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Abstract

Much research work in computer vision is being spent

on optimizing existing network architectures to obtain a few

more percentage points on benchmarks. Recent AutoML

approaches promise to relieve us from this effort. How-

ever, they are mainly designed for comparatively small-

scale classification tasks. In this work, we show how to use

and extend existing AutoML techniques to efficiently opti-

mize large-scale U-Net-like encoder-decoder architectures.

In particular, we leverage gradient-based neural architec-

ture search and Bayesian optimization for hyperparameter

search. The resulting optimization does not require a large-

scale compute cluster. We show results on disparity estima-

tion that clearly outperform the manually optimized base-

line and reach state-of-the-art performance.

1. Introduction

Compared to the state of computer vision 20 years ago,

machine learning has enabled more generic methodologies

that can be applied to various tasks rather than a single toy

problem. A convolutional neural network can be trained

on all sorts of classification problems, and a convolutional

encoder-decoder network with skip connections can be set

up for a large selection of high-resolution computer vision

tasks, such as semantic segmentation, optical flow, super-

resolution, and depth estimation, to name just a few. With

this generic methodology in place, why are there more

than 5000 submissions to each computer vision conference?

What do they contribute?

In practice, the methodology is not as generic as it looks

at first glance. While a standard encoder-decoder network

may give a reasonable solution for all these problems, re-

sults can be improved significantly by tweaking the de-

tails of this design: both the detailed architecture and sev-

eral training hyperparameters, such as the learning rate and

weight decay. For example, in the context of disparity esti-

mation, manually optimizing the architecture of the original
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Figure 1: We present AutoDispNet-CSS, a disparity esti-

mation network built using state-of-the-art AutoML tech-

niques which significantly improves over the manually

tuned DispNet-CSS architecture.

DispNet [51] halved the error [36]. Other works on dispar-

ity estimation found other tweaks that also improved the ac-

curacy [43, 16, 65]. While effective, this common practice

of manual architecture and parameter search contradicts the

paradigm of machine learning, namely to replace manual

optimization by numeric optimization.

AutoML [34] in general and automated neural architec-

ture search (NAS [24]) in particular promise to relieve us

from the manual tweaking effort. In principle, an indepen-

dent validation set is enough to optimize the architecture

and the hyperparameters of the learning method. Unfortu-

nately, many of these AutoML methods have extreme com-

putational demands. For this reason, they have been mostly

applied to rather small-scale classification tasks, preferably

on CIFAR, where a single network can be fully trained

within a few hours. Even on such small tasks, some ap-

proaches report hundreds of GPU days to finish optimiza-

tion. For large-scale encoder-decoder networks, such as

DispNet, this is prohibitive.

However, there are also more efficient AutoML ap-

proaches. Although they have not yet been applied to

encoder-decoder architectures, they have the potential to do

so. One of them, on which we will build in this paper, is

DARTS [46]. Its main idea is to have a large network that
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includes all architectural choices and to select the best parts

of this network by optimization. This can be relaxed to

a continuous optimization problem, which, together with

the regular network training, leads to a bilevel optimiza-

tion problem. Thanks to its gradient based optimization,

DARTS is very efficient. However, DARTS only allows the

optimization of the architecture but not the training hyper-

parameters.

For the latter, we propose to use an efficient black-box

optimization method called BOHB [26], which builds on

an efficient variant of Bayesian optimization for informed

sampling of the search space. While it is somewhat more

costly than DARTS, it is also entirely flexible with regard to

the hyperparameter search space. We suggest to run BOHB

on the architecture optimized by DARTS to train it with op-

timal hyperparameters.

We compare the optimized network to the already well-

tweaked version of DispNet [36] to investigate who is more

successful in tweaking: the student or the numerical opti-

mization procedure.

2. Related work

Encoder-decoder architectures have led to substantial

improvements in several computer vision tasks like se-

mantic segmentation [47, 58, 3, 29, 18, 19] and flow es-

timation [21, 35, 36, 55, 67]. Pioneering works which

apply learning to disparity estimation consist of extend-

ing classical methods like SGM [30] with metrics learned

by CNNs [72, 49, 61]. The first end-to-end network

for disparity estimation is DispNet [51], which builds on

FlowNetC [21]. Based on rectified stereo images, a corre-

lation layer computes a cost volume which is further pro-

cessed by the network. [36] and [53] expand DispNetC for

much better performance. The extensions consist mainly of

stacking multiple networks and connecting them in a resid-

ual fashion. These networks share the encoder-decoder ar-

chitecture. The first module, the encoder, extracts high-

level information by gradually downsampling the feature

maps while the decoder progressively produces outputs at

increasing resolutions.

To reduce the effort dedicated to designing neural net-

works, neural architecture search (NAS) has been an ac-

tive area of research in the last few years [24]. Early at-

tempts train a recurrent neural network that acts as a meta-

controller using reinforcement learning techniques [4, 80].

It learns to generate sequences encoding potential architec-

tures by exploring a predefined search space. The same

strategy is adopted in many follow-up works [6, 13, 14, 68,

77, 78, 81]. Alternatively, a set of works rely on evolution-

ary algorithms [66, 45, 52, 56, 57, 69]. The best architec-

ture is extracted by iteratively mutating a population of can-

didate architectures. Unfortunately, both strategies require

hundreds to thousands of GPU days. This restricts their use

to rather small networks, and research progress is limited

by availability of large compute clusters.

Speed-up techniques like hypernetworks, network mor-

phisms and shared weights lead to substantial reduction of

the search cost. Hypernetworks [10, 74] generate weights

for candidate networks and evaluate them without training

them until convergence. Network morphisms [12, 14, 23,

25] make use of the previous learned weights to initial-

ize new candidate architectures, thereby speeding up the

performance estimation procedure. Sharing weights [54]

among potential networks decreases the search time by two

orders of magnitude. Multi-fidelity optimization has also

been employed in NAS [5, 26, 42, 73] by exploiting par-

tial training of architectures at the cost of noisy evalua-

tions. Alternatively, some works [7, 15, 46] redesign the

optimization problem by training a large graph containing

all candidate architectures. In [7], sub-networks are prob-

abilistically sampled and trained for a predefined number

of iterations. Orthogonally, relaxations make architectural

decisions like branching patterns [1] and number of chan-

nels per layer [60] learnable via gradient descent. In case of

DARTS [46], real-valued architecture parameters are jointly

trained with weight parameters via standard gradient de-

scent. Cai et al. [15] propose an memory efficient imple-

mentation similar to DARTS by adding path binarization,

while [70] sample from a set of one-hot random variables

encoding the architecture search space and leverage the gra-

dient information for architectural updates by relaxing the

architecture distribution with a concrete distribution [50].

Despite the diversity of NAS approaches for image classi-

fication and object detection, the extension to dense pre-

diction tasks remains restricted. To apply NAS to seman-

tic segmentation, Chen et al. [17] restrict the search to the

small pyramid pooling component of the network and oc-

cupy 370 GPUs for a whole week. In a concurrent work,

Liu et al. [44] also leverage DARTS to find an optimal archi-

tecture for semantic segmentation with reduced search cost.

However, their approach does not handle skip-connections

for U-Net like architectures.

3. Hyperparameter search

Optimizing hyperparameters for dense prediction tasks

with vanilla hyperparameter optimization (HPO) [8, 9, 33,

63, 64, 27] is computationally expensive. Alternatively,

we use a state-of-the-art HPO method named BOHB [26]

which combines the benefits of Bayesian optimization [62]

and Hyperband [42], a multi-armed bandit strategy that dy-

namically allocates more resources to promising configura-

tions.

BOHB uses cheap-to-evaluate approximations f̃(·, b) of

the objective function f(·) (e.g. validation error), where the

so-called budget b ∈ [bmin, bmax] determines the strength

of the approximation. For b = bmax, we recover the true
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objective, i.e. f̃(·, bmax) = f(·). In our application, we use

the number of training iterations as a budget to cut off evalu-

ations of poorly-performing hyperparameters early, akin to

approaches based on learning curve prediction [20, 5].

Hyperband repeatedly calls the Successive Halving (SH)

subroutine [37] to advance promising configurations evalu-

ated on small budgets to larger ones. SH starts by evaluat-

ing a fixed number of configurations on the cheapest bud-

get bmin. After these evaluations, the best fraction of η−1

of configurations (based on f̃(·, bmin)) advance to the next

budget η · bmin; here, η is a parameter set to 3 by default.

This procedure repeats until reaching the most expensive

budget bmax with only a few configurations left to evaluate.

While Hyperband selects configurations to evaluate

uniformly at random, BOHB replaced this choice with

Bayesian optimization. Specifically, it employs a multivari-

ate kernel density estimator (KDE) to model the densities

of the best and worst performing configurations and uses

these KDEs to select promising points in the hyperparam-

eter space to evaluate next. More details about BOHB are

included in the supplementary material.

4. Differential architecture search

While BOHB can, in principle, also be used to optimize

architectural parameters [73, 59], its performance degrades

compared to gradient-based approaches as the dimensional-

ity of the search space grows. BOHB also evaluates differ-

ent architectures from scratch rather than exploiting weight

sharing, increasing the computational burden for neural ar-

chitecture search of large-scale vision architectures to a pro-

hibitive range.

Therefore, we tackle the neural architecture search not

with BOHB, but rather use the gradient-based method

DARTS [46]. It combines weight sharing and first order

optimization to speed up the architecture optimization by

orders of magnitude compared to brute-force blackbox op-

timization methods, which can require thousands of GPU

days [56, 81]. We propose to leave the costly architecture

search to DARTS and then optimize important other hyper-

parameters that cannot be integrated into DARTS by BOHB

in a post-hoc step.

We review the components of the DARTS approach be-

fore we adapt DARTS to the context of full encoder-decoder

architectures in Section 5.

4.1. Search space

Similar to other architecture search methods [45, 56, 81],

DARTS optimizes relatively small, repetitive parts of the

network architecture called cells. Learned cells are stacked

to generate the overall network architecture in a user defined

fashion.

A cell is a directed acyclic graph (DAG) consisting of

N nodes. The nodes can be categorized into input, inter-

mediate, and output nodes. Each node x(i) represents a

feature map and each edge (i, j) represents an operation

o(i,j) which transforms x(i). DARTS assumes a cell to have

two input nodes and one output node. The input nodes are

the outputs of the two previous cells. The output node is

obtained by concatenating the outputs of all intermediate

nodes. The output of each intermediate node is computed

as:

x(j) =
∑

i<j

o(i,j)(x(i)) (1)

where o(i,j) ∈ O. O is the set of all candidate operations.

In DARTS, O consists of the following operations: skip

connection, 3×3 average pooling, 3×3 max pooling, 3×3
and 5×5 depthwise separable convolutions, 3×3 and 5×5 di-

lated separable convolutions with dilation factor 2. It also

includes a special ”zero” operation to indicate lack of con-

nectivity between nodes.

For classification tasks there are two cell types: a normal

cell with maintains the spatial resolution of the input and a

reduction cell which reduces the spatial resolution of the in-

put by half. The structure of standard DARTS cell is shown

in Figure 2a.

4.2. Continuous relaxation

To make the search space continuous, DARTS uses re-

laxation based on the softmax function. A variable α
(i,j)
o ∈

R is associated with each operation o ∈ O in the edge (i, j)
connecting nodes i and j. The categorical choices in each

edge (i, j) are then relaxed by applying the softmax nonlin-

earity over the α
(i,j)
o for all possible operations o ∈ O:

S(i,j)
o =

exp(αi,j
o )

∑

o′∈O exp(αi,j
o′ )

(2)

We set ō(i,j) =
∑

o∈O S
(i,j)
o o

(

x(i)
)

. This weighted aver-

age of
(

x(i)
)

is called ”mixed operation” in the remainder

of this work. Therefore, (1) becomes:

x(j) =
∑

i<j

ō(i,j)(x(i)) (3)

With this relaxation in place, the task of architecture search

is equivalent to learning the set of continuous variables α =
{α(i,j)}, where α(i,j) is a vector of dimension |O|.

4.3. Optimization

Since the continuous relaxation makes the set of archi-

tecture variables α differentiable, we can efficiently opti-

mize them using gradient descent. DARTS [46] proposed a

first order and second order approximation. In this work, we

focus on the first order approximation as the second order

approximation is too costly for large architectures.
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Figure 2: Structure of search cells. In Figure 2a we show the structure of a normal or reduction cell. An upsampling cell is

shown in Figure 2b. In both cases, input nodes are green, intermediate nodes are blue, output nodes are yellow. Upsampling

nodes are marked as orange. A blue edge represents transformations done using mixed operations (see Section 4.2 for more

details).

To solve the bilevel optimization problem, the training

data is split into two disjoint subsets Dtrain and Dval. The

network parameters w and architecture parameters α are op-

timized in an alternating fashion on Dtrain and Dval, respec-

tively, until convergence. The optimization is carried out on

a search network built using stacked normal and reduction

cells.

4.4. Architecture discretization

After training the search network to convergence, a cell

structure is extracted by discretizing the continuous vari-

ables. This is achieved by retaining the top-k strongest op-

erations from all non-zero operations coming from previous

nodes. The strength of an edge (i, j) is set to:

max
o∈O,o 6=zero

S(i,j)
o (4)

The extracted cells are then stacked to form a deeper net-

work and retrained for evaluation.

5. DARTS for dense prediction

Dense prediction tasks involve mapping a feature rep-

resentation in the encoder to predictions of larger spatial

resolution using a decoder. Therefore, to apply DARTS

for disparity estimation we need to extend the architecture

search space such that it can support an upsampling trans-

formation. This extension of the search space should be ex-

pressive enough to encompass common deep learning best-

practices and at the same time have enough flexibility to

learn new upsampling transformations. In this section, we

describe our search space and then present a search network

which allows us to learn architectural cells for encoder-

decoder networks.

Upsampling layers. Typically, the decoder unit of

encoder-decoder networks [51, 21, 58] consists of upsam-

pling layers which increase the spatial resolution. The most

commonly used upsampling layers are transposed convolu-

tions. Another common approach is to use billinear inter-

polation for upsampling followed by convolutional opera-

tions. A decoder usually has multiple decoding stages, each

of which increases the spatial resolution by a factor of 2.

The number of stages depends on the downsampling factor

of the encoder.

Skip connections and multi-scale refinement. Skip

connections were introduced in encoder-decoder networks

by [47]. They help preserve fine details in the predictions.

This is achieved by concatenating the upsampled features

with a feature map of the same resolution from the encoder.

A coarser prediction (from the previous decoding stage),

if available, is also concatenated to facilitate feature reuse.

The concatenated features are then processed by convolu-

tions to generate refined predictions. These techniques are

standard for encoder-decoder networks for flow and dispar-

ity estimation [51, 21].

Upsampling cell. Several hand-designed encoder-

decoder architectures have emerged [2, 28, 76, 79] which

incorporate the above architecture design choices. Typi-

cally such methods propose decoding modules which apply

architectural blocks (ShuffleNet [75], DenseNet [32] block,

etc). However, the generic design choice of having skip

connections and multi-scale refinement still remains use-

ful in such cases. In this work, we replace such an ar-

chitectural block in the decoder by a learned upsampling

cell. The same DAG-based formulation for normal and re-

duction cells (see Section 4.1), can be used to define an

upsampling cell. Our upsampling cell has four inputs :

Ik−1, Ik−2,I predk−1 and Iskip. The inputs Ik−1, Ik−2

are the outputs of the last two preceding cells, I predk−1

represents a prediction from the previous decoding stage

and Iskip represents a feature map in the encoder obtained

via skip connection. The inputs Ik−1, Ik−2 are upsampled

by transposed convolutions whereas the input I predk−1
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Figure 3: Dense-DARTS for disparity estimation. The search network used to learn cells for disparity estimation is shown

in Figure 3a. Three types for cells are learned: normal, reduction and upsampling. The stem cells are simple convolutional

layers with a fixed structure. It also contains a correlation layer like a standard DispNetC [51]. Skip connections from encoder

to decoder are denoted by the dashed lines. After training, the three cell structures are extracted as described in Section 4.4.

Using the extracted cells, a final network (Figure 3b) is assembled using the CSS structure introduced in [36].

is upsampled by bilinear interpolation (following [36]). A

schematic of the upsampling cell is shown in Figure 2b. The

intermediate nodes in the upsampling cells process all in-

puts via mixed operations. To be consistent, we use the

same set of operations for a mixed operation as DARTS (see

Section 4.1). The outputs of all intermediate nodes are con-

catenated to form the output of the cell, which is then pro-

cessed by a 2D convolution to get an upsampled disparity

prediction.

Search Network. Compared to standard DARTS which

is trained on CIFAR10 [40] with 32×32 images, train-

ing datasets for disparity estimation [51] consist of images

which are about 500 times larger in terms of pixel amount.

Therefore, to feasibly train a search network on a single

GPU (Nvidia GTX1080Ti), we downsample the training

images by half. Ground truth disparity values are addition-

ally rescaled by a factor of 0.5. The encoder part of the

search network begins with a stem cell followed by stacked

reduction and normal cells. The stem cell consists of two

standard convolutional layers with kernel sizes 7×7 and 5×5
and stride 2 which further downsample the input. Similar to

the DispNetC architecture [51, 36], the stem cell and the

first reduction cell compose the Siamese part of the encoder

which extract features from the left and right rectified stereo

view. The extracted features are processed by a correlation

layer [21]. The correlation layer performs patch comparison

between the two feature maps obtained from the Siamese

part of the network. Such explicit feature matching helps in

significant error reduction [51]. The rest of the encoder is

formed by stacking normal and reduction cells in an alter-

nating fashion. The decoder consists of stacked upsampling

cells with skip connections to the encoder. The encoder has

a total of 6 cells (normal + reduction) with a final down-

sampling factor of 32. The decoder consists of three up-

sampling cells which output predictions at different spatial

resolutions. We pre-define each cell to have three interme-

diate nodes and initialize the first cell to have 24 channels.

Each reduction cell then increases number of channels by

a factor of 2. In the decoder, an upsampling cell reduces

the number of channels by half with each upsampling step.

An illustration of our search network is shown in Figure 3a.

For training the search network, we optimize the end-point-

error (EPE) [21, 51] between the predicted and ground truth

disparity maps. A loss term is added for each prediction af-

ter an upsampling step. The losses are optimized using the

first-order approximation of DARTS as described in Section

4.3. We refer to our search network as Dense-DARTS.

6. Architectures

After training Dense-DARTS, we extract a normal, a re-

duction, and an upsampling cell as described in Section 4.4.

A schematic of the extraction process is shown in Figure 3a.

A network needs to be built using the extracted cells before

it can be trained for final evaluation. In this section we intro-

duce our baseline architecture and present network variants

we consider for evaluation.

Baseline architecture. For a strong baseline we

choose a recent state-of-the-art disparity estimation net-
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work, DispNet-CSS [36], which is an improved version of

the original DispNet [51] manually optimized by an expert.

It consists of a stack of three networks, consisting of one

DispNet-C [51] and two DispNet-S [51].

Single network. To compare the performance of the ex-

tracted cells, we first build a single network for comparison

with the first network in the DispNet-CSS stack. In each

network the encoder downsamples the input by a factor of

64 and the output resolution of the decoder is one-fourth of

the input resolution. For a fair comparison, we use seven

encoder cells and four decoder cells to get the same reso-

lutions at the bottleneck and the final layer. This network

is constructed in the same fashion as the search network,

as described in Section 5, but with the extracted cells. The

number of channels for the first cell (Cinit) is set to 42, to

match the number of parameters in DispNet-C. We call this

network AutoDispNet-C.

Refinement with stacks. Using the same configura-

tions as AutoDispNet-C, we construct the AutoDispNet-S

architecture by replacing the Siamese part and correlation

layer with a single stream of cells. In a stacked setting, the

AutoDispNet-S network refines a disparity map from the

previous network. Similar to [36], the input to the refine-

ment network is a concatenation of warped image, previous

disparity prediction and the rectified image pair. The first

network provides an initial disparity estimate. Each follow-

ing network in the stack refines the previous network’s out-

put by predicting the residual disparity. The residual dis-

parity is added to the previous network’s output to obtain a

refined estimate. We denote a stacked AutoDispNet-C and

two AutoDispNet-S as AutoDispNet-CSS. The full network

stack is shown in Figure 3b.

Smaller networks. We also experiment with different

values of Cinit to obtain AutoDispNet architectures with

different numbers of parameters. We choose a smaller vari-

ant with Cinit = 18 for comparison with our baseline. This

configuration is denoted as AutoDispNet-css with a lower-

case ”c” and ”s”.

BOHB variants. We also use BOHB to tune the learning

rate and weight decay of AutoDispNet architectures. We

denote networks of this category by AutoDispNet-BOHB-

(∗), where (∗) stands for C, CS or CSS. Details about train-

ing settings are mention in Section 7.1.

7. Experiments

7.1. Experimental setting

Datasets. For training our search network we use

the standard FlyingThings3D [51] dataset which provides

ground truth disparity maps generated using rendered

scenes. The dataset consists of train and test splits with

21, 818 and 4, 248 samples respectively. Each sample has

a spatial resolution of 960×540.

Training Dense-DARTS. Following [46], we divide the

train split of FlyingThings into two halves. The first and

second halves are used to optimize the train and valida-

tion losses respectively. The test split is left untouched to

evaluate the extracted architectures at a later stage. We use

the same data augmentation settings as commonly used for

training DispNet [51, 36]. The search network is trained by

minimizing the end point error as described in Section 5.

The train loss is optimized using SGD with base learning

rate of 0.025 and annealing to 0.001 using the cosine sched-

ule [48]. To optimize the validation loss, we use the Adam

optimizer [39] with a base learning rate of 1e − 4. We add

L2 regularization on the weight parameters w and architec-

ture parameters α with factors of 3e− 4 and 1e− 3 respec-

tively. Before optimizing w and α alternatingly, we warm

start the search network by optimizing only w for 100k iter-

ations. After the warm-start phase we optimize both w and

α for 200k iterations. We also found that annealing the soft-

max temperature for the mixed operation leads to slightly

better results.

The extracted cells after training the search network

are shown in Figure 4. Note that the search process dis-

cards all pooling operations. We also see that normal

and upsampling cells (which process feature maps at the

same or higher spatial resolution) include dilated convo-

lutions, whereas the reduction cell (which downsamples

feature maps) consists only of separable convolutions and

some skip connections. This observation is in agreement

with common usage patterns of operations for dense pre-

diction. For instance, state-of-the art disparity estimation

methods [43, 36, 67] are fully convolutional and do not con-

tain any pooling operations. Dilated convolutions have been

extensively used to obtain state-of-the art results for seman-

tic segmentation [18, 19].

Training AutoDispNet architectures. For training the

AutoDispNet-CSS stack we follow the same training pro-

cedure as our baseline architecture [36]. For training

each refinement network, all previous network weights are

frozen [36]. Each network is trained for 600k iterations us-

ing the Adam [39] optimizer with a base learning rate of

1e − 4. The learning rate is dropped at 300k, 400k, 500k
with a factor of 0.5.

Hyperparameter tuning with BOHB. For

AutoDispNet-C we optimize the learning rate and

weight decay coefficient. Each function evaluation in

BOHB involves training a network with hyperparameters

sampled from a configuration space and evaluating it

on a validation set. In this case, we use the test split of

FlyingThings3D for validation and use Sintel as a test

set. For small classification networks this usually works

because training takes only a few hours. However, in our

case training is expensive. Training a single network in the

stack takes around 3.5 days on a single Nvidia GTX1080Ti
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(a) Normal (b) Reduction (c) Upsampling

Figure 4: Learned cells using Dense-DARTS. We visualize the extracted DAG for each cell type. Ik−1 and Ik−2 denote the

two input nodes and Ok is the output node. The numbered blue nodes depict intermediate nodes, where numbers indicate the

depth at which the node was placed in the DAG before extraction.
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Figure 5: Hyperparameter optimization procedure.

AutoDispNet-C EPE on FlyingThings3D of all sampled

configurations on the different budgets throughout the

BOHB optimization procedure. The black line shows the

best performing configurations (incumbent) as a function

of time. Note that the value on the x axis is the time when

each evaluation finished relative to the BOHB start time,

and not the training time per network.

GPU. Therefore, to make our function evaluations cheaper,

we optimize the learning rate and weight decay for a

restart schedule [48]. Specifically, we take a snapshot

of the network after 450k iterations and restart training

with a learning rate sampled by BOHB. The learning rate

is annealed to zero at 16.67k, 50k and 150k iterations

(depending on which of these budgets BOHB evaluates

the sampled configurations) following a cosine function

[48]. This reduces the training cost by a factor of four. The

optimized hyperparameter are then used to restart training

for successive networks in the stack. We found that using

BOHB to tune hyperparameters for the refinement network

did not boost performance (we include experimental results

in the supplemental).

We ran BOHB in parallel on 5 GPU workers for a total

number of 11 SuccessiveHalving iterations. We used the

default BOHB settings with η = 3 and budgets 16.67k, 50k

and 150k mini-batch iterations. This is equivalent to 26 full

function evaluations on 1 worker, i.e a total of 33.42 GPU

days. Figure 5 shows the EPE of all sampled configurations

throughout the optimization procedure. As we can see, for

the budgets of 16.67k and 50k iterations we do not notice

any major improvement over time. However, for the max-

imum number of iterations we observe that BOHB finds a

good region in the hyperparameter space and keeps sam-

pling around that area.

7.2. Results

Architecture FlyingThings3D Sintel Params FLOPs

(test) (train) (M) (B)

DispNet-C [36] 1.67 3.19 38 75
AutoDispNet-c 1.98 3.53 7 16
AutoDispNet-C 1.53 2.85 37 61
AutoDispNet-BOHB-C (1.51) 2.66 37 61

Table 1: Performance of a single network. We demonstrate

improved accuracy of our AutoDispNetC architecture over

our baseline DispNetC. End-point errors are shown on the

FlyingThings3D and Sintel datasets. The best performance

is obtained by optimizing the hyperparameters with BOHB.

The parentheses indicate that FlyingThings3D test split is

used to optimize hyperparameters.

Single network results. Table 1 shows the result of

the automatically optimized DispNet relative to the base-

line. AutoDispNet yields significantly stronger numbers

with about the same number of parameters. Additional hy-

perparameter optimization with BOHB yields another im-

provement on the Sintel dataset [11]. It is worth noting that

the networks were only trained and optimized on the Fly-

ingThings3D dataset, but not on any part of Sintel. This

shows that the automated optimization not only overfits bet-

ter to a particular dataset but improves the general capability

of the network.

Stacked network results. For state-of-the-art perfor-

mance on disparity estimation, it is necessary to stack mul-

tiple networks. Table 2 shows that the benefits of automated
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Number of Networks

1 2 3

DispNet C CS CSS

EPE 3.19 2.49 2.36
Params 38 77 116
FLOPS 75 135 195

AutoDispNet c cs css

EPE 3.53 2.80 2.54
Params 7 14 21
FLOPS 16 30 44

AutoDispNet C CS CSS

EPE 2.85 2.30 2.14
Params 37 74 111
FLOPS 61 110 160

AutoDispNet-BOHB C CS CSS

EPE 2.66 2.14 1.97

Params 37 74 111
FLOPS 61 110 160

Table 2: Performance across the stack. We show improved

performance of AutoDispNet architectures across the net-

work stack. End point errors are reported for the Sin-

tel dataset. AutoDispNet-CS matches the baseline perfor-

mance of three networks with only a single refinement net-

work. The AutoDispNet-BOHB-CS variant outperforms

the three network baseline in the second network itself.

optimization also carry over to the large stacked networks.

There is a significant improvement with both the architec-

ture optimization and the hyperparameter optimization. The

results also reveal that a stack of two networks is already

more accurate than a stack of three networks with the base-

line. Also the small version of AutoDispNet-css is compet-

itive with DispNet-CS, but runs with 3 times less FLOPS.

Comparison to the state of the art. Although we con-

sidered only a limited set of published architectural choices

for AutoDispNet, Table 3 reveals that it is competitive with

the state of the art on the common public benchmarks. Only

PSMNet with its coarse-to-fine strategy performs better on

KITTI 2012, but worse on KITTI 2015.

7.3. Applicability to other tasks

We also tested our approach on single view depth estima-

tion, another dense prediction task and compare with Laina

et al. [41], a state-of-the art single view depth estimation

method. The results are shown in Table 4. On SUN3D we

obtain an improvement over the baseline, however the re-

sults on NYU dataset are slightly worse. For more details

please see the supplement.

8. Conclusion

AutoDispNet extends efficient neural architecture search

to large-scale dense prediction tasks, in particular U-Net-

like architectures. It also leverages hyperparameter tun-

ing by running BOHB on the selected architecture. Re-

Method Sintel KITTI KITTI

(clean) (2012) (2015)

AEE AEE Out-noc AEE D1-all

train train test train test

Others

SGM [31] 19.62 10.06 - 7.21 10.86%
DispNet-CSS [36] 2.33 1.40 - 1.37 -

DispNet-CSS-ft [36] 5.53 (0.72) 1.82% (0.71) 2.19%
iResNet-i2 [43] - - 1.71% - -

EdgeStereo[65] - - - - 2.16%
PSMNet [16] - - 1.49% - 2.32%
GC-Net [38] - - 1.77% - 2.87%
SegStereo [71] - - 1.68% - 2.25%

Ours

AutoDispNet-css 2.53 1.03 - 1.19 -

AutoDispNet-CSS 2.14 0.93 - 1.14 -

AutoDispNet-BOHB-CSS 1.97 0.94 - 1.15 -

AutoDispNet-BOHB-CSS-ft 10.55 (0.45) 1.70% (0.50) 2.18%

Table 3: Benchmark results. We compare performance

of our networks on Sintel and KITTI datasets. For Sintel

and KITTI train sets, we report the average end-point error

(AEE). Out-noc and D1-all are metrics used to rank meth-

ods on the KITTI’12 and KITTI’15 leader boards. Out-noc

is the percentage of outliers exceeding an error threshold of

3px. D1-all is the same metric but applied on all regions

(occ and non-occ). Entries enclosed by parentheses indi-

cate if they were finetuned for the evaluated dataset. On

KITTI’15 we are comparable to our baseline. On KITTI’12

we outperform the baseline with a significant margin.

Method Params Abs. rel Sqr. rel Rmse Rmse (log)

SUN3D

Laina et al. [41] 63M 0.272 0.248 0.703 0.500

AutoDepth-S 63M 0.234 0.202 0.602 0.453

AutoDepth-s 38M 0.234 0.210 0.614 0.518

NYU-Depth-V2

Laina et al. [41] 63M 0.127 - 0.573 0.195

AutoDepth-BOHB-S 63M 0.170 0.141 0.599 0.216

Table 4: Results on single view depth estimation. Auto-

Depth represents a network found using Dense-DARTS.

(For details about the metrics see [22])

sults show that this sort of optimization leads to substan-

tial improvements over a manually optimized baseline and

reaches state-of-the-art performance on the well-optimized

task of disparity estimation. This optimization did not re-

quire a huge compute center but was run on common com-

pute hardware, i.e., it can be run by everybody. The total

time taken to obtain the AutoDispNet-BOHB-CSS archi-

tecture is approximately 42 GPU days.
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