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Abstract: Over 750 million cases of COVID-19, caused by the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), have been reported since the onset of the global outbreak. The need for
effective treatments has spurred intensive research for therapeutic agents based on pharmaceutical
repositioning or natural products. In light of prior studies asserting the bioactivity of natural
compounds of the autochthonous Peruvian flora, the present study focuses on the identification
SARS-CoV-2 Mpro main protease dimer inhibitors. To this end, a target-based virtual screening
was performed over a representative set of Peruvian flora-derived natural compounds. The best
poses obtained from the ensemble molecular docking process were selected. These structures were
subjected to extensive molecular dynamics steps for the computation of binding free energies along
the trajectory and evaluation of the stability of the complexes. The compounds exhibiting the best free
energy behaviors were selected for in vitro testing, confirming the inhibitory activity of Hyperoside
against Mpro, with a Ki value lower than 20 µM, presumably through allosteric modulation.

Keywords: SARS-CoV-2 main protease; Peruvian natural plants; docking; molecular dynamics;
MM-PB/GBSA approach; drug design; allosteric inhibition; Hyperoside

1. Introduction

COVID-19, a highly infectious disease caused by Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), first identified in 2019 in Wuhan (China) [1], has demonstra-
bly infected more than 750 million people since the onset of the global pandemic situation
declared by the World Health Organization on March 2020 [2,3]. Enormous prevention
efforts, including social distancing, regular use of masks and hand washing, have not
prevented the spread of the virus [4]. Motivated by the rapid increase in cases and se-
vere illness, much effort has been placed on the discovery of antivirals, by resorting to
natural compounds or through drug repositioning strategies [5–10], along with vaccine
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development [11]. Although several commercialized drugs, such as Remdesivir [12] or
Hydroxychloroquine [13], were initially repositioned as antivirals to treat severe COVID-19,
subsequent large randomized clinical trials showed them to be ineffective or to exhibit
unacceptable levels of side effects [14–16]. More recently, an effective oral inhibitor of the
SARS-CoV-2 main protease, Mpro, Nirmatrelvir [17], administered in combination with
Ritonavir for improved pharmacokinetics, was shown to exert antiviral activity and to
prevent progression of COVID-19 to a more severe disease [18,19].

The SARS-CoV-2 main protease, known as 3CLpro or Mpro, exerts an essential role
in viral replication [20,21], and inhibition of the conserved SARS-CoV Mpro results in
effective infection control in cultured cells [21,22]. Furthermore, the substrate specificity of
Mpro enzymes from SARS-CoV-2, SARS-CoV, MERS-CoV, enteroviruses, rhinoviruses, and
noroviruses cleave the peptide bond following Gln on Leu-Gln↓[Ser, Ala, Gly], a cleavage
specificity unknown in mammalian enzymes [21,23]. As a corollary, Mpro-specific inhibitors
are predicted to have negligible off-target activity and thus limited side effects [24,25]. These
features make Mpro an attractive and obvious target to treat COVID-19. Designed drug-
like compounds such as noncovalent inhibitors [26], peptidomimetic inhibitors [23], drug
repositioning and screening of natural compounds [5–10,21] are some examples of the
strategies used to discover small molecules targeting SARS-CoV-2 Mpro. In this regard,
Virtual Screening represents an effective and reliable computational approach useful for
the rapid identification of bioactive compounds directed against a target of interest [27,28],
and thus many in silico studies have applied Virtual Screening protocols as the initial step
towards the identification of potential Mpro inhibitors [29–33], some of which have been
experimentally confirmed [34–37].

Among the existent sources of compounds and databases, natural products stand out
as one of the most interesting for drug discovery because of their large structural diversity
and generally good bioavailability [8,32–39]. The use of natural compounds present in
medicinal herbs has been part of popular knowledge in all cultures [34,40–42], including
the use of natural anti-inflammatories or antivirals as therapeutic alternatives with at least
some evidence of clinical efficacy [43–46]. In this context, Peruvian medicinal plants are
traditionally known to be effective against many different respiratory diseases [41,42,46].
However, although some computational studies have been performed [47], no experimental
studies have been reported to date exploring natural compounds from the autochthonous
Peruvian flora for the treatment of COVID-19. Motivated by this knowledge gap, we have
herein undertaken the identification of natural products targeting the SARS-CoV-2 Mpro

main protease dimer, with a focus on the autochthonous flora of Peru as a source of bioac-
tive compounds. To this end, we first performed an extensive literature search to identify
and select compounds with known inhibitory activity against related viruses as candidate
molecules. Subsequently, ensemble Molecular Docking of the selected compounds was
performed for six different conformation representatives of the protease dimer, identified
by conventional (cMD) and Gaussian accelerated Molecular Dynamics (GaMD). Candidates
exhibiting the best complex binding free energies were subjected to extensive cMD simu-
lations. Through the iterative evaluation of the free binding energy profiles, compounds
exhibiting the best energetic behaviors were selected and experimentally tested in Mpro

activity assays in vitro. This workflow has yielded Hyperoside, found in the autochthonous
Peruvian plant Chamaesyce thymifolia, as an in silico predicted and experimentally confirmed
inhibitor of SARS-CoV-2 Mpro.

2. Results
2.1. Selection of Natural Compounds from Peruvian Flora

We conducted an extensive literature search based on bioactive natural compounds
present in the Peruvian autochthonous flora. As a result, we initially identified up to
20 compounds exhibiting antiviral activity against related viruses as candidate inhibitors
of SARS-CoV-2 Mpro. Of these, 15 compounds were finally selected for subsequent in
silico and in vitro studies, based on commercial availability (Table 1 and Figure 1). Since
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Quercetin exhibited inhibitory activity against Mpro through experimental screening [10,48],
we finally decided not to include the compound in this study.

Table 1. Bioactive compounds present in the Peruvian flora selected from the literature for the
in-silico study. References for each of the selected compounds are indicated.

Scientific Name Spanish Vernacular Name Bioactive Compound

Persea americana [49,50] Aguacate [49] (2R,4R)-1,2,4-trihydroxyheptadec-16-yne
(THHY) [51]

Chamaesyce thymifolia
[50,52,53]

Cocodrilo o Golondrina [50,54]
Quercetin 3-O-b-glucoside (ISOQUERCETIN)

[55–57]
Quercetin 3-O-b-galactoside (HYPEROSIDE)

[55,57–62]

Maytenus macrocarpa [50,63] Chuchu washa [50] 22α-hydroxy-12-en-3-oxo-29-oic acid [64]

Caesalpinia pulcherrima
[50,65–67] Virundera del Perú

3,3′,4′,5,6-penta hydroxyflavone (QUERCETIN)
[48,56–59,61,68–71]

quercetin-3-rhamnoside (QUERCITRIN)
[68,70,71]

Stylogne cauliflora [72] Cauliflora
Oligophenolic Compound SCH 644343 [73]
Oligophenolic Compound SCH 644342 [73]

Phyllanthus urinaria [50] Chanca Piedra [50]
(6S,7aR)-6-hydroxy-4,4,7a-trimethyl-6,7-

dihydro-5H-1-benzofuran-2-one (LOLIOLIDE)
[74,75]

Uncaria tormentosa [76] Uña de Gato

Speciophylline [74,77]
Mitraphylline [74,77]

Uncarine-F [74,77]
(28)-b-D-glucopyranosyl ester (QUINOVIC

ACID GLYCOSIDE) [78]
Cinchonain Ia [79,80]
Cinchonain Ib [79,80]
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Figure 1. 2D representation of the natural compounds selected for the present in silico study.
Quercetin (1), Quercitrin (2), Isoquercetin (3), Hyperoside (4), Speciophylline (5), Mitraphylline
(6), Uncarine—F (7), oligophenolic compound SCH 644343 (8), oligophenolic compound SCH 644342
(9), 22α-hydroxy-12-en-3-oxo-29-oic acid (10), (2R,4R)-1,2,4-trihydroxyheptadec-16-yne (11), (6S,7aR)-
6-hydroxy-4,4,7a-trimethyl-6,7-dihydro-5H-1-benzofuran-2-one (12), Cinchonain Ia (13), Cinchonain
Ib (14) and (28)-b-D-glucopyranosyl ester (15).
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2.2. Representative Structures of the SARS-CoV-2 Mpro Protease Dimer

Conventional Molecular Dynamics (cMD) and Gaussian-accelerated Molecular Dy-
namics (GaMD) simulations were applied to SARS-CoV-2 Mpro in order to identify inde-
pendently clustered conformations and their representatives. The conformational diversity
of the Mpro dimer binding site was depicted by means of an iterative process based on Root-
Mean Square Fluctuation (RMSF) calculations (Supporting Figure S1). More specifically,
amino acids presenting small fluctuations at the binding site during the simulation were
used for Cα superposition of the structures in subsequent Root-Mean Square Deviation
(RMSD) calculations (Supporting Figure S2). Further, binding site residues exhibiting larger
RMSF values were considered to calculate the distance (RMSD) for the clustering process.
Hence, residues with the lowest values from the RMSF analysis of the binding site amino
acids were selected for the superposition of the structures, while those with the highest
values were employed for PCA of the covariance matrix (Supporting Figure S3). Subse-
quently, three representatives from both cMD and GaMD simulation runs were selected,
considering clusters with a population larger than 10% (Figure 2). Thus, a total of six
receptor structures were employed in the virtual screening process, as most representa-
tive of the diverse conformational space of the Mpro dimer accessible for ligand binding
(Supporting Figure S4).
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each cMD and GaMD. Orange and blue colors represent the different simulation replicates.

2.3. Virtual Screening

Ensemble Molecular Docking of the selected natural compounds was performed on
the 6 Mpro representatives, by applying the standard protocol of the QuickVina2 software
(release 2015; Glossary, A. et al.) [81]. For each of the six Mpro representatives, 15 poses were
generated per ligand, thus yielding a total of 1260 complexes to evaluate. To reduce the
number of conformations for further study, only the poses exhibiting the best binding affini-
ties for each representative were selected. Based on the PCA results obtained with the most
populated cMD representative and prior studies by us [8], a threshold of −7.0 kcal/mol
was established for the initial selection process of the best candidates. Consequently, only
ligand-protease complexes exhibiting a scoring function value smaller than the threshold
were selected for further analysis. Hereafter, selected complexes were solvated in explicit
TIP3P water molecules [82] and subjected to a minimization protocol to allow free move-
ment of the system. Then, the free binding energies of the structures were computed using
Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) [83] and Molecular
Mechanics Generalized Born Surface Area (MMGBSA) [84]. Finally, after ranking the
complexes selected from the initial docking process, a second selection prioritizing the best
free binding energies was sufficient to reduce the number of poses to be further evaluated
in subsequent steps.
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At the end of this process, the top-ranked 9 ligands were selected, each of them pre-
senting up to 8 poses with each of the six Mpro conformational representatives. As a result,
compounds Hyperoside, Isoquercetin, the oligophenolic compounds SCH 644343 and
644342, Quercitrin, Quinovic acid Glycoside, Cinchonain Ia, Cinchonain Ib and Loliolide,
were selected to continue with the virtual screening process, while THHY, 22α-hydroxy-
12-en-3-oxo-29-oic acid, Speciophylline, Mitraphylline and Uncarine-F were discarded.
The selected compounds were heated to 300 K and density-equilibrated to be subjected to
100 ns cMD simulations. After simulations of the selected complexes, the time evolution of
the thermal MMGBSA free binding energy was computed for all of them. By analyzing
the energetic profiles and the binding energy averages of the last step of the simulation
(Supporting Table S1), only the best complex poses exhibiting the best energetic profiles
were selected for further analysis. Hence, up to three best poses were selected by compound
and subjected to the extension of the simulations, except for Loliolide, which was discarded
due its small binding energies with all the Mpro representatives.

Repeating the procedure, extending the simulations up to 500 ns, 1 µs, 1.5 µs and
2 µs, and calculating the time evolution of the MMGBSA free binding energy of the
selected complexes at each step (Supporting Tables S2–S5), we identified Hyperoside, the
oligophenolic compounds SCH 644343, SCH 644342, Cinchonain Ia and Cinchonain Ib as
the best candidates for experimental in vitro testing (Supporting Figure S5).

2.4. In Vitro Assays

Due to the commercial unavailability of the oligophenolic compounds SCH 644343 and
SCH 644342 at the time of performing the experimental analysis of the selected compounds,
the in vitro assays were limited to Hyperoside, Cinchonain Ia and Cinchonain Ib. The
activity of these compounds against the SARS-CoV-2 Mpro main protease dimer, evaluated
by means of a continuous assay employing a peptide FRET substrate (see Section 4.6.2),
showed that, of the 3 compounds tested, only Hyperoside exhibited a specific inhibitory
activity with a Ki

app (apparent inhibition constant) of 76 µM (Supporting Figure S6). In
contrast, Cinchonain Ia Cinchonain Ib did not exhibit inhibitory activities at substrate
concentrations below 125 µM, possibly as a reflection of physicochemical properties of the
tested compounds under the experimental conditions employed that may have resulted
in failure to bind to the receptor (Table 2). If Hyperoside were a competitive inhibitor,
its intrinsic inhibition constant would be 27 µM, according to Equation (8). However,
Hyperoside seems to act allosterically on Mpro, and the intrinsic inhibition constant should
be calculated using Equation (11). Because the conformational equilibrium constant K is
not known, it is not possible to calculate a precise value for Ki. However, because K must
be larger than 1 (i.e., the active substrate-binding state must predominate over the inactive
inhibitor-binding state), the Ki should be much lower than 20 µM (calculated for K = 1), a
considerable inhibitory potency for Hyperoside.

Table 2. Mpro inhibition values exhibited in in vitro assays by the compounds selected for experimen-
tal activity determinations. Compounds are ordered according to their best Free Binding Energies
Computed for the complete Molecular Dynamics Simulations.

Compound Ki
(µM)

IC50
(µM)

∆Gbiniding
(MMGBSA)
(kcal/mol) **

Hyperoside 27 (competitive)
<20 (allosteric) 76 −60.1

−53.3

Cinchonain Ia * * −59.0
Cinchonain Ib * * −43.8

* Compounds with an asterisk correspond to those that have not exhibited detectable inhibitory activity at
substrate concentrations below 125 µM. ** Two values are reported for Hyperoside, corresponding to the two
binding sites identified.
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2.5. Binding Analysis

Therefore, the screening protocol followed in this study, based on our prior work [8],
has permitted to accurately predict a natural compound with a smooth energetic profile
(Figure 3), Hyperoside, as a small molecule displaying a significant enzymatic inhibitory
activity on SARS-CoV-2 Mpro.
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Figure 3. Time evolution of the thermal MMGBSA binding free energy obtained from the full length
extended molecular dynamic simulations for the two allosteric binding sites identified for Hyperoside.
Energetics profiles shown correspond to the first (a) and second (b) binding poses exhibiting the best
energetic profiles, with computed average binding energies during the last 20 ns of −60.1 kcal/mol
and −53.3 kcal/mol, respectively. Average binding energies computed every 20 ns of the simulation
are depicted in the graphs as a yellow dashed line.

To evaluate the most relevant interactions between Hyperoside and residues on the
Mpro dimer, a free energy decomposition analysis of the last 100 ns of simulation was per-
formed for the two allosteric sites identified (Figure 4, Supporting Table S6). It is important
to note that our initial docking was performed on the described binding site of the Mpro

protein. However, because of molecular dynamics simulations, the ligand was found to
relocate to the final allosteric sites. Visual inspection of the binding mode of the poses evalu-
ated afforded the inference of different interaction profiles of Hyperoside with two distinct
regions of the dimer interphase (Figure 5(Ib,IIb)). As such, we found that interactions
between Hyperoside and E288 and D299 of the protease dimer chain A, and S284 of the
protease dimer chain B, contributed the most to the complex formation at the first binding
site evaluated (−60.1 kcal/mol), with contributions of −14.5 kcal/mol, −14.5 kcal/mol
and −7.9 kcal/mol, respectively. For the second binding site (−53.3 kcal/mol), interactions
between Hyperoside and E14 (chain A) and K12 (chain B) contributed with −15.7 kcal/mol
and −13.5 kcal/mol, respectively (Supporting Table S6).

Additionally, hydrogen bonds established between Hyperoside and the residues of the
two binding sites identified were evaluated during the last 100 ns of simulation (Supporting
Table S7). From the analysis, hydrogen bonds with occupancies greater than 90% of the
simulation correspond to acceptor-donor interactions with residues E288 and D289, and the
hydroxyl groups of the ligand at the first binding site (Figure 6a). For the second binding
site, acceptor-donor interactions between residue E14 and the hydroxyl groups of the ligand
were identified as the major contributor, as well as the hydrogen bonds established by the
oxygen atoms of the ligand and residue K12 from chain B of the protease dimer (Figure 6b).
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Figure 4. Free binding energy per residue decomposition for the two allosteric binding sites of
Hyperoside in complex with the SARS-CoV-2 Mpro main protease dimer. On the left (I), the best
binding site identified, with a free binding energy of −60.1 kcal/mol. On the right (II), the second
binding site identified, with a free binding energy of −53.3 kcal/mol. The different monomers of the
dimer are depicted in light green (Chain A) and light orange (Chain B).
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Figure 5. Binding site representation of the selected complexes for Hyperoside, at the last snapshot of
their 2 µs molecular dynamic simulations. The two monomers of the Mpro SARS-CoV-2 main protease
dimer are depicted in light green (Chain A) and light orange (Chain B). Allosteric interactions depicted
correspond to the first (I) and second (II) most stable binding sites identified for Hyperoside, with
binding energies of −60.1 kcal/mol and −53.3 kcal/mol, respectively. (Ia) and (Ib) representations
show the ligand bound to the ligand pocket, and (IIa) and (IIb) representations depict the spatial
distribution of the residues defining the interacting pocket.
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Figure 6. Depiction of the most relevant hydrogen bonds established by Hyperoside, and the two
allosteric binding sites identified, for the last 100 ns of their 2 µs molecular dynamic simulations.
Representations correspond to the first (a) and second (b) most stable binding sites identified for
Hyperoside. Ligand—Mpro hydrogen bonds are represented as a yellow dashed line. The two
monomers of the SARS-CoV-2 Mpro dimer are depicted in light green (Chain A) and light orange
(Chain B). Only the lateral chains of the residues presenting this type of interaction are shown.

Through visualization of the binding poses for the selected compounds obtained at
the end of the 2 µs simulations, two different allosteric binding sites in the dimer interphase
region were identified for Hyperoside, as depicted in Figure 5. For the oligophenolic
compounds SCH 644343 and SCH 644342, allosteric binding sites were also identified com-
putationally. In the case of Cinchonain Ia and Cinchonain Ib, allosteric binding sites were
identified as stable for each of the compounds, despite exhibiting converged energetic pro-
files for the active center in poses that were finally discarded during the evaluation process.

Despite the relative stability of Cinchonain Ia and Cinchonain Ib, the experimental
assays showed no inhibitory activity of these compounds on the protease dimer. In addition
to potential physicochemical issues pertinent to the assay experimental conditions, it is
possible that binding energy fluctuations found during the evaluation of the full trajectory
may have contributed to the lack of inhibitory activity of these compounds (Supporting
Figure S5e,f). Regarding the energetic profile of the binding sites identified for Hyperoside,
it is evident that the first allosteric binding site (−60.1 kcal/mol) presents a stable energetic
profile during the last 1750 ns of the simulation. This binding site, defined by residues K5,
K137, L286, L287, E288, D289, E290 from chain A and G2, F3, R4, L282, G283, S284, A285 and
L286 from chain B, corresponds to the allosteric binding site previously identified through
fragment screening as a promising opportunity for allosteric modulation of the SARS-CoV-2
Mpro dimer [85]. In addition, the second allosteric binding site (−53.3 kcal/mol) defined by
residues E14, Y118, S121, P122 and S123 from chain A and F8, P9, K12, L152, D153, Y154,
D155, F294 and R298 from chain B, exhibited a good energetic profile despite the small
fluctuations presented during the complete simulation (Figure 3b, Supporting Table S6).

2.6. Evaluation of ADME Properties

The safety and efficacy of drug compounds in the drug discovery process depend on
their drug-likeness and ADME properties. In general, poor solubility and low membrane
permeability reduce their cell activity. Predicted values for these properties are reported in
Tables S9 and S10. From a medicinal chemistry standpoint, Hyperoside has a moderate
synthetic accessibility score (5.32) on a scale of 1 to 10, where 1 indicates very easy and
10 indicates very difficult. The compound is expected to be water-soluble and have a
greater affinity for water than for oil. Moreover, experimental studies show Hyperoside to
be highly soluble and to exhibit preference for water [86]. However, Hyperoside violates
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two of Lipinski’s rules, which suggests the possibility that it may not be active/absorbable
orally. Additionally, low gastrointestinal absorption is predicted. Despite these possible
problems, multiple and diverse studies are being carried out to see its possible use in the
treatment of many diseases [87].

3. Discussion

In response to the urgent need to identify effective treatments for COVID-19, many
in silico and in vitro studies based on repositioning and natural products have been con-
ducted. In the present work, we selected a set of 15 bioactive natural compounds from
the autochthonous Peruvian flora exhibiting antiviral activity against related viruses and,
analyzed them through a comprehensive in silico approach based on the energetics of
the complexes formed between the compounds and 6 representative confirmations of the
SARS-CoV-2 main protease dimer, Mpro.

After applying our multistep Virtual Screening pipeline, five out of the initial natural
compounds were singled out as potential SARS-CoV-2 Mpro main protease inhibitors. Three
of the compounds were experimentally tested in in vitro assays with recombinant Mpro, of
which one, Hyperoside, displayed significant inhibitory activity, likely through an allosteric
modulation mechanism.

Given the promising results found for Hyperoside, the allosteric interactions identified
for the compound were evaluated through a free binding energy per residue decomposition
analysis, as a means to identify the amino acids involved in the formation of the complexes,
as well as by visual inspection of the binding modes. This analysis highlights residues K5,
K137, L286, L287, E288, D289, E290 (chain A) and G2, F3, R4, L282, G283, S284, A285, L286
(chain B); and E14, Y118, S121, P122, S123 (chain A) and F8, P9, K12, L152, D153, Y154,
D155, F294, R298 (chain B), involved in the two different allosteric interactions identified
for Hyperoside, as playing an important role in its allosteric modulation of the activity of
the SARS-CoV-2 Mpro dimer.

Additionally, based on the promising in silico results obtained for the oligophenolic
compounds SCH 644343 and SCH 644342, not tested experimentally due to their commercial
unavailability, we suggest them as possible candidates for future in vitro studies to target
the SARS-CoV-2 Mpro main protease dimer.

A general corollary to our results is that the protocol followed has been effective
to accurately identify at least one natural inhibitor of the SARS-CoV-2 Mpro enzymatic
activity exhibiting a converged energetic profile, reinforcing prior efforts by us [8], thus
demonstrating the effectiveness of the virtual approach, which allows successful predictions
of the best candidate compounds to be tested experimentally as allosteric inhibitors of
target enzymes.

As a final remark, we must note that drug-likeness and ADMET properties of com-
pounds govern their safety and efficacy. In general, cell activity would be further reduced
due to solubility and membrane permeability issues. For this reason, these properties were
evaluated for Hyperoside using the SwissADME web tool.

4. Materials and Methods
4.1. Selection of Bioactive Compounds with Antiviral Activity Characterized from Peruvian
Medicinal Herbs
4.1.1. Literature Search for Bioactive Peruvian Natural Compounds

A literature search was conducted through PubMed and Google Academic towards
the identification of antiviral compounds characterized from Peruvian herbs and reported
in the literature. The following keywords were used for the search: “Peruvian medicinal
plants AND bioactive compounds AND antiviral activity”. Both primary and secondary
references including original papers, reviews, books, systematic reviews and meta-analyses
were selected for review. Publications in English and Spanish were included. Both grey
and incomplete records were excluded.
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The authors reviewed the full-text papers and obtained relevant data, including
the plant’s scientific name, common name, paper title, bioactive compound(s) character-
ized from that species, SMILE, bioactivity, virus name, extraction technique and bioassay.
SMILES used for this study can be found in Supporting Table S8.

The selected natural compounds were identified from original papers where those
molecules were extracted and characterized from Peruvian autochthonous plant species
and where antiviral activity was demonstrated by in vitro and in vivo assays.

4.1.2. Preparation of the Selected Natural Compounds

Each selected natural compound structure was initially prepared from the simplified
molecular-input line-entry system (SMILES) ASCII string using the Maestro 2016-2 software
(release 2016; Schrödinger LLC, New York, NY, USA) [88]. Ligand charges and parameters
were obtained using Antechamber from AMBER20 [89]. The generalized Amber forcefield
(GAFF2) [90] was used for parameter obtention, whereas the RESP method [91] was
employed for the computation of partial charges.

Protonation and energy minimization for all compounds were performed with Mae-
stro 2016-2 [88]. Finally, a database with the studied compounds was generated for the
subsequent calculations.

4.2. Selection of Representative Structures for the SARS-CoV-2 Mpro Protease Dimer
4.2.1. Preparation of the System

To represent the structural diversity of the target protein, the dimeric crystallographic
structure of SARS-CoV-2 Mpro protease, with PDB access code 6Y84, was selected as the
initial structure employed in the present work. Using the LigPrep module included in
Maestro 2016-2 [88], allowed missing hydrogens to be added, given their protonation state
at pH 7.0, and side chains orientations were set up. The protein was then dissolved with
TIP3P water molecules [82] in a cubic simulation box whose dimensions were determined
by fixing a minimum distance of 15 Å between the box walls and the solute. To avoid
bad contacts, water molecules nearer than 1.2 Å to any protein atom were removed. To
neutralize the system, four Na+ ions were added at the positions of lowest electrostatic
potential using the AMBER20 Leap module [89]. The ff19SB force field [92] was applied for
all calculations, using a cut-off of 10 Å for noncovalent interactions. The PME method [93]
was used to treat electrostatic interactions.

4.2.2. Energy Minimization

Prior to any MD simulation, the structure was initially relaxed in a 5000-step procedure
using the steepest descent minimization method to eliminate possible steric clashes. First,
relaxation was only allowed for ions and water molecules, keeping all the protein atoms
fixed by applying harmonic positional constraints of 5 kcal/mol·Å−2. Only the main atoms
of the protein were retained in a second step. Last, in a third step, all the atoms in the
system were allowed to move.

4.2.3. Molecular Dynamics Simulations

After minimization, the system was heated to 300 K in 30 K intervals every 20 ps under
the NVT ensemble. The heating process was performed by maintaining the positions of
the main protein atoms fixed through the imposition of the abovementioned harmonic
positional constraint, using the Langevin thermostat algorithm and a collision frequency
of 3 ps−1. Therefore, 2 ns of density equilibration protocol was conducted under the
NPT ensemble, maintaining fixed the main atoms of the protein with harmonic positional
restrictions of 0.1 kcal/mol·Å−2. Then, to increase the exploration of the conformational
space of the system, conventional molecular dynamics (cMD) and Gaussian accelerated
molecular dynamics (GaMD) of 500 ns length were run by duplicated under the NVT
ensemble [94]. After applying a density equilibration protocol, an intermediate step of
20 ns was performed for the GaMD simulations to obtain the initial statistical analysis
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of the applied dual boost potential. For this step, the standard deviation upper limit of
the total potential boost (σ0P) and the dihedral potential boost (σ0V) were set to 3 and 5,
respectively. Simulations were carried out using a cut-off of 11 Å applying a switch function
at 8 Å. All the trajectories and previous minimization protocols were computed using the
PMEMD (Particle Mesh Ewald Molecular Dynamics) code of the AMBER20 software [89]
in its CUDA version using the AMBER ff19SB force field [92].

4.2.4. Root-Mean Square Deviation (RMSD) and Root-Mean Square Fluctuation (RMSF) Analysis

To evaluate the system’s structural stability during the MD simulations, Root-Mean
Square Deviation (RMSD) for all the trajectories were computed using the Cpptraj module
from AMBER20 [89,95] using as reference the last minimized structure. To select the alpha
carbons (Cα) with lowest fluctuations, an iterative procedure in which all residue Cα were
used to reorient the structures in the first stage was employed. The Root-Mean Square Fluc-
tuation (RMSF) of the superposed trajectories was then computed for all protein residues
with Cpptraj. Residues with RMSF values smaller than the threshold were successively
used in subsequent RMSD calculations. All Cα atoms were used in the superposition for
the initial step. Then, cut-offs of 2.0, 1.0 and 0.5 Å were used in the selection of the atoms
to be superposed in the subsequent second and third steps, respectively, with a total of
137 amino acids meeting the requirement. As a result, we obtained information related to
the local conformational flexibility of the residues not superposed through the identification
of the residues with lowest fluctuations during the MD simulation.

4.2.5. Cluster Analysis

To represent the maximum structural diversity of the Mpro protease dimer active site,
the average linkage algorithm [96] implemented in the Cpptraj module of AMBER20 [89,95]
was used. For both cMD and GaMD simulations, MD simulation structures were grouped
by similarity into 15 clusters, using as distance the RMSD of the Cα located in the binding
site with a larger RMSF. A total of 86 amino acids were selected.

4.2.6. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) was used to identify the conformational space
explored in the different simulations and to determine the differences between the repre-
sentatives obtained after the clustering process. Furthermore, PCA is commonly employed
in the dimension reduction needed to depict protein motions from the lowest to the highest
contributions. To do so, a covariance matrix was built considering all the different con-
formations identified in the simulations, using the Cα coordinates of the residues used
for the clustering process. To obtain the Principal Components, the covariance matrix
was diagonalized to obtain the eigenvectors (PC(i), i = 1, N), with N corresponding to the
number of previously selected protein residues, and associated eigenvalues λ(i). Once the
eigenvalues were ordered from the highest to the lowest contribution, the first components
defining the most important protein motions were identified [97]. PCA calculations were
performed using the Cpptraj module of AMBER20 [89,95].

4.3. Virtual Screening for Ligands of the SARS-CoV-2 Mpro Protease Dimer

For each of the Mpro representatives, a multistep Virtual Screening based on an initial
docking of the selected Peruvian flora-derived natural products was performed (Figure 7).
Firstly, the AutoDock QVina2 software [81] was used to dock the selected compounds.
A target-based docking process was conducted by the definition of the coordinate grid
box of dimensions 37.5 × 45.0 × 41.25 Å3, placed at the active site defined by C145, L27
and H41 residues. Then, for each Mpro representative, a free binding energy threshold
of −7.0 kcal/mol was established for the selection of the best protein-ligand complexes.
Further analysis was performed for the selected docking poses. Ligands were parametrized
with the generalized amber force field gaff2 [90] and the ff19SB forcefield [92] for the
target protein representatives, using the Antechamber module of AMBER20 [89]. Leap
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module was employed in the simulation box construction and complex solvation with
TIP3P water molecules [92]. Neutralization of the system was ensured by the addition of
counterions. Once prepared, each solvated complex simulation box was relaxed following
a multistep minimization process, as previously described by us [8]. Briefly, to eliminate
undesired steric clashes, an initial minimization process was performed exclusively for
solvent and counterion molecules, followed by a second minimization run allowing the free
movement of the ligand. Finally, free movement was enabled for all atoms. Thereafter, free
binding energy was computed for all the minimized complexes using Molecular Mechanic
Poisson-Boltzmann Surface Area (MMPBSA) [83] and Molecular Mechanics Generalized
Born Surface Area (MMGBSA) [84]. Once obtained, a scoring of the ligands was conducted
to rank order the evaluated complexes. Using an energy criterion, only the best complexes
were selected for further MD simulations analysis, in which MMGBSA free binding energies
of the complete trajectory were evaluated. Hence, the ligands exhibiting the best energies
and converged behavior were iteratively selected for extension and subsequent free binding
energy recalculation of their MD simulations. The final selection was based on the best
and smoothest energetic behavior of the most extended simulations. Then, an interaction
analysis of the ligand at the binding site was performed.
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4.4. Free Binding Energy Calculation

Free binding energies were calculated using the MMPBSA and the MMGBSA pro-
cedures [83,84] implemented in AMBER20 [89]. For both MMPBSA and MMGBSA ap-
proaches, the same expression is used in the computation of the free binding energy [98].
Thus, the free energy for binding of the ligand (L) to the protein receptor (R) to form the
complex (RL),

∆Gbinding = GRL −GL −GR (1)

can be decomposes into contributions of different interactions as

∆Gbinding = ∆EMM + ∆Gsolv− T∆S (2)

where ∆HMM corresponds to the gas-phase interaction energy obtained by the summation
of the internal energy, the noncovalent van der Waals (∆EvdW) and electrostatic (∆Eelec)
molecular mechanics energies. ∆Gsolv; however, corresponds to the solvation free energy,
calculated as the addition of the polar (∆Gsolv

polar) and non-polar terms (∆Gsolv
nonpolar). ∆Gsolv

polar
is determined numerically by solving the Poisson-Boltzmann (PB) equation [99] or the
Generalized Born (GB) [100], the simplified form for MMPBSA and MMGBSA algorithms,
respectively. The Onufriev-Bashford-Case (OBC) generalized Born method (igb = 2) [101]
was employed for the calculations. Hereafter, the ∆Gsolv

nonpolar term is calculated as follows:

∆Gsolv
nonpolar = γ SASA + β (3)
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where the Solvent-Accessible Surface Area (SASA) was computed through the LCPO ap-
proach [102], respectively, setting γ and β constants to 0.00542 kcal/mol·Å2 and 0.92 kcal/mol
for MMPBSA [83] and 0.0072 kcal/mol·Å2 and 0 kcal/mol for MMGBSA [84]. All calcula-
tions were performed using the MMPBSA.py python program [103].

4.5. ADMET Evaluation of the Active Compounds

Given the significance of assessing the absorption, distribution, metabolism, excretion, and tox-
icity (ADMET) properties of any potential drug candidate, we used the SwissADME module [104],
available on the Swiss Institute of Bioinformatics (SIB) webserver (https://www.sib.swiss
(accessed on 5 April 2023)) to evaluate the ADME profile of the active compounds. Proper-
ties relevant to medicinal chemistry, drug-likeness, pharmacokinetics, hydrophilicity, and
Lipophilicity have been computed. Results can be found at Supporting Tables S9 and S10.

4.6. In Vitro Assays for the Selected Compounds
4.6.1. SARS-CoV-2 Mpro Expression and Purification

SARS-CoV-2 Mpro was expressed and purified as reported previously [48,105,106].
Briefly, transformed BL21 (DE3) Gold E. coli were grown with LB/ampicillin (100 µg/mL)
at 37 ◦C overnight and protein expression was induced with 1 mM isopropyl 1-thio-β-D-
galactopyranoside (IPTG) at 18 ◦C for 5 h. Harvested cells were resuspended in lysis buffer
(sodium phosphate 50 mM, pH 7, sodium chloride 500 mM). After sonication on ice, cells
were treated with benzonase (20 U/mL) and lysozyme (0.5 mg/mL). Soluble protein was
obtained by centrifugation and filtration. His-tagged protein was purified in a single step
by immobilized metal affinity chromatography applying a 10–250 mM imidazole gradient.
Pooled fractions were dialyzed in buffer sodium phosphate 50 mM, pH 7, sodium chloride
150 mM. An extinction coefficient of 32,890 M−1 cm−1 at 280 nm was used for determining
Mpro concentration.

4.6.2. SARS-CoV-2 Mpro Proteolytic Activity Assay

The substrate (Dabcyl)KTSAVLQSGFRKME(Edans)-NH2 (Biosyntan GmbH), labelled
with a Förster resonance energy transfer (FRET) donor-acceptor couple, was employed
in vitro to monitor Mpro activity. A final concentration of 20 µM substrate was added to a fi-
nal concentration of 0.2 µM enzyme in a final volume of 100 µL, in buffer sodium phosphate
50 mM, pH 7, NaCl 150 mM. Fluorescence emission (λexcitation = 380 nm, λemission = 500 nm)
was continuously measured in a FluoDia T70 microplate reader (Photon Technology Inter-
national). Enzymatic activity was quantified as the initial slope of the fluorescence emission
vs. time traces. Kinetic parameters, the Michaelis-Menten constant Km and the catalytic
rate constant kcat, were previously estimated for Mpro (Km = 11 µM and kcat = 0.040 s–1).

4.6.3. SARS-CoV-2 Mpro Inhibition Assay

The inhibition potency of compounds was assessed by determining the inhibition
constant, Ki, and the half-maximal inhibitory concentration, IC50. Serial dilutions (2-fold)
of compounds (from 125 µM to 0 µM) were added to 0.2 µM enzyme concentration and
20 µM substrate concentration. maintaining a constant DMSO percentage when required.
Mpro activity (initial slope of the fluorescence emission traces) as a function of compound
concentration, normalized by the activity (slope) in the absence of compound, provided
the residual activity at a given compound concentration. A quasi-simple inhibition model
allowed the estimation of the apparent inhibition constant, Ki

app, for each compound by
non-linear regression analysis, according to the following scheme:

E + I ↔ EI
Kapp

i = [E][I]
[EI]

(4)

where [E] is the free enzyme concentration, [I] is the free inhibitor concentration, and
[EI] is the enzyme-inhibitor complex concentration. Solving the associated quadratic

https://www.sib.swiss
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equation allowed the calculation of the free concentration of inhibitor for given values
of the total enzyme and inhibitor concentrations, [E]T and [I]T, and the inhibition curve
was built by plotting ratio of the initial velocities, v([I])/v([I] = 0), as a function of total
inhibitor concentration:

v([I])
v([I]=0) = 1− [EI]

[E]T
= 1

1+ [I]
Kapp

i

[I] = 1
2

(
[I]T − [E]T − Kapp

i +

√(
[I]T + [E]T + Kapp

i

)2
− 4[E]T [I]T

) (5)

Along these calculations, inhibitor depletion (due to binding to enzyme) was consid-
ered; thus, no approximation for the free inhibitor concentration (e.g., assuming to be equal
to the total inhibitor concentration) was made.

In the case the inhibitor acts through a purely competitive mechanism, the previous
quasi-simple equilibrium can be expanded as a simple competitive inhibition model as
follows (Equation (6)):

E + S ↔ ES → E + P
+
I
l

EI

(6)

from which the initial enzymatic velocity is expressed as:

v([I]) = kcat[E]T
[S]

Km

(
1 + [I]

Ki

)
+ [S]

(7)

where kcat is the catalytic rate constant, Km is the Michaelis-Menten constant, [S] is the
substrate concentration, and Ki is the intrinsic (i.e., substrate concentration-independent)
inhibition constant. From this, the inhibition curve can be written as:

v([I])
v([I]=0) =

1
1+ [I]

Ki

(
1+ [S]

Km

) = 1
1+ [I]

Kapp
i

Kapp
i = Ki

(
1 + [S]

Km

) (8)

By approximating the free compound concentration by the total compound concentra-
tion and neglecting compound depletion, the Ki

app in the previous equation is equivalent
to the IC50. It is important to emphasize that IC50 is not an appropriate inhibition potency
index, because it is an assay-dependent parameter (it depends on [E]T, [S] and Km, and it is
estimated without taking into consideration compound depletion).

If the inhibitor acts through an allosteric non-competitive mechanism, the previous
quasi-simple equilibrium (Equation (6)) can be expanded as a simple allosteric inhibition
model as follows (Equation (9)):

E + S ↔ ES → E + P
l

E∗ + I ↔ E∗ I
(9)

from which the initial enzymatic velocity is expressed as:

v([I]) = kcat[E]T
[S]

Km

(
1 + 1

K

(
1 + [I]

Ki

))
+ [S]

(10)

where K is the equilibrium constant for the conformational equilibrium between the inactive
conformation E* stabilized by inhibitor binding and the active conformation E stabilized by
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substrate binding (K = [E]/[E*]), and, again, Ki is the intrinsic inhibition constant. From
this, the inhibition curve can be written as:

v([I])
v([I]=0) =

1
1+ [I]

Ki

(
1+K

(
1+ [S]

Km

)) = 1
1+ [I]

Kapp
i

Kapp
i = Ki

(
1 + K

(
1 + [S]

Km

)) (11)

Once the apparent equilibrium constant Ki
app is estimated from the inhibition curve by

non-linear least-squares regression analysis, the true inhibition constant Ki can be calculated
using Equation (8) or Equation (11).
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Figure S6. In vitro SARS-CoV-2 Mpro protease dimer inhibitory activity assay of Hyperoside natural
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computed with the MMGBSA approach for 100 ns of cMD simulation of the evaluated compounds in
complex with the SARS-CoV-2 Mpro main protease dimer; Table S2. Free binding energy computed
with the MMGBSA approach for 500 ns of cMD simulation of the evaluated compounds in complex
with the SARS-CoV-2 Mpro main protease dimer; Table S3. Free binding energy computed with the
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SARS-CoV-2 Mpro main protease dimer; Table S4. Free binding energy computed with the MMGBSA
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2000 ns of cMD simulation of the evaluated compounds in complex with the SARS-CoV-2 Mpro main
protease dimer; Table S6. Binding free energy decomposition by residue computed for the last 100 ns
of the complete 2 µs of cMD simulation of the two selected poses for Hyperoside in complex with the
SARS-CoV-2 Mpro main protease dimer; Table S7. Most important Hydrogen Bonds stablished during
the last 100 ns of the complete 2 µs of cMD simulation of the two selected poses for Hyperoside in
complex with the SARS-CoV-2 Mpro main protease dimer; Table S8. Isomeric SMILES of the bioactive
compounds selected from the literature search; Table S9. Physicochemical properties of Hyperoside;
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