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Autocorrelation Values of Generalized Define N = pg ande = (p — 1)(¢ — 1)/2. Sinceg is a primitive
Cyclotomic Sequences of Order Two root of p andg¢, by the Chinese Remainder Theorem again
Cunsheng Ding ordn (g) =lem (ordp(g), ordg(yg))

=lem(p—1l,g—1)=c¢

Abstract—The generalized cyclotomic sequence of order two has several o
good randomness properties and behaves like the Legendre sequence inwhereordy (g) denotes the multiplicative order gf modulo V.

several aspects. In this correspondence we calculate the autocorrelation  Whiteman’s generalized cyclotomic classBs and D of order
values of the generalized cyclotomic sequence of order two. Our result two are defined by [8]

shows that this sequence could have very good autocorrelation property )

and pattern distributions of length two if the two primes are chosen D, ={¢°2":s=0,1,---,e—1}, 1 =0,1

properly.

where the multiplication is that of v, the residue ring moduldy.
Index Terms—Autocorrelation, cyclotomy, sequences.

By the definition ofz it is easily seen that

ZN = Dy U Dy Do N Dy =9,

I. INTRODUCTION .
opueTio where¢ denotes the empty set aftk, the multiplicative group of

Pseudorandom sequences have wide applications in simulatigyy ring Zu.
software testing, global positioning systems, ranging systems, codeThe corresponding generalized cyclotomic numbers of order two
division multiple-access systems, radar systems, spread-spectyi@l defined by
communication systems, and stream ciphers.

Many applications require a set of sequences which have one or (i, j) = |(Di +1)N Djl, foralli=0,1, j=0, 1.
both of the following properties [6], [7]. Here and hereafter we defind + « = {x +a: = € A} and
« Each sequence in the set is easy to distinguish from a timed = {ax: «x € A} for any subsetd of Zy anda € Zy.
shifted version of itself (i.e., good autocorrelation). Define
. Each sequence in the set is easy to distinguish from (a pos;ibly P={p.2p. . (q—1)p}
time-shifted version of) every other sequence in the set (i.e., .
good crosscorrelation). Q={¢,2¢, -~ (p = D)a}
The generalized cyclotomic sequence of order two has several R ={0}
good randomness properties [1]. This sequence has been proven Co=RUQU Dy
to have also large linear span [2]. Although Whiteman [8] did not C, =P U D,.

mention anything about the application of the generalized cyclotom
in sequences, the construction of the generalized cyclotomic sequehcg"
of order 2 is a natural application of this generalized cyclotomy. Co U C1 = Zpgq Co N C1 =o.
Whiteman studied the generalized cyclotomy of orélemly for the . . .
heg - Y y Y The generalized cyclotomic sequencg of order2 with respect
purpose of searching for residue difference sets. : ) )
. . to the primesp and ¢ is defined by
In this correspondence we calculate the exact autocorrelation values o i
and pattern distributions of length two of this sequence. Then we 5 = {Os if (imod V) € Co;} for alli > 0
discuss how to choose the parameters in order to ensure good 1, if (imodN) € Cy [ -

autocorrelation property of this sequence. wherei mod N denotes the least nonnegative integer that is congruent
to i modulo V. It is easy to see that this sequence can be expressed
Il. GENERALIZED CYCLOTOMY AND THE SEQUENCE ass; = F(imod N) with
Let p andq be two distinct primes witlged (p—1, ¢—1) = 2. By 0, ifie RUQ
the Chinese Remainder Theorem there exists a common primitive root 1, ifiecP
g of bothp andg. Let » be an integer satisfying the simultaneous F(i)= Nz 1)
congruences <1 - <Z—)> <5)>/2 otherwise
; N o— o
z=g (modp) z=1 (modg). forall0 <i < N —1, where(a/p) denotes the Legendre symbol.

. . Ill. A UTOCORRELATION VALUES
The existence and uniqueness:ofmodulopg are guaranteed by the

Chinese Remainder Theorem and the Chinese Remainder Algorithnlret the symbols be the same as before. The periodic autocorrelation
[3] gives the solutione. function of the binary sequence® is defined by

1 . .
) = _1\Sitwts:
Cow) =5 > (=1)
1ET N
where0 < w < N — 1. Note that in the field GF2) addition and
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Theorem 1: Let (p — 1)(¢ — 1)/4 be even. Then Lemma 4:
g—p—-3 0, ) if we QUR
pg Twel Dy 0 (QUR) +w)| = p—; , otherwise.
p+1—q .
Ci(w)=¢ —, fweq ) )
_lpq Proof: The first part is clear. We now prove the second part. If
—, if we Zy. w & QU R, then an element = ¢°x € (Q U R)+w if and only if
pq
g°r—w=0 (modg). 2
Theorem 2: Let (p — 1)(¢ — 1)/4 be odd. Then Note thatr = 1 (mod ¢). Letv be the inverse ofy modulog. Sincey

is a primitive root ofy, there must be an integemwith 0 <¢ < ¢—1

47P=3 o ep > anin
such thaty = ¢* (mod ¢). Thus (2) is equivalent to

+plq i
p -9 . .
— if we@ ¢t = (mod q)
Cs(w) = _3] q
—, if w € Dy which is further equivalent to
Pq
i7 if we Dy s—t=0 (modq-—1).
pa It follows that the number of solutions of (2) with0 < s <e—1
By Theorems 1 and 2, the autocorrelation values of this generalizgd /(¢ — 1) = (p — 1)/2. O
cyclotomic sequence of order two are quite flat wher- ¢| is very . . . .
small We need also the following Generalized Chinese Remainder The-
The best case is whep— p = 2, i.e., they are twin primes. In orem [3].
this case, if(p — 1)(¢ — 1)/4 is even, the C(w) is two-valued, i.e.,  Lemma5: Let m, ---, m; be positive integers. For a set of
the sequence has the best autocorrelation property. In this casgntégersa,, ---, a, the system of congruences

(p—1)(¢g—1)/4 is odd, C(w) is four-valued.
Another interesting case is when- p = 4. In this case, Q(w) is
four-valued whern(p — 1)(¢ — 1)/4 is even, and three-valued whenhas solutions if and only if

y=a; (modm;), i=1,---,t

(p—1)(¢—1)/4 is odd. In the casg — p = 4, this sequence has _ . - C o
also good autocorrelation property. a: = aj (mod ged (mi, m;)), igjtsijst ()
To prove Theorems 1 and 2, we need the following nine lemmas$.(3) is satisfied, the solution is unique modudtan (1, - -, m¢).
Define Lemma 6: —1 € D, if [p—¢|/2is odd, and-1 € Dy if |[p—q|/2
ds(i, j; w) = |C; N (C; 4+ w)|, w € Zy, i, j=0,1 is even.
Proof: —1 € Dq if and only if there is an integes with
Lemma 1: For eacha Z 0 (mod NV) 0 < s < e—1 such that
4d ca =1 1; 4
Cola) =1 4d (1&70, a)_ g (modpq) (4)
‘ which is by the Chinese Remainder Theorem equivalent to
Proof: g°=—1 (modp)andg® =—-1 (modyg).
N — — — —
NCs(a) =(|Co N (Co —a)] = [C1 N (Co —a)l) Sincey is a common primitive root op andg¢, we have
CiN(Ci—a)—|Con (Ci—a .
+ (11 N (Cr = a)] = [Co N (C1 = a)|) G2 = 21 (modp)
= (2ICo N (Co - a)| = |Cal) -1/

= —1 (modg).
(G =21Co 1 (€ - a)) ; .

= |Cl| — |Co| + 2|Co| — 4|Co N (Cy — CL)|
=N —4|Ci N (Ch+ a)l
=N —4d,(1, 0; a). O

Thus (4) is further equivalent to
g =1/2
gsf(q*l)/2

(mod p)

1
=1 (modyq)
which is equivalent to

) s—(p—1)/2=0 (modp —1)
|(D0+'1U)OD1|:{(O"1)’ if w € Do s—(¢g—1)/2=0 (modq—1).

(1,0), if w € D;y.
By Lemma 5, (4) has a solution if and only|jf — ¢/2| is even. ]

Lemma 2: For eachw € Z},

Proof: By definition aD; = D,y; if a € D;. SinceDy is a

group andD; = xzDgy, we have Lemma 7:
if r
(Do +w) N Dy|=|(w ' Dy+1) N w™' Dy %_ 1 ?f we

. { (0,1), ifwé€ Do 0 2717 if wea@
(1,0), if we Dy. —q; , ifwe Dy and Ip—adl ; 7l even
The proof of the following lemma can be found in [8, Lemma 2]. [P0 (Do +w)| = % if we D, and lp ; 1l oqd
Lemma 3: For eachw € P U @ 4 ; 3w € Do and |1’2;‘1| even
|(D0+w)le|:W. =1 it we Dy and'zj?;q' odd.
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Proof: Similar to the proof of Lemma 4; we can prove that if The following formula will be needed in the sequel:

w & P U R, then

(P UR) A (Do +w)| = %
By Lemma 6
0, fwe@
if w€ Dy and @ even
o lp — 4l
IR O (Do + w)| = 1, ifwe Dy and 5 odd
1, if we Dy and lp _ 7l even
0, if we Dy and@ odd.

The conclusion of this lemma then follows from

|P 0 (Do +w)|=|(PUR)N (Do+w)|—|R N (Do+w)|

a1 |R N (Do + w)|.

2
Lemma 8:
1, fweP
PN (QUR)+w)|= {o‘ if weQ
1, ifweZxy.

Proof: Note that
PN ((QUR)+w)|=I|PN(Q+w)|+I|P N {w}.

The first two conclusions then follow easily.

Recall the definition of? and@. For any fixedw € Z3;, consider

now the following equation:

up —vg=w (modpq)

wherel < uw < ¢g—1andl < v < p— 1. Suppose it has two

solutions (w1, v1) and (uz, v2). Then
wip—viqg = uzp — vaq (modpq).
Hence
uip = uzp (modq), vig =wv2q (modp).
Note that
1<u, ua<g—1, 1<, 12 <p—-1

andgcd (p, ¢) = 1. We obtain thatui, v1) = (us, v2).

Thus whenu ranges ovefl, 2, ---, ¢ — 1} and v ranges over

|

{1, 2, ---, p — 1}, the functionup — vq takes on(p — 1)(¢ — 1)

different elements
Therefore,|P N (Q + w)| = 1 for eachw € Zj.

A proof of the following lemma can be found in [8].

N, butZ3% has exactlyp—1)(¢—1) elements.
O

Lemma 9: If (p—1)(¢—1)/4 is even, we havé0, 0) = (1, 0) =

(1, 1) and two different cyclotomic numbers
(p—2)(¢g—2)+1

(0,0) = L
0,1) = %

If (p —1)(¢ —1)/4is odd, we have0, 1) = (1, 0) = (1, 1) and

two different cyclotomic numbers

(P—=2)(¢g—=2)+3
4

_=2)(¢-2)-1
(0, 1) = ===

(0,0) =

ds(1, 0; w) = |Cy N (Co + w)
=[(DrUP)N (Do UQUR)+w)
=|Di 0 (Do+w)|+|D1 N ((QU R)+w)
+|P N (Do+w)|+|P N ((QU R)+w)|.
We are now ready to prove Theorems 1 and 2.
Proof of Theorem 1:By (5), Lemmas 2—4, 7, and 8, we obtain

ds(1, 0; w)

(p—1)4(q—1)+]);1+0+1’ weP
(p—l)/(q—1)+0+f1;1+0, weQ
- (17—2)(i—2)—3+Pj1+q;1+1, w € Dy
(])—2)((14—2)4-1_1_1);1_1_(1;3_’_1, w e Dy
pq++—q+37 we P
= }n;—kqf—p—l? w e Q
I’QTH w € Do U D.

The conclusion of this theorem then follows from Lemma 1.

Similar to the proof of Theorem 1, we can prove Theorem 2.

IV. DISTRIBUTIONS OF PATTERNS OF LENGTH 2
It is interesting to note that the paramet&r(i, j; —w) defined
before is exactly the number of patterns

R )

~———
appearing in one period of this sequence, wherexth@re arbitrary
bits that could be different. Thus it measures exactly the pattern
distributions of length two of a periodic sequence. We have already
computedd; (1, 0; —w), the number of patterns

ITsxx---%0

N e’

in a period of this sequence. Whem—1)(¢—1)/4 is even, we have
ds(0, 0; w) = |Co N (Co 4+ w)|
= |Co| = |C1 N (Co + w)|

- w +p—ds(1, 0; w)

2
17q-i—+—q—1 if we P
w’ if weQ
W“ if we Do U D.
Note that|Co| + ¢ — p — 1 = |C4], we have

ds(1, 1; w) =|C1[ = |C1 N (Co + w)]
=ds(0,0; w)+¢q—p—1.
It is easily seen that
ds(0, 1; w) = ds(1, 0; w).

Thus we have computed alls(¢, j; w) in the case thatp — 1)
- (¢ —1)/4 is even. They can be easily written out with the help of
Theorem 2 wher(p — 1)(¢ — 1)/4 is odd.

These results show that the distribution of patterns of length two
of this generalized cyclotomic sequence is quite good when p|
is small enough.
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V. CONCLUDING REMARKS Frequency and Symbol Rate Offset
It was proved in [2] that the linear span of this generalized Comper\sating Algorithms for Simultaneous
cyclotomic sequence takes on onepgf— 1, (p — 1)¢, and(p — 1) Estimation of Echo and Channel Responses
- (¢ — 1), depending on the values pfinod 8 andgmod 8. Thus it o o
has large linear span. Weiping Li, Xixian Chen,Member, IEEE
For application we are concerned with the implementation of a Yi Wang, and Nobuhiro MikiMember, IEEE

generator that can produce the generalized cyclotomic sequences of
order two. A hardware implementation of the generalized cyclotomic . ” )
stract—This correspondence addresses two critical problems in

_generator of order two that pro_duces the s_equences 1S descrlgg gning new full-duplex fast training algorithms for simultaneously
in [2], with the help of the Chinese Remainder Theorem. WitBstimating echo and channel responses. Although algorithms of this
dedicated chips for modular exponentiation, the performance of thype have been discussed and evaluated in previous work, the proposed
generator is estimated to be 30 kbytes/s, when the two primes algorithms concentrate on coping with the following two problems that

. : . re not solved in the previous approaches: 1) the symbol rate difference
about 48 bits [2]. In [2], this generator and its output sequences etween the local transmitter and the remote transmitter, and 2) the

suggested for military and diplomatic applications where security #2quency offsets in both far echo and far signal that are caused by
the primary concern. For additive stream ciphering, the linear spee analog carrier network. The performance of the new methods is
of the keystream sequence must be large enough. So the generakipetyzed in terms of mean-square error. Simulation results are presented

cyclotomic sequence of order is ideal for this purpose, but.- [© confirm the analysis.

sequences cannot be used as they have low linear span. Index Terms—Data transmission, digital communications, echo cancel-
Finally, we mention that there are other cyclotomic sequenckgion, equalization.

having good randomness properties. Among them are the Legendre

sequences [4], the cyclotomic sequences of ordfs], and others

I. INTRODUCTION

described in [1].

The techniques of echo cancellation and channel equalization

are widely used in high-speed two-wire full-duplex data modems
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and to cope with the intersymbol interference caused by channel
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detailed and very helpful comments and suggestions that mughy channel equalizers of the modems have to be trained to mimic
improved this correspondence. the characteristics of the echo and channel responses. Therefore, the
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(2]

(3]

efficiency of the overall system depends heavily on their initial setup
time. A number of fast training algorithms [1]-[6] have been proposed
to reduce this system initialization time. During the start-up period,
C. Ding, “Binary cyclotomic generators,” iffast Software Encryption these methods are Operated in the half-duplex transmission mode.
(Lecture Notes in Computer Science, vol. 1008, B. Preneel, Eddn exactly known periodic training sequence is alternately sent by
Berlin, Germany: Springer-Verlag, 1995, pp. 20-60. each transmitter while the opposite end transmitter is intentionally

___, “Linear complexity of the generalized cyclotomic sequence of. .
order 2" Finite Fields and Their Applicationsvol. 3, pp. 159-174. dilenced. The echo canceler and the equalizer at each end are then

1997. trained sequentially. After the coefficients of the echo cancelers and
C. Ding, D. Pei, and A. Saloma&hinese Remainder Theorem: Ap-the equalizers at both ends converge to their optimum values, the
plications in Computing, Coding, CryptographySingapore: World system is switched to the full-duplex transmission mode, and starts
Scientific, 1996, ch. 2. Jransmitting the actual data signals.

C. Ding, T. Helleseth, and W. Shan, “On the linear complexity o | t blicati 7 d full-duplex fast
Legendre sequencesEEE Trans. Inform. Theoryto be published. n our recent publication [7], we proposed a full-duplex fas

C. Ding and T. Helleseth, “On the cyclotomic generator of ordgr training procedure for simultaneously estimating echo and channel
Inform. Processing Lettto be published. responses. Its novelty was that the echo cancelers and the channel
T. Helleseth and P. V. Kumar, “Sequences with low correlation,gqualizers at both ends can be trained simultaneously, rather than

in Handbook of Coding TheoryPless, Brualdi, and Huffman, Eds. . _
Amsterdam, The Netherlands: Elsevier, 1998. separately. The effects of channel noise and symbol rate offset be

D. V. Sarwate and M. B. Pursley, “Crosscorrelation properties of psefiveen the local and remote transmitters were analyzed and simulated

ﬁﬂo;’;nfggna and related sequenceBfbc. IEEE, vol. 68, pp. 593-619, Manuscript received March 13, 1996; revised January 8, 1998. The material
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