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AutoCellSeg: robust automatic 
colony forming unit (CFU)/cell 
analysis using adaptive image 
segmentation and easy-to-use 
post-editing techniques
Arif ul Maula Khan1, Angelo Torelli  1,2, Ivo Wolf2 & Norbert Gretz1

In biological assays, automated cell/colony segmentation and counting is imperative owing to huge 

image sets. Problems occurring due to drifting image acquisition conditions, background noise and 

high variation in colony features in experiments demand a user-friendly, adaptive and robust image 

processing/analysis method. We present AutoCellSeg (based on MATLAB) that implements a supervised 

automatic and robust image segmentation method. AutoCellSeg utilizes multi-thresholding aided by a 

feedback-based watershed algorithm taking segmentation plausibility criteria into account. It is usable 

in different operation modes and intuitively enables the user to select object features interactively for 
supervised image segmentation method. It allows the user to correct results with a graphical interface. 

This publicly available tool outperforms tools like OpenCFU and CellProfiler in terms of accuracy and 
provides many additional useful features for end-users.

Biologists perform numerous experiments in the laboratory based on cell culture under di�erent conditions and 
acquire images for analysis. However, this leads to a huge amount of image data containing many cells/colonies 
depending upon the type of experiment being performed and the e�ects under observation.

�e colony forming units (CFUs) or cells found in images produced during microbiological assays are hard 
to analyze manually in an e�cient way, especially when the images and/or the amount of CFUs/cells are large in 
number. One may be able to count the CFUs manually provided that adequate time is available. However, to make 
a quantitative analysis based on other CFU features is a nontrivial and even more complex task than just enumer-
ating all the colonies. For instance, in some experiments, it is desirable to see the change in cell/CFU morphology 
or size by the e�ects induced in the cells/CFUs under control and test conditions. When the di�erence in change 
to be observed between the experiments is marginal, �nding the size and number of CFUs/cells with great accu-
racy becomes imperative. �erefore, an automatic, high accuracy analysis is needed.

In order to automate the analysis, one may need to develop an algorithm that automatically segments the 
colonies from the unwanted background in such a way that CFU boundaries are obtained. Based on this seg-
mentation, not only the counting of CFUs should be performed, but additional features of interest such as size, 
shape etc. should also be extracted. However, this leads to individual steps of a typical image analysis pipeline: 
Noise removal, image segmentation, feature extraction, feature selection, object counting/classi�cation. For each 
individual step, algorithmic parameters are required to obtain the targeted colonies in each individual image. For 
the analysis of the whole data set, more �exible parameters must be chosen, since the individual images may vary 
greatly from one another in object size, object morphology and image intensity. From a user’s stand point, the 
parameters should be intuitive such as setting the minimum and maximum size of colonies expected in an assay. 
�erefore, an abstract a priori knowledge by the user about the size, number, shape and other features of the col-
onies to be found should be de�ned. Against the backdrop of analyzing the whole data set, supervised automatic 
image analysis could be implemented with intuitive and �exible parameters set by users.
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Some of the major problems hindering a good CFU analysis are high CFU density, imperfection and impuri-
ties in suspension medium, inherent background acquisition noise, inconsistent illumination artifacts, luminous 
re�ectance and other visible artifacts on the containers boundary, close proximity between CFUs or with con-
tainer boundaries and low image resolution.

Automated colony segmentation and counting has long been a topic of interest in microbiology1. Di�erent cell 
segmentation methods have been used2–7. For cell colonies, various solutions exist as so�ware tools as summa-
rized in8 for analyzing CFUs. �ere are few commercial tools such as ColonyDoc-ItTM by UVP (Analytik Jena 
AG) (UVP), STEMvisionTM by STEMCELL Technologies (STEMCELL) etc. �ese programs are expensive and 
have undisclosed algorithms running during graphical user interface (GUI) operations.

Although MATLAB is a commercial so�ware, programs based on it are quite popular as they are more intui-
tively programmable and can also be deployed on all major operating systems (Windows/Mac/Linux) using the 
freely available MATLAB run time compiler. Some MATLAB-based CFU counting solutions are CHiTA9 and 
NICE10. CHiTA is based on circular Hough transform making it liable to discard more eccentric segments. NICE 
employs a combination of extended minima and thresholds but is not suited for a variety of CFUs di�ering in size 
and shape from the ones given in their sample data. �ese so�ware solutions are also not able to detect the con-
tainer boundaries containing the CFUs and consider the whole image as the searching area for CFUs. Additional 
cropping potentially improves the outcome but nevertheless, many erroneous segments are detected. Another 
MATLAB-based so�ware11, developed to work in conjunction with a special hardware, provides no high through-
put solution for input images. �e method is based on adaptive thresholding combined with global thresholding. 
However, with almost no parametric selection freedom, it is bound to perform worse for other data sets.

General preference for freely available open-source tools is evident in the near future. Many such tools exist 
that facilitate the user to write their own tailor-made programs. For instance, a very popular choice recently is 
OpenCFU12 written in C++ that uses open source computer vision library OpenCV (under BSD license). �e 
standalone application is available for both operating systems Linux and Windows, with compilation instructions 
for GNU/Linux only (OPENCFU last checked: March 13, 2018). �e advantage of using OpenCFU is that it is 
fast and works on a variety of images with simple parameter settings. It is quite good at recognizing very few false 
positives. However, it is prone to underestimate the number and the size of colonies due to its strict CFU selection 
criteria since it aims for more circular objects.

CellPro�ler (CellPro�ler) is another popular open-source so�ware13. Recently in8, a custom-made pipeline 
was constructed in CellPro�ler to detect, count and quantify CFUs. Another commonly used platform is ImageJ14 
that is Java-based and has its own GUI. Cai et al. provided a macro that works with ImageJ to analyze CFUs15 
commonly called IJM. In8, another macro based on edge detection algorithm called Cell Colony Edge was devel-
oped in ImageJ to adapt to particular images. �e main problem in using custom made pipelines and macros is 
that they may not perform well on di�erent images and user always have to do some modi�cations not only in the 
parameter values but also in number and order of steps involved.

More recently, machine learning based approaches became popular16. Ilastik17 is a beginner-friendly frame-
work that uses a Random Forest classi�er18 to classify image pixels into user-de�ned classes based on the inter-
active graphical pixel labeling. It o�ers 37 prede�ned features that a user can select for the classi�cation process. 
In19, a speci�c solution for bacteria colony counting based on convolution neural networks was proposed. It 
requires completely labeled data with ground truth for testing and evaluation. It classi�es colony conglomera-
tions into classes of one to six colonies per aggregation and rejects false positives using an outliers class. However, 
it does not extract and compare colony features and has no GUI for experienced users. In a recent work20, a 
user-friendly so�ware called fastER is proposed for fast and robust cell segmentation. It uses extremal regions 
and consequent scoring applying support vector machine (SVM) with Gaussian kernel. It is programmed in C++ 
and a standalone GUI is freely available for use. �e main problem with fastER is that it tends to yield a lot of false 
positives when there is a colony container visible in the image data. Apart from that, it does neither provide any 
kind of freedom in parameter selection nor does it allow the user to correct the results obtained.

�e problem of generality is cumbersome, as not everybody has the will, expertise and/or time to reprogram 
the existing solutions. Moreover, the parameter selection process also demands a lot of experience of the user. 
Many popular so�ware choices su�er from the lack of quick and intuitive parameter selection. �ere is de�nitely 
a need for more user-friendly so�ware that is appealing to programmers, advanced users and the beginners/new 
users alike.

Furthermore, artifacts in images such as CFU container intensity results in false positives. Automatic dish 
extraction is rarely used21,22. In these papers, a contrast limited adaptive histogram equalization in addition to 
morphological �lters is applied, which o�en leads to false positives if suitable post-�ltering is not employed. Semi 
automated methods also exist e.g. 3-points selection23 and using shapes for cropping in CellPro�ler. Additionally, 
unknown acquisition conditions and object locations can adversely a�ect the results even with tuned parameters. 
A correction step is, therefore, imperative to be integrated in any image analysis pipeline. �is step should be 
intuitive, interactive, �exible and fast-running in performance.

One solution could be to use feedback-based segmentation mechanisms using supervision by intuitive and 
interactive selection of a priori features for objects to be found in an image. In addition, a comparison in cell/
CFU count and size without the need of transferring the results to a di�erent tool is o�en desired. Here we present 
AutoCellSeg (Fig. 1), a new MATLAB-based tool, that contains interactive and easy-to-use features selection, 
post-editing and analysis.

Results
In this chapter, results from the new benchmark data we created and other data sets used in previous works are 
presented. AutoCellSeg was compared to other so�ware tools using various quality measures.
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New benchmark data. We labeled 12 images, which were acquired at our laboratories, for ground truth 
from di�erent bacterial species (3 images each) including E.coli, Klebsiella pneumoniae, Pseudomonas aerugi-
nosa and Staphylococcus aureus. �e images were labeled by delineating boundaries of colonies using Adobe 
Photoshop and then with MATLAB to create labeled binary images. Consequently these ground truth images are 
used to extract: (1) colony count (2) size of each individual colony in pixels.

Previous reports on the speci�city and sensitivity of tools used for colony counting are predominantly based 
on the total count only. Such a comparison gives a lesser insight into the plausibility of colonies especially in 
terms of the size detected. �e size of each colony could be of equal importance in many experiments. �erefore, 
a quality criterion based on segmentation precision should also be incorporated. �e quality measure Q, based 
on24, was used to evaluate the outcome of the segmentation process (see Supplementary Data 1 for more details). 
Q takes into account: di�erence in segment count with respect to ground truth (q1), and number of misclassi�ed 
segment pixels (q2).

Using Q on new benchmark, di�erent tools were compared (see Fig. 2). Since both IJM and ImageJ Edge 
fails in the presence of CFU container in the image, we opted for alternate solutions like OpenCFU. We also 
developed a custom-made pipeline in CellPro�ler, based on the work done by8, and a combination of Ilastik 
and CellPro�ler for comparison with AutoCellSeg. While AutoCellSeg extracts the Petri dish area automatically, 
CellPro�ler and OpenCFU do not. In OpenCFU a region of interest (ROI) in form of a 3-point circle or complex 
polygon is needed in order to extract the information only present inside the container. �e “Auto-Petri” function 
mentioned in12 is nowhere to be seen on its GUI and neither it runs perfectly at the back-end since in several 
results noise outside the dish was segmented. A separate pipeline was used for each species and can be found in 
the AutoCellSeg repository: https://github.com/AngeloTorelli/AutoCellSeg/tree/master/DATA/Benchmark. For 
instance, the CellPro�ler pipeline and results for E.coli can be found under its own folder: https://github.com/
AngeloTorelli/AutoCellSeg/tree/master/DATA/Benchmark/E.coli/CellPro�ler. Due to manual tuning of param-
eters and selecting the perti dish manually, CellPro�ler may not be the solution for high throughput and fully 
automated segmentation. �e segmentation outcome produced by CellPro�ler is good for benchmark data sets, 
it was hence included for the comparison.

�e inclusion of Ilastik was done because it delivers reasonable pixelwise prediction by using supervised 
machine learning. For each bacterial specie, only one image was taken for labeling pixels of the background and 
colonies (two class problem) using all available features until the resulting segmentation was close to the ground 
truth. �e segmentation results were exported as ti� �les and therea�er combined with CellPro�ler pipeline for 
quanti�cation.

OpenCFU avoids false detections owing to its careful colony selection criteria. In OpenCFU the user has to 
be careful about the range of colony size to be input manually using the slider bar. If a very small lower radius 
is selected, OpenCFU produces a lot of false positives in addition to detecting the noise both inside and outside 
CFU container. Conversely, if a lower radius is set to a suitable value (i.e. 25–35 in case of Staphylococcus aureus), 
the colony count is largely underestimated. A user �rst has to try di�erent values for lower radius in order to 
get a good segmentation result. �e selection of these values may be trivial to the expert user, but even then it 
still requires trial and error if di�erent data sets with varying resolutions are to be evaluated. �is problem is 

Figure 1. �e interactive window of the AutoCellSeg GUI a�er loading the image data.

https://github.com/AngeloTorelli/AutoCellSeg/tree/master/DATA/Benchmark
https://github.com/AngeloTorelli/AutoCellSeg/tree/master/DATA/Benchmark/E.coli/CellProfiler
https://github.com/AngeloTorelli/AutoCellSeg/tree/master/DATA/Benchmark/E.coli/CellProfiler
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adequately recti�ed in AutoCellSeg, where the user just has to click on a small and a big colony as the lower and 
higher radius are then extracted automatically using fast marching method.

�e other main issue in OpenCFU is that there is no fully automated batch throughput solution. A user has to 
manually click on the ‘>’ tab on the GUI to process the next image. �is hinders its ability to be used for larger 
data sets even when global parameters for segmentation/counting could be safely set. Conversely, AutoCellSeg 
allows to be used in a fully automated mode without any kind of human intervention during its running process.

Both OpenCFU and AutoCellSeg were operated in semi-automatic mode (see ‘Process Selection’ in 
Supplementary Data 2 for di�erent modes of operation). �e results of segmentation were obtained as binary 
masks directly from AutoCellSeg and CellPro�ler pipeline. However, in the case of OpenCFU, usable features for 
required quality comparison are center and radius of the colonies. �is is another drawback of OpenCFU, that 
one cannot obtain a binary mask directly for comparison of count/size of colonies with ground truth. Using center 
and radius of colonies, we reconstructed binary circles to emulate the colonies and used watershed segmentation 
to separate the overlapping colonies. �is was done to match the number and size of colonies as extracted from 
OpenCFU so�ware. All three binary masks obtained were compared against ground truth for the total count and 
size of colonies using Q.

Some example results from the new benchmark image data set are shown in Fig. 2. �e red, cyan, blue and 
green colors are used to represent CellPro�ler, Ilastik + CellPro�ler, OpenCFU and AutoCellSeg respectively. In 
some cases, CellPro�ler delivers very good segmentation. �e results of Ilastik with CellPro�ler in batch opera-
tion was not drastically better than OpenCFU or CellPro�ler. Nevertheless, the combination of the two produces 
comparable results to AutoCellSeg when labeling all images individually but it comes at the expense of both time 
and labeling e�ort. AutoCellSeg still outperforms the other solutions in terms of the quality Q of the segmenta-
tion outcome. �e individual comparison can be seen in the graphs of Fig. 2. �e overall comparison between 
AutoCellSeg, OpenCFU and CellPro�ler and the combination of Ilastik + Cellpro�ler is given in Table 1 using an 
average Q value (Qm) and average q1 value (q1,m).

Figure 2. Results of the methods used on the new benchmark: CellPro�ler (red), Ilastik + CellPro�ler (cyan), 
OpenCFU (blue) and AutoCellSeg (green). One image from each species is selected (indicated by the image 
number on the image corners) to demonstrate the comparison. �e graphs show segmentation/counting (Q on 
y-axis of �rst row) and deviation from manual count (q1 on y-axis of second row) for all methods used based on 
the complete benchmark (on x-axis). Q incorporates the measures for both size and count of CFUs.
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Control/ test analysis. Unlike other CFU analysis so�ware solutions, AutoCellSeg has the possibility to 
compare di�erent modes of data. For example, in a microbiological experiment, one may need to know the 
changes in CFU morphology and number that occur during treatment. �e test was to irradiate the colonies 
with blue light to observe the di�erences in size and count of colonies. �erefore, AutoCellSeg prompts the user 
to select control and test images in order to make an experiment-wise comparison. For example, we chose a set 
of control and test images from E. coli. A test (i.e light irradiation) is performed to observe the CFU size change 
with respect to control images.

�ere are three test/control pairs represented by numbers. �e images are loaded in AutoCellSeg and the 
parameters are adjusted as shown in Supplementary Data 3. �e program is then run in the semi-automatic mode. 
�e correction is done at each individual image and when all images are processed, the user can choose to display 
comparison plots. �e segment outlines (the output a�er running the process) are the results of AutoCellSeg 
detection. The segmentation results for all the images are shown in: https://github.com/AngeloTorelli/
AutoCellSeg/tree/master/DATA/control_test. Cyan outlines represent control CFU delineation and red repre-
sents the outlines from the test experiment depending upon the naming convention. For each pair of data set, 
a Kernel Density Estimation (KDE) function is plotted depicting the size distribution of colonies (in pixels) as 
shown in Fig. 3. �e function returns a probability density estimate of CFU size. �e estimate is based on a nor-
mal kernel function, and is evaluated at equally-spaced points, xi, that cover the range of the data in x. Here, x is 
used to describe the CFU size a.

In the graph of Fig. 3, the green curve depicts the size distribution in control colonies and red dashed curve 
shows the size distribution of CFUs a�er light irradiation. �e smoothness of the curve is controlled by a band-
width parameter bw. In this data set, we used bw = 2000. Using smaller bw values could result in less smoother 
curves and probably more than one peaks depending upon the variance in size of CFUs. �e negative values at the 
start of x-axis are due to the extrapolation of smoothing function on the le� side of the peak in x-data. �is does 
not indicate the existence of colonies with a negative CFU area.

It is also possible to see the change in area and count of CFUs a�er test experiments. In Fig. 4, the graph on the 
le� shows the change in CFU areas a�er light irradiation. �e control areas are normalized to 1. Each color is used 
to represent a di�erent experiment. Overall, the CFU sizes are seen to decrease a�er light irradiation in this case. 
�e graph on the right of Fig. 4 shows the absolute CFU count in both control and test conditions. It can be seen 
that the average count in this experiment session has decreased. In similar fashion, di�erent images from control 
and test experiments can be analyzed in AutoCellSeg.

AutoCellSeg draws a priori information automatically from the input examples even if the colonies have a 
considerably high variation in size. �erefore, AutoCellSeg can easily be used for other data sets. �is can work 
for di�erent cell structures too, even when they are not very round, as AutoCellSeg takes eccentricity of objects 
into account using graphical a priori knowledge input. AutoCellSeg also extracts other a priori features based on 
intensity, in case of the detection of false positives. A video example of usage of AutoCellSeg for control/test pair 
analysis is given in Supplementary Data 4.

Application to other data set. AutoCellSeg was applied to other image data sets with colonies. It is rea-
sonable to try a data set of well segmented images with a di�erent background and foreground in order to show 
the robustness of AutoCellSeg. Moreover, it is also imperative to demonstrate the performance of AutoCellSeg in 
di�erent operation modes. �e performance of AutoCellSeg on �uorescent mammalian cell segmentation and 
batch data and on randomly selected images was also shown (see Supplementary Data 5).

Inverted background. One challenge would be to use a data set having a light background with darker colonies 
in the foreground to see if the so�ware can adapt well to the colonies. We used a data set provided at OpenCFU 
project website: https://sourceforge.net/projects/opencfu/files/samples/plosPicHQ.zip/download, which is 
based on Staph. au. on LB agar plates. �ere are 19 high quality images in this data set each with a resolution of 
1538 × 1536. AutoCellSeg was compared with OpenCFU by running both of them in the partially automated 
mode (See ‘Process Selection’ in Supplementary Data 2).

�e a priori knowledge for OpenCFU is based on trail and error and no overview of complete data set is 
available. OpenCFU was run with the minimum radius of 1 pixel (global parameter) for the colonies since several 
images have very small colonies. Parameter settings for AutoCellSeg are given in Supplementary Data 5.

�e results for one of the densely populated dishes are shown in Fig. 5. OpenCFU does a good job in �nd-
ing almost all of the colonies in automated mode. �e underestimation of colonies by AutoCellSeg in this case 
was caused due to the exclusion of the colonies on the boundaries of petri dish in the fully automated mode 
without correction. However, the ground truth was not at hand available from the link where this data set was 

So�ware
CFU container 
extraction Post-processing

Benchmark 
evaluation Qm

Deviation in 
count q1,m (%)

AutoCellSeg Automatic Addition + removal 0.97 1.9

OpenCFU Manual (ROI mask) Removal 0.65 25.8

CellPro�ler Manual N/A 0.64 22

Ilastik + CellPro�ler N/A N/A 0.67 17.2

Table 1. Quality comparison of di�erent methods using benchmark images. �e Qm and q1,m values shown in 
the last two columns are the average values for all 12 images used.

https://github.com/AngeloTorelli/AutoCellSeg/tree/master/DATA/control_test
https://github.com/AngeloTorelli/AutoCellSeg/tree/master/DATA/control_test
https://sourceforge.net/projects/opencfu/files/samples/plosPicHQ.zip/download
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downloaded. �erefore, it was only reasonable to compare the results of both so�ware with each other. If we 
choose a very small value for lower radius in OpenCFU, noise outside the container is detected as shown in 
the second image of second row in Fig. 5. Here, AutoCellSeg has an advantage because the container mask is 
extracted automatically and nothing is detected outside of it. On the other hand, AutoCellSeg may leave some 
smaller colonies undetected depending upon the user selection during a priori extraction phase. But this is rarely 
the case and can easily be solved in the correction step.

In the post-processing, only the removal of false segments are possible in OpenCFU as indicated by arrow in 
second image of last row in Fig. 5. �erein lies a glaring problem, that in the case of undetected segments, a user 
cannot add new segments (see �rst image in second row of Fig. 5). In this regard, AutoCellSeg o�ers full �exibility 
by adding undetected and removing falsely detected segments (see third image in second and third row of Fig. 5). 
�e aim here is to compare the colony count for all images by both so�ware by taking into account the size of 
colonies detected. �e �nal count obtained from both the so�ware were quite comparable (see Supplementary 
Data 5).

Discussion
AutoCellSeg provides new features and more �exibility in comparison to existing so�ware tools for a better user 
experience (see end of Supplementary Data 5 for a comparison overview). �is has been demonstrated on a new 
benchmark data set based on bacteria colonies and established benchmarks for cell segmentation in contrast to 
CellPro�ler and OpenCFU, that also perform similar task of segmentation and counting. �e methods used in 
AutoCellSeg are based on fuzzy a priori feature extraction for feedback based automatic tuning of parameters in 
watershed segmentation and post-processing.

Figure 3. Analysis of control/test images: First and second row on le� show the segmentation results for 
control (light blue) and test (red) images respectively. On the right side, Kernel Density Estimation (KDE) 
plot is displayed on y-axis for colony sizes in pixels (x-axis). �e bandwidth (bw = 2000) here determines the 
smoothness in the curves. Green lines in plot represent control experiment results, where as red lines represent 
test experiment (light irradiation in our case) results. �e number of colonies found in each image is denoted by 
n using red/green color based on the experiment type (light/control).

Figure 4. Overview plots of change in total count and size of CFUs a�er test experiments. �e plot on le� 
shows the change in absolute colony sizes (normalized to 1 for each individual control/test pair). �is is shown 
to express the change in size for each pair of experiments. �e mean value of the three experiments is given as 
MeanVal = 0.88. �e plot on right is the absolute count of colonies detected in each experiment. nCtr = 48 and 
nLi = 40 show average colony count for control and light pictures respectively. �e di�erent colors used here are 
to show di�erent pairs (1:control/2:light) of experiments.
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AutoCellSeg comes with a GUI which allows the user to select images or an entire folder, change the parame-
ters, choose the mode of operation, select the a priori information, correct the results graphically, create plots and 
save all the results. �e entire pipeline of AutoCellSeg is shown in Supplementary Data 2. Depending upon the 
amount of data, the degree of precision required and the level of di�culty in segmentation, a user is free to select 
a fully automatic approach, where post-editing occurs a�er all the images have been segmented, a semi-automatic 
mode, where post-editing is done a�er each individual image or manual labeling, which involves the drawing of 
each boundary by using freehand drawing, circles or seed points.

�e post-editing step involves removing unwanted segments and adding new segments by using seed points 
graphically inserted by the user. To maximize the quality of results, it is advisable to follow the steps given in 
Supplementary Data 2 for each operation mode. �e so�ware delivers masks, outlined images,.csv �le with counts 
and sizes, size density distribution, summary plots and the chosen parameters a�er each run. �e results can then 
be saved to the local drive by clicking the Save results button. �e parameters and options that the user can change 
are explained in detail in Supplementary Data 3.

�e main advantage in using AutoCellSeg lies in its ability to adjust the results in an intuitive and interactive fashion 
using simple graphical selection. It is versatile and robust enough to cope with di�erent image variations and to adapt to 
various backgrounds and cell morphologies in a variety of data sets. Another attractive feature in AutoCellSeg enables 
to compare the results statistically between control/test image pairs using size density distribution of cells/colonies on 
top of plots based on the cell/colony count and normalized size. Additional segment features like eccentricity, radius 
and mean intensity are also calculated and optionally could be saved locally using.csv �le. It can also be used as a labe-
ling tool manually using freehand delineation, shapes like ellipses or automatically using fast marching method.

Figure 5. AutoCellSeg and OpenCFU segmentation results for the images with lighter background and darker 
colonies. �e blue boxes (top-le� image) show detection result from OpenCFU and green delineation (top-right 
image) is for AutoCellSeg segmentation. Zoomed-in sections of the selected image areas of images in �rst row 
without post-editing (second row). Result a�er correction step (last row). OpenCFU has missed a conglomeration 
of colonies (�rst image, second row). OpenCFU has detected some noise outside of the dish (second image, second 
row). AutoCellSeg segmentation of the same section as in �rst image of the second row (third image, second row). 
In AutoCellSeg, some colonies on the border of dish remain undetected (last image, second row). Erroneous 
segment detected outside could be deleted in OpenCFU (second image, last row). Undetected segments could 
be clicked upon interactively in AutoCellSeg (third image, last row). Based on the seed point de�ned by user, the 
undetected colony is segmented using fast marching method (last image, last row).
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AutoCellSeg performs well on di�erent image data sets. It is not only useful for segmentation of bright �eld 
images but also for cell images using �uorescent light. �is has been elaborated using benchmark data set of mam-
malian cells i.e. BBBC008 containing human HT29 colon-cancer cells (see ‘Cell Segmentation’ in Supplementary 
Data 5). Based on several evaluation measures, AutoCellSeg was compared with OpenCFU and was shown to 
perform better than OpenCFU.

Since AutoCellSeg may run slower than OpenCFU in processing, it may be useful to implement the image 
processing algorithms on graphical processing units in the future. Moreover, selection of a variety of object fea-
tures from the input panel such as mean intensity, solidity, etc. in addition to user-de�ned features will also be 
included. �is would give user more �exibility to choose the a priori knowledge for segmentation. New detection 
and segmentation methods, such as semantic segmentation using deep learning, will also be implemented in 
future. Code writing of AutoCellSeg in other languages such as Python etc. is also very useful in order to allow the 
user to extend the program in di�erent programming languages.

Methods
AutoCellSeg is based on fuzzy a priori information (see the next Sub-section for more details) extracted from the 
user’s selection using the fast marching method25 (see Supplementary Data 2 for more details). �is information 
relies on the size a and optionally the intensity b of the selected cells/CFUs and serves as the base for the supervised 
multi-threshold image segmentation. �e input image Iin is �rst pre-processed based on channel information. It is 
then passed on to an adaptive threshold segmentation step, where a binary mask is created containing the CFUs/
cells in form of Binary Large Objects (BLOBs) bi. �e segmentation results, one for each intensity threshold, are 
overlapped iteratively over a search space of successive threshold values between 0 and 1 (see Section 6). A BLOB 
plausibility check is performed over the resulting image where any bi having size ai < amin (amin is derived from fuzzy 
a priori knowledge as described in Section 5) is removed. Furthermore, bigger BLOBs with ai > abig (where abig is the 
upper 30% of median ai) are passed onto feedback-based watershed segmentation step which adapts the value of 
H-maxima transform for regional maxima of Iin

26. �e regional maxima are used as seed points for watershed seg-
mentation in the automatic mode of AutoCellSeg (see Section 6). A�er this step, feature extraction of each segment 
is done and the segment features can be saved in an external.csv �le. �e user is then able to correct the results if 
necessary, which is also done with the fast marching method (see Supplementary Data 2).

Fuzzy a priori information. As the method is supervised, a priori information is required. Currently pop-
ular GUIs like CellPro�ler and OpenCFU require the user to input the a priori information manually or by mov-
ing a sliding bar. However, this is not an intuitive selection as the user has no foreknowledge about the needed 
parameters. Moreover, the precise size and circularity factor is also not easily extracted just by looking at the 
image. �erefore, a less experienced user selects the initial a priori by a trial and error method. In AutoCellSeg, 
the information is extracted automatically by a simple mouse click on the CFU in the image displayed in the GUI. 
�e a priori area aa|i is calculated automatically using the fast marching method from these selected BLOBs ba|i. 
�e mean intensity information ba|i is also calculated from ba|i. �is process is shown in Fig. 6. �e center of the 
colorful mark is the user input as shown in the top le� corner of Fig. 6. Using this center, a BLOB is detected. 
It is recommended to select a small and a large colony/cell from the input images. In this example (Fig. 6), a 
small and a large CFU were selected to extract a priori information. �e detection of BLOBs from the graphical 
input by the user is shown in the sub�gures on the right hand side of Fig. 6. �e pink outlines are the bounda-
ries of the BLOBs. �e area features (i.e. amin = min (aa|i) and amax = max (aa|i)) are calculated for both of them. 
�erea�er, a fuzzy trapezoidal membership function µ (a) (according to26) is used. �e edges of trapezoid are 
(p1, p2, p3, p4) = (0.5amin, amin, amax, 2amax. �is is shown in the plot of Fig. 6. If the a priori intensity selection is 

Figure 6. �e extraction process of a priori information from the AutoCellSeg GUI. �e asterisk sign on the 
top le� corner of the full RGB image shows the selection marker. �e initial colonies could be selected by le�-
clicking of the mouse. �e two colonies selected in the full RGB are indicated by the asterisk signs. �e two 
smaller images in the middle show the detection of these colonies using the fast marching method (indicated 
by the pink colored delineation). �e maximum and minimum colony sizes are then used for the extraction of a 
priori knowledge as shown in the graph on the right where µ (a) (fuzzy membership function) is on y-axis and 
a (colony sizes) is on x-axis. �e edges of the trapezoid are indicated by black arrows. �e edges have the values 
(0.5amin, amin, amax, 2amax) = (4591, 9182, 16155, 32310).
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activated from options dialog, then only the BLOBs having an intensity values between [bmin, bmax] are kept, where 
bmin = 0.5 min (ba|i) and bmax = min (1,1.5 max (ba|i)).

Multi-threshold segmentation. �e automatic multi-threshold segmentation runs over the search space 
of intensity threshold t of an image I with pixel values Imn where m and n are the row and column indices respec-
tively. In our case, tmin < t < tmax where tmin = 0.01 and tmax = 0.99 as we normalize our image I between 0 and 1 

according to: =
−

−
Imn norm

I I

I I,
mn mn min

mn max mn min

,

, ,

 where, Imn,min and Imn,max are the minimum and maximum pixel values of I 

respectively. An incremental step δ can be varied to alter the outcome. Choosing low δ values can �ne-tune the 
results but would cost more time and vice versa. We chose δ = 0.1 but more experienced users can also change it 
manually in the option dialog (see Supplementary Data 3) according to their application and type of data. At each 

ti, with ∈
δ

−( )i 0,
t tmax min  using ti = min (δ · i + tmin, tmax), a segmentation It,i is obtained. A�er all the threshold 

levels are run, the results are gathered in It,all using logical OR operator.

Feedback-based automatic watershed segmentation. �is method has been adapted from26, where 
it was applied to adapt intensity threshold for segmentation. �e watershed segmentation27 is quite useful in sep-
arating chunks of BLOBs. It separates a bigger chunk based on the de�ned catchment basins or the seed points 
using the intensity information where dark pixels represent low elevation and vice versa. However, detecting the 
seed points may not be straight-forward as objects to be segmented have varying intensity maxima. Choosing 
di�erent values of H-maxima transform h of intensity produces di�erent results. �erefore, we tune the parameter 
h iteratively by feedback-based information using a quality criterion Q1, such that hmin ≤ hi ≤ hmax. We kept 
h 0 10min = .  and hmax = 0.3 using a step size δ = 0.01. However, the parameter range for h is �exible and user can 
alter it according to his requirements. �e parameter h is adapted according to:

h Q harg max ( )
(1)

opt
h

i1
i

=

Q (2)1 1 2
µ µ= ⋅

where, µ1 and µ2 are fuzzy trapezoidal membership functions for evaluation of expected count and size respectively. For 
µ1, the trapezoidal edges are (p1, p2, p3, p4) = (1, nx, 2nx, 3nx − 1). �e variable nx is extracted using the size ai of BLOB bi 

having pixel values equal to b (m, n) (m and n are row and column indices respectively) such that: =
∑ ∑= =n ,x

b m n

a

( , )m
M

n
N

min

1 1  

and µ2 is trapezoidal membership function for size distribution with edges (p1, p2, p3, p4) = (0.5amin, amin, 2amin, max 
(2amin, amax)). where, Q1 (hi) is the quality of segmentation outcome at each hi. An example is given in Fig. 7, that explains 
the feedback-based parameter adaptation for the watershed segmentation in detail.

Figure 7. �e parameter adaptation for h using criteria (1) and (2). Image 1 is the original grayscale image 
of the chunk of colonies and image 2 represents the initial BLOB detected. Values in black are the H-maxima 
transform (hi) and red values represent the quality of segmentation (Q1 (hi)). Row (a) shows the result of 
applying hole �lling operation a�er using extended-maxima transform at di�erent hi. Row (b) shows just the 
representation of selected seed points using an OR operation of seed points image with the complement of 
the mask. Row (c) shows the result of imposing minima operation on complemented grayscale image and the 
OR combination of complemented mask with the seed points image. �e �nal result of applying watershed 
algorithm from the image obtained from preceding step is shown in the last row (d). Here, hi = (0.1, 0.15, 0.21, 
0.28) were selected to show the a�ect of using di�erent hi on the quality outcome Q1 (hi). It can be seen from this 
example, that the best result Q1,opt = 0.70 is obtained at hi = hopt = 0.21.
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Software/data availability. Tool with source code and the data used in obtaining results presented in 
this paper are freely available at: https://github.com/AngeloTorelli/AutoCellSeg. It was implemented using 
MATLAB2016b under Windows 10 Pro and tested for di�erent operating systems.
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