
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Autoencoders, Unsupervised Learning, and Deep
Architectures

Pierre Baldi
Department of Computer Science
University of California, Irvine

pfbaldi@uci.edu

Abstract

To better understand deep architectures and unsupervised learning, uncluttered by hard-
ware details, we develop a general autoencoder framework for the comparative study of
autoencoders, including Boolean autoencoders. We derive several results regarding au-
toencoders and autoencoder learning, including results on learning complexity, vertical
and horizontal composition, and fundamental connections between critical points and clus-
tering. Possible implications for the theory of deep architectures are discussed.

1 Introduction

Autoencoders are simple learning circuits which aim to transform inputs into outputs with the least possi-
ble amount of deformation. While conceptually simple, they play an important role in machine learning.
Autoencoders were first introduced in the 1980s by Hinton and the PDP group [18] to address the prob-
lem of “backpropagation without a teacher”, by using the input data as the teacher. Together with Hebbian
learning rules, autoencoders provide one of the fundamental paradigms for unsupervised learning and for
addressing the mystery of how synaptic changes induced by local biochemical events can be coordinated in
a self-organized manner to produce global learning and intelligent behavior. More recently, autoencoders
have taken center stage again in the “deep architecture” approach [11, 12, 3, 4], where autoencoders in the
form of Restricted Boltzmann Machines (RBMS) are stacked and trained bottom up in unsupervised fash-
ion, followed by a supervised learning phase to train the top layer and fine-tune the entire architecture. This
largely unsupervised approach has been shown to lead to state-of-the-art results on a number of challenging
classification and regression problems.

In spite of the interest they have generated, and with a few exceptions [2, 20], little theoretical understanding
of autoencoders and deep architectures has been obtained to this date. Additional confusion may have been
created by the use of the term “deep”. A deep architecture from a computer science perspective should
have Nα layers, for some small α > 0 (N being the size of the input vectors). But that is not the case
in the architectures described in [11, 12], which seem to have constant or at best logarithmic depth, the
distinction between finite and logarithmic depth being almost impossible for the typical values of N used
in computer vision, speech recognition, and other typical problems. Thus the main motivation behind this
work is to derive a better theoretical understanding of autorencoders, with the hope of gaining better insights
into the nature of unsupervised learning and deep architectures. If general theoretical results about deep

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

architectures exist, these are unlikely to depend on a particular hardware realization, such as RBMs. Similar
results ought to be true for alternative, or more general, forms of computation. Thus the strategy proposed
here is to introduce and study other autoencoder circuits, in particular Boolean autoencoders which can be
viewed as the most primitive form of non-linear autoencoders. The expectation is that certain properties
of autoencoders and deep architectures may be easier to identify and understand mathematically in simpler
hardware embodiments, and that the study of different kinds of autoencoders may facilitate abstractions and
identifications of common properties.

For this purpose, we begin in Section 2 by providing a fairly general framework for studying autoencoders.
In Section 3, we review and extend the results of [2] on linear autoencoders. In the light of deep architectures,
we look at novel properties such a vertical composition (stacking) and connection of critical points to stability
under recycling (feeding outputs back to the input layer). In Section 4, we study Boolean autoencoders, and
prove several properties including their fundamental connection to clustering. In Section 5, we address the
complexity of Boolean autoencoder learning. In Section 6, we study autoencoders with large hidden layers,
and introduce the notion of horizontal composition of autoencoders. In Section 7, we address other classes
of autoencoders and generalizations. Finally, in Section 8, we summarize the results and their possible
consequences for the theory of deep architectures.

Figure 1: NHN Autoencoder Architecture.

2 A General Autoencoder Framework

A fairly general framework for differen kinds of autoencoders can be derived by considering an architecture
with an input layer of size N , a hidden layer of size H , and an output layer of size N (Figure 1), together
with a set of input training vectors X = {x1, . . . ,xM}, a function B from the input layer to the hidden
layer, and a function A from the hidden layer to the output layer. When presented with an input vector x,
the circuit produces a hidden vector h = B(x) and an output vector y = AB(x). The goal of learning is to
minimize an error or energy function E in the form

minE(A,B) = min
A,B

M∑
i=1

∆(yi,xi) = min
A,B

M∑
i=1

∆
(
AB(xi),xi

)
(1)

where ∆ is a distance or dissimilarity measure. Examples of useful measures are the squared Euclidean
distance ∆ = L2

2 and the Hamming distance ∆ = H . Other common measures are the Lp measures. We
assume that the transformations A and B belong respectively to two classes A and B of transformations.
The components of the x vectors are in a set F, and the components of the h vectors are in a set G. In
most cases, F = G and in most cases F and G are fields. When F and G are fields, then one can consider
linear autoencoders where the transformations A and B are defined by their matrices. For brevity, we refer

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

to these architectures as NHN architectures. Initially we also assume that H < N , corresponding to the
regime where the autoencoder tries to implement some form of compression. But the case of N ≤ H is also
of interest and will be considered later in the paper together with more complex architectures. Obviously,
from this general framework, different kinds of autoencoders can be derived depending, for instance, on
the choice of sets F and G, transformation classes A and B, error function E, as well as the presence of
additional constraints, such as regularization. To the best of our knowledge, neural network autoencoders
were first introduced by the PDP group as a special case of this definition, with all vectors components
in F = G = R and A and B corresponding to matrix multiplications followed by non-linear sigmoidal
transformations with an L2

2 error function. As an approximation to this case, in the next section, we study
the linear case with F = G = R.

3 The Linear Autoencoder

We partly restate without proof the results derived in Baldi and Hornik [2], but in a way that will highlight
the connections to other kinds of autoencoders, and extend their results from a deep architecture perspective.
We use At to denote the transpose of any matrix A and assume that the data X is centered.

1) Group Invariance. Every solution is defined up to multiplication by an invertible H ×H matrix C, or
equivalently up to a change of coordinates in the hidden layer, since AC−1CB = AB.
2) Problem Complexity. While the cost function is quadratic and all the operations are linear, the overall
problem is not convex because the hidden layer limits the rank of the overall transformation to be at most
H , and the set of matrices of rank H or less is not convex. However the problem can be solved analytically.
3) Fixed Layer Solution. The problem becomes convex if A is fixed, or if B is fixed. When A
is fixed, assuming A has rank H and that the data covariance matrix ΣXX is invertible, then B∗ =
B(A) = (AtA)−1At. When B is fixed, assuming B has rank H and that ΣXX is invertible, then
A∗ = A(B) = ΣXXBt(BΣXXBt)−1.
4) The Landscape of E. The overall landscape of E has no local minima. All the critical points where the
gradient of E is zero, correspond to projections onto subspaces associated with H eigenvectors of the covari-
ance matrix ΣXX . Projections onto the subspace associated with the H largest eigenvalues correspond to the
global minimum and Principal Component Analysis. All other critical point, corresponding to projections
onto subspaces associated with other set of eigenvalues, are saddle points. More precisely, if I = i1, . . . , ip
(1 ≤ ii < . . . < iH ≤ N ) is any ordered list of indices, let UI = [u1, . . . ,uH ] denote the matrix formed
by the orthonormal eigenvectors of ΣXX associated with the eigenvalues λi1 , . . . , λiH . Then two matrices
A and B of rank H define a critical point if and only if there is a set I and an invertible H ×H matrix C
such that A = UIC, B = C−1Ut

I , and W = AB = PUI , where PUI is the orthogonal projection onto
the subspace spanned by the columns of UI . At the global minimum, assuming that C = I, the activities
in the hidden layer are given by the dot products ut

1x . . .ut
Hx and correspond to the coordinates of x along

the first H eigenvectors of ΣXX .
5) Clustering. Thus the global minimum performs a form of clustering by hyperplane: for any given vector
x, all the vectors of the form x+Ker(B) are mapped onto the same vector y = AB(x) = AB(x+KerB).
6) Recycling Stability. At any critical point, recycling outputs is stable at the first pass: (AB)n)(x) =
AB(x) = UIU

t
I(x) for any n ≥ 1.

7) Generalization. At any critical point, for any x, AB(x) is equal to the projection of x onto the corre-
sponding subspace and the corresponding error can be expressed easily.
8) Vertical Composition. The global minimum of E remains the same if additional matrices of rank greater
or equal to H are introduced between the input layer and the hidden layer and/or the hidden layer and the
output layer. Thus there is no reduction in overall distortion by introducing such matrices. However, if such
matrices are introduced for other reasons, there is a composition law so that the optimum solution for a deep
autoencoder with a stack of matrices, can be obtained by combining the optimal solutions of shallow au-
toencoders. More precisely, consider an autoencoder network with layers of size N,H1,H,H1, N (Figure

3



141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

2) with N > H1 > H . Then the optimal solution of this network can be obtained by first computing the
optimal solution for an N,H1, N autoencoder network, and combining it with the optimal solution of an
H1,H,H1 autoencoder network using the activity in the hidden layer of the first network as the training
set for the second network, exactly as in the case of stacked RBMs [11, 12]. This is because the projection
onto the subspace spanned by the top H eigenvectors can be composed by a projection onto the subspace
spanned by the top H1 vectors, followed by a projection onto the subspace spanned by the top H vectors.
9) External Targets. With the proper adjustments [2], the results above remain essentially the same if a set
of target output vectors y1, . . . ,yM is provided, instead of x1, . . . ,xM serving as the targets.
10) Symmetries and Hebbian Rules. At the global minimum, for C = I, A = Bt. The constraint A = Bt

can be imposed during learning by “weight sharing” and is consistent with a Hebbian rule that is symmetric
between the pre- and post synaptic neurons and is applied to the network by clamping the output units to be
equal to the input units (or having a folded autoencoder).

Figure 2: Vertical Composition of Autoencoders.

4 The Boolean Autoencoder

The Boolean autoencoder is perhaps the simplest form of non-linear autoencoder. In the purely Boolean
case, we have F = G = {0, 1}, A and B are unrestricted Boolean function, and ∆ is the Hamming distance.
Many variants of this problem can be obtained by restricting the classes A and B of Boolean functions, for
instance by bounding the connectivity. The linear case with F = G = {0, 1} = F2, where F2 is the Galois
field with two elements, is a special case of the Boolean case and will be discussed later. For lack of space,
proofs can only be sketched here.

1) Group Invariance. Every solution is defined up to a permutation of the 2H points of the hypercube HH .
This is because the Boolean function are unrestricted and therefore their lookup tables can accommodate
any such permutation, or relabeling of the hidden states.
2) Problem Complexity. In general, the overall optimization problem is NP-hard. To be more precise, one
must specify the regime of interest characterized by which variables (out of N , M , and H) are going to
infinity. Obviously one must have N → ∞. If H does not go to infinity, then the problem can be polyno-
mial, for instance when the centroids must belong to the training set. If H → ∞ and M is a polynomial in
N , which is the case of interest in machine learning where typically M is a low degree polynomial in N ,
then the problem of finding the best boolean mapping is NP hard (or the corresponding decision problem is
NP-complete). A proof of this is given in the next section.
3) Fixed Layer Solution. If the A mapping is fixed, then it is easy to find the optimal B mapping. Con-
versely if the B mapping is fixed, it is easy to find the optimal A mapping. Assume that A is fixed. Then
for each of the 2H possible Boolean vectors h1, . . . ,h2H of the hidden layer, A(h1) . . . ,A(h2H ) provide
2H points in the hypercube HN . One can build the corresponding Voronoi partition by assigning each
point to its closest centroid, breaking ties arbitrarily, thus forming a partition of HN into 2H corresponding
clusters C1, . . . , C2H , with Ci = CV or(A(hi)). The optimal mapping B∗ is then easily defined by setting
B∗(x) = hi for any x in Ci = CV or(A(hi)). Conversely, assume that B is fixed. Then for each of the
2H possible Boolean vectors h1, . . . ,h2H of the hidden layer, let CB(hi) = {x ∈ HN : B(x) = hi}. To
minimize the reconstruction error, A∗ must map hi onto a point y of HN minimizing the sum of Hamming

4



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

distances to points in X ∩ CB(hi). It is easy to see that the minimum is realized by the component-wise
majority vector A∗(hi) = Majority[X ∩ CB(hi)] (breaking ties arbitrarily).
4) The Landscape of E. In general E has many local minima (e.g with respect to the Hamming distance ap-
plied to the lookup tables of A and B). Critical points are defined to be the points satisfying simultaneously
the equations above for A∗ and B∗.
5) Clustering. The overall optimization problem is a problem of optimal clustering. The clustering is de-
fined by the transformation B. Approximate solutions can be sought by many algorithms, such as k-means,
belief propagation [6], minimum spanning paths and trees [19], and hierarchical clustering.
6) Recycling Stability. At any critical point, recycling outputs is stable at the first pass: for any x
(AB)n)(x) = AB(x) and equal to the majority vector of the corresponding Voronoi cluster.
7) Generalization. At any critical point, for any x, AB(x) is equal to the centroid of the corresponding
Voronoi cluster and the corresponding error can be expressed easily.
8) Vertical Composition. The global optimum remains the same if additional Boolean layers of size equal
or greater to H are introduced between the input layer and the hidden layer and/or the hidden layer and the
output layer. Thus there is no reduction in overall distortion E by adding such layers. Cconsider a Boolean
autoencoder network with layers of size N,H1,H,H1, N (Figure 2) with N > H1 > H . Then the optimal
solution of this network can be obtained by first computing the optimal solution for an N,H1, N autoen-
coder network, and combining it with the optimal solution of an H1, H,H1 autoencoder network using the
activity in the hidden layer of the first network as the training set, exactly as in the case of stacked RBMs.
The reason for this is that the global optimum correspond to clustering into 2H clusters, and this can be
obtained by first clustering into 2H1 clusters, and then clustering these clusters into 2H clusters. The stack
of Boolean functions performs hierarchical clustering with respect to the input space.
9) External Targets. With the proper adjustments, the results above remain essentially the same if a set of
target output vectors y1, . . . ,yM is provided, instead of x1, . . . ,xM serving as the targets. To see this, con-
sider a deep architecture consisting of a stack of autoencoders along the lines of [11]. For any activity vector
h in the last hidden layer before the output layer, compute the set of points C(h) in the training set that are
mapped to h by the stacked architecture. Assume, without any loss of generality, that C(h) = {x1, . . . ,xk}
with corresponding targets {y1, . . . ,yk}. Then it is easy to see that the final output for h produced by the
top layer ought to be the centroid of the targets given by Majority(y1, . . . ,yk)

5 Clustering Complexity on the Hypercube

The complexity of various clustering problems, in different spaces, or with different objective functions,
has been studied in the literature. There are primarily two kind of results: (1) graphical results derived on
graphs G = (V,E,∆) where the dissimilarity ∆ is not necessarily a distance; and (2) geometric results
derived in the Euclidean space Rd where ∆ = L2

2, L2, or L1. In general, the clustering decision problem
is NP-complete and the clustering optimization problem is NP-hard, except in some simple cases involving
either a constant number K of clusters or clustering in the 1-dimensional Euclidean space. In general, the
results in Euclidean spaces are harder to derive than the results on graphs. When polynomial time algorithms
exist, geometric problems tend to have faster solutions taking advantage of the geometric properties. None
of the existing complexity theorems directly addresses the problem of clustering on the hypercube with the
Hamming distance.

To deal with the hypercube clustering problem one must first understand which quantities are allowed to go
to infinity. If N is not allowed to go to infinity, then the number M of training examples is also bounded by
2N and, since we are assuming H < N , there is no quantity that can scale. Thus by necessity we must have
N → ∞. We must also have M → ∞. The case of interest for machine learning is when M is a low degree
polynomial of N . Obviously the hypercube clustering problem is in NP, and it is a special case of clustering
in RN . Thus the only important problem to be addressed is the reduction of a known NP-complete problem
to a hypercube clustering problem.

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

For the reduction, it is natural to start from a known NP-complete graphical or geometric clustering problem.
In both case, one must find ways to embed the original problem with its original metric into the hypercube
with the Hamming distance. There are theorems for homeomorphic or squashed-embedding of graphs into
the hypercube [9, 22], however these emebeddings do not map the original dissimilarity function onto the
the Hamming metric. Thus here we prefer to start from some of the known geometric results and use a
strict cubical graph embedding. A graph is cubical if it is the subgraph of some hypercube Hd for some d
[8, 13]. Although deciding whether a graph is cubical is NP-complete [1], there is a theorem [10] providing
a necessary and sufficient condition for a graph to be cubical. A graphG(V,E) is cubical and embeddable in
Hd if and only if it is possible to color the edges of G with d colors such that: (1) All edges incident with a
common vertex are of different color; (2) In each path of G, there is some color that appears an odd number
of times; and (3) In each cycle of G, no color appears an odd number of times.

To sketch the final reduction, we start from the problem of clustering M points in the plane R2 using cluster
centroids and the L1 distance, which is NP-complete [17] by reduction from 3-SAT [7] when K ∼ M ϵ

(ϵ > 0) (see, also related results in [14, 21]). Without any loss of generality, we can assume that the points
in these problems are on the vertices of a square lattice. Using the theorem in [10], one can show that a
n × m square lattice in the plane can be embedded into Hn+m. In fact, an explicit embedding is given in
Figure 3. It is easy to check that the L1 or Manhattan distance between any two points on the square lattice
is equal to the corresponding Hamming distance in Hn+m. This polynomial reduction completes the proof
that if the number of cluster is M ϵ = 2H (equivalent to H = ϵ log2 M ≈ C logN ) then the hypercube
clustering problem associated with the Boolean autoencoder is NP-hard. If the numbers K of clusters is
fixed and the centroids must belong to the training set, there are only

(
M
K

)
∼ MK possible choices for the

centroids inducing the corresponding Voronoi clusters. This yields a trivial, albeit not efficient, polynomial
time algorithm. When the centroids are not required to be in the training set, the same result should hold by
adapting the corresponding theorems in Euclidean space.

Figure 3: Embedding of a 3 × 4 Square Lattice onto H7 by Edge Coloring. All edges in the same row or
column have the same color. Each color correspond to one hypercube dimension.

6 The Case H ≥ N

When the hidden layer is larger than the input layer and F = G, there is an optimal 0-distortion solution
involving the identity function. Thus this case is interesting only if additional constraints are added to the
problem. These can come in the form of regularization, for instance to ensure sparsity of the hidden-layer
representation, or restrictions on the classes of functions A and B, or noise in the hidden layer (see next
section). When these constraints force the hidden layer to assume only K different values and K < M ,
for instance in the case of a sparse Boolean hidden layer, then the previous analyses hold and the problem
reduces to a K clustering problem.

6



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

In this context, in addition to vertical composition, there is also a natural horizontal composition for au-
toencoders that can be used to create large hidden layer representations (Figure 4) simply by horizontally
combining autoencoders. Two (or more) autoencoders with architecture NH1N and NH2N can be trained
and the hidden layers can be combined to yield an expanded hidden representation of size H1 + H2 that
can then be fed to the subsequent layers of the overall architecture. Differences in the H1 and H2 hidden
representations could be introduced by many different mechanisms, for instance using different learning al-
gorithms, different initializations, different training samples, different learning rates, etc. It is also possible
to envision algorithms that incrementally add hidden units to the hidden layer. In the linear case over R, for
instance, a first hidden unit can be trained to extract the first principal component, a second hidden unit can
then be added to extract the second principal component, and so forth.

Figure 4: Horizontal Composition of Autoencoders to Expand the Hidden Layer Representation.

7 Other Generalizations

Within the general framework introduced here, other kinds of autoencoders can be considered. First, one
can consider mixed autoencoders with different constraints on F and G, or different constraints on A and
B. A simple example is when the input and output layers are real F = R and the hidden layer is binary
G = {0, 1} (and ∆ = L2

2). It is easy to check that in this case, as long as 2H = K < M , the autoencoder
aims at clustering the real data into K clusters and all the results obtained in the Boolean case are applicable
with the proper adjustments. For instance, the centroid associated with a hidden state h should be the center
of mass of the input vectors mapped onto h. In general, this mixed autoencoder is also NP hard and, from a
probabilistic view point, it corresponds to a mixture of K Gaussians model.

A second natural direction is to consider autoencoders that are linear but over fields other than the real
numbers, for instance over the field C of complex numbers, or over finite fields. For all these linear au-
toencoders, the Kernel of B plays an important role since inputs vectors are basically clustered modulo this
kernel. These autoencoders are not without theoretical and practical interests. Consider the linear autoen-
coder over the Galois field with two elements GF (2) = F2. It is easy to see that this is a special case of
the Boolean autoencoder, where the Boolean functions are restricted to parity functions. This autoencoder
can also be seen as implementing a linear code [16]. When there is noise in the ‘transmission” of the hidden
layer and H > N , one can consider solutions where N units in the hidden layer correspond to the identity
function and the remaining H −N units implement additional parity check bits that are linearly computed
from the input and used for error correction. Thus all well known linear codes, such as Hamming or Reed-
Solomon codes, can be viewed within this linear autoencoder framework. While the linear autoencoder over
F2 will be discussed elsewhere, it is worth noting that it also yields an NP-hard problem. This can be seen by
considering that finding the minimum (non-zero) weight vector in the kernel of a binary matrix, or the radius
of a code, are NP-complete problems [15, 5]. A simple classification of autoencoders is given in Figure 5.

7



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Figure 5: Simple Autoencoder Classification.

8 Discussion

Studying the linear and Boolean autoencoder in detail enables one to gain a general perspective on au-
toencoders, define key properties that are shared by different autoencoders and that ought to be checked
systematically in any new kind of autoencoder (e.g. group invariances, clustering, recycling stability). The
general emerging picture is that autoencoders learning is in general NP-complete 1 except in simple but im-
portant cases (eg. linear over R, Boolean with fixed K) and that in essence all autoencoders are performing
some form of clustering (N < H). While autoencoders and Hebbian rules provide unsupervised learning
implementations, it is clustering that provides the basic conceptual operation that underlies them.

RBMs and their efficient contrastive learning algorithm may provide an elegant and efficient form of au-
toencoder and autoencoder learning, but it is doubtful that there is anything special about RBMs at a deeper
conceptual level. Thus it ought to be possible to derive results comparable to those described in [11, 12] by
stacking other kinds of autoencoders, and more generally by hierarchically stacking a series of clustering
algorithms using vertical composition, perhaps also in combination with horizontal composition. Simula-
tions along these lines are in progress. As pointed out in the previous sections, it is easy to add a top layer
for supervised regression or classification tasks on top of the hierarchical clustering stack. In aggregate,
these results suggest that: (1) the so-called deep architectures may in fact have a non-trivial but constant
(or logarithmic) depth, which is also consistent with what is observed in sensory neuronal circuits; (2) the
fundamental unsupervised operation behind deep architectures, in one form or the other, is clustering, which
is composable both horizontally and vertically; and (3) the generalization properties of deep architectures
may be easier to understand when ignoring many of the hardware details, in terms of the most simple forms
of autoencoders (e.g Boolean), or in terms of the more fundamental underlying clustering operations.

1RBM learning is NP-complete by similarity with minimizing a quadratic form over the hypercube.

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

References
[1] F. Afrati, C. Papadimitriou, and G. Papageorgiou. The complexity of cubical graphs. Automata,

Languages and Programming, pages 51–57.
[2] P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples

without local minima. Neural Networks, 2(1):53–58, 1988.
[3] Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle,

D. DeCoste, and J. Weston, editors, Large-Scale Kernel Machines. MIT Press, 2007.
[4] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy

Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine Learning
Research, 11:625–660, February 2010.

[5] M. Frances and A. Litman. On covering problems of codes. Theory of Computing Systems, 30(2):113–
119, 1997.

[6] B.J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315(5814):972,
2007.

[7] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman San Francisco, 1979.
[8] F. Harary. Cubical graphs and cubical dimensions. Computers & Mathematics with Applications,

15(4):271–275, 1988.
[9] J. Hartman. The homeomorphic embedding of Kn in the m-cube* 1. Discrete Mathematics, 16(2):157–

160, 1976.
[10] I. Havel and J. Morávek. B-valuations of graphs. Czechoslovak Mathematical Journal, 22(2):338–351,

1972.
[11] G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief nets. Neural

Computation, 18(7):1527–1554, 2006.
[12] G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Sci-

ence, 313(5786):504, 2006.
[13] M. Livingston and Q.F. Stout. Embeddings in hypercubes. Mathematical and Computer Modelling,

11:222–227, 1988.
[14] M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means problem is NP-hard. WALCOM:

Algorithms and Computation, pages 274–285.
[15] R. McEliece and H. van Tilborg. On the inherent intractability of certain coding problems(Corresp.).

IEEE Transactions on Information Theory, 24(3):384–386, 1978.
[16] R. J. McEliece. The Theory of Information and Coding. Addison-Wesley Publishing Company, Read-

ing, MA, 1977.
[17] N. Megiddo and K.J. Supowit. On the complexity of some common geometric location problems.

SIAM J. COMPUT., 13(1):182–196, 1984.
[18] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations by error propaga-

tion. In Parallel Distributed Processing. Vol 1: Foundations. MIT Press, Cambridge, MA, 1986.
[19] JL Slagle, CL Chang, and SR Heller. A clustering and data reorganization algorithm. IEEE Transac-

tions on Systems, Man and Cybernetics, 5:121–128, 1975.
[20] I. Sutskever and G.E. Hinton. Deep, narrow sigmoid belief networks are universal approximators.

Neural Computation, 20(11):2629–2636, 2008.
[21] A. Vattani. A simpler proof of the hardness of k-means clustering in the plane. UCSD Technical Report.
[22] P.M. Winkler. Proof of the squashed cube conjecture. Combinatorica, 3(1):135–139, 1983.

9


