Autoepistemic Belief-revision for Integration of
Mutually Inconsistent Knowledge

Zoran Majki¢/ Copyright IICAI

Applied Mathematics Department
ETF, University of Belgrade, Serbia
majkic@etf.bg.ac.yu
http://www.geocities.com/zoran_it/

Abstract. It is well known that the standard 3-valued logic programs with con-
straints can be inconsistent. Because of that we can not use it for a data integration
where mutually inconsistent information comes from different data sources. We
argue that a natural way to answer to this challenge, without collapsing all sen-
tences into inconsistency, is by passing to 4-valued bilattice-based logic (with
logic values: true, false, unknown and possible), and by interpreting the incon-
sistent information with a logic value "possible”. Differently from the paracon-
sistent approach we adopt the belief-revision approach, but in such many-valued
repairing of inconsistent information we do not eliminate mutually inconsistent
information as in the case of a 2-valued database repairing.

The original contribution of this paper is an Autoepistemic Many-valued Logic
with intuitionistic implication, epistemic negation and Moore’s modal operator:
the inference reasoning of this logic is able to change its belief in the truth value
of ground facts which come from external sources, and to preserve its internal
consistency. We show that each Autoepistemic Logic Program is consistent and
we define its minimal many-valued Herbrand models.

1 Introduction

As classical logic semantics decrees that inconsistent theories have no models, classical
logic is not the appropriate formalism for reasoning about inconsistent databases: some
inconsistences should not be allowed to significantly alter the intended meaning of such
databases. Once one has made the transition from classical 2-valued logic, with stable
models, [1,2], to partial models [3,4], or three-valued logic models [5,6,7,8], allowing
incomplete information, it is a small step towards allowing models admitting inconsis-
tent information. Doing so provides a natural framework for the semantic understanding
of logic programs that are distributed over several sites, with possible conflicting infor-
mation coming from different places.

So far, research in many-valued logic programming has proceeded along different di-
rections: Signed logics [9,10] and Annotated logic programming [11,12,13] which
can be embedded into the first, Bilattice-based logics, [14,15], and Quantitative rule-
sets, [16]. Earlier studies of these approaches quickly identified various distinctions
between these frameworks. For example, one of the key insights behind bilattices was
the interplay between the truth values assigned to sentences and the (non classic) no-
tion of implication in the language under considerations. Thus, rules (implications) had

weights (or truth values) associated with them as a whole. The problem was to study
how truth values should be propagated ”across” implications. Annotated logics, on the
other hand, appeared to associate truth values with each component of an implication
rather than the implication as a whole. Roughly, based on the way in which uncertainty
is associated with facts and rules of a program, these frameworks can be classified into
implication based (IB) and annotation based (AB).

In the IB approach a rule is of the form A «—® By, .., B,, , which says that the certainty
associated with the implication is a.. Computationally, given an assignment I of logical
values to the B;s, the logical value of A is computed by taking the “conjunction” of
logical values I(B;) and then somehow “’propagating” it to the rule head A.

In the AB approach a rule is of the form A : f(031,..,8,) < B1 : B1,..,Bn : Bn »
which asserts “the certainty of the atom A is least (or is in) f(01, .., 5), Whenever the
certainty of the atom B; is at least (or is in) 3;, 1 < i < n”, where f is an n-ary com-
putable function and [3; is either constant or a variable ranging over many-valued logic
values.

The comparison in [17] shows:

1- while the way implication is treated on the AB approach is closer to the classical
logic, the way rules are fired in the IB approach has definite intuitive appeal.

2- the AB approach is strictly more expressive than IB. The down side is that query
processing in the AB approach is more complicated, e.g. the fixpoint operator is not
continuous in general, while it is in the IB approaches.

From the above points discussed in [17], it is believed that IB approach is easier to use
and is more amenable for efficient implementations.

The other problem is that the Fitting fixpoint semantics for IB logic programs, based
exclusively on a bilattice-algebra operators, suffer two drawbacks: the lack of the notion
of tautology (bilattice negation operator is an epistemic negation) leads to difficulties in
defining proof procedures and to the need for additional complex truth-related notions
as “formula closure”; there is an unpleasant asymmetry in the semantics of implication
(which is strictly 2-valued) w.r.t. all other bilattice operators (which produce any truth
value from the bilattice) - it is a sign that strict bilattice language is not enough expres-
sive for logic programming, and we need some reacher (different) syntax for logical
programming.

What we need is a right definition for the many-valued implication, not present in a
bilattice algebra operators, and the more flexible consideration of the truth of the given
ground facts. We can consider a Data integration system (DIS) as an intelligent agent
with a knowledge base and a proper reasoning capability, which integrates the (exter-
nal) extensions of source databases represented by the set of facts (ground atoms). Thus,
instead of considering such external ground facts rigidly true, such intelligent DIS can
create its own many-valued belief for such facts in order to preserve the internal con-
sistency. For instance, if two facts from two different sources are mutually inconsistent
(when they are considered as frue information) w.r.t. the DIS knowledge system, they
can be believed as possible (4-th logic value) information.

The purpose of this paper is to show that the Modal autoepistemic Moore’s operator
defined for the 4-valued Belnap’s bilattice, together with the intuitionistic semantics for
many-valued logic implication, can be unified into a simple autoepistemic many-valued

logic programming language, which is capable to reason with inconsistency.

The approach taken in this paper is minimalistic: we make a minimal extension of the
3-valued logic programming into the 4-valued (Belnap’s bilattice) logic, and the exten-
sion of the standard logic programming by modal formulae for ground facts only. Such
effort is justified by the very intuitive and natural approach to resolve inconsistency and
by the possibility to obtain the simple monotonic w.r.t. the knowledge ordering “imme-
diate consequence operator” for the least-fixpoint calculation of the semantics of such
autoepistemic logic programs.

Other important point is that we use the 4-valued Belnap’s bilattice, which is used also
in the paraconsistent logic programming, but differently from such approach we use the
belief-revision where we change the truth of some ground facts (which make inconsis-
tent logic theory) from their initial value ¢ (true) into value T (possible).

We argue that such logic will be good framework for supporting the data integration
systems with key and foreign key integrity constraints with incomplete and inconsistent
source databases, with a minor computational complexity for query-answering [18].
Such issue will not be considered here because of space limitations, but intuitively
comes from the fact that the unique Herbrand many-valued canonical model, which
represents the semantics for the family of Autoepistemic logic programs defined in this
paper, is more simple framework for a query answering than the 2-valued framework
of data-repairing where the number of models (minimal repairs) can be very high. We
remark that in our framework we can have not only certain answers to user queries, but
also answers with a possible logic value, so that in query-answering we do not lose any
information in data sources.

The plan of this paper is the following: After brief introduction to Belnap-Ginsberg bi-
lattices and modal operators for bilattices (nondeductive Moor’s modal operator M),
in Section 3 we discuss the semantic issue for bilattice-based repairs of inconsistent
information: i.e., derivation of true, false and possible information also. In Section 4 we
define the 4-valued bilattice inference requirements and the many-valued intuitionistic
implication for rules of a 4-valued logic programming, which is used for modal formu-
lae over source-data facts. Finally, in Section 5 we present the syntax of the autoepis-
temic programming logic, their semantics based on the set of minimal (w.r.t. the belief
revision) 4-valued Herbrand models and their canonical 4-valued Herbrand model se-
mantics.

2 Preliminaries: Introduction to Belnap/Ginsberg’s bilattice

In [19], Belnap introduced a logic intended to deal in a useful way with inconsistent
or incomplete information. It is the simplest example of a non-trivial bilattice and it
illustrates many of the basic ideas concerning them. We denote the four values as B =
{t, f, T, L}, where t is true, f is false, T is inconsistent (both true and false) or possible
,and _L is unknown.

As Belnap observed, these values can be given two natural orders: truth order, <;, and
knowledge order, <p, such that f <, T <;t, f <; L <;t,and L < f <y T,
1 <y t < T. This two orderings define corresponding equivalences =; and =g. Thus
any two members «, 3 in a bilattice are equal, « = (, if and only if (shortly ’iff’)

a=; fand a = 8.

Meet and join operators under <, are denoted A and V; they are natural generalizations
of the usual conjunction and disjunction notions. Meet and join under <j are denoted
® (consensus, because it produces the most information that two truth values can agree
on) and & (gullibility, it accepts anything it’s told). We have that:

fet=1, fet=T, TAL=fand T VL=t

There is a natural notion of truth negation, denoted ~, (reverses the <, ordering, while
preserving the <j ordering): switching f and ¢, leaving | and T, and corresponding
knowledge negation, denoted —, (reverses the <; ordering, while preserving the <,
ordering):switching | and T, leaving f and ¢. These two kind of negation commute:
— ~ ¢ =~ —z for every member x of a bilattice.

It turns out that the operations A,V and ~, restricted to By = {f,t, L} are exactly
those of Kleene’s strong 3-valued logic. A more general information about bilattice
may be found in [15]. The Belnap’s 4-valued bilattice is infinitary distributive. In the
rest of this paper we denote by B, (or simply B) this 4-valued Belnap’s bilattice.

A (ordinary) Herbrand interpretation is a many-valued mapping I : Hp — B.If P is
a many-valued logic program with the Herbrand base Hp , then the ordering relations
and operations in a bilattice B4 are propagated to the function space B f P that is the set
of all Herbrand interpretations (functions), [= vp : Hp — By.

Definition 1. Ordering relations are defined on the Function space Bf P pointwise, as
follows: for any two Herbrand interpretations vg,wp € Bf r

L.vg <t wp ifvg(A) <, wp(A)forall A€ Hp.

2.vp <, wp ifvg(A) <y wp(A)forall A€ Hp.

3. ~wpg, suchthat (~vg)(A) =~ (vg(A)): —vp, suchthat (—vg)(A) = —(vp(A)).

It is straightforward [15] that this makes a function space Bf itself a complete infini-
tary distributive bilattice.

Definition 2. [I15] Let P be a logic program, with P* the set of all ground instances
of members of P, and a B-valuation I : Hp — B,. We define the monotonic in <y,
immediate consequence operator Pp : Bf P Bf P such that for each A € Hp,

1. if A is not the head of any member of P*, ®p(I)(A) = f,

2. otherwise, Pp(I)(A) =\/{I(B)| A« Bisin P*}.

Ginsberg [14] defined a world-based bilattices, considering a collection of worlds W,
where by world we mean some possible way of things might be:

Definition 3. [14] A pair [U,V] € P(W) x P(W) of subsets of W (here P(W)
denotes the powerset of the set W) express truth of some sentence p, with <;, <y, truth
and knowledge preorders relatively, as follows:

1. U is a set of worlds where p is true, V is a set of worlds where p is false, P = U (\V
is a set where p is inconsistent (both true and false), and W — (U \J V) is a set where
p is unknown.

2 [0,V < [U, W] iff UCUyand Vi CV

30U V] <, [U,V1] iff UCUiand V C V.

The bilattice operations associated with <, and <y, are:

4. [UVINUL] = [UNUL VUL [UV]VI[UL W] = [UUG, VAV

SUVIe[UnVi] = [UNULVAW] [UV]I+[U, V] = [UUU,VUW]
6.~ (U V] = [V,U]

Let denote by By, the set P(W) x P(W), then the structure (By , A\, V,®,+,~) is a
bilattice.

This definition is well suited for the 3-valued Kleene logic, but not for the 4-valued
logic used to overcome “localizable” inconsistencies. It is not useful, mainly for two
following reasons:

1. The inconsistent (both true and false) top knowledge value T in the Belnap’s bi-
lattice can’t be assigned to sentences, otherwise we will obtain an inconsistent logic
theory where all sentences are inconsistent; because of that, consistent logics in this
interpretation can have only three remaining values. Thus, we interpret T as possible
value, which will be assigned to mutually inconsistent sentences, in order to obtain the
consistent 4-valued logic theories that overcome such 3-valued inconsistencies.
2.Letusdenote by T' = U — N, FF = V — N, where N is a set of worlds where
p has a logic value ’possible’. Then we obtain that [U,V] <; [Uy,V;] also when
T D T, which is in contrast with our intuition. For example, let W = [1,100]
be the closed interval of integers (indexes for a collection of worlds), U = [1,60],
V = [50,100], and U; = [1,60], Vi3 = [40,100]: then [U,V] <; [U1, V1] while
T=U-N=][1,50]D>[1,40) =U; — Ny = T},and F = F;, = [60,100]!
Consequently, we adopt a triple [T, N, F] of mutually disjoint subsets of W to express
truth of some sentence p (the W — T |J N |J F is a set of worlds where p is unknown),
with the following definition for their truth and knowledge orders:

2.1 [T, N, F] St [TlaleFl] iff T Q Tl and Fl g F

22[T,N,F] < [Ty, Ny, FA]iff TCT),NC Nyand F C F}.

The meet and join truth and knowledge operations for this extended bilattice can be
found in [20]. In this way we consider the possible value as weak true value and not
as inconsistent (that is both true and false). We have more knowledge for ground atom
with such value, w.r.t. the true ground atom, because we know also that if we assign the
true value to such atom we may obtain an inconsistent database.

The difference of a possible and unknown value may be explained also intuitively as
follows: if we consider a 3-valued Kleene’s strong logic, and try to use it in order to
give a semantics for databases with inconsistencies, then we will obtain a number of
stable 3-valued models (minimal 'repairs’) for it. In each of such stable model the set of
unknown ground atoms is invariant: if one atom is unknown in some model it remains
unknown in all other stable models. But we will have some atom true in some and false
in some other stable model: to such atoms we can assign the possible logic value in a
framework of this 4-valued logic, in order to obtain a minimal Herbrand model. Thus,
“both true and false” of Belnap’s interpretation for T can be relaxed in “true in some
possible world and false in some other possible world”. Because of that, we prefer the
Lukasiewicz’s term “possible” for top-knowledge logic value T , and Kleene’s term
“unknown” for bottom-knowledge logic value L .

In [21] is given the definition for modal operators on bilattices, which generalizes both
Kripke’s possible world approach and Moore’s autoepistemic logic: a modal operator
is any n-ary function from the bilattice B to itself, with the following property:

Definition 4. [21] A modal operator on a bilattice B will be called deductive if and
only if it commute with ® and @. All other modal operators will be called nondeductive.

For example, nondeductive modal operator [22] is Moore’s operator M, where M (p)
is intended to capture the notion of, ”’I know that p” i.e.,

M(a)=tif a € {t, T}; f otherwise.

This nondeductive autoepistemic Moore’s modal operator will be used for logic pro-
gramming in presence of (mutually) inconsistent information, and is a reason to de-
nominate such programs as Autoepistemic logic programs: in order to relax a belief on
ground facts and be able to reason in the presence of the inconsistent information also,
a ground fact, p < t, is substituted by a modal formula M (p <).

3 From inconsistency toward possibility

In order to obtain a new bilattice abstraction rationality, useful to manage logic pro-
grams with inconsistencies, we need to consider more deeply the fundamental phenom-
ena in such one framework. In the process of derivation of new facts, for a given logic
program, based on the ’immediate consequence operator’, we have the following three
truth transformations for ground atoms in a Herbrand base of such program:

1. When a ground atom pass from unknown to true logic value (it means that the value
of an atom was unknown and in the next iteration it becomes true), without generating
inconsistence. Let us denote this action by Ty: L »— t. The preorder of this 2-valued
sublattice of B, L; = {L,¢}, defined by the direction of this transformation, "truth in-
creasing’, is <; = <;. The meet and join operators for this lattice are A, V respectively.
It is also knowledge increasing.

2. When some ground atom, tries to pass from unknown to true/false value, generat-
ing an inconsistency, then is applied the inconsistency repairing, that is, the true value
of the literal of this atom, in a body of a violated clause with built-in predicate, is re-
placed by possible value. Let us denote this action by To: t »— T. The preorder of this
2-valued sublattice of B, Lo = {t, T}, defined by the direction of this transformation,
is "’knowledge increasing’. The meet and join operators for this lattice, w.r.t. this or-
dering, are ®, @ respectively. Notice that this transformation does not change the truth
ordering because the ground atom pass from unknown to possible value.

3. When a ground atom pass from unknown to false logic value, without generating
inconsistence. Let us denote this action by T3: L — f. The preorder of this 2-valued
sublattice of B, L3 = {L, f}, defined by the direction of this transformation, false-
hood increasing’ (inverse of ’truth increasing’), is <3z = <, ! The meet and join oper-
ators for this lattice are V, A respectively. It is also knowledge increasing.

Thus, any truth transformation in some multi-valued logic theory (program) can be seen
as composition of these three orthogonal dimensional transformations.i.e. by triples (or
multi-actions), [a1, as, as), acting on the idle (default) state [L, ¢, L]; for instance the
multi-action [, _, T3], composed by the single action T3, applied to the default state
generates the “false” state [L, ¢, f]. The default state [L,¢, L] in this 3-dimensional

space has role as unknown value for single-dimensional bilattice transformations, that
is it is a “unknown” state. Consequently, we define this space of states by the cartesian
product of single-dimensional lattices, Ly x Ls x L3, composed by triples [z, y, 2],
rel,= {Lﬂf}, ye Ly = {t,T} and z € Ly = {L,f}

Definition 5. By L1 ® Lo ® L3 we mean the bilattice < L1 X Lo X Lg, StB, SkB>
where, given any X = [x,y, 2|, and X1 = [x1,11, 21]:

1. Considering that the second transformation does not influence the truth ordering,
XStB X1 if v<ixiandz<sgzi,le,if x<;xyandz>; 21

2. Considering that all three transformations are knowledge increasing, we have
ngB X1 if x<gzriandy <pyiand z < z1

3. XA Xi=gey [(x 121, yM 1), 2 A321) =[x A1, yAyr, 2V 2]

4. XVp X1 =aef [t V121, (yVayr, 2Vzz)] =[x Vo, y Ay, 2 A 2]

5. X0 X1 =dey [xQx1, yQu1, 2@21), XOpX1 =dey [x® 21, yBy1, 2B 21]

The item 1 of this definition corresponds to the fact that the second transformation does
not influence the truth ordering, while the item 2 corresponds to the fact that all three
transformations are knowledge increasing.

These three bilattice transformations can be formally defined by the lattice homomor-
phisms.

Proposition 1 The following three lattice homomorphisms define the 3-dimensional
truth transformations:

1. Truth dimension, 6= _VvVL1:(BAV,®®)— (Li,A1,V1,R,D),

with Ay = A, V1 = V. This is a strong positive transformation, which transforms
falsehood into unknown and possibility in truth.

2. Possibility dimension, 0y = N ~_V T :(B,®,®) — (L2, ®,®).

This is a weak knowledge transformation which transforms unknown into possibility.
3. Falsehood dimension, 03 = _AN 1 :(B,V,A\,®,®) — (L3, A3, V3, Q,D),

with A3 =V, V3 = A. This is a strong negative transformation, which transforms truth
into unknown and possibility into falsehood.

We define the following two mappings between Belnap’s and its derived bilattice:
Dimensional partitioning: 6 =< 01,05,03 > 8B — L1 ® Ly ® Ls,

Collapsing: 9 : L1 ® Ly ® L3 — B, such that ¥(x1, 2, x3) =gey (1 ® 3) A T2

These three lattice homomorphisms preserve the bilattice structure of 3 into the space
of states L1 @ Lo ® L3. That is we have that ('_’ represents no action)

(L) = [- J([L,t, J_]) [L,t,1], unknown state
0(f) = [,Tg] [L,t,1]) =[L,¢, f], false state
0(t) =111, J(L, t]) =[t,t, 1] true state
0(T) =[11, T2, Tg]([t,L])=1[t, T, f], possible state.

Notice that the multi-action [71, T2, T3] represents two cases for repairing inconsis-
tencies: first, when unknown value of some ground atom tries to become true (action
T1) but makes inconsistency, then is applied also action Ts to transform it into the pos-
sible value T; second, when unknown value of some ground atom tries to become false
(action T3) but makes inconsistency, then is applied also action Ts to transform it into

the possible value T. Notice that the isomorphism between the set of states and the set
of multi-actions {[a1,a2,a3] | a1 € {11,-}, a2 € {12,-}, az € {13,-}} defines the
semantics to the bilattice L1 ® Lo ® Ls.

Proposition 2 Let Imf C Ly ® Ly ® L3 be the bilattice obtained by image of Di-
mensional partitioning. It has also unary operators:
Negation, ~p = 0 ~ 1 ,and conflation, —p = 0 — 9.

It is easy to verify that 9 o # = idp is an identity on B, and that 9 is surjective with
0 o9 = idjme. The negation ~p preserves knowledge and inverts truth ordering and
~p~p X = X; the conflation —p preserves truth and inverts knowledge ordering
and —p —p X = X and holds the commutativity ~p —p = —p ~p. (for example,
~pg—p=0~90—-0=0~idg—0=0~-0=0—~03=0-090 ~9=—p ~p).
So, for any X = [z,y,2], hold ~p X =4c¢ [~ 2, y,~ z] and —pX
[01(=2), b2(—0(X)), O5(—=)].

Theorem 1. (Representation theorem) If B is a 4-valued distributive lattice then there
are its distributive sublattices, Ly, Lo, L3, such that B is isomorphic to the sublattice
of Ly ® Ly ® Lg defined by image of Dimensional partitioning Im6 . Moreover the
following diagram (on the left) of bilattice homomorphisms commutes

Ly ®Ls

=def

~
—T1 XT3

00
L1 ®Ly® Ly —— Imf Lo (possibility)

~y 02

0: 0
B (falsehood)Ls < 2 B > Ly (truth)

where >~ . IS a projection isomorphism, ~3 is the isomorphism (restriction of ¥ to
the projection Ly ® Lg) of Fitting’s representation Th. [23] valid for a 3-valued logics,
and =~ is the new 4-valued isomorphism (restriction of ¥ to Im0 , and inverse to 0).
If B has negation and conflation operators that commute with each other, they are pre-
served by all isomorphisms of the right commutative triangle.

Proof. It is easy to verify that all arrows are homomorphisms (w.r.t. binary bilattice
operators). The following table represents the correspondence of elements of these bi-
lattices defined by homomorphisms:

Multi — actions | L1 ® Lo ® Lz | Im# LioLs | B
- -] (Lt L] Lt L)) (LA | L
[*7 T2,f] [J-)T’J-]
[*a - T3] [J—vta f] [J-7taf] [J—v‘ﬂ f
[*7 T2aT3} [J-vTv.ﬂ
[Tlaﬂ 7] [tatvL] [t7t7L] [taL] t
[TlvT%*} [thvJ-]
[T17T27T3] [t,T, f] [t7—|—7f] [t,f] T
[Tla—a TS} [t7t7f]

Let us prove, for example, that the isomorphism 6 : B — I'm# preserves negation and
conflation: ~p 0(x) =0 ~¥0(x) =0 ~idg(xz) =0(~), and
—pb(x) =0 —90(z) = 6 —idp(x) = O(—x).

4 Many-valued intuitionistic implication

One of the key insights behind bilattices [14,15] was the interplay between the truth
values assigned to sentences and the (non classic) notion of implication. The prob-
lem was to study how truth values should be propagated “across” implications. The
constructivism is surprisingly close to logic programming [24]. The features of logic
programming that are unconventional from the classical point of view find immediate
constructivistic explanations. Constructivism does not allow indefiniteness in proofs:
from a constructivistic viewpoint implications are not hidden disjunctions”. Construc-
tivism is causalistic: implications are viewed as infering new information from already
proved information, like in logic programming.

In this paragraph we will try to introduce the formal definition of many-valued implica-
tion for logic programs. Notice that logic implication and logic entailment, as pointed
by Belnap, for the 4-valued logic are strongly connected: the implication has to be the
principal structure for inference (entailment) capabilities. Let denote by Fp this bilat-
tice 4-valued entailment, so that this paradigm can be defined as follows: ” p Fp ¢ iff
p — q istrue”.

From this point of view, we are fundamentally interested only for the cases when an
implication is frue. That is probably the reason of why in many-valued logic program-
ming (e.x., Fitting, Przymusinski 3-valued logic) the implication is, differently from
other logic connectives, defined as two-valued connective, which preserves the truth:
p — q holds just in case when for each assignment of one of the four values to the
variables, the truth value of p does not exceed the value of ¢ (in symbols: v(p) <; v(q)
for each truth assignment v : £ — B).

In order to obtain such many-valued definition, which generalizes the 2-valued defi-
nition given above, we will consider the conservative extensions of Lukasiewicz’s and
Kleene’s strong 3-valued matrices (where third logic value L is considered as unknown)
in the intuitionistic way. Such conservative extensions are based on the observation we
explained in precedence: the problem to study how the truth values should be prop-
agated “across” implications can be restricted only to true implications (in fact, the
’immediate consequence operator’ derives new facts only for frue clauses, i.e. when
implication is true). Thus, what we must guarantee is that, if b < a and ¢ < b are true
than ¢ < a also must be true, in order to guarantee the reflexivity and the transitivity of
the logic entailment Fp.

In other words, that low is intimately connected with inference fixpoint semantics for
logic programs: let consider than in the i-th step the ground clause b < a become true ,
so that we derive the new fact b from body «a, and that in some ¢ + k-th step the ground
clause ¢ < b become true, so that we derive the new fact c: it means that ¢ < ¢ has to
be true.

With such constructivistic considerations, Heyting produced an axiomatic system of
propositional logic which claimed to generate as theorems precisely those sentences
that are valid according to the intuitionistic conception of truth. It is well known that
the implication for intuitionistic logic satisfy the upper conditions. It is defined by the
relative pseudo-complements [25] as follows:

the logical value of intuitionistic implication @ — b is the greatest member ¢ of B
(w.r.t. the truth ordering) such that a Ac <; b (thatis,a - b = \/{c|anec<;b}).

Thus we obtain that a — b iff a <; b (for ¢ = t), and that holds the modus ponens
inference rule: if a — b, thatis, a <; b, and a is true, then ¢t <; b, thatis, b must
be true.

The relative pseudo-complement for finite distributive lattices always exist. The 4-vlued
implication is given by the following truth-matrix [26], f— : Bx B — B

=Tt L f T
t[t L f T
Lt ¢t T T
flttt ¢
T ¢t L Lt

Remark: The negation in the intuitionistic logic is defined by the pseudo-complement,
that is, -« is equivalent to @ — f, i.e., v is the Lu.b. of {3 | @ A 3 = f}, so that ”—"
is different from the epistemic negation ” ~ ” (it is also different from the knowledge
bilattice negation ” —”) and, consequently, we do not need it for the logic programming.
For our purpose we obtained the Lukasiewicz’s extension and a tautology a «— a for
any formula a. Based on this intuitionistic semantics for this implication we guarantee
the truth of a clause (implication) p(c) < B , whenever (iff) vg(p(c)) >; vp(B) ,as
used in the fixpoint semantics for the ’immediate consequence operators’.

5 Autoepistemic many-valued logic

By a standard 3-valued logic program we mean a finite set of universally quantified
clauses of the form V(A «— LyA...AL,,),and aset of constraints V(«— LiA...ALy,),
where m > 0, A is an atom and L; are positive or negative literals (see [27]). Follow-
ing a standard convention, such clauses will be simply written as clauses of the form
The Autoepistemic 4-valued Logic Programs (ALP) are defined by introducing of modal
formulae for facts (ground clauses with m = 0) and by modifying the head of con-
straints from f (false) to T (possible) logic value:

Definition 6. The syntax for the autoepistemic many-valued logic programs is defined
as follows (logical values t, T € B are considered as ground atoms):

1. A finite set of universally quantified many-valued clauses of the form

V(A < Ly A ... N Ly,), where m > 1, A is an atom and L, are positive or negative
literals (see [27]).

2. A finite set of autoepistemic modal formulae for ground facts M (A — t), where A
is a ground (variable free) atom and M is Moore’s modal operator.

3. A finite set of universally quantified many-valued autoepistemic constraint-clauses
V(T <« L1 A ... A Ly,), where m > 1, and L; are positive or negative literals (with
bulid-in predicates also).

Following a standard convention, such clauses will be simply written as clauses of the
form A «— Ly A ...N\ Ly,

The alphabet of an autoepistemic program P consists of all constants, predicates and
functional symbols that appear in P, a countably infinite set of variable symbols, con-
nectives (A, V,~, «, M i.e., and, or, not, intuitionistic logic implication, and modal

Moore’s operator, respectively), and the usual punctuation symbols. We assume that if
P does not contain any constant, then one is added to the alphabet. The language L
of P consists of all the well-formed formulae of the so obtained theory. We assume
that the Herbrand universe is I, an ordinary domain of database constants, and, for a
given logic program P composed by a set of predicates and function symbols, Pg, F's
respectively, we define a set of all terms, 7g, and its subset of ground terms 7. Then
the atoms are defined as: Ag = {p(c1,..,¢n) | p € Ps, n = arity(p) and ¢; € Tg}
The Herbrand base, Hp, is the set of all ground (i.e., variable free) atoms.

The modal formulae for ”external” ground facts are good means for consistent repairs
of inconsistent facts coming from different sources: the freedom, that the autoepistemic
reasoning system (Knowledge base) has to believe that the external facts are not abso-
lutely true, as presented to it from an external world (source databases), preserves its
internal consistency. So, the ”local” fruth of facts in locally-consistent sources and the
internal belief of a (global) autoepistemic reasoning system, which integrates the infor-
mation from different sources, can coexist together.

Informally, the autoepistemic integrity constraints with the head T are needed to guar-
antee that a revision of the truth value of external facts, from true into possible value, is
consistently accepted by the reasoning system.

Example 1: Let r(z,y) be a predicate for a relation-table of a source database D,
and s(z, y) be a predicate for relation-table of a source database Do. We define the data
integration of these two source databases into the global schema predicate p(x,y) and
we define the key-constraint for attributes in = by the clause f « p(z,y),p(z, z), ~

(y = 2):

Program P Autoepistemic program P4
Knowledege p(xz,y) — r(z,y) p(z,y) — r(z,y)
Base p(z,y) « s(z,y) p(x,y) < s(z,y)
f—py), pz,2), ~(y=2)| T« p(x,y), p(z,2), ~(y = =)
External r(a,b) —t M(r(a,b) — t)
Facts s(a,c) «— t M(s(a,c) — t)
s(d,c) — t M(s(d,c) <« t)

It is easy to verify that the standard logic program P is inconsistent, that is, there is no
Herbrand model for it, because the constraint f « p(a,b), p(a,c), ~ (b = ¢) cannot
be satisfied (the logic value of the body is true). Instead, the autoepistemic program P4
has the following truth-minimal Herbrand models, w.r.t. the consistent belief-revision
of external” ground facts (the ground atoms of a Herbrand base of a program P which
are not enumerated have the unknown logic value L):

1. The following set of true ground atoms {r(a,b),p(a,b), s(d,c),p(d,c)}, and the
set {s(a,c),p(a,c)} of ground atoms of the logic value T (possible), define the mini-
mal model, m; : Hp — B, obtained by the single belief-revision of the fact s(a, c) (it
is believed as possible, and not as true fact, by the reasoning autoepistemic system).

The other models, with the same set of “external” facts which have the value T, are
not truth-minimal: for instance, the model obtained by the same revision, with the set
of true ground atoms {r(a,b), p(a,b), p(a,c), s(d,c),p(d, c)}, and the set {s(a,c)} of

ground atoms of logic value T is greater then m; (consider the logical value of p(a, ¢)
and the fact that T <; t).

2. The set of true ground atoms {s(a, ¢), p(a, ¢), s(d, ¢), p(d, c)}, and the set {r(a,b),p(a,b)}
of ground atoms of logic value T, define the minimal model, ms : Hp — B, obtained
by the single belief-revision of the fact r(a, b) (it is believed as possible, and not as true
fact, by the reasoning autoepistemic system).

The models m, and mo are minimal, that is, there is no model m such that m < m;
andm <; m;, 1 <7 <2.

The model m3, composed by the set of true ground atoms {s(d, ¢), p(d, ¢)}, and the set
{r(a,b), s(a,c),p(a,b), p(a, c)} of ground atoms of logic value T is not belief-minimal
model: it is obtained by the belief-revision of the facts, s(a, ¢) and r(a, b), which are
the belief-revisions used for a model m; and ms, respectively. That is, m; < mg and
meo <k Ms3.

It is easy to verify that mg = ©&{my, ma} = my @ ma, where, for any ground atom
A€ Hp,m & mg(A) = ml(A) () mg(A)

Definition 7. Let P be a logic program, with the monotonic in < immediate conse-
quence operator Pp : Bf P Bf P (Def.2) and S be the set of constraints.

Then fixp(P, I, I, err) is the algorithm which, for a consistent B-valuation I € B™,
that is I : Hp — By, returns with the least fixpoint I : Hp — By of ®p, such that
Ip = &p(Ip), and with err = 0, if in all steps of this calculation all intermediate
B-valuations satisfy all constraints in S; otherwise returns with err = 1.

Remark: The immediate consequence operator @ p of Definition 2 is well defined also
for the our intuitionistic implication introduced in Section 3, because any ground rule
A «— B is satisfied (true) if in a given many-valued Herbrand interpretation I holds
that I(A) >; I(B), as for the classical material 2-valued implication used in Fitting’s
fixpoint semantics for logic programs. We substituted the material 2-valued implica-
tion by the intuitionistic many-valued implication not only because of the many-valued
connective theoretic point of view (That is, coherently, all logic connectives has to be
many-valued), but because it is fundamental for the semantics of Autoepistemic logic
modal formulae (item 2 in Definition 6). Notice that also such intuitionistic logic can
be used for extended logic programs with implication also in bodies of rules (nested
implications for hypothetic reasoning).

From [28] holds that the least fixpoint is generalized well-founded model of P. Now
we present the simple algorithm for calculation of epistemic (generalized well-founded)
models of autoepistemic logic programs:

Definition 8. ALGORITHM: COMPUTE A LEAST 4-VALUED HERBRAND MODEL
Input: Autoepistemic logic program P4 with Herbrand base Hp.

Output: 4-valued minimal Herbrand Model I : Hp — By ofPA.

1. 1(A) = L, forall A € Hp; // initialize Herbrand model.

2. P = {Clause | non modal Clause in P4}, // P is the ordinary (non modal) part of
P4 (Knowledge base).

3.8 ={A| M(A « t) € P2}, / initialize the set of non epistemically elaborated
external ground facts.

4. While S # {}, select one external fact A € S;

i

P = PJ{A « t}; // enlarge a program by new fact.
6. execute fixp(P I, I, err);

7. iferr #0 then P=(P—{A—thHU{A T}

i execute fixp(P,1,Ip, err);

8 S=S-{Aet}I=1Ip

9. Return

END-ALGORITHM

As we can see, this algorithm make a number of program transformations in order to
avoid inconsistency caused by external ground facts. The different orderings in which
we select facts for S will possibly determinate different minimal Herbrand models for
P4, The following properties for autoepistemic logic programs hold:

Proposition 3 Each autoepistemic logic program P is consistent.

We denote by mp the banal model of an autoepistemic program, that is, the model
where all ground facts (not only the subset which is mutually inconsistent) are believed
as possible.

Let M be the set of all minimal epistemic models of P4. Then m = @M is the model
ofPA, such that m <p mp, and we denominate it canonical model.

Proof. Let prove that the banal model 1 3 is a model of the autoepistemic program P4:
if we take all external” ground facts with logic value T then all modal formulae in P4
are satisfied (i.e., are true). In that case we derive only ground facts of clauses in P4
with the logic value T (the logic value of their body), so that all ground instantiations of
autoepistemic clauses can be reduced in the form T «— T A B, where B is a conjunction
of built-in literals: thus the logic value of B can be false or true, and the value of T A B
can be false or T, so that the autoepistemic clauses are satisfied (i.e., true).

Thus, a program P4 is consistent, and must have at least one minimal model (in the
worst case it is equal to mp).

It is easy to verify that for any two models m1, mo, also their sum m; @ mq is a model
of P4, thus, for a given set of minimal models M, their sum m = &M is a model.

In the example above, the banal model has the empty set of true ground facts and the set
{r(a,b), s(a,c), s(d,c),p(a,b),p(a,c),p(d,c)} of ground atoms with the logic value
T, but it is not minimal; the canonical model in the example is the model m.

The model theoretic semantics of autoepistemic logic programs can be given by means
of an ontological encapsulation of the many-valued logic into the 2-valued *'meta’ logic
(see [29,30], for the model theoretic Herbrand semantics for the ontologically encap-
sulated many-valued (EMV) logic programs).

We can consider the canonical model of an autoepistemic logic program P4 as the
semantics for such program: it corresponds to the view that all mutually-inconsistent
information which comes from external sources, if we are not able to distinguish which
sources have the better quality of information, must have the same belief-value T. That
is, if we have two mutually-inconsistent facts for knowledge reasoner, we do not as-
sume that one of them is true and other is (only) possible: they are both a possible
information. Such consideration is analog to the query-answering approach used in the
2-valued data-integration repairing, where the answer to a query for some inconsistent

data-integration system is considered only if such answer is true in all minimal 2-valued
repairs of a database.

Only in some practical realizations of data integration, given in the example 1, if, for
instance, the source with relation r(x,y) has better information quality w.r.t. the other
source, then we may adopt the preferential minimal model m; as good semantics for
such data integration system.

6 Conclusion

We have presented an autoepistemic programming logic capable of handling inconsis-
tent beliefs, based on the reinterpreted 4-valued Belnap’s bilattice, with the intuitionistic
semantics for logic implication and the modal Moore’s operator for ground facts.

The reinterpreted top knowledge logic value, from inconsistent (both true and false)
into possible value, is used for all mutually inconsistent ground atoms.

We are able to define the canonical 4-valued Herbrand model for such autopeistemic
program, which is the complete belief-revision of the inconsistent information which
comes from external sources, and, for any user query, to obtain known (certain) an-
swers, which are true in all minimal 4-valued models of a many-valued autoepistemic
logic program, and also the possible answers.

The future work will be dedicated to explore the fixpoint algorithms for minimal 4-
valued Herbrand models of the autoepistemic logic programs, in particulary for data
integration systems with incomplete and inconsistent data source information, w.r.t. the
key and foreign-key integrity constraints over a virtual (global) schema. We argue that
in this framework, the query answering will be less complex than currently applied
methods. The example of a program with the key-constraints, given in this work, is
taken by these practical considerations.

References

1. M.Gelfond and V.Lifshitz, “The stable model semantics for logic programming,” In Proc.
of the Fifth Logic Programming Symposium, Cambridge, MA. MIT Press, pp. 1070-1080,
1988.

2. K.Fine, “The justification of negation as failure,” In Logic, Methodology and Philosophy of
Science VIII, Amsterdam, North-Holland, pp. 263-301, 1989.

3. T.Przymusinski, “Every logic program has a natural stratification and an iterated fixed point
model,” In Eighth ACM Symposium on Principles of Databases Systems, pp. 11-21, 1989.

4. T.Przymusinski, “Well-founded semantics coincides with thre-valued stable-semantics,”
Fundamenta Informaticae 13, pp. 445-463, 1990.

5. M.CFitting, “A Kripke/Kleene semantics for logic programs,” Journal of Logic Program-
ming 2, pp. 295-312, 1985.

6. K.Kunen, “Negation in logic programming,” Journal of Logic Programming 4, pp. 289-308,
1987.

7. A. Van Gelder, “Negation as failure using tight derivations for general logic programs,”
Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Al-
tos, pp. 149-176, 1987.

10.

11.

12.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

. K.R.Apt and H. Van Emden, “Contributions to the theory of logic programming,” J.Assoc.

Comput. Mach., vol. 29, pp. 841-863, 1982.

. G.Escalada Imaz and F.Many4, “The satisfiability problem for multiple-valued Horn formu-

lae,” In Proc. International Symposium on Multiple-Valued Logics (ISMVL), Boston, IEEE
Press, Los Alamitos, pp. 250-256, 1994.

B.Beckert, R.Hanhle, and FMany4, “Transformations between signed and classical clause
logic,” In Proc. 29th Int.Symposium on Multiple-Valued Logics, Freiburg, Germany, pp. 248—
255, 1999.

H.A Blair and V.S.Subrahmanian, ‘“Paraconsistent logic programming,” Theoretical Com-
puter Science,68, pp. 135-154, 1989.

M.Kifer and E.L.Lozinskii, “A logic for reasoning with inconsistency,” Journal of Automated
reasoning 9(2), pp. 179-215, 1992.

. MKifer and V.S.Subrahmanian, “Theory of generalized annotated logic programming and

its applications,” Journal of Logic Programming 12(4), pp. 335-368, 1992.

M.Ginsberg, “Multivalued logics: A uniform approach to reasoning in artificial intelligence,”
Computational Intelligence, vol.4, pp. 265-316, 1988.

M.C Fitting, “Bilattices and the semantics of logic programming,” Journal of Logic Pro-
gramming, 11, pp. 91-116, 1991.

M.H.van Emden, “Quantitative deduction and its fixpoint theory,” Journal of Logic Pro-
gramming,4,1, pp. 37-53, 1986.

V.S.Laksmanan and N.Shiri, “A parametric approach to deductive databases with uncer-
tainty,” IEEE Transactions on Knowledge and Data Engineering,13(4), pp. 554-570, 2001.
Z.Majki¢, “Fixpoint semantics for query answering in data integration systems,” AGP03 -
8.th Joint Conference on Declarative Programming, Reggio Calabria, pp. 135-146, 2003.

. N.D.Belnap, “A useful four-valued logic,” In J-M.Dunn and G.Epstein, editors, Modern

Uses of Multiple-Valued Logic. D.Reidel, 1977.

Z.Majki¢, “Meta many-valued logic programming for incomplete and locally inconsis-
tent databases,” 8th International Database Engineering and Application Symposium
(IDEAS),July 7-9, Coimbra, Portugal, 2004.

M.L.Ginsberg, “Bilattices and modal operators,” Tech.Rep.N.94305, Comp.Science Dept.
Stanford University, California, 1990.

Robert C. Moore, “Semantical considerations on nonmonotonic logic,” Acta Informatica,
vol. 25, pp. 75-94, 1985.

M.C Fitting, “Kleene’s three valued logics and their children,” Fundamenta Informaticae,
vol. 20, pp. 113-131, 1994.

FBry, “Logic programming as constructivism: a formalization and its application to
databases,” In Proc. of the Symposium on Principles of Database Systems, ACM SIGACT-
SIGMOD, 1989.

H.Rasiowa and R.Sikorski, “The matematics of metamatematics,” PWN- Polisch Scientific
Publishers, Warsaw, 3rd edition, 1970.

Z.Majki¢, “Many-valued intuitionistic implication and inference closure in a bilattice based
logic,” 35th International Symposium on Multiple-Valued Logic (ISMVL 2005), May 18-21,
Calgary, Canada, 2005.

J.W.Lloyd, Foundations of Logic Programming, Springer-Verlag, New York, 1984.

M.C Fitting, “Well-founded semantics, generalized,” in Logic Programming, Proc. of the
1991 International Symposium, Cambridge, pp. 71-84, 1991.

Z.Majki¢, “Coalgebraic semantics for logic programming,” 18th Worshop on (Constraint)
Logic Programming, W(C)LP 2004, March 04-06, Berlin, Germany, 2004.

Z.Majkié¢, “Truth and knowlwdge fixpoint semantics for many-valued logic programming,”
19th Workshop on (Constraint) Logic Programming (W(C)LP 2005), February 21-25, Ulm,
Germany, 2005.

