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Abstract 

 

The main goals for sustainable water resource recovery include maximizing energy generation, 
minimizing adverse environmental impacts, and recovering beneficial resources. Wastewater biosolids 
pyrolysis is a promising technology that could help facilities reach these goals because it produces 
biochar that is a valuable soil amendment as well as bio-oil and pyrolysis gas (py-gas) that can be used 
for energy. The raw bio-oil, however, is corrosive; therefore, employing it as fuel is challenging using 
standard equipment. A novel pyrolysis process using wastewater biosolids-derived biochar (WB-
biochar) as a catalyst was investigated to decrease bio-oil and increase py-gas yield for easier energy 
recovery. WB-biochar catalyst increased the py-gas yield nearly 2-fold, while decreasing bio-oil 
production. The catalyzed bio-oil also contained fewer constituents based on GC-MS and GC-FID 
analyses. The energy shifted from bio-oil to py-gas, indicating the potential for easier on-site energy 
recovery using the relatively clean py-gas. The metals contained in wastewater biosolids played an 
important role in upgrading pyrolysis products. The Ca and Fe in WB-biochar reduced bio-oil yield and 
increased py-gas yield. The py-gas energy increase may be especially useful at water resource recovery 
facilities that already combust anaerobic digester biogas for energy since it may be possible to blend 
biogas and py-gas for combined use. 

Introduction 
Water resource recovery facilities (WRRFs) face multiple challenges at the nexus of energy generation, 
nutrient recovery, and pollutant removal.1-4 Improving onsite energy generation and recovering value-
added products are common goals for sustainable water resource reclamation. In addition, removing 
micropollutants is important for water reuse applications and public health. 
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Wastewater biosolids are a major byproduct from WRRFs, and over eight million dry tons are produced 
annually in the United States, of which over 55% are land applied because of their beneficial soil 
conditioner properties.5 Even though biosolids are stabilized using processes such as anaerobic 
digestion, residual energy in refractory biosolids is not recovered before biosolids land application.6 In 
addition, micropollutants such as organic contaminants of emerging concern and pathogens in 
biosolids are also public health issues.7-11 For instance, biosolids land application is banned in some 
jurisdictions such as Switzerland due to perceived environmental issues regarding emerging 
contaminants.12,13 Therefore, post-treatment techniques to maximize energy recovery, minimize 
adverse environmental impacts, and reduce public health concerns due to biosolids reuse are critical 
elements for sustainable resource recovery. 

In addition to anaerobic digestion, other biosolids handling technologies are employed or are under 
development for energy and resource recovery, including incineration, gasification, and pyrolysis.14-

18 Sludge incineration is an established process for energy production; however, it does not yield a 
high-quality soil-amendment product, and nutrients in biosolids are wasted in ash that is typically 
disposed of in landfills. Also, sludge incineration has air emission concerns including the possibility of 
heavy metals and organic chemicals in flue gas.19,20 Sludge gasification (i.e., converting sludge at high 
temperature of over 700 °C using a substoichiometric amount of oxygen and/or steam) produces 
synthesis gas that can be used for energy production or converted to liquid fuel or chemicals,16,21 but 
the solid product is ash-rich char with little or no agricultural value. 

Pyrolysis is a thermochemical process that decomposes organic matter upon heating at elevated 
temperatures under anoxic conditions. Compared to other thermochemical processing techniques, 
biosolids pyrolysis can be more favorable in terms of energy recovery, resource recovery, and 
contaminant removal. A recent study concluded that biosolids pyrolysis could be a low-waste solution 
to biosolids handling in Europe when compared to incineration and gasification.22 Biosolids pyrolysis 
produces biochar, a valuable soil amendment that results in improved soil moisture-holding capacity 
and plant growth, along with pyrolysis gas (py-gas) and bio-oil that can both be used as fuel.17 Previous 
research demonstrated that biochar can be used to sorb nutrients from digested wastewater sludge 
filtrate generate by belt filter presses. When added to soil, the biochar with sorbed nutrients resulted 
in a grass growth rate similar to that of commercial fertilizer.23 Furthermore, biosolids pyrolysis 
removes micropollutants such as triclosan and triclocarban as well as reduces total estrogenicity of the 
solid material produced.24,25 It may be beneficial to couple existing solids drying systems in WRRFs to 
pyrolysis. Biosolids drying is the most energy intensive portion of the pyrolysis process, and py-gas can 
be used to provide heat for drying.26 

Most biosolids pyrolysis studies have focused on slow pyrolysis (hereafter referred to as pyrolysis). The 
yields and properties of the three pyrolysis products have been characterized using different 
temperature, residence time, heating rate, and feedstock types.27-36 Crude biosolids-derived bio-oil 
(i.e., pyrolysis condensate, hereafter referred to as bio-oil) normally accounts for approximately 40% 
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(by mass) of the total biosolids pyrolysis products.18,32 This bio-oil often contains a light nonaqueous 
phase as well as an aqueous phase containing water and soluble organics. However, unlike py-gas, 
which can be used directly in traditional power generator systems such as those employing internal 
combustion engines,37 direct combustion of bio-oil alone requires costly pretreatment as well as 
modification of combustion systems and operating conditions due to its high viscosity, acidity, water 
content, and corrosiveness.38,39 In addition, the bio-oil aqueous phase has no apparent use and must 
be managed. Alternatively, light nonaqueous bio-oil phase can be upgraded using hydrogen and 
catalysts to produce drop-in-grade fuels such as diesel, but these technologies are still under 
development.40 Fonts et al. concluded that full-scale implementation of biosolids pyrolysis has been 
limited by the low economic value of the bio-oil product.34 Since py-gas is relatively clean and can be 
easily burned in gas engines and boilers, reducing bio-oil yield and increasing cleaner py-gas yield is a 
promising approach to intensify on-site energy recovery at WRRFs. 

Catalysis could be an efficient means to reduce bio-oil production while increasing py-gas yields. 
Typical bio-oil is largely composed of primary tars,41 a black mixture of high molecular weight 
hydrocarbons such as aromatics.42 The destruction of tar using certain chars as catalysts has proven to 
be effective.43-49 In particular, biochar derived from wood and corn stover were used as catalysts to 
increase py-gas yield.44,50,51 Research on the catalytic effect of wastewater biosolids-derived biochar 
(WB-biochar) during wastewater biosolids pyrolysis is lacking. The objective of this research was to 
determine the autocatalytic potential of WB-biochar on the yield and compositions of py-gas and bio-
oil. Also, mechanistic experiments were conducted to determine why WB-biochar was an effective 
catalyst. 

Methodology 

Biosolids Autocatalytic Pyrolysis 
A laboratory system (Figure 1) was used to pyrolyze dried biosolids (Milorganite) from a WRRF (Jones 
Island Water Resource Recovery Facility, Milwaukee, Wisconsin). Dried biosolids was a blend of waste 
activate sludge and anaerobically digested primary solids with volatile solids, fixed carbon, and ash 
content values of 66.6%, 7.70%, and 25.7%, respectively (wt %, dry basis) using the ASTM D7582 
standard.52 Dried biosolids contained 36.5% carbon, 4.62% hydrogen, 7.18% nitrogen, 1.09% sulfur, 
and 24.89% oxygen (oxygen calculated by difference on a dry basis) (Vario Micro Cube, Elementar, 
Hanau, Germany). 

 

Figure 1. Schematic of lab-scale pyrolysis system. 
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The pyrolytic system consisted of a stainless-steel reactor vessel (360 cm3, 7.1 cm inner diameter, 8.9 
cm long), a ceramic radiative heater, a gas purge and release system, a stainless-steel tubular reactor 
(0.79 cm inner diameter, 27.9 cm long), an ice bath for liquid condensation, and a gas collection system 
coupled to a Tedlar bag. Pressure and temperature at different locations were monitored by pressure 
gauges and thermocouples, respectively. Batch reactors were used for lab-scale study, but other 
configurations such as screw-conveyor or rotary kiln reactors may be used in full-scale applications. 

Dried biosolid particles that were sieved to 1–2 mm nominal diameter were pyrolyzed by purging the 
pyrolysis vessel with argon gas at 15 mL/min. Catalyst particle size of 0.5–1 and 1–2 mm were 
compared during preliminary testing, and no obvious differences in catalytic effects were observed. 
The heating rate was controlled from 8 to 15 °C/min, and the retention time of each test was 30 min 
after the reactor reached the desired pyrolysis temperature. Argon flow was shut off when the 
retention time was over. Pyrolysis vapor passed through stainless tubing to condensers in an ice bath 
in which bio-oil and py-gas were separated. Py-gas was collected in a Tedlar bag. The masses of biochar 
and bio-oil were measured gravimetrically. Coke (i.e., carbon-rich solid material produced by 
carbonization of high-boiling hydrocarbons) can be formed on the biochar catalyst in the tubular 
reactor due to decomposition of heavy hydrocarbons.53 The coke mass yield was determined by 
measuring the weight gain of the spent biochar catalyst. The py-gas mass was calculated by difference 
(i.e., initial biosolids mass minus the sum of biochar, bio-oil, and coke masses). 

For autocatalytic pyrolysis (i.e., pyrolysis whereby a product (biochar) is used in the process itself as a 
catalyst), the tubular reactor was filled with WB-biochar catalyst and preheated to the desired 
temperature. The catalyst was produced from 500 to 800 °C using the aforementioned pyrolysis 
method. The autocatalytic performance was evaluated by varying pyrolysis temperature (500–800 °C) 
and catalyst/biosolids mass ratio (0.2–1). The temperature used to generate the biochar was identical 
to the experimental pyrolysis temperature (i.e., biochar made at 800 °C was used for 800 °C 
autocatalytic pyrolysis experiments). All pyrolysis experiments were performed in triplicate. 

Biosolids Noncatalytic Pyrolysis 
Two noncatalytic pyrolysis tests were also performed as controls. For the first noncatalytic test (0S 
test), inert sand with nominal particle diameter from 1 to 2 mm was added to the tubular reactor in 
place of WB-biochar catalyst to observe any effect of secondary, homogeneous reactions among vapor 
components at high temperature.44,50 The packed sand and WB-biochar catalyst had similar porosities 
of 46% and 50%, respectively, indicating similar residence times for the pyrolysis vapor in the tubular 
reactor. The porosities were determined by a water saturation method.54 For the second noncatalytic 
test (0B), an empty tubular reactor was maintained at 500 °C to achieve conventional bio-oil 
condensation with a minimized secondary, homogeneous reactions. The tubular reactor was kept at 
500 °C to prevent pyrolysis vapor constituents from condensing during conveyance downstream. The 
detailed experimental designs of noncatalytic and autocatalytic testing are listed in Table 1. 
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Table 1. Experimental Design of Autocatalytic, Noncatalytic, and Mechanistic Tests 

  Reactor 
Temperature (°C) 

Downstream 
Temperature (°C) 

Downstream Loading Catalyst/Biosolids Mass Ratio 

Autocatalytic 500 500 1–2 mm biochar 0.2, 0.33, 1 

600 600 1–2 mm biochar 0.2, 0.33, 1 

700 700 1–2 mm biochar 0.2, 0.33, 0.5, 1 

800 800 1–2 mm biochar 0.2, 0.33, 0.5, 1 

Noncatalytic (0S) 500 500 1–2 mm sand 0 

600 600 1–2 mm sand 0 

700 700 1–2 mm sand 0 

800 800 1–2 mm sand 0 

Noncatalytic (0B) 500 500 Blank 0 

600 500 Blank 0 

700 500 Blank 0 

800 500 Blank 0 

Mechanistic (Bio-oil 
decomposition and 
reforming) 

800 800 1–2 mm biochar Catalyst/Bio-oil mass ratio: 1:1.08 
(similar to catalyst/biosolids mass 
ratio of 0.33) 

Mechanistic 
(Simulated py-gas 
reforming) 

800 800 1–2 mm biochar Flow rate: 200 mL/min (similar to 
catalyst/biosolids mass ratio of 
0.33) 



  Reactor 
Temperature (°C) 

Downstream 
Temperature (°C) 

Downstream Loading Catalyst/Biosolids Mass Ratio 

Mechanistic 
(Simulated catalysts) 

800 800 MgCl2, CaCl2, FeCl3, MgO, 
CaO, Fe2O3impregnated 
DDGS-biochar 

0.33 

 

Mechanistic Studies Using Bio-Oil or Simulated Py-Gas Alone 
The autocatalytic effects of WB-biochar on both bio-oil and py-gas alone were investigated using a bio-
oil decomposition and reforming test as well as a py-gas reforming test, respectively. For the bio-oil 
decomposition and reforming test, the noncatalytic bio-oil (produced using 0B conditions at 800 °C) 
was placed in the reactor vessel, and WB-biochar catalyst was placed in the tubular reactor. The 
catalyst/bio-oil mass ratio was 1:1.08. This ratio was similar to that observed when pyrolyzing biosolids 
at a catalyst/biosolids mass ratio of 0.33. The reactor vessel and tubular reactor temperatures were 
800 °C. Catalyzed bio-oil and py-gas products and coke were measured according to the procedures for 
biosolids pyrolysis described above. 

For py-gas reforming tests, a simulated noncatalytic py-gas (i.e., a gas with similar composition to py-
gas from 0B at 800 °C) containing the following components was used: 10% CH4, 27.5% CO, 31.5% H2, 
27.5% CO2 (Airgas, West Allis, Wisconsin). This simulated py-gas was fed to the pyrolysis system at a 
flow rate of 200 mL/min. This flow rate was similar to flow rates observed during biosolids pyrolysis 
experiments. The simulated py-gas was heated in the 800 °C empty reactor vessel before entering the 
800 °C tubular reactor filled with WB-biochar. Reformed gas exiting the tubular reactor was collected in 
a Tedlar bag for gas composition analysis. 

Autocatalytic Role of Dominant Metals in WB-Biochar 
WB-biochar contains a high concentration of metals such as Mg, Fe, and Ca. These metals could have 
catalytic potential to upgrade bio-oil by destroying high molecular weight hydrocarbons (e.g., tar).55-

60 Based on elemental analysis by X-ray fluorescence (XRF-1800, Shimadzu), Mg, Ca, and Fe were 
present in the WB-biochar that was used in this study (Table S1). It was hypothesized that these metals 
improved autocatalytic pyrolysis. Therefore, simulated biosolids biochar catalysts were produced to 
investigate the catalytic influence of metals. The simulated biosolids biochar catalysts were made by 
impregnating biochar produced from dried distillers grains with solubles (DDGS) with various metals. 
DDGS was employed because the resulting biochar surface area was similar to that of WB-biochar, but 
DDGS biochar had low metals content (Table S1) and also demonstrated minimal catalytic activity 
when exposed to biosolids pyrolysis vapor (Figure S1). 

Six simulated biosolids biochar catalysts were prepared using Mg2+, MgO, Ca2+, CaO, Fe3+, or Fe2O3 to 
obtain various metal concentrations (nominally 3% Mg, 7% Ca, and 11% Fe) in biochar. MgCl2, CaCl2, 
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and FeCl3 were selected as the salt precursors. Mg(NO3)2, Ca(NO3)2, and Fe(NO3)3 were selected as the 
oxide precursors. Each precursor was dissolved in deionized water and mixed with DDGS biochar. The 
mixture was dried and then activated by calcination at 500 °C for 3 h in an oxygen-free environment. 
The actual metal concentrations in the simulated biochar catalysts were confirmed by acid digestion to 
be 2.8% Mg, 6.7% Ca, and 10.7% Fe by dry weight. All mechanistic experiments were performed in 
triplicate at 800 °C with a catalyst/biosolids mass ratio of 0.33 since this ratio yielded observable 
increases in py-gas at 800 °C, but higher catalyst/biosolids ratios did not substantially increase py-gas 
yields (Table 1). Statistical analyses (t test, α level = 5%) were performed using Microsoft Excel. 

Product Analyses 
Py-gas composition (H2, CH4, CO, C2H4, C2H6, CO2, C3H8 concentrations) in biosolids autocatalytic and 
noncatalytic pyrolysis studies as well as in mechanistic studies using bio-oil and simulated biochar 
catalysts was determined by gas chromatography (GC) (Agilent Technologies 7890A) with a thermal 
conductivity detector as described elsewhere.18 Py-gas composition (H2, CH4, CO, and 
CO2 concentrations) in mechanistic studies using simulated py-gas as feedstock was analyzed by micro-
GC with a thermal conductivity detector (Agilent Technologies 490).61 Other gases that could be 
relevant for air permitting purposes, such as NH3, NOx, and SOx, were not measured but could be 
significant.62 The py-gas higher heating value (HHV) was calculated based on the constituent fraction 
and the corresponding constituent HHV. The HHVs of biochar and bio-oil were measured using a bomb 
calorimeter (Parr 1341, Plain Jacket Calorimeter, Parr Instrument Company, Moline, IL). The product 
energy per mass of biosolids pyrolyzed (kJ/kg biosolids) was calculated by multiplying each product 
yield with the corresponding HHV. Chemical constituents in the bio-oil were characterized by GC 
(7890B, Agilent Technologies, USA) mass spectroscopy (MS) (5977A, Agilent Technologies, USA) for 
qualitative analysis and by 430 GC/FID (Bruker Corporation, Bruker Daltonics, Inc., USA) for 
quantitative analysis at Iowa State University’s Bioeconomy Institute as described by Brown et 
al.63 Quantification of compounds by GC-FID was conducted using standard curves for each analyte as 
described previously.64 

Results and Discussion 

Impact of Autocatalytic Pyrolysis on Mass Yields and Product Composition 
Using WB-biochar catalyst increased py-gas production and decreased bio-oil production (Figure 2a). 
The bio-oil yield decreased by 44%, changing from 36% (wt % of the total product mass) in the 0B 
control test to approximately 20% at temperatures ≥700 °C in the autocatalytic pyrolysis tests at a 
catalyst/biosolids mass ratio of 1; the bio-oil yield decrease was significant at ≥700 °C (ttest, p < 0.05). 
Additional cracking (i.e., decomposition) of bio-oil by the catalyst resulted in higher py-gas yields; the 
py-gas yield reached its highest value of 37% at 800 °C. During the 0S control test, py-gas yield 
increased 3.5% and 6.2% at 700 and 800 °C, respectively, when compared to the 0B control. Therefore, 
WB-biochar autocatalytic pyrolysis resulted in py-gas yield increases greater than those of 0S tests with 
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secondary reactions alone. Both pyrolysis reaction temperature and autocatalytic reaction 
temperature impact product yields. Increasing pyrolysis temperature causes an increase in py-gas yield 
and a slight decrease in bio-oil and biochar yield (see “0B” samples for 500 and 800 °C in Figure 2). In 
comparison, increasing autocatalytic temperature causes a more substantial increase in py-gas yield 
and a substantial decrease in bio-oil yield (see “1” samples for 500 and 800 °C in Figure 2). 

 

Figure 2. Autocatalytic pyrolysis impacts mass yields and shifts py-gas composition. The effect of 
temperature and catalyst loading on the product mass yield is shown in panel (a), and the effect on py-
gas composition is shown in panel (b). The catalyst/biosolids mass ratio is noted on the x-axis. 0B 
denotes experiments without catalyst or sand at 500 °C; 0S denotes experiments with sand in place of 
catalyst. Error bars represent one standard deviation of triplicate experiments; some error bars are 
small and not visible. Product yields, including coke yield, are listed in Table S2. The temperatures 
indicated were used to produce the biochar as well as perform the corresponding autocatalytic 
pyrolysis experiments. 

Others observed py-gas yield increases when using pinewood as the feedstock and pinewood biochar 
as the catalyst.44,50 At 500 and 600 °C, the impact of autocatalytic pyrolysis was minimal. When the 
catalyst/biosolids mass ratio was increased from 0.2 to 1, the bio-oil yield decreased less than 5%. 
Moreover, coke was formed at 700 and 800 °C (Table S2). The coke mass yield was always less than 4%. 

In addition to altering mass yields, autocatalytic pyrolysis also altered py-gas composition (Figure 2b). 
The 0B sample represents the py-gas composition without catalyst, and the 0S sample represents the 
py-gas composition without catalyst but with secondary reactions. As catalyst loading increased, the 
H2 concentration increased from approximately 30% (by volume) to 55% at 800 °C, and CO2 decreased 
simultaneously from over 25% to 10%. The H2 increase was likely a result of multiple thermochemical 
reactions including steam methane reforming (H2O + CH4 ↔ 3H2 + CO; 2H2O + CH4 ↔ 4H2 + CO2), dry 
reforming (CO2 + CH4 ↔ 2CO + 2H2), water–gas shift reaction (CO + H2O ↔ CO2 + H2), and bio-oil 
decomposition and reforming (e.g., Tar + H2O → CO, CO2, and H2). Tar decomposition to light molecular 
weight hydrocarbons and the H2concentration increase were ostensibly catalyzed by metals in the WB-
biochar as discussed below. The CO2 percentage decrease was ostensibly due to both the relative 
increase in H2 and the dry reforming enhanced by biochar catalysts described by others.51,65,66 CO may 
have been reduced via the water–gas shift reaction, but steam methane reforming and tar steam 
reforming could make up CO in addition to dry reforming. Though CH4 is consumed in reforming 
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reactions, thermal cracking and steam reforming of tars may have compensated for the CH4decreases. 
CH4, C2H4, and C3H8 were not major gases by concentration, but they still carried high energy values. 
The concentrations of C2H4 and C3H8 increased at 700 and 800 °C. These gases were likely produced by 
thermal cracking of tar at higher temperatures.67 

Autocatalytic pyrolysis also altered the bio-oil chemical composition (SI, Tables S3 and S4). Based on 
GC-FID analysis, the 800 °C catalytic bio-oil contained few detectable organic constituents: only 3,4-
dimethoxyacetophenone, 1,2,4-trimethoxybenzene, and 4-ethoxystyrene (Table S3). In contrast, 40 
organic constituents were detected and quantified in the noncatalyzed 0B bio-oil by GC-FID. Also, 
major hydrocarbon peaks in the noncatalyzed 0B bio-oil were detected by GC-MS analysis including 
toluene, ethylbenzene, styrene, phenol, cresol, indole, and hydantoin (Figure S2). These peaks were 
not present in the 800 °C catalytic bio-oil. A detailed list of chemicals detected by GC-MS is presented 
in Table S4. 

Along with changing the bio-oil chemical composition, autocatalytic pyrolysis substantially changed the 
bio-oil color (Figure S3). The aqueous layer in the catalytic bio-oil was translucent compared to 
noncatalytic bio-oil that was brown. In addition to the color, light nonaqueous phase liquid volume was 
greatly reduced. Very little light nonaqueous phase liquid was observed in the bio-oil catalyzed at 700 
°C, and none was observed at 800° (Figure S3). Dark bio-oil color is associated with the presence of 
unsaturated hydrocarbons.68 Therefore, autocatalytic pyrolysis led to fewer unsaturated hydrocarbons 
in the bio-oil, which could be advantageous during subsequent upgrading or disposal. Future work is 
warranted to determine the complete chemical composition of catalyzed and other bio-oils. 

Impact of Autocatalytic Pyrolysis on Py-Gas and Bio-Oil Energy Yields 
Autocatalytic pyrolysis reduced the bio-oil energy content (Figure S4), and the bio-oil HHV decreased 
with increased catalyst/biosolids mass ratios at each pyrolysis temperature. In particular, at 800 °C, the 
bio-oil HHV decreased from 8070 kJ/kg-bio-oil with no catalysis (0B) to below 1400 kJ/kg-bio-oil at the 
highest catalyst loading ratio of 1:1. The HHV decrease was likely due to the decrease in organic 
constituents described above and the formation of water during catalysis.51 The py-gas HHV during 0S 
pyrolysis conditions increased greatly at higher temperatures of 700 and 800 °C due to increased 
concentrations of CH4, C2H4, and C3H8, which have high unit energy contents. However, when more 
H2 (comparatively lower volumetric energy content) was produced via autocatalytic pyrolysis, the py-
gas HHV decreased. 

Energy yields associated with py-gas increased as temperature and catalyst/biosolids mass ratio 
increased (Figure 3). For the noncatalyzed 0B control tests, more energy was produced in the form of 
bio-oil than py-gas at 500 and 600 °C; at temperatures of 700 and 800 °C, the energies in bio-oil and py-
gas were approximately equal. 
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Figure 3. Autocatalytic pyrolysis affects py-gas and bio-oil energy yields. 0B denotes experiments 
without catalyst or sand at 500 °C; 0S denotes experiments with sand in place of catalyst. 

Secondary reactions under noncatalyzed 0S conditions shifted some energy from bio-oil to py-gas. The 
addition of WB-biochar catalyst further increased py-gas energy yield. At the highest catalyst loading, 
the py-gas energy increased to 10,200 kJ/kg-biosolids-pyrolyzed from the original 2940 kJ/kg-biosolids-
pyrolyzed under noncatalyzed 0B condition at 800 °C. Meanwhile, due to the greatly reduced yield and 
energy content in bio-oil, the bio-oil energy decreased from 2900 kJ/kg-biosolids-pyrolyzed to 275 
kJ/kg-biosolids-pyrolyzed. The shift from bio-oil to py-gas energy may be especially useful for utilities 
that already combust anaerobic digester biogas for on-site energy recovery; it may be possible to blend 
biogas and py-gas for combined use. 

Mechanistic Studies Using Bio-Oil or Simulated Py-Gas Alone 
Bio-oil fed to the reactor vessel alone decomposed when WB-biochar was employed as a catalyst. The 
bio-oil mass decreased by 40% (from 10 to 6 g) during the mechanistic studies using bio-oil; this 
decrease was similar to the bio-oil reduction during autocatalytic pyrolysis of biosolids at 800 °C with a 
catalyst/biosolids mass ratio of 0.33 (i.e., from 36% to 22%). In addition, the bio-oil fed alone produced 
H2, CH4, CO, CO2, and C2H4, in which H2 had the highest percentage of 63% (Figure 4). These results 
demonstrate that the WB-biochar catalyst converted bio-oil into py-gas and corroborates results 
shown in Figure 2; destruction and reforming of bio-oil by WB-biochar catalyst was a significant 
contributor to the H2 increase. 

 

Figure 4. Py-gas composition during autocatalytic decomposition and reforming of bio-oil alone (left 
and reforming of py-gas (right). Error bars represent one standard deviation of triplicate experiments; 
some error bars are small and not visible. 
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Simulated py-gas fed to the reactor vessel alone was also reformed via autocatalytic pyrolysis. CO 
increased from 27% to 47%, while CO2 decreased from 27% to 10% (Figure 4). The CH4 content was 
also reduced by 50% when the catalyst was present. However, H2 concentration only increased slightly. 

Autocatalytic Role of Dominant Metals in WB-Biochar 
Metals present in WB-biochar were responsible for a majority of the catalytic activity. The addition of 
Ca and Fe significantly influenced both product distribution and py-gas composition (Figure 5). The 
Ca2+ and Fe3+ reduced bio-oil yield from over 35% (0B) to 25% and increased the py-gas yield from 22% 
(0B) to 34%. The H2 concentration increased from 31% (0B) to 37% when Ca2+and Fe3+ were present in 
biochar. The metal oxides catalytic effects were similar to those of metal salts. The presence of CaO 
and Fe2O3 in biochar increased the H2 concentration to 40% and decreased bio-oil yield to 
approximately 24%, while py-gas yield increased to 35% (Figure 5). The concentrations of other py-gas 
constituents produced using WB-biochar and simulated catalysts were similar (Figures 2b and 5b). 
Previous research demonstrated that Mg2+ and MgO in catalysts reduced tar or bio-oil production.55, 

58 The low Mg2+ content in these simulated catalyst experiments were based on the Mg2+ content in 
the feed biosolids and did not change the product yields (Mg2+ data are not shown). 

 

Figure 5. Catalytic effect of metals on product yields (a) and py-gas composition (b). 0B denotes 
experiments without catalyst or sand at 500 °C; 0S denotes experiments with sand in place of catalyst. 
Error bars represent one standard deviation of triplicate experiments. 

WB-biochar and the metals it contains may facilitate bio-oil decomposition by absorption-enhanced 
reforming.60,69 Others have shown that tar constituents readily adsorb onto char and metal surfaces 
and then dissociate to reactive radicals such as aromatic ring fragments.47,60,69-72 WB-biochar itself also 
contains free radicals in the carbon matrix that are generated by decomposition of organic matter 
during pyrolysis and subsequent cooling in air.73-75 The porous carbon structure and the highly 
dispersed metals likely act as active sites for radical reactions, converting tar constituents to smaller 
molecules and gases.47,76-78 In particular, high temperature favors free-radical reactions.79 Also, iron 
oxides are the major component of commercial catalysts for high-temperature water–gas shift 
reaction.80,81 The py-gas H2concentration increase observed may have resulted from the catalytic 
water–gas shift reaction. Moreover, iron oxides or ions could be partially transformed into metallic 
states via in situreduction by carbon (i.e., the char part of WB-biochar) or reductive gases (e.g., H2 and 
CO) from biosolids pyrolysis.82-84 The metallic irons could also enhance tar decomposition.57,85 
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Additionally, CaO can play a role in increased H2 production by in situ removal of CO2 from the py-
gas.86 In this sorption-enhanced hydrogen production process, there are many CO2-producing reactions 
that can be involved such as steam methane reforming and water–gas shift reaction.87,88 

In summary, using biochar produced from wastewater biosolids as a catalyst can significantly alter the 
products derived from pyrolysis of the same wastewater biosolids. The autocatalytic pyrolysis process 
yielded more py-gas that is relatively clean and easily combusted for energy in existing boilers or 
engines, less bio-oil requiring conditioning or disposal, and biochar that is a valuable soil amendment. 
This work is the first research to demonstrate the autocatalytic effect of WB-biochar on product 
distribution and energy recovery during biosolids pyrolysis. The autocatalytic pyrolysis process could be 
a step to enhance energy recovery, minimize adverse environmental impacts, and generate value-
added products from used water. The shift from bio-oil to py-gas energy may be useful at WRRFs that 
already combust anaerobic digester biogas for on-site energy recovery; it may be possible to blend 
biogas and py-gas for combined use. 
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	Abstract
	/
	The main goals for sustainable water resource recovery include maximizing energy generation, minimizing adverse environmental impacts, and recovering beneficial resources. Wastewater biosolids pyrolysis is a promising technology that could help facilities reach these goals because it produces biochar that is a valuable soil amendment as well as bio-oil and pyrolysis gas (py-gas) that can be used for energy. The raw bio-oil, however, is corrosive; therefore, employing it as fuel is challenging using standard equipment. A novel pyrolysis process using wastewater biosolids-derived biochar (WB-biochar) as a catalyst was investigated to decrease bio-oil and increase py-gas yield for easier energy recovery. WB-biochar catalyst increased the py-gas yield nearly 2-fold, while decreasing bio-oil production. The catalyzed bio-oil also contained fewer constituents based on GC-MS and GC-FID analyses. The energy shifted from bio-oil to py-gas, indicating the potential for easier on-site energy recovery using the relatively clean py-gas. The metals contained in wastewater biosolids played an important role in upgrading pyrolysis products. The Ca and Fe in WB-biochar reduced bio-oil yield and increased py-gas yield. The py-gas energy increase may be especially useful at water resource recovery facilities that already combust anaerobic digester biogas for energy since it may be possible to blend biogas and py-gas for combined use.
	Introduction
	Water resource recovery facilities (WRRFs) face multiple challenges at the nexus of energy generation, nutrient recovery, and pollutant removal.1-4 Improving onsite energy generation and recovering value-added products are common goals for sustainable water resource reclamation. In addition, removing micropollutants is important for water reuse applications and public health.
	Wastewater biosolids are a major byproduct from WRRFs, and over eight million dry tons are produced annually in the United States, of which over 55% are land applied because of their beneficial soil conditioner properties.5 Even though biosolids are stabilized using processes such as anaerobic digestion, residual energy in refractory biosolids is not recovered before biosolids land application.6 In addition, micropollutants such as organic contaminants of emerging concern and pathogens in biosolids are also public health issues.7-11 For instance, biosolids land application is banned in some jurisdictions such as Switzerland due to perceived environmental issues regarding emerging contaminants.12,13 Therefore, post-treatment techniques to maximize energy recovery, minimize adverse environmental impacts, and reduce public health concerns due to biosolids reuse are critical elements for sustainable resource recovery.
	In addition to anaerobic digestion, other biosolids handling technologies are employed or are under development for energy and resource recovery, including incineration, gasification, and pyrolysis.14-18 Sludge incineration is an established process for energy production; however, it does not yield a high-quality soil-amendment product, and nutrients in biosolids are wasted in ash that is typically disposed of in landfills. Also, sludge incineration has air emission concerns including the possibility of heavy metals and organic chemicals in flue gas.19,20 Sludge gasification (i.e., converting sludge at high temperature of over 700 °C using a substoichiometric amount of oxygen and/or steam) produces synthesis gas that can be used for energy production or converted to liquid fuel or chemicals,16,21 but the solid product is ash-rich char with little or no agricultural value.
	Pyrolysis is a thermochemical process that decomposes organic matter upon heating at elevated temperatures under anoxic conditions. Compared to other thermochemical processing techniques, biosolids pyrolysis can be more favorable in terms of energy recovery, resource recovery, and contaminant removal. A recent study concluded that biosolids pyrolysis could be a low-waste solution to biosolids handling in Europe when compared to incineration and gasification.22 Biosolids pyrolysis produces biochar, a valuable soil amendment that results in improved soil moisture-holding capacity and plant growth, along with pyrolysis gas (py-gas) and bio-oil that can both be used as fuel.17 Previous research demonstrated that biochar can be used to sorb nutrients from digested wastewater sludge filtrate generate by belt filter presses. When added to soil, the biochar with sorbed nutrients resulted in a grass growth rate similar to that of commercial fertilizer.23 Furthermore, biosolids pyrolysis removes micropollutants such as triclosan and triclocarban as well as reduces total estrogenicity of the solid material produced.24,25 It may be beneficial to couple existing solids drying systems in WRRFs to pyrolysis. Biosolids drying is the most energy intensive portion of the pyrolysis process, and py-gas can be used to provide heat for drying.26
	Most biosolids pyrolysis studies have focused on slow pyrolysis (hereafter referred to as pyrolysis). The yields and properties of the three pyrolysis products have been characterized using different temperature, residence time, heating rate, and feedstock types.27-36 Crude biosolids-derived bio-oil (i.e., pyrolysis condensate, hereafter referred to as bio-oil) normally accounts for approximately 40% (by mass) of the total biosolids pyrolysis products.18,32 This bio-oil often contains a light nonaqueous phase as well as an aqueous phase containing water and soluble organics. However, unlike py-gas, which can be used directly in traditional power generator systems such as those employing internal combustion engines,37 direct combustion of bio-oil alone requires costly pretreatment as well as modification of combustion systems and operating conditions due to its high viscosity, acidity, water content, and corrosiveness.38,39 In addition, the bio-oil aqueous phase has no apparent use and must be managed. Alternatively, light nonaqueous bio-oil phase can be upgraded using hydrogen and catalysts to produce drop-in-grade fuels such as diesel, but these technologies are still under development.40 Fonts et al. concluded that full-scale implementation of biosolids pyrolysis has been limited by the low economic value of the bio-oil product.34 Since py-gas is relatively clean and can be easily burned in gas engines and boilers, reducing bio-oil yield and increasing cleaner py-gas yield is a promising approach to intensify on-site energy recovery at WRRFs.
	Catalysis could be an efficient means to reduce bio-oil production while increasing py-gas yields. Typical bio-oil is largely composed of primary tars,41 a black mixture of high molecular weight hydrocarbons such as aromatics.42 The destruction of tar using certain chars as catalysts has proven to be effective.43-49 In particular, biochar derived from wood and corn stover were used as catalysts to increase py-gas yield.44,50,51 Research on the catalytic effect of wastewater biosolids-derived biochar (WB-biochar) during wastewater biosolids pyrolysis is lacking. The objective of this research was to determine the autocatalytic potential of WB-biochar on the yield and compositions of py-gas and bio-oil. Also, mechanistic experiments were conducted to determine why WB-biochar was an effective catalyst.
	Methodology
	Biosolids Autocatalytic Pyrolysis
	Biosolids Noncatalytic Pyrolysis
	Mechanistic Studies Using Bio-Oil or Simulated Py-Gas Alone
	Autocatalytic Role of Dominant Metals in WB-Biochar
	Product Analyses

	A laboratory system (Figure 1) was used to pyrolyze dried biosolids (Milorganite) from a WRRF (Jones Island Water Resource Recovery Facility, Milwaukee, Wisconsin). Dried biosolids was a blend of waste activate sludge and anaerobically digested primary solids with volatile solids, fixed carbon, and ash content values of 66.6%, 7.70%, and 25.7%, respectively (wt %, dry basis) using the ASTM D7582 standard.52 Dried biosolids contained 36.5% carbon, 4.62% hydrogen, 7.18% nitrogen, 1.09% sulfur, and 24.89% oxygen (oxygen calculated by difference on a dry basis) (Vario Micro Cube, Elementar, Hanau, Germany).
	/
	Figure 1. Schematic of lab-scale pyrolysis system.
	The pyrolytic system consisted of a stainless-steel reactor vessel (360 cm3, 7.1 cm inner diameter, 8.9 cm long), a ceramic radiative heater, a gas purge and release system, a stainless-steel tubular reactor (0.79 cm inner diameter, 27.9 cm long), an ice bath for liquid condensation, and a gas collection system coupled to a Tedlar bag. Pressure and temperature at different locations were monitored by pressure gauges and thermocouples, respectively. Batch reactors were used for lab-scale study, but other configurations such as screw-conveyor or rotary kiln reactors may be used in full-scale applications.
	Dried biosolid particles that were sieved to 1–2 mm nominal diameter were pyrolyzed by purging the pyrolysis vessel with argon gas at 15 mL/min. Catalyst particle size of 0.5–1 and 1–2 mm were compared during preliminary testing, and no obvious differences in catalytic effects were observed. The heating rate was controlled from 8 to 15 °C/min, and the retention time of each test was 30 min after the reactor reached the desired pyrolysis temperature. Argon flow was shut off when the retention time was over. Pyrolysis vapor passed through stainless tubing to condensers in an ice bath in which bio-oil and py-gas were separated. Py-gas was collected in a Tedlar bag. The masses of biochar and bio-oil were measured gravimetrically. Coke (i.e., carbon-rich solid material produced by carbonization of high-boiling hydrocarbons) can be formed on the biochar catalyst in the tubular reactor due to decomposition of heavy hydrocarbons.53 The coke mass yield was determined by measuring the weight gain of the spent biochar catalyst. The py-gas mass was calculated by difference (i.e., initial biosolids mass minus the sum of biochar, bio-oil, and coke masses).
	For autocatalytic pyrolysis (i.e., pyrolysis whereby a product (biochar) is used in the process itself as a catalyst), the tubular reactor was filled with WB-biochar catalyst and preheated to the desired temperature. The catalyst was produced from 500 to 800 °C using the aforementioned pyrolysis method. The autocatalytic performance was evaluated by varying pyrolysis temperature (500–800 °C) and catalyst/biosolids mass ratio (0.2–1). The temperature used to generate the biochar was identical to the experimental pyrolysis temperature (i.e., biochar made at 800 °C was used for 800 °C autocatalytic pyrolysis experiments). All pyrolysis experiments were performed in triplicate.
	Two noncatalytic pyrolysis tests were also performed as controls. For the first noncatalytic test (0S test), inert sand with nominal particle diameter from 1 to 2 mm was added to the tubular reactor in place of WB-biochar catalyst to observe any effect of secondary, homogeneous reactions among vapor components at high temperature.44,50 The packed sand and WB-biochar catalyst had similar porosities of 46% and 50%, respectively, indicating similar residence times for the pyrolysis vapor in the tubular reactor. The porosities were determined by a water saturation method.54 For the second noncatalytic test (0B), an empty tubular reactor was maintained at 500 °C to achieve conventional bio-oil condensation with a minimized secondary, homogeneous reactions. The tubular reactor was kept at 500 °C to prevent pyrolysis vapor constituents from condensing during conveyance downstream. The detailed experimental designs of noncatalytic and autocatalytic testing are listed in Table 1.
	Table 1. Experimental Design of Autocatalytic, Noncatalytic, and Mechanistic Tests
	Catalyst/Biosolids Mass Ratio
	Downstream Loading
	Downstream Temperature (°C)
	Reactor Temperature (°C)
	 
	0.2, 0.33, 1
	1–2 mm biochar
	500
	500
	Autocatalytic
	0.2, 0.33, 1
	1–2 mm biochar
	600
	600
	0.2, 0.33, 0.5, 1
	1–2 mm biochar
	700
	700
	0.2, 0.33, 0.5, 1
	1–2 mm biochar
	800
	800
	0
	1–2 mm sand
	500
	500
	Noncatalytic (0S)
	0
	1–2 mm sand
	600
	600
	0
	1–2 mm sand
	700
	700
	0
	1–2 mm sand
	800
	800
	0
	Blank
	500
	500
	Noncatalytic (0B)
	0
	Blank
	500
	600
	0
	Blank
	500
	700
	0
	Blank
	500
	800
	Catalyst/Bio-oil mass ratio: 1:1.08 (similar to catalyst/biosolids mass ratio of 0.33)
	1–2 mm biochar
	800
	800
	Mechanistic (Bio-oil decomposition and reforming)
	Flow rate: 200 mL/min (similar to catalyst/biosolids mass ratio of 0.33)
	1–2 mm biochar
	800
	800
	Mechanistic (Simulated py-gas reforming)
	0.33
	MgCl2, CaCl2, FeCl3, MgO, CaO, Fe2O3impregnated DDGS-biochar
	800
	800
	Mechanistic (Simulated catalysts)
	The autocatalytic effects of WB-biochar on both bio-oil and py-gas alone were investigated using a bio-oil decomposition and reforming test as well as a py-gas reforming test, respectively. For the bio-oil decomposition and reforming test, the noncatalytic bio-oil (produced using 0B conditions at 800 °C) was placed in the reactor vessel, and WB-biochar catalyst was placed in the tubular reactor. The catalyst/bio-oil mass ratio was 1:1.08. This ratio was similar to that observed when pyrolyzing biosolids at a catalyst/biosolids mass ratio of 0.33. The reactor vessel and tubular reactor temperatures were 800 °C. Catalyzed bio-oil and py-gas products and coke were measured according to the procedures for biosolids pyrolysis described above.
	For py-gas reforming tests, a simulated noncatalytic py-gas (i.e., a gas with similar composition to py-gas from 0B at 800 °C) containing the following components was used: 10% CH4, 27.5% CO, 31.5% H2, 27.5% CO2 (Airgas, West Allis, Wisconsin). This simulated py-gas was fed to the pyrolysis system at a flow rate of 200 mL/min. This flow rate was similar to flow rates observed during biosolids pyrolysis experiments. The simulated py-gas was heated in the 800 °C empty reactor vessel before entering the 800 °C tubular reactor filled with WB-biochar. Reformed gas exiting the tubular reactor was collected in a Tedlar bag for gas composition analysis.
	WB-biochar contains a high concentration of metals such as Mg, Fe, and Ca. These metals could have catalytic potential to upgrade bio-oil by destroying high molecular weight hydrocarbons (e.g., tar).55-60 Based on elemental analysis by X-ray fluorescence (XRF-1800, Shimadzu), Mg, Ca, and Fe were present in the WB-biochar that was used in this study (Table S1). It was hypothesized that these metals improved autocatalytic pyrolysis. Therefore, simulated biosolids biochar catalysts were produced to investigate the catalytic influence of metals. The simulated biosolids biochar catalysts were made by impregnating biochar produced from dried distillers grains with solubles (DDGS) with various metals. DDGS was employed because the resulting biochar surface area was similar to that of WB-biochar, but DDGS biochar had low metals content (Table S1) and also demonstrated minimal catalytic activity when exposed to biosolids pyrolysis vapor (Figure S1).
	Six simulated biosolids biochar catalysts were prepared using Mg2+, MgO, Ca2+, CaO, Fe3+, or Fe2O3 to obtain various metal concentrations (nominally 3% Mg, 7% Ca, and 11% Fe) in biochar. MgCl2, CaCl2, and FeCl3 were selected as the salt precursors. Mg(NO3)2, Ca(NO3)2, and Fe(NO3)3 were selected as the oxide precursors. Each precursor was dissolved in deionized water and mixed with DDGS biochar. The mixture was dried and then activated by calcination at 500 °C for 3 h in an oxygen-free environment. The actual metal concentrations in the simulated biochar catalysts were confirmed by acid digestion to be 2.8% Mg, 6.7% Ca, and 10.7% Fe by dry weight. All mechanistic experiments were performed in triplicate at 800 °C with a catalyst/biosolids mass ratio of 0.33 since this ratio yielded observable increases in py-gas at 800 °C, but higher catalyst/biosolids ratios did not substantially increase py-gas yields (Table 1). Statistical analyses (t test, α level = 5%) were performed using Microsoft Excel.
	Py-gas composition (H2, CH4, CO, C2H4, C2H6, CO2, C3H8 concentrations) in biosolids autocatalytic and noncatalytic pyrolysis studies as well as in mechanistic studies using bio-oil and simulated biochar catalysts was determined by gas chromatography (GC) (Agilent Technologies 7890A) with a thermal conductivity detector as described elsewhere.18 Py-gas composition (H2, CH4, CO, and CO2 concentrations) in mechanistic studies using simulated py-gas as feedstock was analyzed by micro-GC with a thermal conductivity detector (Agilent Technologies 490).61 Other gases that could be relevant for air permitting purposes, such as NH3, NOx, and SOx, were not measured but could be significant.62 The py-gas higher heating value (HHV) was calculated based on the constituent fraction and the corresponding constituent HHV. The HHVs of biochar and bio-oil were measured using a bomb calorimeter (Parr 1341, Plain Jacket Calorimeter, Parr Instrument Company, Moline, IL). The product energy per mass of biosolids pyrolyzed (kJ/kg biosolids) was calculated by multiplying each product yield with the corresponding HHV. Chemical constituents in the bio-oil were characterized by GC (7890B, Agilent Technologies, USA) mass spectroscopy (MS) (5977A, Agilent Technologies, USA) for qualitative analysis and by 430 GC/FID (Bruker Corporation, Bruker Daltonics, Inc., USA) for quantitative analysis at Iowa State University’s Bioeconomy Institute as described by Brown et al.63 Quantification of compounds by GC-FID was conducted using standard curves for each analyte as described previously.64
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	Using WB-biochar catalyst increased py-gas production and decreased bio-oil production (Figure 2a). The bio-oil yield decreased by 44%, changing from 36% (wt % of the total product mass) in the 0B control test to approximately 20% at temperatures ≥700 °C in the autocatalytic pyrolysis tests at a catalyst/biosolids mass ratio of 1; the bio-oil yield decrease was significant at ≥700 °C (ttest, p < 0.05). Additional cracking (i.e., decomposition) of bio-oil by the catalyst resulted in higher py-gas yields; the py-gas yield reached its highest value of 37% at 800 °C. During the 0S control test, py-gas yield increased 3.5% and 6.2% at 700 and 800 °C, respectively, when compared to the 0B control. Therefore, WB-biochar autocatalytic pyrolysis resulted in py-gas yield increases greater than those of 0S tests with secondary reactions alone. Both pyrolysis reaction temperature and autocatalytic reaction temperature impact product yields. Increasing pyrolysis temperature causes an increase in py-gas yield and a slight decrease in bio-oil and biochar yield (see “0B” samples for 500 and 800 °C in Figure 2). In comparison, increasing autocatalytic temperature causes a more substantial increase in py-gas yield and a substantial decrease in bio-oil yield (see “1” samples for 500 and 800 °C in Figure 2).
	/
	Figure 2. Autocatalytic pyrolysis impacts mass yields and shifts py-gas composition. The effect of temperature and catalyst loading on the product mass yield is shown in panel (a), and the effect on py-gas composition is shown in panel (b). The catalyst/biosolids mass ratio is noted on the x-axis. 0B denotes experiments without catalyst or sand at 500 °C; 0S denotes experiments with sand in place of catalyst. Error bars represent one standard deviation of triplicate experiments; some error bars are small and not visible. Product yields, including coke yield, are listed in Table S2. The temperatures indicated were used to produce the biochar as well as perform the corresponding autocatalytic pyrolysis experiments.
	Others observed py-gas yield increases when using pinewood as the feedstock and pinewood biochar as the catalyst.44,50 At 500 and 600 °C, the impact of autocatalytic pyrolysis was minimal. When the catalyst/biosolids mass ratio was increased from 0.2 to 1, the bio-oil yield decreased less than 5%. Moreover, coke was formed at 700 and 800 °C (Table S2). The coke mass yield was always less than 4%.
	In addition to altering mass yields, autocatalytic pyrolysis also altered py-gas composition (Figure 2b). The 0B sample represents the py-gas composition without catalyst, and the 0S sample represents the py-gas composition without catalyst but with secondary reactions. As catalyst loading increased, the H2 concentration increased from approximately 30% (by volume) to 55% at 800 °C, and CO2 decreased simultaneously from over 25% to 10%. The H2 increase was likely a result of multiple thermochemical reactions including steam methane reforming (H2O + CH4 ↔ 3H2 + CO; 2H2O + CH4 ↔ 4H2 + CO2), dry reforming (CO2 + CH4 ↔ 2CO + 2H2), water–gas shift reaction (CO + H2O ↔ CO2 + H2), and bio-oil decomposition and reforming (e.g., Tar + H2O → CO, CO2, and H2). Tar decomposition to light molecular weight hydrocarbons and the H2concentration increase were ostensibly catalyzed by metals in the WB-biochar as discussed below. The CO2 percentage decrease was ostensibly due to both the relative increase in H2 and the dry reforming enhanced by biochar catalysts described by others.51,65,66 CO may have been reduced via the water–gas shift reaction, but steam methane reforming and tar steam reforming could make up CO in addition to dry reforming. Though CH4 is consumed in reforming reactions, thermal cracking and steam reforming of tars may have compensated for the CH4decreases. CH4, C2H4, and C3H8 were not major gases by concentration, but they still carried high energy values. The concentrations of C2H4 and C3H8 increased at 700 and 800 °C. These gases were likely produced by thermal cracking of tar at higher temperatures.67
	Autocatalytic pyrolysis also altered the bio-oil chemical composition (SI, Tables S3 and S4). Based on GC-FID analysis, the 800 °C catalytic bio-oil contained few detectable organic constituents: only 3,4-dimethoxyacetophenone, 1,2,4-trimethoxybenzene, and 4-ethoxystyrene (Table S3). In contrast, 40 organic constituents were detected and quantified in the noncatalyzed 0B bio-oil by GC-FID. Also, major hydrocarbon peaks in the noncatalyzed 0B bio-oil were detected by GC-MS analysis including toluene, ethylbenzene, styrene, phenol, cresol, indole, and hydantoin (Figure S2). These peaks were not present in the 800 °C catalytic bio-oil. A detailed list of chemicals detected by GC-MS is presented in Table S4.
	Along with changing the bio-oil chemical composition, autocatalytic pyrolysis substantially changed the bio-oil color (Figure S3). The aqueous layer in the catalytic bio-oil was translucent compared to noncatalytic bio-oil that was brown. In addition to the color, light nonaqueous phase liquid volume was greatly reduced. Very little light nonaqueous phase liquid was observed in the bio-oil catalyzed at 700 °C, and none was observed at 800° (Figure S3). Dark bio-oil color is associated with the presence of unsaturated hydrocarbons.68 Therefore, autocatalytic pyrolysis led to fewer unsaturated hydrocarbons in the bio-oil, which could be advantageous during subsequent upgrading or disposal. Future work is warranted to determine the complete chemical composition of catalyzed and other bio-oils.
	Autocatalytic pyrolysis reduced the bio-oil energy content (Figure S4), and the bio-oil HHV decreased with increased catalyst/biosolids mass ratios at each pyrolysis temperature. In particular, at 800 °C, the bio-oil HHV decreased from 8070 kJ/kg-bio-oil with no catalysis (0B) to below 1400 kJ/kg-bio-oil at the highest catalyst loading ratio of 1:1. The HHV decrease was likely due to the decrease in organic constituents described above and the formation of water during catalysis.51 The py-gas HHV during 0S pyrolysis conditions increased greatly at higher temperatures of 700 and 800 °C due to increased concentrations of CH4, C2H4, and C3H8, which have high unit energy contents. However, when more H2 (comparatively lower volumetric energy content) was produced via autocatalytic pyrolysis, the py-gas HHV decreased.
	Energy yields associated with py-gas increased as temperature and catalyst/biosolids mass ratio increased (Figure 3). For the noncatalyzed 0B control tests, more energy was produced in the form of bio-oil than py-gas at 500 and 600 °C; at temperatures of 700 and 800 °C, the energies in bio-oil and py-gas were approximately equal.
	/
	Figure 3. Autocatalytic pyrolysis affects py-gas and bio-oil energy yields. 0B denotes experiments without catalyst or sand at 500 °C; 0S denotes experiments with sand in place of catalyst.
	Secondary reactions under noncatalyzed 0S conditions shifted some energy from bio-oil to py-gas. The addition of WB-biochar catalyst further increased py-gas energy yield. At the highest catalyst loading, the py-gas energy increased to 10,200 kJ/kg-biosolids-pyrolyzed from the original 2940 kJ/kg-biosolids-pyrolyzed under noncatalyzed 0B condition at 800 °C. Meanwhile, due to the greatly reduced yield and energy content in bio-oil, the bio-oil energy decreased from 2900 kJ/kg-biosolids-pyrolyzed to 275 kJ/kg-biosolids-pyrolyzed. The shift from bio-oil to py-gas energy may be especially useful for utilities that already combust anaerobic digester biogas for on-site energy recovery; it may be possible to blend biogas and py-gas for combined use.
	Bio-oil fed to the reactor vessel alone decomposed when WB-biochar was employed as a catalyst. The bio-oil mass decreased by 40% (from 10 to 6 g) during the mechanistic studies using bio-oil; this decrease was similar to the bio-oil reduction during autocatalytic pyrolysis of biosolids at 800 °C with a catalyst/biosolids mass ratio of 0.33 (i.e., from 36% to 22%). In addition, the bio-oil fed alone produced H2, CH4, CO, CO2, and C2H4, in which H2 had the highest percentage of 63% (Figure 4). These results demonstrate that the WB-biochar catalyst converted bio-oil into py-gas and corroborates results shown in Figure 2; destruction and reforming of bio-oil by WB-biochar catalyst was a significant contributor to the H2 increase.
	/
	Figure 4. Py-gas composition during autocatalytic decomposition and reforming of bio-oil alone (left and reforming of py-gas (right). Error bars represent one standard deviation of triplicate experiments; some error bars are small and not visible.
	Simulated py-gas fed to the reactor vessel alone was also reformed via autocatalytic pyrolysis. CO increased from 27% to 47%, while CO2 decreased from 27% to 10% (Figure 4). The CH4 content was also reduced by 50% when the catalyst was present. However, H2 concentration only increased slightly.
	Metals present in WB-biochar were responsible for a majority of the catalytic activity. The addition of Ca and Fe significantly influenced both product distribution and py-gas composition (Figure 5). The Ca2+ and Fe3+ reduced bio-oil yield from over 35% (0B) to 25% and increased the py-gas yield from 22% (0B) to 34%. The H2 concentration increased from 31% (0B) to 37% when Ca2+and Fe3+ were present in biochar. The metal oxides catalytic effects were similar to those of metal salts. The presence of CaO and Fe2O3 in biochar increased the H2 concentration to 40% and decreased bio-oil yield to approximately 24%, while py-gas yield increased to 35% (Figure 5). The concentrations of other py-gas constituents produced using WB-biochar and simulated catalysts were similar (Figures 2b and 5b). Previous research demonstrated that Mg2+ and MgO in catalysts reduced tar or bio-oil production.55, 58 The low Mg2+ content in these simulated catalyst experiments were based on the Mg2+ content in the feed biosolids and did not change the product yields (Mg2+ data are not shown).
	/
	Figure 5. Catalytic effect of metals on product yields (a) and py-gas composition (b). 0B denotes experiments without catalyst or sand at 500 °C; 0S denotes experiments with sand in place of catalyst. Error bars represent one standard deviation of triplicate experiments.
	WB-biochar and the metals it contains may facilitate bio-oil decomposition by absorption-enhanced reforming.60,69 Others have shown that tar constituents readily adsorb onto char and metal surfaces and then dissociate to reactive radicals such as aromatic ring fragments.47,60,69-72 WB-biochar itself also contains free radicals in the carbon matrix that are generated by decomposition of organic matter during pyrolysis and subsequent cooling in air.73-75 The porous carbon structure and the highly dispersed metals likely act as active sites for radical reactions, converting tar constituents to smaller molecules and gases.47,76-78 In particular, high temperature favors free-radical reactions.79 Also, iron oxides are the major component of commercial catalysts for high-temperature water–gas shift reaction.80,81 The py-gas H2concentration increase observed may have resulted from the catalytic water–gas shift reaction. Moreover, iron oxides or ions could be partially transformed into metallic states via in situreduction by carbon (i.e., the char part of WB-biochar) or reductive gases (e.g., H2 and CO) from biosolids pyrolysis.82-84 The metallic irons could also enhance tar decomposition.57,85 Additionally, CaO can play a role in increased H2 production by in situ removal of CO2 from the py-gas.86 In this sorption-enhanced hydrogen production process, there are many CO2-producing reactions that can be involved such as steam methane reforming and water–gas shift reaction.87,88
	In summary, using biochar produced from wastewater biosolids as a catalyst can significantly alter the products derived from pyrolysis of the same wastewater biosolids. The autocatalytic pyrolysis process yielded more py-gas that is relatively clean and easily combusted for energy in existing boilers or engines, less bio-oil requiring conditioning or disposal, and biochar that is a valuable soil amendment. This work is the first research to demonstrate the autocatalytic effect of WB-biochar on product distribution and energy recovery during biosolids pyrolysis. The autocatalytic pyrolysis process could be a step to enhance energy recovery, minimize adverse environmental impacts, and generate value-added products from used water. The shift from bio-oil to py-gas energy may be useful at WRRFs that already combust anaerobic digester biogas for on-site energy recovery; it may be possible to blend biogas and py-gas for combined use.
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