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Abstract 

Autocatalytic duplex Ni-P/Ni-W-P coatings were deposited on AZ31B magnesium alloy using 

stabilizer free nickel carbonate bath. Some of the coated specimens were passivated in chromate 

solution with and without heat treatment.  Plain Ni-P coatings were also prepared for comparison. 

Coatings were characterized for their surface morphology, composition and corrosion resistance. 

Energy dispersive analysis of X-ray (EDX) showed that the duplex coating contained about  

3 wt.% P and 2 wt.% W with balance Ni. Marginal increase in P and W contents were observed on 

passivated coupons along with Cr (0.18 wt.%) and O (2.8 wt.%) contents.  Field emission scanning 

electron microscopy (FESEM) examination of these coatings surfaces exhibited the nodular 

morphology. Chromate passivated surfaces showed the presence of uniformly distributed bright Ni 

particles along with nodules. Potentiodynamic polarization and electrochemical impedance 

spectroscopy (EIS) studies were carried out in deaerated 0.15 M NaCl solution to find out the 

corrosion resistance of the coatings.  Among the coatings developed, duplex-heat treated-passivated 

(duplex-HTP) coatings showed lower corrosion current density (icorr) and higher polarization 

resistance (Rp) indicating the improved corrosion resistance.  The charge transfer resistance (Rct) 

value obtained for the duplex-HTP was about 170 times higher compared to Ni-P coating.  
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1. Introduction 

Magnesium (Mg) and its alloys are extensively used for various industries such as aerospace, 

automobile and electronics due to their excellent properties such as low density, high strength and 

stiffness and electromagnetic shielding [1].  However, the wide spread applications of these alloys 

were limited due to the undesirable properties such as poor corrosion and wear resistance, poor creep 

resistance and high chemical reactivity respectively.  These alloys are highly susceptible to galvanic 

corrosion in sea water environment due to high negative potential (-2.37 V vs SHE).  The effective 

way of preventing corrosion is through the formation of a protective coating which acts as the barrier 

between the corrosive medium and the substrate.   Many surface modification methods such as 

electro/ electroless plating, conversion coating, physical and chemical vapor depositions, thermal 

spray coating etc., are available to-date to improve the corrosion resistance of Mg alloys [2-5].   Of 

these methods, the electroless nickel plating has gained considerable importance because of its 

excellent properties such as high hardness, good wear and corrosion resistance.  Properties of the 

binary electroless nickel coating have been further improved by the addition of third elements such 

as cobalt, tungsten, tin and copper etc.  It has been reported that the addition of tungsten as the third 

element in the Ni-P improves the properties such as hardness, wear and corrosion resistance, thermal 

stability and electrical resistance [6, 7].      

 Magnesium alloys are categorized as a “difficult to plate metal”, because of its high 

reactivity in the aqueous solution.  It reacts vigorously with atmospheric oxygen and water, resulting 

in the formation of the porous oxide/ hydroxide film which does not provide any protection in 

corrosive environment.  Further, the presence of this oxide film prevents the formation of good 

adhesive bond between the coating and the substrate.  The surface treatment process for removal of 

the oxide layer is very much essential before plating the Mg alloy.  Currently two processes such as 



zinc immersion and direct electroless nickel plating are adopted to plate Mg alloys [1]. Etching in a 

solution of chromate and nitric acid followed by immersion in HF solution to form a conversion film 

is necessary for direct electroless nickel plating of Mg alloy [8]. 

         Corrosion behaviour of electroless nickel coatings on Mg alloys was widely investigated [9-

12].  By scanning through the available literature few studies were reported on electroless nickel 

ternary alloy coatings on the Mg alloy substrate.  Zhang et al., studied the corrosion behaviour of 

electroless Ni-W-P and Ni-Sn-P alloys deposited on AZ91D substrate in 3 wt.% NaCl medium. They 

reported that these coatings showed 2 to 3 times improvement in the corrosion resistance as 

compared with plain Ni-P coatings [13, 14].  Further to enhance the corrosion resistance of Mg 

alloys, studies have been carried out by depositing multilayers [15] and duplex Ni-P coatings [16].  

Vitry et al., reported that heat treatment carried out for NiP/NiB duplex coatings at 180°C for 4 h has 

improved both corrosion and wear resistance [17].  Changdong Gu et al., [15] have deposited the 

multilayer electroless nickel alloy system containing low (2 wt.%), high (9 wt.%) and medium (5.4 

wt.%) P coatings over AZ91D Mg alloy to specifically prevent pitting corrosion.  Chen Xiao-ming et 

al., investigated the corrosion behaviour of Ni-P/ Ni-W-P duplex coatings on AZ91D Mg alloy in 

3.5% NaCl medium. They found that this system exhibited about one and five times improvement in 

the corrosion resistance as compared with plain Ni-P coating and bare substrate, respectively [16].   

Another method of improving the corrosion resistance of electroless nickel alloys is by passivating 

the coated surfaces with Cr
6+

 and Cr
3+ 

conversion films [18].  Potentiodynamic polarization studies 

carried out for these passive films indicated that the corrosion currents of these films are only about 

1/25 of un-passivated coating.  

To our knowledge detailed investigation on the electrochemical behavior of duplex coatings of Mg 

alloys using electrochemical impedance spectroscopy (EIS) has not been carried out. In the present 

manuscript we have made an attempt to prepare the electroless nickel alloy coatings using a 



stabilizer-free bath. To further enhance the corrosion resistance, chromate passivation is also done 

over duplex coating as post treatment process.  

In the present work, we have prepared plain Ni-P and duplex Ni-P/Ni-W-P coatings on AZ31B 

magnesium alloys using a stabilizer free carbonate bath.  As a post treatment process, chromic acid 

passivation treatment is given for duplex coatings with and without heat treatment.   Electrochemical 

evaluation of these coatings has been carried out using potentiodynamic polarization and EIS.   

2. Experimental 

AZ31B Magnesium alloy (2.5cm×2.5cm×0.2cm) was the substrate material. The chemical 

composition of the alloy is shown in the Table 1. The surface of the substrate material was wet-

ground (using water) on 1000 SiC paper.  The samples were washed with distilled water and dried.   

It was then subjected to various pretreatment steps and is given in Table 2. The initial weight and 

dimensions of the specimens were measured prior to pretreatment and pre-cleaning steps. 

Immediately after fluoride activation, the specimen was quickly transferred to the Ni-P coating bath 

placed in a constant temperature oil bath, to maintain the required temperature. After obtaining a 

required thickness of Ni-P coating, the sample was transferred to the Ni-W-P bath.  The composition 

of the duplex (Ni-P and Ni-W-P) electroless nickel baths and plating conditions are given in Table 2. 

From the table it can be seen that plating baths were free from any stabilizers.  The samples were 

coated for the required length of time, removed from the bath, washed with distilled water and air-

dried. Final weight of the sample was determined and the coating rate in µm/hr was calculated from 

the weight gain.  After plating, the samples were rinsed in distilled water and then were passivated 

immediately.  After passivation, the samples were rinsed in running tap water followed by distilled 

water.  Some of the AZ31B magnesium samples coated with Duplex Ni-P/NiWP were undergo heat 

treatments for 4 h at 150°C in an oven. These samples were also given the passivation treatment.  

Surface morphology and coating thickness of the untreated duplex (Ni-P/NiWP) and duplex 

passivated (duplex-P) coatings were characterized using Field Emission Scanning Electron with 



Energy Dispersive X-ray Analysis (FESEM/EDAX model-Carl Zeiss Supra 40 VP). EDX analysis 

was used for the determination of phosphorus, tungsten, nickel and chromium on the surface and in 

the cross section of these coatings. Corrosion behaviour of all the coatings was studied by 

potentiodynamic polarization and electrochemical impedance spectroscopy measurements using CH 

instruments and the software used for fitting was Zsimp.  A conventional three-electrode flat cell was 

used in which test sample was placed in a sample holder and the exposed surface area to the 

corrosive medium was approximately 1 cm
2
. Platinum strip of 1 cm

2
 area served as counter electrode 

and a standard calomel electrode (SCE) was used as the reference electrode.  Prior to the beginning 

of the EIS measurements the sample was immersed in the corrosive medium (0.15M NaCl, pH 6.7) 

for about 10 min in order to establish the open circuit potential (EOCP) or the steady state potential 

after which the impedance measurements were conducted using a frequency response analyzer 

(FRA). The spectrum was recorded in the frequency range of 10 mHz–100 kHz. The applied 

alternating potential had root-mean square amplitude of 10 mV on the Ecorr. The impedance data was 

displayed as Nyquist and Bode plots. The Nyquist plot is a plot of real (Z′) versus imaginary (Z″) 

impedance.  At high frequency, the value of solution resistance (Rs) is obtained and at low frequency, 

the charge transfer resistance (Rct) is deduced. The Bode plot is a plot of log|Z| vs log f and log f vs 

phase angle (θ), where |Z| is the absolute impedance and f is the frequency. The advantage of this 

plot is that the data for all the measured frequencies are shown and also a wide range of impedance 

values could be displayed. The frequency dependence of the phase angle indicates whether one or 

more time constants occur, which could be used to determine equivalent circuit parameters. After 

EIS measurements, the system was allowed to attain its stable open circuit potential. After reaching 

the stable open-circuit potential, the upper and the lower potential limits of linear sweep voltammetry 

were set at ± 200 mV with respect to the EOCP. The sweep rate was 1 mV/s and the Tafel plot was 

obtained after the electrochemical measurements. The corrosion potential (Ecorr), the corrosion 



current density (icorr) and polarization resistance (Rp) were deduced from the Tafel plot (that is, log i 

versus E plot). The corrosion current is obtained using the Stern-Geary equation [19] 

3. Results and discussion 

3.1  Surface Morphology (FESEM) and Composition Analysis (EDX) 

In general electroless nickel deposits exhibit nodular morphology [20]. The extent of nodularity/ 

surface morphology depends on the characteristics of electroless nickel plating solution. It has been 

reported that the addition of small amount of inorganic additives to the bath improves the surface 

smoothness by reducing the growth of the nodules [21]. One of the present authors have found that 

the nodularity of the electroless nickel deposit is influenced by the anions used in the form of 

sulphates and chlorides.  It was concluded that the presence of chloride anions results in smoother 

ternary NiWP deposits compared to the other anions. In the present study, all the coatings have been 

deposited over Mg alloy specimen and the as-deposited coatings were subjected to FESEM analysis 

to find out their surface morphology and are given in Fig. 1. It is evident that the plain NiP deposit 

exhibited nodular structure (Fig. 1(a)). It appears that these nodules are not continuous and the 

presence of pores is visible between these clusters of nodules. The size of these cluster nodules are of 

about 10 µm diameter (Fig. 1(b)).  Nodularity has reduced to a great extent and coating appears 

smooth after NiWP deposited over plain NiP coating (Fig. 1(c)). Apart from that scattered bright 

particles (< 1 µm) are seen all over the surface (Fig. 1(d)). In the case of chromate passivated duplex 

coating, chromate passivation has resulted in the formation of slightly more no. of connected nodules 

compared to the duplex coating without any passivation treatment (Fig. 1(e)). Due to the presence of 

these wide nodules, the visibility of bright particles is much more compared to the duplex coated 

surface (Fig. 1(f)). These bright particles may correspond to the excess growth of nickel alloy over 

the nodules. The excess growth of nickel could be due to the mixed complex in the solution which 

acts as a direct precursor for the deposition of the alloy. Duplex coatings with passivation treatment 

have been heat treated below 200°C for 4 hrs for dehydration [22]. Surface images of these coatings 



are given in Fig. 1 (g & h). These coatings exhibited coarse nodular morphology with scattered 

bright particles.  

To find out the composition of these coatings EDX analysis has been carried out and the obtained 

results are given in Table 3. From the table it is evident that the plain NiP deposit contained about 

6.5 wt.% P. It is surprising to notice that along with P and Ni elements the presence of Mg (4 wt.%) 

and F (5.4 wt.%) have also been detected during the composition analysis. As discussed in the above, 

plain NiP deposit exhibited nodular morphology with lot of porosity (Fig. 1(a)). It appears that 

formed pores are through pores connecting to Mg alloy surface. During the pretreatment, fluoride 

activation treatment has been followed for the specimen to deposit 10 µm thick binary NiP.  Apart 

from this fluoride treatment, plating bath also contains ammonium fluoride as one of the ingredients. 

This could be the reason for the detection of both Mg and F elements during EDX analysis. 

Codeposition of W (2 wt.%) in NiP matrix has resulted in lower P content from 6.5 to 3.2 wt.%. 

Marginal variation in P and W contents are observed due to the heat treatment. Heat treated chromate 

passivated duplex coatings have exhibited almost same P and W contents as that of duplex coatings 

with an addition of about 0.18 wt.% Cr content. Metallographic cross-section of NiP/NiWP duplex 

coating has been prepared to find out the composition of the duplex coating. Spot EDX analysis has 

been carried out at a distance of 3 – 4 µm thicknesses. Cross-sectional images along with EDX line 

scan is shown in Fig. 2.  

The coating thickness in Fig. 2a appears to be consistent with the measured values of about 25-30 

µm as is evident from the line scan graph (Fig.2b).  However, there is no clear demarcation between 

the Ni-P and the Ni-W-P layers in the duplex coating (Fig. 2c).  Elemental composition obtained at 3 

different regions of the cross-section is given in Table 4.  The spot 1 EDX analysis carried out closer 

to the substrate surface showed about 6 wt.% P with traces of W which might be due to the inherent 

porosity of Ni-P coatings.  Spot 2 analysis was done at a point roughly around the boundary of Ni-

P/Ni-W-P coatings.  The amount of P is slightly high (>6 wt%) with an increase in the amount of W 



(1 wt.%).     Spot 3 analysis was taken at a point further away from the substrate, presumably at the 

Ni-W-P coating region of the duplex coating.  From the compositional analysis it is evident that 

(Table 4) there is a gradual decrease in P (2 wt.%) content and increase in the amount of W (1.3 

wt.%) from the substrate/coating interface to surface of the duplex coating.  

3.2  Corrosion characteristics of the coatings 

In general, there are many methods available to evaluate the corrosion behavior of the coatings. 

Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization are the useful 

techniques to understand the corrosion behavior.   

3.2.1   Potentiodynamic polarization 

Potentiodynamic polarization curves obtained for bare, Ni-P, duplex, duplex-P and duplex-HTP 

coatings immersed in 0.15M NaCl solution are given in the Fig. 3.  The corrosion parameters 

obtained from the plot are given in the Table 5. The potential obtained for the bare substrate is closer 

to the potential of Mg alloys reported for neutral aqueous solution (-1.5 V) [23]. From the table it can 

be seen that as-plated duplex and passivated duplex coatings showed positive potentials compared to 

other coatings. Whereas plain NiP coating exhibited higher corrosion current density (icorr) value of 

about 218 µA/cm
2
. It has been reported that medium P electroless NiP coatings exhibit icorr value of 

about 25 µA/cm
2
 when immersed in 3.5% NaCl solution. In the present study the higher icorr value of 

NiP coating could be due to the porous nature of the coating (Fig. 1a). There is about 55 times 

decrease in the icorr value in the case of as-plated duplex coating. It is clearly evident from the table 

that chromate passivated duplex coating exhibited lowest corrosion current densities in the range 0.5 

– 1.8 µA/cm
2
.  Higher polarization resistance (Rp) value of about 61000 Ω cm

2
 has been obtained for 

duplex-HTP coating compared to other coatings indicating the better corrosion resistance of the 

coating.  

3.2.2  EIS studies 



Figure 4 shows the Nyquist plots obtained for the bare, Ni-P, as-plated duplex, duplex-P and duplex-

HTP coatings in 0.15 M NaCl solution at their respective open circuit potentials in non-deaerated 

condition.  The impedance parameters derived by fitting the data are given in the Table 6. Nyquist 

plot obtained for all the samples exhibited a two depressed semicircle showing two capacitive loops 

indicating the presence of two time constants.    The semicircle of smaller diameter can be observed 

at the higher frequency region followed by the larger diameter semicircle at the intermediate and 

lower frequency regions. The semicircle obtained at higher frequency region is shown in in-set (Fig. 

4 (c-e)) for as-plated duplex, duplex-P and duplex-HTP coatings. It is well known that the diameter 

of the semicircle is related with the corrosion resistance of the coating.  Larger the diameter better is 

the corrosion resistance of the sample.   Among the coatings, duplex-HTP coating showed larger 

semicircle as compared with other coatings indicating the improved corrosion resistance of the 

coating.   From the table it can be seen that Rct value obtained for this coating is about 34,630 Ω cm
2
. 

The semicircle at the higher frequency region is related to the film/solution interface and the 

following semicircle at the intermediate and lower frequency regions is related to the 

coating/solution interface.  At lower frequency region, inductive loops have been observed for the 

bare Mg alloy substrate and Ni-P coating. It has been reported that the inductance could arise due to 

the diffusion and adsorption of the electroactive species over the surface of the film and the substrate 

[24].    

Figure 5 shows the Bode plots obtained for all the coatings developed.  Absolute impedance vs 

frequency plot (log ⏐Z⏐ vs log f) obtained for all the coatings is shown in Fig. 5a.  The absolute 

value of impedance increases in the following order: Ni-P < bare < duplex < duplex-P < duplex-

HTP.  Apart from that it also exhibits more than one slope which indicates the presence of more than 

one or two time constants.  Phase angle vs frequency (Fig. 5b) plot shows the phase angle of about 

45° at the higher frequency region for all the coatings.  The phase angle peaks varied from 20 to 60° 

at the intermediate frequency region and peaks distributed over the wide frequency range (10 kHz to 



0.1 Hz). From the Fig. 5b it is evident that both bare substrate and Ni-P coating exhibited negative 

phase angle indicating the inductive behavior at the lower frequency region.  In the case of duplex-

HTP at lower frequency region, phase angle shifted closer to 40° due to its diffusion behavior. 

The impedance spectra are fitted with the possible equivalent circuits shown in the Fig. 6 (a-e). 

Figure 6a shows the equivalent circuit used for fitting the EIS data obtained for bare Mg alloy 

showing two time constants in series with inductive elements.  The circuit description code (CDC) 

for the equivalent circuit can be written as Rs(Qf(Rf(QdlRct)(Lads1Rads1)(Lads2Rads2))) where Rs -

solution resistance, Rf -film resistance, Qf -film capacitance, Rct-charge transfer resistance, Qdl -

double layer capacitance, Lads -adsorption inductance, Rads- adsorption resistance. Constant phase 

element (CPE) accounts for the deviation from ideal capacitive behavior and is related to surface 

inhomogeneities [25]. The capacitance is replaced with CPE for better quality fit.  Q stands for 

constant phase element. This element can be written in admittance form as: 

Y(ω) = Y0(j ω)n 

Where Y0 and ‘n’ are the adjustable parameters used in the non-linear least-square fitting. Here, ‘n’ 

value always lies in between 0.5 and 1.   

Mansfeld et al., [26] have reported the occurrence of depressed capacitive loop followed by inductive 

loop for AZ31 Mg alloy in 0.5 N NaCl.  Similarly Song et al., [27] have also observed the presence 

of capacitive loop followed by the inductive loop in NaCl medium for AZ91 Mg alloy. In this study 

the similar impedance spectra was observed for bare Mg alloy showing capacitive and inductive 

loops over the investigated frequency range which could be due to the adsorption of electroactive 

species such as Mg
+
, Mg

+2
, OH

-
 and Cl

-
 over the surface. 

Figure 6b shows the equivalent circuit used for fitting the data of the Ni-P coating on exposure to 

corrosive medium.  In this case, coating capacitance (Qcoat) and coating resistance (Rcoat) are 

observed in parallel with charge transfer resistance and double layer capacitance.  They are in series 

with adsorption inductance and resistance respectively.  The circuit description code can be written 



as Rs(Qcoat(Rcoat(QdlRct)(Lads1Rads1))).  The Rf and Qf are the resistance and capacitance of the 

dissolved film formed at the solution/ film interface and Rct and Qdl are related with the coating 

electrolyte interface.   The porous Ni-P coating allows the electrolyte to easily reach the substrate 

that leads to the dissolution and adsorption of electroactive species over the substrate resulted in the 

formation of Lads and Rads respectively.   Compositional analysis carried out for these coatings it is 

evident that Ni-P coatings showed the presence of Mg and F with traces of O and Cr which have 

resulted during the initial pretreatment process of the substrate. Due to this porosity, corrosive 

species can easily penetrate and attack the substrate.  This resulted in the inductive behavior at the 

lower frequency region which is the characteristic of the substrate. The total resistance obtained for 

Ni-P coatings is very low of about 206 Ω cm
2
 when compared with the substrate (Table 5).   

The equivalent circuit shown in the Fig. 6c is used for fitting the data obtained for duplex and 

duplex-P coatings respectively showing three time constants. However, in the Nyquist plot (Fig. 4c) 

the presence of three capacitive loops is not easily distinguishable due to the overlapping.  First, 

second and third time constants are related with the film resistance and capacitance, coating 

resistance and capacitance and Rct and Qdl respectively.  The CDC for these coatings can be written 

as Rs((QfilmRfilm)(QcoatRcoat) (QdlRct)).  It is well known that electroless Ni-P coating in the presence 

of corrosive medium undergoes dissolution (Ni) which results in the enrichment of P over the surface 

and forms a protective hypophosphite layer [28].  In the case of duplex coatings, Rfilm and Qfilm arise 

due to the dissolution of nickel from Ni-W-P layer.  Other two time constants arise due to the 

resistance offered by the coating and the relative electron transfer taking place near the electrode/ 

electrolyte interface.  The coating resistance and charge transfer resistance of the coatings are about 

2488 and 2996 Ω cm
2
.  From the table it is evident that the total resistance offered by the duplex 

coating is 28 times higher when compared with Ni-P coating.  From the above it is clear that Ni-P 

coating obtained in this study is porous and non-protective in nature, however, the dense Ni-W-P 

coating acts as a barrier layer and showed improved corrosion resistance.  In the case of duplex-P 



coatings, even though the resistance offered by the film is almost similar to the duplex coating, there 

is about 3 times increase in the total resistance of the coating. It could be due to the combination of 

both passive chromate film and enriched P layer over the passivated duplex coating. In general, 

chromate passivation leads to the formation of (Cr
3+

-O-Cr
+6

)n polymeric network on the coating 

surface.  Hence, the passivated layer imparts additional resistance to the coating.   

The equivalent circuit obtained for duplex-HTP coatings (Fig. 6e) shows the parameters such as 

Qfilm, Rfilm, Qcoat, Rcoat and W (Warburg impedance) respectively. The CDC can be written as 

Rs(Qfilm(Rfilm(Qcoat(RcoatW)))). In general, W is the infinite length diffusion element occurring at the 

lower frequency region which is the combination of diffusion resistor and capacitor. It provides the 

additional resistance to the coating by preventing the entry of the electrolyte through the coating due 

to the presence of oxide or corrosion products.  From the surface images of duplex-HTP it is evident 

that (Fig. 1g) the surface appears non-uniform nodular morphology. Further passivation treatment 

imparted additional resistance to the coating leading to Warburg impedance. Similar kind of circuit 

was used for chromate conversion coated on Alclad 2024 aluminum alloy exposed to 3% NaCl 

medium [29].  Qf and Qcoat values obtained for heat treated passivated samples were very low 

compared to other coatings.  The nf values for both passivated coatings were about 0.41 and 0.64 

respectively indicating the diffusion behavior. The duplex-HTP samples showed the Warburg 

diffusion of about 3.767×10
-4

 cm
-2 √s Ω-1

.  The ndl values obtained for all the coatings were closer to 

1 indicting the pure capacitive behavior.  Qdl value obtained for duplex coatings were higher 720.6 

µF/cm
2
 as compared with other coatings indicating the lower capacitance behavior.   

 

4. Conclusions 

Electroless duplex Ni-P/Ni-W-P coatings were successfully developed on AZ31B magnesium alloy 

using stabilizer-free nickel carbonate bath. Ni-P coating exhibited nodular morphology with porosity.  

Duplex Ni-P/Ni-W-P coating exhibited less nodular, dense and smooth appearance.  



From the compositional analysis it was found that Ni-P and duplex coatings showed the presence of 

6 and 3 wt.% P respectively. About 2 wt.%  tungsten was incorporated in the ternary Ni-W-P 

coating. Potentiodynamic polarisation data showed lower corrosion current density of 0.547 µA/cm
2
 

for duplex-HTP coating which was about 8 and 430 times lower than duplex and Ni-P coatings, 

respectively. Higher total resistance values obtained from EIS studies indicated the improved 

corrosion resistance of the duplex-HTP coating. Nyquist plot obtained for bare substrate and Ni-P 

showed the presence of inductance behaviour at the lower frequency region due to the adsorption of 

the electroactive species over the substrate though the porous oxide layer.  In the case of duplex 

passivated and HTP coatings exhibited only capacitive behaviour.   
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Figure Captions 

 

     Fig.1     FE-SEM images of as-deposited samples AZ31B Mg samples at 1000X and 

10,000Xmagnifications:  (a and b) Ni-P, (c and d) Ni-P/Ni-W-P (e and f) passivated Ni-P/Ni-

W-P and (g and h) Heat treated passivated Ni-P/Ni-W-P  

 

 Fig.2  (a) Cross sectional FE-SEM micrograph (b) EDX line spectrum of Ni-P/Ni-W-P 

                               coatings and (c) EDX spot analysis throughout the coating. 

 

 Fig.3  Potentiodynamic polarization curves obtained for (a) Ni-P, (b) Duplex Ni-P/Ni-W-P, (c)                  

passivated Duplex Ni-P/Ni-W-P, and (d) heat treated passivated Duplex Ni-P/Ni-W-P.  Also 

shown are the polarization curves of bare Mg alloy  substrate. 

 Fig. 4   Nyquist plots obtained for: (a) bare Mg alloy (b) Ni-P, (c) Duplex Ni-P/Ni-W-P, (d) 

passivated Duplex Ni-P/Ni-W-P, and (e) heat treated passivated Duplex Ni-P/Ni-W-P.   

 Fig.5   Bode plots (a) log ⏐Z⏐ vs. log f and (b) phase angle vs. log f  for : (●)Bare Mg alloy, (◆) Ni-

P, (▲) Duplex Ni-P/Ni-W-P,  (★) passivated Duplex Ni-P/Ni-W-P,  (*)  heat treated 

passivated Duplex Ni-P/Ni-W-P 

 

 Fig.6  Equivalent circuits used for fitting the electrochemical data of : (a)bare AZ31B Mg , (b) Ni-P, 

(c) Duplex Ni-P/Ni-W-P and passivated Duplex Ni-P/Ni-W-P  and (d) heat treated passivated 

Duplex Ni-P/Ni-W-P 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1   Chemical composition (in wt%) of AZ31B Mg alloy 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Al      Zn              Mn           Si               Cu         Ni             Fe          V         O             Mg 

  2.745        0.940          0.215       0.055          0.001    0.001        0.005     0.003          2.140       

Balance 



Table 2  Composition and operating conditions of the Duplex Ni-P/Ni-W-P coating on 

AZ31B Mg alloy 

 

Operation Plating bath composition  Conditions 

Ultrasonic cleaning  Acetone 10 min 

Alkaline cleaning NaOH                                  45 g/l 

Na3PO4.12H2O         10 g/l 

65˚C 

15-20 min 

Acid etching (pickling) CrO3                                                      125 

g/l 

HNO3(69% V/V)         100 

ml/l 

Room temperature 

40s 

Fluoride activation  HF(40%)                     125 

ml/l    

 

Room temperature 

1-2 min 

Ni-P plating NiCO3                                                 10 g/l 

HF(48%)                     9 ml/l  

Citric acid                     5 ml/l 

NH4HF2                                             10 ml/l 

Na2H2PO2.H2O         20 g/l 

NH3.H2O                     30 

ml/l

pH  7.1 

80-82 ˚C 

Mild magnetic 

stirring 

Ni-W-P plating NiCO3                                                10 g/l 

HF(48%)     30 g/l 

Citric acid                           5 ml/l 

Na2H2PO2.H2O     20 g/l 

NH4HF2       10 g/l 

Na2WO4     12 g/l 

NH3.H2O    30 g/l 

pH  7 

82±2˚C 

2 hrs 

Mild magnetic stirring

Passivation  CrO3                                   2.5 g/l 

K2Cr2O7                              120 g/l 

 

90-100˚C 

10 min 

 

 

 

 

 

 

 

 

 



 

Table 3   EDAX data of the as deposited samples 

 

 

 

 

(HTP)-Heat treated passivated     (P)- Passivated 

 

 

 

 

 Table 4   EDX data obtained on the duplex sample at different spots  

 

 

 

 

 

 

 

 

 

 

Elements Composition in wt% 

Spot 1 Spot 2 Spot 3 

P 5.85 6.37 1.84 

W 0.42 0.89 1.27 

Ni 93.74 92.47 85.1 

Samples Elements in wt % 

P W Cr Mg F Ni 

Ni-P 6.56 - - 4.22 5.42 82.75 

Duplex Ni-P/Ni-W-P 3.23 2.03 - - - 94.70 

Duplex Ni-P/Ni-W-P-

(P) 

3.46 2.30 0.18 - - 91.26 

Duplex Ni-P/Ni-W-P-

(HTP) 

3.30 2.12 0.19 - - 91.28 



 

Table 5   Potentiodynamic polarization data of Ni-P, duplex Ni-P/Ni-W-P coatings on 

AZ31B Mg alloy in 0.15 M NaCl solution   

 

 

 

                 

 

 

 

 

 

 

 

(HTP)-Heat treated passivated     (P)- Passivated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples Ecorr (V) icorr  

 (µ A/cm
2
) 

Rp  

(Ω cm
2
) 

AZ31B  -1.54  8.23  548  

Ni-P  -1.16  218.7  135  

Ni-P/Ni-W-P  -0.44  4.304  3996  

Ni-P/Ni-W-P (P) -0.787  1.857  19351  

Ni-P/Ni-W-P (HTP) -0.673  0.547  61076  



Table 6    EIS data obtained by equivalent circuit simulation of the different coatings 

studied in the present work 

 

 

 

(HTP) -Heat treated Passivated   (P) - Passivated 

 

 

 

 

Samples Qf-

Y0 

(µF/c

m
2
) 

nf Rf 

(Ω-

cm
2
) 

Qcoat-

Y0 

(µF/c

m
2
) 

ncoat Rcoat 

(Ω-

cm
2
) 

Qdl-Y0 

(µF/cm
2
) 

ndl Rct 

(Ω-cm
2
) 

Lads-1 Rads-1 

(Ω-

cm
2
) 

Bare 0.873 0.88 83.30 - - - 5.930 0.94 650.8 161.0 280.0 

Ni-P    0.031 0.98 65.40 58.42 0.91 129.0 37.2 12.1

Ni-P/Ni-W-P 112.0 0.85 54.0 0.029 0.98 2488.

0 

720.6 0.80 2996.0 - - 

Ni-P/Ni-W-P 

(P) 

0.029 0.98 54.00 70.3 0.41 5039 36.69 0.91 18050 - - 

Ni-P/Ni-W-

P( HTP) 

0.000

1 

0.64 60.78 0.026

0 

0.98 34570    - - 
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Fig. 4 



 

 

 

 

  

 

 

Fig.5a 

 

 

 

 

 

 

 

Log  f (Hz)

L
o

g
 �Z

�(
Ω

cm
2
)



 

 

 

       

 

 

Fig. 5(b) 
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Fig.6a 
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Fig.6b 
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Fig.  6c 
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Fig. 6d 
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