing direction is parallel to the ground plane.

3 Approach

The goal of this paper is to estimate a metric camera P from observations of
people. To facilitate calibration, people are viewed as vertical calibration sticks of
constant height h with a known distribution standing on a flat ground plane. Using
standard assumptions on the camera intrinsic parameters (i.e., zero skew and unit
aspect ratio) the estimation of the focal length f , the tilt angle θ , the roll angle
ρ and the height above the ground plane z yields metric camera calibration. The
estimation of m = [ f ,θ ,ρ,z] can be obtained from detections of the foot and head
locations y j = (yd

j ,y
u
j) of people in the image, since they allow for the computation

of vanishing points [12].
The estimation is cast into a Bayesian framework, by which expected values

and covariances from the posterior probability density function (pdf) p(m|D,M),
with D = {y j, j = 0, . . . ,K − 1}, could be obtained. Due to the ambiguities that
arise for small tilt angles, we would like to incorporate assumptions about the
motion of people that generated observations D. More specifically, we assume that
people tend to either walk at a constant velocity with known distribution or stand
still, switching between the two states at will. We denote this assumption as M,
completing the description of the terms in the pdf p(m|D,M). For putative D and
M, the 3D trajectories X = {Xi, i = 0, . . . ,N} of detected people can be obtained.
Here, each trajectory consists of 3D body center locations {Xi,k},k = 0, . . . ,Ni. We
have now that

p(m|D,M) =
∫

X
p(X,m|D,M)dX =

p(m)

p(D)

∫

X
p(X,D|m,M)dX. (1)

Under the assumption that the motion model M is a first order Markov model,
the joint probability of the data and the trajectories decomposes into a product of
data likelihood and motion terms as follows:

p(X,D|m,M) =
N−1

∏
i=0

[

p(Xi,0|m,M)
Ni−1

∏
k=1

p(Xi,k|Xi,k−1,m,M)
Ni−1

∏
k=0

p(zi,k|Xi,k,m,M)

]

.

(2)
Here, the zi,k represent the detections y j after data association and filtering in
image space, to be described in section 3.4. The joint probability (2) ties sub-
sequent states together. This unfortunately prevents (1) to decomposes into a
product of independent terms making this problem computationally much more
challenging than autocalibration approaches based on independent person detec-
tions. Ideally, we would want to obtain the estimation of E[m] under the pdf in
(1) or at least it’s MAP estimate. Although Monte Carlo Markov Chain (MCMC)
integration and sampling / optimization of the marginal is possible, this approach
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is in practice prohibitively expensive. We hence settle for the joint MAP estimate
of p(X,m|D,M) and take the solution to our problem as

(m∗,X∗) = argmax
m,X

p(X,m|D,M) = argmax
m,X

p(m)p(X,D|m,M). (3)

In the following we discuss the data likelihood terms and motion models of (2).

3.1 Data Likelihood

The likelihood p(zi,k|Xi,k,m,M) = p(zi,k|Xi,k,m) of an observation zi,k = (zd
i,k,z

u
i,k)

given a state Xi,k, representing a 3D body center, and the parameters m of the
camera are obtained as follows. First X̃i,k, the homogeneous representation of Xi,k,
is projected into the image as x̃i,k = P(m)X̃i,k, with Cartesian representation given
by xi,k and P(m) the projective matrix parameterized by m. The result is then
mapped from the 2D projection xi,k of the body center to the image locations

of the foot and head, by center-to-foot and center-to-head homologies Hd
c (m) and

Hu
c(m) [11, 16], x̃d

i,k = Hd
c (m)x̃i,k and x̃u

i,k = Hu
c(m)x̃i,k where x̃d

i,k and x̃u
i,k are the image

locations of the feet and head of a detected person in homogeneous coordinates,
with Cartesian representation given by xd

i,k and xu
i,k, respectively. These projections

are then compared against foot and head locations obtained through filtering and
data association (i.e., tracking) of image measurements represented by locations
yd

j and yu
j with uncertainty estimates Ωd

j and Ωu
j . These filtered observations and

their uncertainties (which are on average reduced during the tracking process)
are be denoted as (zd

j ,z
u
j ,Σ

d
j ,Σu

j). Note that the correspondence between the raw
measurement indices j and the trajectory, time indices i,k is obtained during the
data association and tracking step.

To account for effect of shadows, for missed or split detections, and for de-
viations from the assumptions about people being vertical calibration objects,
observations are assumed to arise from three separate sources. The first is the
inlier model, which is simply the distribution of filtered observations described in
section 3.3. The second, occurring with probability Po, is an outlier model corre-
sponding to a wide distribution in the vicinity of the inliers. Finally, a uniform
background distribution is selected with probability Pb, with Pb < Po ≪ 1. Omit-
ting the corresponding subscripts, the overall model for the foot location is then
defined as

p(zd |xd) = (1−Po −Pb)N(zd ;xd ,Σd)+PoN(zd ;xd ,Σd
o)+Pb

1

wh
, (4)

where w and h are the width and height of the image and Σd
o is the variance of the

outlier model; the model for head locations is defined analogously. The covariances
of the original detections have eigenvectors aligned with the foot to head direction.
The covariance Σd

o is assumed to be aligned with Σd , but it is set to be three times
as wide and twice as high as that, whereas Σu

o is set to be twice as wide and three
times as high as Σu, to which it is, in turn, aligned. This definition models the fact
that foot location outliers are often caused by horizontal shadows, whereas head
location outliers are caused by predominantly horizontal splits in the detections.
These parameters are chosen to accommodate the particular person detector used
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in this work, and will vary for different detectors. Note that the observation model
(4) is a mixture of Gaussian plus background pdf, and hence non-Gaussian.

3.2 Motion Model

Our model assumptions M about the motion of detected people have to be en-
coded into the dynamical model p(Xi,k|Xi,k−1,m,M). This is not trivial, since
the model has to favour smoothly changing locations and velocities and at the
same time favour a specifc velocity magnitude (i.e., the average walk velocity)
in the long term. Toward this goal, we represent the state Xk of a particular
trajectory point using its location (xk,yk) on the ground plane, its heading an-
gle φk in the ground plane, and the magnitude vk of the velocity of the tracked
subject, Xk = (xk,yk,φk,vk). For the deterministic component of the model we
use a standard constant velocity model Xk|k−1 = (xk−1 + vk−1 cos(φk−1)∆tk,yk−1 +
vk−1 sin(φk−1)∆tk,φk−1,vk−1), where ∆tk = tk − tk−1. The stochastic component fol-
lows a standard white noise process for location and heading. For the velocities,
two components representing a walking person and a standing person, govern the
stochastic model. The walking component pw(vk|vk−1) takes the form

pw(vk|vk−1) = cN(vk;vk−1,σ
2
v )e

−
(vk−v̄)2

2σ2
v̄ , (5)

where the first term is a white noise process governing local changes in speed
(with variance σv) and the second term penalizes boundless deviations from a finite
velocity v̄ consistent with human motion. The above equation can be rewritten as

pw(vk|vk−1) = N(vk; v̂k−1, σ̂k−1), where v̂k−1 =
σ2

v̄ vk−1 +σ2
v v̄

σ2
v̄ +σ2

v

, σ̂k−1 =
σ2

v̄ σ2
v

σ2
v̄ +σ2

v

. (6)

One sees that as vk−1 deviates from v̄, the center of the pdf pw(vk|vk−1) shifts toward
v̄. Essentially, velocities are encouraged to diffuse toward the average speed v̄.

A second component models the fact that people might stop or have lower
speeds during turns. The stopping model has the same form as (5) except that
v̄ = 0 and σ2

v = σ2
0 . The final stochastic model is given by

p(vk|vk−1,M) = Pw pw(vk|vk−1)+(1−Pw)ps(vk|vk−1), (7)

where Pw is the probability that a given person is walking as opposed to stand-
ing still. Our model M is defined by the above structure and the parameters
(σ2

v , v̄,σ2
v̄ ,σ2

0 ,Pw). Note that the model allows sampling as well as evaluation of
likelihoods, an important property for backward smoothing [9].

3.3 Optimization of Joint PDF

As described above, we need to maximize the joint pdf (3) with respect to the
calibration parameters m and the trajectories X. This is a difficult task with
respect to X since it in general requires the optimization over all the variables Xi,k

simultaneously. In order to make the problem tractable, we perform an iterative
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coordinate descent with respect to m and X independently, given by

X[l] = argmax
X

p(X,D|m[l],M), and (8)

m[l+1] = argmax
m

p(X[l],D|m,M)p(m). (9)

Calibration Parameters: Optimization over the calibration parameters m

under fixed trajectories X, as in (9), has much lower computational cost than
an optimization over all variables simultaneously. However, convergence can still
be slow, since a change in m will change all of the zi,k, due to x̃i,k = PX̃i,k, (4)
and (2). Therefore an intermediate step is taken between (8) and (9), by which,
for the current m[l], the projections x[l] of the trajectories X[l] are obtained and
kept fixed during the computation of (9). We then perform the optimization
in (9) with fixed image-based trajectories, which allows for changes in the actual
3D trajectories during optimization. To obtain the foot and head locations for
varying m, we utilize homologies that map from the body center (i.e., the 3D
plane at height h/2) to the foot and head plane respectively.

Trajectories: The optimization in (8) over the trajectories X under fixed
camera geometry m is performed by sequential Monte Carlo filtering [6, 8] on (2),
which obtains particle representations of the pdfs (with the superscripts [l] omitted
for convenience)

p(Xi,k|zi,k:0,M,m) =
Ns

∑
n

πn
i,kδ (Xi,k −Xn

i,k). (10)

We take particles representations Xn
i,k as discrete set of possible states and use the

Viterbi algorithm to obtain the maximum (logarithm) of (2).

3.4 Data Association and Filtering

The tracking stage of the system performs standard track formation and data as-
sociation, and filtering in image space [2]. Tracked targets are represented by eight
dimensional state vectors for the foot and head locations and velocity components
z j = (zd

j ,v
d
j ,z

u
j ,v

d
j ). Due to the lack of 3D geometric information, the initial tracking

process is performed entirely in 2D image coordinates. The dynamics is modeled
by a 2D white noise constant velocity linear Gaussian system driving the evolution
of the foot locations, of the head locations, and of the velocities, all independently.
However, at each time step the system noise in the dynamics is rescaled according
to the height of the target in image coordinates. The observation likelihood is
given by the terms in (4). We use particle filters in order to deal with the non-
normality of our observation model; however, unlike traditional computer vision
uses of particles filters, we perform explicit gating and data association to deal
with the presence of multiple targets. Also, the observation likelihood does not
need to be evaluated for any image data, but rather only operates on the previ-
ously collected foot and head location detections. Alternatively, an extended or
unscented Kalman filter could have been utilized for tracking.

The particle filter yields posterior pdfs p(z j|y0: j) represented as particle sets.
We utilize the mean and variances of these distributions projected into the image
and their association to tracks as the filtered detections zd

i,k,z
u
i,k,Σ

d
i,k,Σ

u
i,k for the
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Figure 3: Foot and Head Tracking. An image based particle filter is used to track
and filter the foot and head detections (yellow). The tracker yields tracks (blue) of filtered
observations (red and green). Only every 20th observation is shown.

subsequent stages. See Figure 3 for an illustration of the original detections, a
corresponding track and the filtered detections.

4 Results and Discussion

We first quantitatively demonstrate the challenge of calibrating scenes with degen-
erate configurations. Figure 1 shows two views with the principal point close to the
horizon. When applying autocalibration on isolated people detections, the focal
length estimates become unstable due to the uncertainties in the image measure-
ment.

SQ 1 SQ 2

Figure 4: Autocalibration Without

Motion Information. This figure shows
autocalibration similar to the one in [11],
on the camera views in Figure 1. The
tracks were visualized for the MAP esti-
mate of the calibration.

Table 1 shows the expected calibra-
tion parameters, together with their es-
timated variances for the two scenes
in Figure 1, estimated using the ap-
proach described in [11]. As one can
see, the focal length for SQ1 is al-
ready significantly uncertain, while for
sequence SQ2 it becomes essentially un-
determined. Note that all that was
changed between SQ1 and SQ2 is the tilt
angle of the camera.

To further quantify the calibration
errors, a pattern was drawn on the
ground plane to guide the trajectories
of the subjects as they walked during
video capture. By comparing the esti-
mated trajectories with the location and
dimension of the pattern, statements
about the calibration accuracy can be
made.

For the sequences SQ1 and SQ2 and the MAP calibration parameters estimated
without the use of motion information, we obtain the ground plane projections in
Figure 4. One clearly sees that the calibration of SQ1 is quite accurate, while the
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focal length for sequence SQ2 was underestimated, resulting on a reconstruction
of the tracks too close to the camera.

f θ/deg ρ/deg z/m

SQ 1 Expect. 912±142 4.7±0.67 −0.20±0.12 1.77±0.03

SQ1 MAP 874 4.6 0.54 1.71

SQ2 Expect. 9699±21838 1.6±1.0 0.08±0.15 1.81±0.04

SQ2 MAP 443 3.98 0.59 1.80

Table 1: Calibration Results Without Motion Information. This tables shows
the auto-calibration results of the camera views in Figure 1. The first entries for each se-
quence denote the expectation and variance of the posterior distribution of the calibration
parameters.

By performing calibration with the use of motion information we obtain the
results shown in Figure 5. One clearly sees that information about the motion
of people has aided the calibration to the extent that good results were obtained
even in the degenerate case of SQ2. The optimization of the joint PDF converges
after eight iterations. The final calibration parameters for SQ2 are taken to be
m∗ = [923.4 pixel,1.822 deg,0.01511 deg,1.722 m], which are consistent with the
estimates obtained for SQ1 and non-motion based calibration, including the change
in the tilt angle.

SQ 1 SQ 2

Figure 5: Autocalibration With

Motion Information. This figure
shows auto-calibration on the camera
views in Figure 1 using the approach
presented in this paper.

We further quantify the performance by
fitting ellipses to the projected tracks for
SQ2 in Figure 4 and Figure 5 and com-
paring them to the ground truth circles,
which had radii of 4.78 m± 0.05 m. The
fitting was performed using a robust least
squares approach. Without the use of mo-
tion information the ellipses fitted to the
estimated trajectories have minor and ma-
jor radii 5.1 m and 2.3 m, corresponding to
an average tarjectory shape error of 28.9%.
While the scale along one axis is accurately
recovered without the use of motion infor-
mation, the scale along the other is com-
pressed due to the inaccurate focal length
as already observed in Fig. 2. In contrast,
the method presented in this work obtains
radii 4.4 m and 4.8 m, corresponding to an
error of 4.2%.

5 Conclusion

We have incorporated tracking information into the Bayesian estimation of camera
calibration parameters from people observation. We have shown that information
about the motion of people can be utilized to obtain calibration for scenes that are
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otherwise intractable for approaches that consider isolated detections of people.
The overall calibration approach can deal with a wide variety of scene configura-
tions and can gracefully handle large amount of measurement noise and outliers.
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