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AUTOEQUIVALENCES OF DERIVED CATEGORIES ON
THE MINIMAL RESOLUTIONS OF An-SINGULARITIES

ON SURFACES

Akira Ishii & Hokuto Uehara

Abstract

In this article, we study the group of autoequivalences of derived
categories of coherent sheaves on the minimal resolution of An-
singularities on surfaces. Our main result is to find generators of
this group.

1. Introduction

Let X be a smooth projective variety over C and D(X)(= Db(Coh X))
the bounded derived category of coherent sheaves on X. D(X) carries a
lot of geometric information on X; for instance, Bondal and Orlov show
in [BO01] that if KX or −KX is ample, then X can be entirely recon-
structed from D(X). To the contrary, there are examples of mutually
non-isomorphic varieties X and Y having mutually equivalent derived
categories. Given a smooth projective variety X, it is an interesting
problem to find all the varieties Y with D(X) ∼= D(Y ). In dimension 2,
the answer is given by Bridgeland and Maciocia in [BM01], and Kawa-
mata [Kaw02] and in dimension 3, some results are shown by Toda
[Tod03]. Moreover, Orlov gives a satisfactory answer in [Orl02] to this
problem for the case where X is an abelian variety. The subject of this
paper is related to another important problem:

Problem 1.1. Given a smooth projective variety X, determine the
group of isomorphism classes of autoequivalences of D(X).

We denote this group by AuteqD(X). We note that AuteqD(X)
always contains the group A(X) := (AutX ⋉ PicX) × Z, generated
by functors of tensoring with invertible sheaves, automorphisms of X
and the shift functor. When KX or −KX is ample, it is shown that
Auteq D(X) ∼= A(X) in [BO01]. When X is an abelian variety, Orlov
solves Problem 1.1 in [Orl02]. In this case, AuteqD(X) is strictly larger
than A(X).

The twist functors along spherical objects are autoequivalences of an-
other kind that are not in A(X). Seidel and Thomas [ST01] introduced
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them, expecting that they should correspond via Kontsevich’s homolog-
ical mirror conjecture to the generalized Dehn twists along Lagrangian
spheres. These functors play an essential role in this paper and we recall
the definition.

For an object P ∈ D(X × Y ), an integral functor

ΦP
X→Y : D(X) → D(Y )

is defined by

ΦP
X→Y (−) = RπY ∗(P

L

⊗ Lπ∗
X(−)),

where πX : X × Y → X and πY : X × Y → Y are the projections.

Definition 1.2 ([ST01]).

(i) We say that an object α ∈ D(X) is spherical if we have α⊗ωX
∼= α,

and

Homk
D(X)(α, α) ∼=

{
0 k 6= 0, dimX

C k = 0, dimX.

(ii) Let α ∈ D(X) be a spherical object. We consider the mapping
cone

C = Cone(π∗
1α

∨
L

⊗ π∗
2α → O∆)

of the natural evaluation π∗
1α

∨
L

⊗π∗
2α → O∆, where ∆ ⊂ X ×X is

the diagonal, and πi is the projection of X ×X to the i-th factor.
Then, the integral functor Tα := ΦC

X→X defines an autoequivalence
of D(X), called the twist functor along the spherical object α.

Consider the derived category D(X) for a smooth surface X. It is
natural to ask how large the subgroup of AuteqD(X) generated by
A(X) and the twists along spherical objects is. An example of a spher-
ical object in D(X) is given by a line bundle R on a chain of −2-curves
on X, considered as a sheaf on X. In this paper, we consider a chain Z
of −2-curves on a smooth surface X and study the autoequivalences of
the derived category DZ(X) of coherent sheaves on X supported by Z.

Note that the twist functor Tα can be defined as long as the support
of α is projective, even if X is not projective. Moreover, the category
DZ(X) depends only on the formal neighborhood of Z in X. Thus, we
can assume as follows:

Y = Spec C[[x, y, z]]/(x2 + y2 + zn+1)

is the An-singularity,

f : X → Y

its minimal resolution and

Z = f−1(P ) = C1 ∪ · · · ∪ Cn

where P ∈ Y is the closed point.
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For an autoequivalence Φ ∈ Auteq DZ(X), we do not know if it is
always isomorphic to an integral functor. Here, an integral functor
from DZ(X) to DZ(X) is defined by an object P ∈ D(X × X) whose
support is projective over X with respect to each projection. If an
autoequivalence is given as an integral functor, we call it a Fourier–

Mukai transform (FM transform). Let

AuteqFM DZ(X) ⊂ Auteq DZ(X)

be the subgroup consisting of FM transforms. Remark that AutX ∼=
Aut Y and PicX ∼= Pic(X/Y ) act faithfully on DZ(X) in our setting;
therefore, we see A(X) ⊂ AuteqFM DZ(X).

We also define a normal subgroup

N(DZ(X)) ⊂ Auteq DZ(X)

consisting of Φ with Φ(α) ∼= α for every object α ∈ DZ(X). This group
is trivial if every autoequivalence is an FM transform. We denote the
dualizing sheaf on Z by ωZ and put

B =
〈
TOCl

(−1), TωZ

∣∣ 1 ≤ l ≤ n
〉
⊂ Auteq DZ(X).

The following is a main result of this article.

Theorem 1.3. We have

Auteq DZ(X) = AuteqFM DZ(X) ⋉ N(DZ(X))

and

AuteqFM DZ(X) = (〈B,Pic X〉 ⋊ Aut X) × Z.

Here, Z is the group generated by the shift [1].

Remark 1.4 (see Proposition 4.18 and Corollary 6.10). We know
more about subgroups of AuteqFM DZ(X), that is, we have the follow-
ing:

• B ∩ PicX = 〈⊗OX(C1), . . . ,⊗OX(Cn)〉.
• 〈B,PicX〉 ∼= B ⋊ Z/(n + 1)Z.
• B =

〈
Tα

∣∣ α ∈ DZ(X), spherical
〉
.

Put αi := OCi
(−1) (1 ≤ i ≤ n) and α0 := αn+1 := ωZ , where we

consider the suffix i of αi modulo n + 1 (that is, αi = αn+1+i for all
i ∈ Z). B is generated by all Tαi

’s by definition. We denote by Bk the
subgroup of B generated by all Tαi

’s except Tαk
. The result in [ST01]

implies that the defining relation of the group Bk is as follows:
{

Tαi
Tαi+1Tαi

∼= Tαi+1Tαi
Tαi+1 if 0 ≤ i ≤ n, i 6= k − 1, k

Tαi
Tαj

∼= Tαj
Tαi

if i − j 6= ±1, 0.

In other words, Bk is the Artin group of type An (or the braid group on

n+1 strands). Conjecturally, our group B is the Artin group of type Ãn.
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According to Orlov’s theorem [Orl97], any autoequivalence Φ ∈
Auteq D(S) for a smooth projective variety S is isomorphic to an in-
tegral functor ΦP

S→S for some P ∈ D(S × S). Using this, we obtain
another main result:

Theorem 1.5. Let S be a smooth projective surface of general type

whose canonical model has An-singularities at worst. Then, we have

Auteq D(S) =
〈
TOC(a), A(S)

∣∣ C : −2-curve, a ∈ Z
〉
.

In the proofs of Theorems 1.3 and 1.5, the following proposition is
essential.

Key Proposition. For any Φ ∈ Auteq DZ(X), there exists an inte-

ger i and Ψ ∈ B such that Ψ ◦ Φ sends every skyscraper sheaf Ox with

x ∈ Z to Oy[i] for some y ∈ Z.

Strategy for the proof of Key Proposition. Our main results, The-
orems 1.3 and 1.5, follow from Key Proposition and rather a formal ar-
gument. Here, we shall explain how to prove Key Proposition because
it is essential in this article. For α ∈ DZ(X), let us put

l(α) =
∑

i,p

lengthOX,ηi
Hp(α)ηi

,

where ηi is the generic point of Ci. When α is spherical, we can see that
every cohomology sheaf Hp(α) is a pure one-dimensional OZ-module
(Corollary 4.10). Hence, if l(α) = 1, we get α ∼= OCb

(a)[i] for some
a, b, i ∈ Z. To show Key Proposition, we first prove that for a spherical
α with l(α) > 1, there is an autoequivalence Ψ ∈ B such that l(α) >
l(Ψ(α)). Then, since Ψ(α) is again spherical, induction on l(α) yields
the following:

Proposition 1.6. Let α be a spherical object in DZ(X). Then there

are integers a, b (1 ≤ b ≤ n) and i, and there is an autoequivalence

Ψ ∈ B such that

Ψ(α) ∼= OCb
(a)[i].

Next step to prove Key Proposition is to show:

Proposition 1.7. Suppose that an autoequivalence Φ of DZ(X) is

given. Then, there are integers a, b (1 ≤ b ≤ n) and i, and there is an

autoequivalence Ψ ∈ B such that

Ψ ◦ Φ(OC1)
∼= OCb

(a)[i]

and

Ψ ◦ Φ(OC1(−1)) ∼= OCb
(a − 1)[i].

In particular, for any point x ∈ C1, we can find a point y ∈ Cb with

Ψ ◦ Φ(Ox) ∼= Oy[i].
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Put α = Φ(OC1) and β = Φ(OC1(−1)). By Proposition 1.6, we may
assume that l(α) = 1. To prove Proposition 1.7, we show the existence
of Ψ ∈ B such that l(Ψ(α)) = 1 and l(β) > l(Ψ(β)). Then, we can
complete the proof by induction on l(β).

Once we get Proposition 1.7, we can rather easily show Key Propo-
sition by induction on n.

Construction of this article. In Section 3, we first demonstrate that
Proposition 1.7 implies Key Proposition. We then prove our main re-
sults, Theorems 1.3 and 1.5. The rest of this paper is devoted to showing
Proposition 1.7.

In Section 4, we study spherical objects and the twist functors for
a smooth surface X, which play the leads in our article. We first
observe that the isomorphism class of an object α ∈ D(X) is deter-
mined by the cohomology sheaves Hi(α) and some connecting data
ei(α) ∈ Ext2X(Hi(α), Hi−1(α)). Then, we give a necessary and sufficient
condition for α to be spherical in terms of Hi(α) and ei(α). Especially,
for a chain Z of −2-curves on X and a spherical object α ∈ DZ(X), we
see that

⊕
p H

p(α) is a rigid OZ-module, pure of dimension 1 (Corol-

lary 4.10). This result, combined with Lemma 6.1 on pure sheaves on
Z, enables explicit computations in the latter sections.

In Section 5, as a first step, we consider the A1 cases of Propositions
1.6 and 1.7. We show Proposition 1.6 in Section 6 and Proposition 1.7
in Section 7 respectively. In Section 6, we compute l(Ψ(α)) − l(α) for
various Ψ’s in B by using results from §4 and Lemma 6.1. We use
similar methods in Section 7 and find Ψ in the statement of Proposition
1.7 via case-by-case arguments.

Notation and Convention. We work over the complex number field
C. Let X be an algebraic variety and Z a closed subset of X. DZ(X)
denotes the full subcategory of D(X) consisting of objects supported on
Z. Here, the support of an object of DZ(X) is, by definition, the union
of the supports of its cohomology sheaves. It is known that DZ(X) is
naturally equivalent to the bounded derived category of coherent sheaves
on X, supported on Z (see [KS90, Proposition 1.7.11]). When we write
DZ(X) for a closed subscheme Z of X, we forget the scheme structure of
Z and regard it as a closed subset of X. Let Dc(X) denote the derived
category of “compactly supported” coherent sheaves on X, i.e. coherent
sheaves whose supports are proper over C.

Next, let Z = C1 ∪ · · · ∪ Cn be a chain of −2-curves on a smooth
surface X. Namely, each Cl is a smooth rational curve with C2

l = −2
and

Cl · Cm =

{
1 |l − m| = 1

0 |l − m| ≥ 2.

We regard Z as a closed subscheme of X with respect to the reduced
induced structure. For a coherent sheaf R on Z, we denote by degCl

R
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the degree of the restriction R|Cl
on Cl

∼= P1. We denote by

R0 = OC1∪···∪Cn(a1, . . . , an)

the line bundle (or OZ-invertible sheaf) on Z such that degCl
R0 = al

for all l. When we write ∗ instead of al, we do not specify the degree at
Cl. For instance, when we put

R1 = OC1∪C2∪C3(a, b, ∗),

this means that R1 is a line bundle on C1∪C2∪C3 such that degC1
R1 =

a, degC2
R2 = b and degC3

R1 arbitrary. The expression

R2 = OC1∪···(a, ∗)

means that there exists t ≥ 2 with R2 = OC1∪C2∪···∪Ct(a, ∗, . . . , ∗). Note
that the support of R2 is strictly larger than C1. We often use figures

C1 C2 C3

R1 : ha hb h

R2 : ha

to define R1,R2 above. We use a dotted line

C1

R3 : ha ___

to indicate that R3 is either OC1(a) or OC1∪···(a, ∗).
For an object α ∈ DZ(X), we put

l(α) =
∑

i,p

lengthOX,ηi
Hp(α)ηi

,

where OX,ηi
is the local ring of X at the generic point ηi of Ci, H

p(α)ηi

is the stalk over ηi and lengthOX,ηi
measures the length over OX,ηi

.

Throughout this paper, a point on a variety always means a C-valued

point unless otherwise specified. For a point x on a variety X, we denote
the structure sheaf of x by Ox. We regard it as a skyscraper sheaf on X.
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3. Main results

In this section, we first show that Key Proposition follows from Propo-
sition 1.7 that will be shown in Section 7. As its application, we prove
our main results, Theorems 1.3 and 1.5. In the proof of Theorem 1.3,
we use the facts that B∩Aut X = {id} and that B is a normal subgroup
of 〈B, A(X)〉, which will be explained in Remark 4.17.



AUTOEQUIVALENCES OF DERIVED CATEGORIES 391

This section is logically the final part of this article. Therefore, we
do not use the results in Section 3 afterwards.

3.1. Proof of Key Proposition. Let us first show the following claim.

Claim 3.1. Assume that Φ(OC1)
∼= OCl

(a) and Φ(OC1(−1)) ∼=
OCl

(a − 1) for some l. Then l = 1 or n.

Proof. The assumption implies that a closed point x ∈ C1 corre-
sponds bijectively to y ∈ Cl such that Φ(Ox) ∼= Oy. If 1 < l < n,
there are points y0, y1 such that Cl ∩Cl+1 = {y0} and Cl−1 ∩Cl = {y1}.
Let x0, x1 ∈ C1 be the points with Φ(Ox0)

∼= Oy0 and Φ(Ox1)
∼= Oy1 .

Then, x0 is contained in Supp Φ−1(OCl+1
)∩C1. Since Supp Φ−1(OCl+1

)
is connected and does not contain C1, x0 is the intersection point of C1

and C2. By the same argument, we obtain x0 = x1, which is absurd.
q.e.d.

We want to show that there is an autoequivalence

Ψ ∈
〈
[i], B

∣∣ i ∈ Z
〉

such that for any point x ∈ Z, we can find a point y ∈ Z with Ψ ◦
Φ(Ox) ∼= Oy.

The assertion for the case n = 1 follows directly from Proposition 1.7,
and hence, we may assume n > 1. Utilizing Proposition 1.7 and Claim
3.1, we obtain an autoequivalence

Ψ1 ∈
〈
[i], B

∣∣ i ∈ Z
〉

such that for any point x ∈ C1, we have a point y ∈ Cl with Ψ1◦Φ(Ox) ∼=
Oy. Here, l = 1 or n and we consider the case l = n, the other case is

similar. Put Z1 =
∑n

k=2 Ck and Z2 =
∑n−1

k=1 Ck. Then, we can see that
Ψ1 ◦ Φ induces an equivalence DZ1(X) ∼= DZ2(X). By the induction
hypothesis, there is

Ψ2 ∈
〈
TOCl

(a)

∣∣ a ∈ Z, 1 ≤ l ≤ n − 1
〉

such that Ψ := Ψ2 ◦Ψ1 has the desired property, and we finish the proof
of Key Proposition. q.e.d.

Let ι ∈ Aut Y (∼= Aut X) be an involution such that ι(Ci) = Cn−i+1

for curves Ci. The above proof also supplies the following:

Corollary 3.2. For any Φ ∈ Auteq DZ(X), there is Ψ ∈ 〈B, ι∗, [i]
∣∣

i ∈ Z〉 such that

Ψ ◦ Φ(R) ∼= R

for every line bundle R on any subchain of Z.
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3.2. Proof of Theorem 1.3. First of all, we show the equality

AuteqFM DZ(X) = (〈B,Pic X〉 ⋊ Aut X) × Z.

Note that B∩Aut X = {id} and B is a normal subgroup of 〈B, A(X)〉 by
Remark 4.17. Therefore, it suffices to show that Φ belongs to 〈B, A(X)〉
for any Φ ∈ AuteqFM DZ(X). Key Proposition implies that there are
Ψ ∈ B and an integer i such that for any point x ∈ Z, we have Ψ ◦
Φ(Ox) ∼= Oy[i] for some point y ∈ Z. Then, Lemma 3.3 assures that
Ψ ◦ Φ ∈ A(X), and thus, we get the conclusion.

Lemma 3.3 ([BM98, 3.3]). Suppose an autoequivalence Φ ∈
AuteqFMD(X) for an algebraic variety X satisfies the following: for

any point x ∈ X, there is a point y ∈ X such that Φ(Ox) ∼= Oy. Then,

Φ ∈ PicX ⋊ Aut X.

Next, we prove

Auteq DZ(X) = AuteqFM DZ(X) ⋉ N(DZ(X))

by using the McKay correspondence. Recall that Y is isomorphic to (the
germ of) a quotient singularity C2/G, where G ⊂ SL(2, C) is a finite sub-
group; the An-singularity corresponds to the case G ∼= Z/(n + 1)Z. Let
CohG(C2) be the abelian category of G-equivariant coherent sheaves
on C2 and DG(C2) its bounded derived category. The McKay corre-
spondence [KV00] establishes an equivalence from the derived cate-
gory of the minimal resolution of C2/G to DG(C2), which is an FM
transform. This induces an equivalence from DZ(X) to the full sub-
category DG

{0}(C
2) of objects supported on the set {0}. Especially, it

sends OCi
(−1) ∈ DZ(X) to ρi ⊗ O0 ∈ DG

{0}(C
2), where ρ1, . . . , ρn are

the non-trivial irreducible representations of G. Moreover, ωZ corre-
sponds to ρ0 ⊗ O0[−1] where ρ0 is the the trivial representation of
G. Thus, an autoequivalence of DZ(X) which fixes ωZ and OCi

(−1)
for i = 1, . . . , n corresponds to an autoequivalence of DG

{0}(C
2) which

fixes ρ0 ⊗O0, . . . , ρn ⊗O0. Recall that we have a natural isomorphism
Aut X ∼= Aut Y ; via this isomorphism AutX acts both on DZ(X) and
on DG

{0}(C
2) preserving the McKay correspondence.

Proposition 3.4. Let Φ be an autoequivalence of DG
{0}(C

2) satisfying

Φ(ρi ⊗O0) ∼= ρi ⊗O0 for all irreducible representations ρi of G. Then,

there is an automorphism σ ∈ Aut Y such that

Φ(α) ∼= σ∗α

for all α ∈ DG
{0}(C

2).

Proof. Since any sheaf F ∈ CohG
{0}(C

2) is a successive extension of

sheaves ρi⊗O0, it follows from the assumption that Φ(F) is also a sheaf.
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Moreover, Φ restricted to CohG
{0}(C

2) is an exact functor of abelian

categories. Let R be the affine coordinate ring of C2 with maximal

ideal m of the origin. We denote by R̂ the completion of R with respect
to m.

Claim 3.5. We have Φ(ρi ⊗ R/ml) ∼= ρi ⊗ R/ml for all irreducible
representations ρi and for all positive integers l.

Proof. We prove the claim by induction on l. The case l = 1 is
included in the assumption. Assume l > 1 and consider the short exact
sequence

0 → ρi ⊗ ml−1/ml → ρi ⊗ R/ml → ρi ⊗ R/ml−1 → 0.

Since the equivalence Φ sends a sheaf to a sheaf, the following is also an
exact sequence of sheaves:

0 → Φ(ρi ⊗ ml−1/ml) → Φ(ρi ⊗ R/ml) → Φ(ρi ⊗ R/ml−1) → 0.

Here, we have Φ(ρi⊗ml−1/ml) ∼= ρi⊗ml−1/ml since ml−1/ml is a direct
sum of sheaves ρj ⊗ O0, and Φ(ρi ⊗ R/ml−1) ∼= ρi ⊗ R/ml−1 by the
induction hypothesis. Therefore, the claim follows from the following
lemma. q.e.d.

Lemma 3.6. Let

0 → ρi ⊗ ml−1/ml → F → ρi ⊗ R/ml−1 → 0

be the extension corresponding to a class e ∈ G-Ext1
C2(ρi⊗R/ml−1, ρi⊗

ml−1/ml). Then, F ∼= ρi⊗R/ml if and only if φ◦e 6= 0 in G-Ext1
C2(ρi⊗

R/ml−1, ρj ⊗O0) for any j and for any surjection φ : ρi ⊗ ml−1/ml →
ρj ⊗O0.

Proof. The ‘only if’ part is obvious. Let F be an extension with
the above property. Lift ρi ⊗ 1 ⊂ ρi ⊗ R/ml−1 to a G-invariant vector
subspace V ∼= ρi of F . The assumption on e implies that V generates F
as an R-module. Therefore, F is of the form ρi ⊗R/J for a G-invariant
R-submodule J of ρi⊗R. Since F fits into the above extension, J must
coincide with ρi ⊗ ml. q.e.d.

We denote by j : C →֒ DG
{0}(C

2) the full subcategory whose objects

are sheaves ρi ⊗ R/ml where i and l vary.

Claim 3.7. There exists an automorphism σ ∈ Aut Y with an iso-
morphism φ : σ∗ ◦ j ∼= Φ ◦ j.

Proof. Φ induces an isomorphism (of C-algebras)

σl : G-HomC2(R/ml, R/ml) ∼= G-HomC2(Φ(R/ml), Φ(R/ml)).
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By Claim 3.5, the right-hand side is isomorphic to (R/ml)G and this
isomorphism does not depend on the choice of the isomorphism in Claim
3.5. Hence, σl is a C-algebra automorphism of (R/ml)G. Put

σ = lim
←−

l

σl ∈ Aut Y.

By replacing Φ with (σ∗)−1 ◦ Φ, we may assume that σ is the identity.

We choose isomorphisms φ0
l : R/ml ∼

→ Φ(R/ml) such that

R/ml+1

∼=φ0
l+1

²²

pl // // R/ml

∼=φ0
l

²²
Φ(R/ml+1)

Φ(pl) // // Φ(R/ml)

commutes where pl is the projection. We see that Φ(f) ◦ φ0
l = φ0

l ◦
f for any G-equivariant morphism f : R/ml → R/ml since f is the
multiplication by an element of (R/ml)G and since σl is the identity.

For i 6= 0, we first choose isomorphisms ψi
l : ρi⊗R/ml ∼= Φ(ρi⊗R/ml)

such that ψi
l ◦ (1ρi

⊗ pl) = Φ(1ρi
⊗ pl) ◦ ψi

l+1. For an element a ∈

(ρi⊗R/ml)G, denote by ma : R/ml → ρi⊗R/ml the multiplication by a.
Then, (ψi

l)
−1◦Φ(ma)◦φ

0
l is also a morphism from R/ml to ρi⊗R/ml and

hence is the multiplication by an element ξl(a) of (ρi⊗R/ml)G. Here, ξl

is an automorphism of (ρi⊗R/ml)G as an additive group. Moreover, for
any b ∈ (R/ml)G, the relation mba = ma◦mb implies that ξl is (R/ml)G-
linear. Furthermore, ξl+1 induces ξl on (ρi ⊗ R/ml)G. Therefore, we

can define ξ = lim
←−l

ξl which is a R̂G-module automorphism of (ρi⊗ R̂)G.
Since

ρi ⊗ R̂ ∼=
(
(ρi ⊗ R̂)G ⊗

( bR)G R̂
)∨∨

([Esn85], see also [Rie03, Theorem 12]), ξ gives rise to automorphisms

ξ̃ of ρi ⊗ R̂ and therefore, we obtain an automorphism ξ̃l of ρi ⊗ R/ml

for any l which coincide with ξl on (ρi ⊗ R/ml)G. Put

φi
l := ψi

l ◦ ξ̃l.

Then for any a ∈ (ρi ⊗ R/ml)G, we have ξ̃l ◦ ma = mξl(a), hence the
diagram

R/ml ma //

∼=φ0
l

²²

ρi ⊗ R/ml
ξ̃l // ρi ⊗ R/ml

ψi
l

∼=
²²

Φ(ρi ⊗ R/ml)
Φ(ma)

// Φ(ρi ⊗ R/ml)

is commutative. Then, we obtain

(3.1) φi
l ◦ ma = Φ(ma) ◦ φ0

l .
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Finally, we consider a G-equivariant morphism f : ρi ⊗ R/mk →
ρj ⊗ R/ml for arbitrary i, j, k, l and show that

(3.2) ρi ⊗ R/mk
f //

φi
k

²²

ρj ⊗ R/ml

φ
j
l

²²

Φ(ρi ⊗ R/mk)
Φ(f)

// Φ(ρj ⊗ R/ml)

commutes. When k = l, we write ζji
l (f) = (φj

l )
−1 ◦ Φ(f) ◦ φi

l and put

ζji = lim
←−l

ζji
l . Then, ζji is a R̂G-automorphism of

(
Hom bR

(ρi ⊗ R̂, ρj ⊗ R̂)
)G

∼= Hom bRG((ρi ⊗ R̂)G, (ρj ⊗ R̂)G).

Take f ∈ Hom bRG((ρi⊗ R̂)G, (ρj ⊗ R̂)G) and g ∈ Hom bRG(R̂G, (ρi⊗ R̂)G).

Then, we have ζj0(f ◦g) = ζji(f)◦ζi0(g) by the definition of ζji’s. (3.1)
shows that ζi0(g) = g and ζj0(f ◦ g) = f ◦ g. Since g is arbitrary, these
equalities imply that ζji(f) = f and hence, the commutativity of (3.2)
in the case k = l. If k > l, then f factors through ρi⊗R/ml and if k < l
then f can be composed with the surjection ρi ⊗ R/ml → ρi ⊗ R/mk.
In this way, we obtain the commutativity of (3.2). q.e.d.

Claim 3.8. Let j′ : CohG
{0}(C

2) →֒ DG
{0}(C

2) be the natural em-

bedding. Then, we have an isomorphism φ : σ∗ ◦ j′ ∼= Φ ◦ j′. More-
over, for F ∈ CohG

{0}(C
2), let us define φF [n] : F [n] → Φ(F [n]) by

φF [n] = φF [n]. Then, these isomorphisms commute with Hom’s be-
tween shifts of sheaves: F [n] and G[m].

Proof. As in the proof of the previous claim, we may assume σ is the
identity. For F ∈ CohG

{0}(C
2), we can take a presentation

E1 → E0 → F → 0

where E0 and E1 are direct sums of sheaves in C. Then, the proof is
similar to that in [Orl97, 2.16.1–2.16.4]. q.e.d.

Now, we give a proof of the proposition. We may assume σ is the
identity by replacing Φ with (σ∗)−1 ◦ Φ. Let α 6= 0 be an object of
DG

{0}(C
2). α = α• is a bounded complex over CohG

{0}(C
2). Let p and q

be the minimum and the maximum of i with αi 6= 0, and denote by v
the natural morphism αq[−q] → α. We show by induction on q− p that
there is an isomorphism φα : α → Φ(α) such that φα◦v = Φ(v)◦φαq [−q].
Let β = β• be an object such that

βi =

{
αi (i 6= q)

0 (i = q)



396 A. ISHII & H. UEHARA

with the same differentials (except for dq−1 : βq−1 → βq) as α. Then, β
fits into a distinguished triangle

αq[−q] → α → β
t
→ αq[−q + 1].

By the induction hypothesis, we have an isomorphism φβ : β → Φ(β)
such that φβ ◦ u = Φ(u) ◦ φβq−1 [−q + 1] where u : βq−1[−q + 1] → β
is the natural morphism. For the existence of φα with the prescribed
property, it is enough to show φαq [−q + 1] ◦ t = Φ(t) ◦ φβ . Consider the
following diagram:

βq−1[−q + 1]
u //

φ
βq−1 [−q+1]

²²

β
t //

φβ

²²

αq[−q + 1]

φαq [−q+1]

²²
Φ(βq−1)[−q + 1]

Φ(u)
// Φ(β)

Φ(t)
// Φ(αq)[−q + 1].

Here, the left square is commutative by virtue of the property of φβ and
the whole square is commutative by Claim 3.8. Thus, we obtain

(3.3) φαq [−q + 1] ◦ t ◦ u = Φ(t) ◦ φβ ◦ u.

If we consider the object γ in a distinguished triangle

βq−1[−q + 1]
u
→ β → γ → βq−1[−q + 2],

then we see Hom(γ,Φ(αq)[−q + 1]) ∼= Hom(γ, αq[−q + 1]) = 0 and
therefore

u∗ : Hom(β,Φ(αq)[−q + 1]) → Hom(βq−1[−q + 1], Φ(αq)[−q + 1])

is injective. Thus, we can remove ‘◦u’ from (3.3) as desired. q.e.d.

We apply the above proposition to DZ(X) via the McKay correspon-
dence. Assume Φ ∈ Auteq DZ(X) is given. From Corollary 3.2 and
Proposition 3.4, we obtain an FM transform Ψ ∈

〈
B,AutX, [i]

∣∣ i ∈ Z
〉

such that Ψ ◦ Φ ∈ N(DZ(X)).
On the other hand, Lemma 3.3 implies that an autoequivalence

Φ ∈ AuteqFM DZ(X) ∩ N(DZ(X))

is induced by an automorphism σ of X such that σ(x) = x for all x ∈ Z.
Moreover, we have σ∗F ∼= F for any coherent sheaf F on X supported by
{x} ⊆ Z and this implies that the automorphism of the two-dimensional
regular local ring OX,x induced by σ is the identity. Consequently, σ
and hence Φ are the identity. Now, we obtain the splitting

Auteq DZ(X) = AuteqFM DZ(X) ⋉ N(DZ(X)),

which completes the proof of Theorem 1.3. q.e.d.
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3.3. Proof of Theorem 1.5. Let f : S → S0 be a composite of
blowing-ups along a point and S0 the minimal model of S.

Claim 3.9. Let C be an irreducible curve on S.

(i) If KS · C = 0, then C is a −2-curve. Assume furthermore that
Exc f ∩ C 6= ∅. Then C ⊂ Exc f .

(ii) If KS · C < 0, then C is a −1-curve with C ⊂ Exc f .

Proof. Put KS = f∗KS0 +
∑

aiEi, where Ei’s are the components
of Exc f and ai ∈ Z>0. Assume that KS · C ≤ 0. Then, we have
0 ≥ KS ·C ≥

∑
aiEi ·C, and hence, C ∩Exc f = ∅ or C = Ei for some

i. In the former case, we get KS · C = KS0 · f(C) = 0, in particular C
is a −2-curve. If KS · C < 0, then the latter case occurs and we have
C2 < 0. Therefore, we obtain KS · C = −1. q.e.d.

Put f = ϕ1 ◦ · · · ◦ ϕn and S = Sn, where ϕk : Sk → Sk−1 is the
blow-up along a point xk−1 ∈ Sk−1.

Claim 3.10. Let C be a −1-curve on S. If some −2-curve C1 meets
C, no other −2-curves meet C.

Proof. We may assume that ϕn contracts C, since C ⊂ Exc f . For
a contradiction, suppose that there are two −2-curves C1, C2 such that
both of them meet C. By Claim 3.9, ϕn(C1) and ϕn(C2) are −1-curves
on Sn−1. ϕn(C1) ∩ ϕn(C2) 6= ∅ yields a contradiction with C1, C2 ⊂
Exc f . q.e.d.

Claim 3.11. Any connected component of the union of all −2-curves
on Sk (0 ≤ k ≤ n) forms a chain.

Proof. We show the claim by induction on k. Note that the claim
holds for k = 0 by the assumption of Theorem 1.5. Suppose that the
claim is true for Sk. If there are no −1-curves passing through xk, we
have C ∩ Excϕk+1 = ∅ for any −2-curve C on Sk+1. Then the claim
is true for Sk+1. If there is a −1-curve C passing through xk, no other
−1-curves pass through xk by Claim 3.10 for Sk+1. Claim 3.10 for Sk

says that at most one −2-curve meets C. Now, we get the conclusion
by the induction assumption. q.e.d.

Suppose that Φ ∈ Auteq D(S) is given. Then, Orlov’s result [Orl97]
assures that there is an object P ∈ D(S × S) such that Φ ∼= ΦP .
By the proof of [Kaw02, Theorem 2.3], we have a projective surface
Z ⊂ SuppP such that pi|Z : Z → S (i = 1, 2) is an isomorphism. Here,
pi’s are the projections S × S → S. Put q := p2|Z ◦ (p1|Z)−1.

Because S is of general type and Φ(Ox)⊗ ωS
∼= Φ(Ox) for any x ∈ S

(see [BM01, Theorem 2.7]), we have dim Φ(Ox) ≤ 1. Assume that
dim Φ(Ox0) = 1 for some x0 ∈ S. Then, because KS · C = 0 for any
one-dimensional irreducible component C of Supp Φ(Ox0) by the proof
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of [Kaw02, Theorem 2.3], Claim 3.9 implies that there is a −2-curve
C on S such that C ⊂ Supp Φ(Ox0). Since q(x0) ∈ C, there is a −2-
curve C ′ such that x0 ∈ C ′. Therefore, we can conclude that if a point
x ∈ S is not contained in any −2-curves, we have Supp Φ(Ox0) = q(x).
Moreover, the proof of [BM01, Proposition 3.1] deduces that Φ(Ox) ∼=
Oq(x)[i] for some i ∈ Z. Here, the choice of i is independent of the choice
of x.

Let {Zj}j be the set of chains of −2-curves on S. Take a point
x ∈ S\

∐
j Zj . Then, we have Φ(Ox) ∼= Oq(x)[i], and in particular

q∗ ◦ Φ(Ox) ∼= Ox[i] for any x ∈ S\
∐

j Zj . Therefore q∗ ◦ Φ preserves

DZj
(S) for each j. Now, Key Proposition and Lemma 3.3 complete the

proof. q.e.d.

4. Spherical objects and twist functors for the derived
categories of smooth surfaces

This section provides technical tools used in the proofs of Proposition
1.6 and Proposition 1.7. In Section 4.1, we recall two kinds of spectral
sequences; their d2-maps are determined by some connecting data ei(α).
Then, we see in Section 4.2 that the isomorphism class of an object α ∈
D(X), X a smooth surface, is determined by the cohomology sheaves
Hi(α) and the connecting data ei(α). In Section 4.3, we give a necessary
and sufficient condition for α to be spherical in terms of Hi(α) and ei(α).
In Section 4.4, we summarize properties of twist functors and then do
some computations. We consider the group B and its relation with
PicX in Section 4.5.

4.1. Spectral sequences arising from the canonical filtration of
a complex. In this subsection, we review some basic facts on spectral
sequences. See [GM96, IV.2. Excercise 2] and the proof of [Ver96, III
Proposition 4.4.6] for details.

Let A be an abelian category with enough injectives and let D(A) be
the bounded derived category of it. For an object α ∈ D(A), we denote
by Hi(α) ∈ A the i-th cohomology of the complex α. For objects
α, β ∈ D(A), there is a spectral sequence
(4.1)

Ep,q
2 =

⊕

i

Homp

D(A)(H
i(α),Hi+q(β)) =⇒ Ep+q = Homp+q

D(A)(α, β).

For a cohomological functor F from D(A) to an abelian category B,
we have another spectral sequence

(4.2) Ep,q
2 = F p(Hq(α)) =⇒ Ep+q = F p+q(α).

We use (4.1) for a single spherical object α = β in the proof of Propo-
sition 1.6, and two spherical objects α = Φ(OC1) and β = Φ(OC1(−1))
in the proof of Proposition 1.7.
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In addition, we also use the description of the maps d2 of the above
spectral sequences. We denote by τ≤pα the following complex:

(τ≤pα)n =






αn n < p

ker dp n = p

0 n > p

We define τ>pα(= τ≥p+1α) so that it fits into a distinguished triangle

τ≤pα → α → τ>pα → τ≤pα[1]

and we put

τ[p,q]α = τ≥pτ≤qα.

Especially, we have an isomorphism τ[p,p]α ∼= Hp(α)[−p] and a distin-
guished triangle

(4.3) Hp−1(α)[−p + 1] → τ[p−1,p]α → Hp(α)[−p] → Hp−1(α)[−p + 2].

The last morphism determines an element

ep(α) ∈ HomD(A)(H
p(α),Hp−1(α)[2]) ∼= Ext2A(Hp(α),Hp−1(α)).

This class gives rise to the morphisms d2 of the above spectral sequences:

Proposition 4.1. The morphisms dp,q
2 : Ep,q

2 → Ep+2,q−1
2 in the

spectral sequences in (4.1) and (4.2) are determined as follows.

(4.1): For ⊕ifi ∈
⊕

i Homp

D(A)(H
i(α),Hi+q(β)),

dp,q
2 (⊕ifi) =

⊕

i

((−1)p+qfi−1 ◦ ei(α) − ei+q(β) ◦ fi).

(4.2): dp,q
2 is the morphism F (eq(α)[p]) : F (Hq(α)[p]) → F (Hq−1(α)[p +

2]).

4.2. Reconstruction of objects of the derived category of a
smooth surface. Let X be a smooth surface. We denote by D(X) =
Db(Coh X) the bounded derived category of coherent sheaves on X. The
following proposition shows that an object α of D(X) is determined
by its cohomology sheaves Hi(α) and the classes ei(α), up to (non-
canonical) isomorphisms.

Proposition 4.2. Suppose we are given coherent sheaves Gi on X
and elements

ei ∈ Ext2X(Gi,Gi−1)

for all i ∈ Z such that Gi’s are zero except for finitely many i’s. Then,

there is an object α ∈ D(X) and isomorphisms µi : Hi(α) ∼= Gi such

that µi−1[2] ◦ ei(α) = ei ◦ µi. This α is uniquely determined up to

isomorphisms.
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Proof. Define q0 = max
{
q

∣∣ Gq 6= 0
}

and q1 = min
{
q

∣∣ Gq 6= 0
}
. We

use induction on the non-negative integer q0 − q1. When q0 − q1 = 0,
we just define α to be Gq0 [−q0]. Let us consider the case q0 − q1 > 0.
By the induction hypothesis, we can find β ∈ D(X) and isomorphisms

νi : Hi(β) ∼=

{
Gi i 6= q0

0 i = q0

such that νi−1[2] ◦ ei(β) = ei ◦ νi if i 6= q0.
Let us consider the spectral sequence (4.1)

Ep,q
2 = Extp

X(Gq0 ,Hq0+q(β)) =⇒ Homp+q

D(X)(G
q0 [−q0], β).

Then, since Ep,q
2 = 0 for q ≥ 0 or p 6∈ [0, 2], we have an isomorphism

f : Ext2X(Gq0 ,Gq0−1)
(νq0−1)∗// E2,−1

2
∼= E1.

From the morphism −f(eq0)[−1], we obtain an object α ∈ D(X) and a
distinguished triangle

Gq0 [−q0 − 1]
−f(eq0 )[−1]

// β // α // Gq0 [−q0].

We denote the last morphism by ϕ. Then, we have an isomorphism
ξ : τ<q0α

∼= β and a morphism of distinguished triangles:

β //

²²

α
ϕ //

²²

Gq0 [−q0]
f(eq0 ) // β[1]

²²
Hq0−1(β)[−q0 + 1] // τ[q0−1,q0]α // Gq0 [−q0] // Hq0−1(β)[−q0 + 2]

Here, the triangle in the second row is isomorphic to the one in (4.3).
Thus, putting µi = νi ◦ Hi(ξ) for i 6= q0 and µq0 = Hq0(ϕ), we have
µi : Hi(α) ∼= Gi and µi−1[2] ◦ ei(α) = ei ◦ µi.

For the uniqueness, let α and β be objects of D(X) with isomor-
phisms ξi : Hi(α) ∼= Hi(β) satisfying ξi−1[2] ◦ ei(α) = ei(β) ◦ ξi. Then,

⊕iξi lies in E0,0
2 in the spectral sequence (4.1) and the condition on ξi

implies that d0,0
2 (⊕iξi) = 0. Since X is non-singular of dimension 2, Ep,q

2
vanishes unless 0 ≤ p ≤ 2 and hence, (4.1) is E3-degenerate. Therefore,
⊕iξi survives at the infinity and there exists ξ ∈ HomD(X)(α, β) which
induces ξi on the cohomology sheaves. Since each ξi is an isomorphism,
we see that ξ is an isomorphism. q.e.d.

In the light of Proposition 4.2, we obtain the following.

Lemma 4.3. Let α be an object of D(X) which satisfies Hi(α) = Gi
1⊕

Gi
2 for some coherent sheaves Gi

1,G
i
2. For the class ei(α) ∈ Ext2X(Hi(α),
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Hi−1(α)), we write

ei(α) =

(
ai bi

ci di

)

so that

ai ∈ Ext2X(Gi
1,G

i−1
1 ),

bi ∈ Ext2X(Gi
2,G

i−1
1 ),

ci ∈ Ext2X(Gi
1,G

i−1
2 ),

di ∈ Ext2X(Gi
2,G

i−1
2 )

respectively. If all bi and ci are zero, then we have objects α1, α2 ∈ D(X)
such that α ∼= α1 ⊕ α2, H

i(αk) ∼= Gi
k, ei(α1) = ai and ei(α2) = di.

4.3. Spherical objects. The definition of a spherical object on an n-
dimensional smooth quasi-projective variety X is given by Seidel and
Thomas:

Definition 4.4 ([ST01]). We say that an object α ∈ Dc(X) is spher-

ical if we have α ⊗ ωX
∼= α and

Homk
D(X)(α, α) ∼=

{
0 k 6= 0, n

C k = 0, n.

Here, suppose that dimX = 2 and take an object α of Dc(X).
We shall give conditions for α to be spherical under the assumption
α ⊗ ωX

∼= α.

Proposition 4.5. Assume that α ⊗ ωX
∼= α. The following are

equivalent.

(i) α is spherical.

(ii) In the spectral sequence (4.1) (for α = β)

Ep,q
2 =

⊕

i

Homp
X(Hi(α),Hi+q(α)) =⇒ Homp+q

D(X)(α, α),

we have the following:

• d0,q
2 is injective for all q 6= 0.

• Ker d0,0
2 is a one-dimensional C-vector space generated by the

element ⊕iidi ∈ E0,0
2 .

• E1,q
2 = 0 for all q, i.e., Ext1X(Hi(α),Hj(α)) = 0 for all i, j.

Proof. Notice that the spectral sequence in (ii) degenerates at the
E3-level, since X is two-dimensional. We have

(4.4) E0,q
2

∼= (E2,−q
2 )∨

for all q by the Grothendieck–Serre duality.
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Let us first give the proof of the implication from (i) to (ii). Notice
that

dim Ker d0,0
2 = dim E0,0

3 ≤ dimE0 = 1.

Since ⊕iidi ∈ Ker d0,0
2 , we obtain the second condition in (ii) and

E1,−1
2 = E2,−2

3 = 0. Especially, we get E1,1
2 = 0 by (4.4). Since

dimE1,q
2 ≤ dimE1+q = 0 for all q 6= −1, 1, we have E1,q

2 = 0 for all
q, as desired. Now, let us show the first condition in (ii). Obviously,

the condition (i) implies that d0,q
2 is injective for q 6= 0, 2. On the other

hand, we know that d0,2
2 is surjective by E3 = 0 and d0,−1

2 is isomorphic

by E2,−2
3 = 0. In particular, we see

dim Ker d0,2
2 = dimE2,1

2 − dimE0,2
2 = dim E0,−1

2 − dimE2,−2
2 = 0,

which implies the conclusion.
Conversely, assume that (ii) holds. We have

dim E0,q
2 − dimE2,q−1

2 ≤ dim Ker d0,q
2 =

{
1 q = 0

0 q 6= 0.

Combining this and (4.4) together, we get

dimE0,q
2 = dimE2,q−1

2

for q 6= 0, 1. Since d0,q
2 is injective for q 6= 0, we know that d0,q

2 is

isomorphic for q 6= 0, 1, in particular, E2,−2
3 = Coker d0,−1

2 = 0. This
equality and (ii) imply

Coker d0,1
2

∼= E2,0
3

∼= Hom2
D(X)(α, α)

and

Hom0
D(X)(α, α) ∼= E0,0

3
∼= Ker d0,0

2
∼= C.

Hence, it follows from the duality that

Coker d0,1
2

∼= Hom0
D(X)(α, α)∨ ∼= C.

Therefore, we have

dimE0,0
2 − dimE2,−1

2 = dimE2,0
2 − dimE0,1

2 = dim Coker d0,1
2 = 1.

Especially, we get the surjectivity of d0,0
2 and

dim Hom1
D(X)(α, α) = dimE2,−1

3 = dim Coker d0,0
2 = 0.

This completes the proof. q.e.d.

Remark 4.6. Via Proposition 4.1, Proposition 4.5 (ii) is regarded
as a condition on Hi(α) and ei(α). Consequently, the condition for
α ∈ D(X) to be spherical is entirely expressed in terms of Hi(α) and
ei(α).

Example 4.7. Let X be a smooth surface.
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(i) Let Z be a chain of −2-curves on X and L a line bundle on Z.
Then L is a spherical object of D(X).

(ii) We give a rather non-trivial example of a spherical object α ∈
D(X), supported on C1 ∪ · · · ∪ C5, a union of −2-curves in A5-
configuration on X. First, we define the cohomology sheaves of α
as follows:

C1 C2 C3 C4 C5

H2(α) : h0 h
−1 h0

R1 : h
−1 h0 h0 h0

R2 : h0 h0 h
−1

H0(α) : h
−1 h0 h0 h0 h0

with H1(α) = R1 ⊕R2. Notice that

Ext2X(H2(α),H1(α)) ∼= Ext2X(H2(α),R1) ⊕ Ext2X(H2(α),R2) ∼= C ⊕ C

and

Ext2X(H1(α),H0(α)) ∼= Ext2X(R1,H
0(α)) ⊕ Ext2X(R2,H

0(α)) ∼= C ⊕ C.

Keep these isomorphisms in mind, and take

e2(α) = (e2
1, e

2
2) ∈ Ext2X(H2(α),H1(α))

and
e1(α) = (0, e1

2) ∈ Ext2X(H1(α),H0(α))

with e2
1, e

2
2, e

1
2 ∈ C∗. The data Hi(α) and ei(α) ∈ Exti

X(Hi(α),
Hi−1(α)) determine an object α ∈ D(X) by Proposition 4.2. We
can see that α is spherical by checking the conditions in Proposi-
tion 4.5 (ii).

Proposition 4.5 holds for any compactly supported object on a smooth
surface X. In the situation of our problem, we can say more about the
cohomology sheaves of a spherical object.

Lemma 4.8. Let f : X → Y be a surjective morphism from a smooth

variety X to a variety Y , and let Z = f−1(y) be the scheme-theoretic

fiber of a closed point y ∈ Y . If α ∈ DZ(X) satisfies HomD(X)(α, α) ∼=

C, then every cohomology sheaf Hi(α) is an OZ-module.

Proof. Take an affine open neighborhood U := SpecR of y and
denote by my ⊂ R the maximal ideal of y in U . Then, the spec-
tral sequence (4.1) is a spectral sequence of R-modules and we have
E0 = HomD(X)(α, α) ∼= R/my. On the other hand, this spectral se-
quence satisfies

E0,0
2 ⊃ E0,0

3 ⊃ · · · ⊃ E0,0
∞

and the image of E0 in E0,0
∞ →֒ E0,0

2 =
⊕

i HomX(Hi(α),Hi(α)) con-
tains ⊕iidi. Thus, for each identity map idi on Hi(α), we have my ·idi =
0 and IZ · Hi(α) = 0. This completes the proof. q.e.d.
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Recall that a coherent sheaf F on a variety X is rigid if Ext1X(F ,F) =
0.

Lemma 4.9. Let F be a one-dimensional rigid coherent sheaf on a

smooth surface X. Then F is purely one-dimensional, that is, every

non-zero subsheaf of F is one-dimensional.

Proof. Let Ftor be the ‘torsion’ part of F , namely the maximal zero-
dimensional subsheaf of F . Our aim is to show Ftor = 0. Take a
surjection E → F from a locally free sheaf E and denote the kernel of it
by G. We consider the following commutative diagram with exact rows.

0 // G

g

²²

// E // F //

f

²²

0

0 // G∨∨ // E // F ′ // 0

Here, G∨∨ is the double dual of G and F ′ = F/Ftor. Note that Ftor
∼=

G∨∨/G by the snake lemma. Let us consider the composite of the natural
maps

HomX(G,Ftor) →֒ HomX(G,F) → Ext1X(F ,F)

and denote it by ϕ. Since HomX(G,Ftor) is a zero-dimensional sheaf,
the vanishing of H0(Ext1X(F ,F)) implies that ϕ is the zero map. This
means that in the exact sequence

HomX(E ,F) → HomX(G,F) → Ext1X(F ,F) → 0,

we can extend a (local) map ψ ∈ HomX(G,Ftor) to a (local) map
ψ̄ ∈ HomX(E ,F). ψ̄ sends (G∨∨) into Ftor, since G∨∨/G(∼= Ftor) is
zero-dimensional. Therefore, in the exact sequence

HomX(G∨∨,Ftor) → HomX(G,Ftor) → Ext1X(Ftor,Ftor) → 0,

the first map is surjective. It follows that Ext1X(Ftor,Ftor) = 0. Since
Ftor is zero-dimensional and rigid, we obtain Ftor = 0. q.e.d.

We summarize Proposition 4.5, Lemmas 4.8 and 4.9 in our situation
as follows.

Corollary 4.10. Let {Ci} be a collection of −2-curves in an ADE-

configuration on a smooth surface X and let Z be the fundamental cycle

of
⋃

i Ci. If α ∈ DZ(X) is a spherical object, then the sheaf
⊕

p H
p(α)

is a rigid OZ-module, pure of dimension 1.

Recall we defined l(α) for an object α ∈ DZ(X) in Introduction. The
following is a basic tool in the proofs of Propositions 1.6 and 1.7.

Lemma 4.11. Under the notation in Corollary 4.10, we have

(4.5) l(Φ(α)) ≤
∑

q

l(Φ(Hq(α)))
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for any Φ ∈ Auteq DZ(X). The equality in (4.5) implies the vanishing

dp,q
2 = 0 for all p, q in the spectral sequence

(4.6) Ep,q
2 = Hp(Φ(Hq(α))) =⇒ Ep+q = Hp+q(Φ(α)),

if every Ep,q
2 is purely one-dimensional.

Proof. In (4.6), we see that

l(Φ(α)) =
∑

n

l(En) =
∑

p,q

l(Ep,q
∞ ) ≤ · · ·

≤
∑

p,q

l(Ep,q
3 ) ≤

∑

p,q

l(Ep,q
2 ) =

∑

q

l(Φ(Hq(α))),

which implies (4.5). If the equality holds in (4.5), then
∑

p,q l(Ep,q
3 ) =∑

p,ql(E
p,q
2 ). This ensures l(Im(dp,q

2 ))=0, and consequently dim Im(dp,q
2 )

≤ 0. Since Im(dp,q
2 ) is a subsheaf of Ep+2,q−1

2 which is pure of dimension
1, it must be zero. q.e.d.

Remark 4.12. If Z forms an An-configuration in Lemma 4.11, we
can actually show that every Ep,q

2 is always purely one-dimensional by
Corollary 4.10 and Lemma 6.1.

4.4. Twist functors. Let X be an n-dimensional smooth quasi-pro-
jective variety. The following definition is due to Seidel and Thomas.

Definition 4.13 ([ST01]). Let α ∈ Dc(X) be a spherical object and
consider the mapping cone

C = Cone(π∗
1α

∨
L

⊗ π∗
2α → O∆)

of the natural evaluation π∗
1α

∨
L

⊗ π∗
2α → O∆, where ∆ ⊂ X × X is

the diagonal and πi is the i-th projection πi : X × X → X. Then,
Tα := ΦC

X→X defines an autoequivalence, called the twist functor along
a spherical object α. The object Tα(β) fits into a distinguished triangle

RHomOX
(α, β)

L

⊗C α
ev
−→ β −→ Tα(β)

for any β ∈ D(X), where ev is the evaluation morphism. For the inverse
T ′

α of Tα, we have a distinguished triangle

T ′
α(β) −→ β

ev
−→ RHomOX

(β, α)∨
L

⊗C α

for any β ∈ D(X).

We list several lemmas on twist functors that will be used later.

Lemma 4.14.
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(i) Let α ∈ D(X) be a spherical object. For an FM transform Φ :
D(X) → D(X) with quasi-inverse Φ−1, we have

Φ ◦ Tα ◦ Φ−1 ∼= TΦ(α).

For an integer i, we also have

Tα
∼= Tα[i].

(ii) Let Z ( X be a closed subscheme of X which is proper over C.

Then, we have
〈
Tα

∣∣ α ∈ DZ(X), spherical
〉
∩ Aut X = {id}.

Proof. (i) is readily verified by definition. The kernel P of an integral
functor ΦP in the left-hand side of (ii) satisfies that P|(X\Z)×(X\Z)

∼=
O∆|(X\Z)×(X\Z), where ∆ ⊂ X × X is the diagonal. This leads us to
the equality in (ii). q.e.d.

Lemma 4.15. Let X be a smooth surface.

(i) For a −2-curve C on X and an integer a, we have the following:

(1)
TOC(a)(OC(a)) = OC(a)[−1]

and

TOC(a−1)(OC(a)) = OC(a − 2)[1].

(2)
TOC(a−1) ◦ TOC(a)

∼= ⊗OX(C).

(ii) Let Z =
∑n

l=1 Cl be a chain of −2-curves Cl on X with n > 1 and

put α = OZ(a1, a2, . . . , an) for some al ∈ Z. Then, we have the

following:

(1)

Hp(TOC1
(a1)(α)) =






α p = 0

OC1(a1) p = 1

0 p 6= 0, 1.

(2)
TOC1

(a1−1)(α) = OC2∪···∪Cn(a2, . . . , an).

(3)

Hp(TOC1
(a1−2)(α)) =






OC1(a1 − 3) p = −1

OZ(b1, . . . , bn) p = 0

0 p 6= −1, 0.

Here,

bl =






a1 − 2 l = 1

a2 + 1 l = 2

al l 6= 1, 2.
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(4)
TOCk

(ak−1)(α) = α

for all k (1 < k < n).
(5)

TOCk
(ak−2)(α) = OZ(b1, . . . , bn)

for all k (1 < k < n).
Here,

bl =






al i 6= k − 1, k, k + 1

al + 1 l = k − 1, k + 1

ak − 2 l = k.

Proof. (i.1) and (ii) are easy calculations. It follows from (i.1) that
TOC(a−1)◦TOC(a) sends OC(a) to OC(a−2) and OC(a+1) to OC(a−1).
Hence, for any point x ∈ X,

TOC(a−1) ◦ TOC(a)(Ox) ∼= Oy

for some y ∈ X. Thus, Lemma 3.3 implies that TOC(a−1) ◦ TOC(a) is an
element of A(X). Lemma 4.14 (ii) then yields it must be ⊗L for some
line bundle L. Since OC(a)⊗L ∼= OC(a− 2), we see L ∼= OX(C). q.e.d.

4.5. On the group B. Let Z = C1∪· · ·∪Cn ⊂ X be as in Introduction.
Recall we defined

B =
〈
TOCl

(−1), TωZ

∣∣ 1 ≤ l ≤ n
〉
⊂ Auteq DZ(X),

where ωZ denotes the dualizing sheaf on Z. Put

B′ =
〈
TOCl

(a)

∣∣ a ∈ Z, 1 ≤ l ≤ n
〉

.

Then, we have

Lemma 4.16. B = B′.

Proof. The proof is by induction on n. When n = 1, we write C = C1.
In this case, B =

〈
TOC(−2), TOC(−1)

〉
⊂ B′ by definition. Then, Lemma

4.15 (i.2) shows ⊗OX(C) ∈ B. Thus, we obtain from Lemma 4.14 (i)

TOC(2a−2)
∼= ⊗OX(−aC) ◦ TOC(−2) ◦ ⊗OX(aC) ∈ B,

and
TOC(2a−1)

∼= ⊗OX(−aC) ◦ TOC(−1) ◦ ⊗OX(aC) ∈ B.

Let us consider the case n > 1. By the induction hypothesis, we have

(4.7)
〈
TOCl

(a)

∣∣ a ∈ Z, 2 ≤ l ≤ n
〉

=
〈
TOCl

(−1), TωZ1

∣∣ 2 ≤ l ≤ n
〉

and
(4.8)〈

TOCl
(a)

∣∣ a ∈ Z, 1 ≤ l ≤ n − 1
〉

=
〈
TOCl

(−1), TωZn

∣∣ 1 ≤ l ≤ n − 1
〉

,
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where Z1 =
∑n

l=2 Cl and Zn =
∑n−1

l=1 Cl. Since we have

TωZ1

∼= T ′
OC1

(−1) ◦ TωZ
◦ TOC1

(−1) ∈ B

and
TωZn

∼= T ′
OCn (−1) ◦ TωZ

◦ TOCn (−1) ∈ B

by Lemmas 4.14 (i) and 4.15 (ii), (4.7) and (4.8) show that TOCl
(a) ∈

B for all l (1 ≤ l ≤ n), that is, B′ ⊂ B. Conversely, we see from
Lemmas 4.14 (i) and 4.15 (ii) that TωZ

∈ B′. Thus, we obtain B = B′.
q.e.d.

We further see in Corollary 6.10 that Tα ∈ B for every spherical
object α ∈ DZ(X).

Remark 4.17. We see from Lemma 4.14 (i) and Lemma 4.16 that
B is a normal subgroup of 〈A(X), B〉. It also follows from Lemma 4.14
(ii) that B ∩ Aut X = {id}.

Next, we consider the relation between B and PicX in AuteqDZ(X).

Proposition 4.18. We have the following.

(i) B ∩ PicX = 〈⊗OX(C1), . . . ,⊗OX(Cn)〉.
(ii) 〈B,PicX〉 ∼= B ⋊ Z/(n + 1)Z.

Proof.

(i) Lemma 4.15 (i.2) implies that the right-hand side is contained in
the left-hand side. Let i : X\Z → X be the open immersion. For a
spherical object α ∈ DZ(X), we have (i∗ ◦ Tα)(OX) ∼= OX\Z . Hence,
for an autoequivalence ⊗L ∈ B ∩Pic X, we have i∗L ∼= OX\Z . Thus, L
belongs to the right-hand side.

(ii) Note that the natural map

deg : PicX → Z⊕n L 7−→ (degL|Cl
)l

is isomorphic [Art66]. We denote by OX(a1, . . . , an) the element of
PicX which goes to (a1, . . . , an) ∈ Z⊕n.

By (i), B ∩ Pic X can be regarded as the root lattice; then PicX
is the weight lattice of it. As is well-known (see [Hum72, Section 13,
Exercise 4]), the weight lattice modulo the root lattice of type An is
isomorphic to Z/(n + 1)Z. Thus, we have

〈B,PicX〉 /B ∼= Pic X/(B ∩ Pic X) ∼= Z/(n + 1)Z.

Put
Φ0 := TOC1

(−1) ◦ · · · ◦ TOCn (−1) ◦ ⊗OX(0, . . . , 0, 1),

and αl := OCl
(−1) for l = 1, . . . , n, and α0 := αn+1 := ωZ [1]. Then,

we can show by direct computation that Φ0(αl) ∼= αl+1 for l = 0, . . . , n.
Thus, we have Φ0

n+1(αl) ∼= αl for all l (0 ≤ l ≤ n), which implies that
for any point x ∈ Cl, we obtain Φ0

n+1(Ox) ∼= Oy for some y ∈ Cl. Then,
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we get Φ0
n+1 ∈ AutX ∩ B, and therefore, Φ0

n+1 ∼= id by Lemma 4.14
(ii) and 〈B,PicX〉 ∼= B ⋊ 〈Φ0〉. q.e.d.

Remark 4.19. Consider the McKay correspondence DZ (X) ∼=
D{0}(C

2). Then, it is easy to find an autoequivalence of D{0}(C
2) of

order n + 1. In fact, tensoring by a one-dimensional representation of
G is such an equivalence and this lies in our subgroup.

Finally, we state a fact which we frequently use in the proofs of Propo-
sitions 1.6 and 1.7.

Lemma 4.20. Let α be an object of DZ(X). If there is Ψ0 ∈
〈B, A(X)〉 such that l(Ψ0(α)) < l(α), then there is Ψ ∈ B with the

same property.

Proof. We know by Remark 4.17 that B is a normal subgroup of
〈B, A(X)〉, and by definition that l(α) = l(Ψ(α)) holds for Ψ ∈ A(X)
and for a spherical object α ∈ DZ(X). The assertion follows from this.

q.e.d.

5. The A1 cases of Propositions 1.6 and 1.7

In this section, we consider the A1 cases of Propositions 1.6 and 1.7;
thus we are given a single −2-curve C = Z. Let α ∈ DZ(X) be a
spherical object. By Corollary 4.10, we may assume that there is an
integer a such that

Hp(α) ∼= OC(a − 1)⊕rp ⊕OC(a)⊕sp

for all p, where rp and sp are non-negative integers. In this case, l(α) is
written as

l(α) =
∑

p

(rp + sp).

Proposition 5.1 (The A1 case of Proposition 1.6). Let α ∈ DZ(X)
be a spherical object. Then, there are integers a, i and a functor Ψ ∈ B
such that

Ψ(α) ∼= OC(a)[i].

Proof. Since we have B = B′ by Lemma 4.16, it suffices to show the
following:

Claim 5.2. If l(α) > 1, then l(TOC(a−1)(α)) < l(α).

The class eq(α) ∈ Ext2X(Hq(α),Hq−1(α)) is of the form

eq(α) =

(
aq bq

cq dq

)
,
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where

aq ∈ Ext2X(OC(a − 1)⊕rq ,OC(a − 1)⊕rq−1),

bq ∈ Ext2X(OC(a)⊕sq ,OC(a − 1)⊕rq−1),

cq ∈ Ext2X(OC(a − 1)⊕rq ,OC(a)⊕sq−1) = 0,

dq ∈ Ext2X(OC(a)⊕sq ,OC(a)⊕sq−1)

respectively.
Consider the spectral sequence (4.2):

Ep,q
2 = Hp(TOC(a−1)(H

q(α))) =⇒ Hp+q(TOC(a−1)(α)).

In this spectral sequence, we have

E−1,q
2 = H−1(TOC(a−1)(H

q(α))) ∼= OC(a − 2)⊕sq ,

E1,q
2 = H1(TOC(a−1)(H

q(α))) ∼= OC(a − 1)⊕rq

and Ep,q
2 = 0 for p 6= ±1 by Lemma 4.15. Especially, Lemma 4.11

implies l(TOC(a−1)(α)) ≤ l(α); if the equality holds, then d−1,q
2 = 0 for

all q. Assume, by contradiction, that d−1,q
2 = 0 for all q. Then, we see

by Proposition 4.1 that bq = 0 for all q. Therefore, we have

eq(α) =

(
aq 0
0 dq

)
.

Lemma 4.3 implies that there are objects α1, α2 ∈ DZ(X) such that
α ∼= α1 ⊕ α2 with Hq(α1) ∼= OC(a − 1)⊕rq and Hq(α2) ∼= OC(a)⊕sq .
Since α is spherical, either α1 or α2 must be zero. Let q0, q1 be the
maximum and the minimum of the integers q with Hq(α) 6= 0. Since
α ∼= α1 or α2, we have HomX(Hq0(α),Hq1(α)) 6= 0. If q0 > q1, then

the spectral sequence (4.1) for α = β implies that Homq1−q0

D(X) (α, α) 6= 0

contradicting the assumption that α is spherical. Thus, we have q0 = q1.
Then, since dim HomD(X)(α, α) = 1, l(α) must be 1. q.e.d.

Proposition 5.3 (The A1 case of Proposition 1.7). Let Φ be an

autoequivalence of DZ(X). Then, there are integers a and i, and there

is an autoequivalence Ψ ∈ B such that

Ψ ◦ Φ(OC) ∼= OC(a)[i]

and

Ψ ◦ Φ(OC(−1)) ∼= OC(a − 1)[i].

In particular, for any point x ∈ C, we can find a point y ∈ C with

Ψ ◦ Φ(Ox) ∼= Oy[i].
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Proof. Put α = Φ(OC) and β = Φ(OC(−1)). By Proposition 5.1, we
may assume l(α) = 1. We can further assume α ∼= OC by Lemma 4.20.
Note that we have

(5.1) Homq

D(X)(β,OC) ∼=

{
C2 q = 0

0 q 6= 0.

We prove the first statement in the proposition by induction on l(β); the
second follows from the first. We first, consider the case l(β) = 1. Then,
(5.1) implies that β is isomorphic to either OC(−1) or OC(1)[−2]. In the
latter case, TOC

(α) ∼= OC [−1] and TOC
(β) ∼= OC(−1)[−1] as desired.

Next assume l(β) > 1. As before, there is an integer a such that

Hq(β) ∼= OC(a − 1)⊕rq ⊕OC(a)⊕sq .

Let q0, q1 be the maximum and the minimum of the integers q with
Hq(β) 6= 0. If q0 = q1, then l(β) must be 1 since β is spherical. If q0 > q1,
then we have Hom0

X(Hq0(β),Hq1(β)) = 0 and hence, rq0 = sq1 = 0.
Then, we can see that either Hom2

X(Hq1(β),OC) or Hom0
X(Hq0(β),OC)

is non-zero. It follows from (5.1) and the spectral sequence

Ep,q
2 = Homp

X(H−q(β),OC) =⇒ Homp+q

D(X)(β,OC)

that q0 = 0 or q1 = 2, and in particular that H1(β) = 0. Consequently,
we have Hom1

X(H−q(β),OC) = 0 for all q and hence that a = 0 or 1.
Therefore, we have l(TOC(a−1)(α)) = 1. On the other hand, Claim 5.2
implies l(TOC(a−1)(β)) < l(β) and we complete the proof by induction
on l(β). q.e.d.

6. Proof of Proposition 1.6

Our main purpose in this section is to show Proposition 1.6. As
explained in Introduction, the essential part is to find Ψ ∈ B such that
l(Ψ(α)) < l(α) for a spherical object α ∈ DZ(X) with l(α) > 1. In
Lemma 6.1 of Section 6.1, we clarify the structure of an OZ-module of
pure dimension 1, generalizing a well-known theorem of Grothendieck.
This gives an expression of cohomology sheaves of a spherical object
α ∈ DZ(X) in a computable way. Then using results in Section 4
and in Section 6.1, we show Lemma A in Section 6.2 and Lemma B in
Section 6.3; these lemmas provide sufficient conditions for the existence
of Ψ ∈ B as above. Finally, we show in Section 6.4 that we can always
apply Lemma A or B, and thus obtain Proposition 1.6.

6.1. Generalization of a theorem of Grothendieck. Grothendieck
proved that every vector bundle on a smooth rational curve decomposes
into a direct sum of line bundles. We generalize this result in the case
of a chain of smooth rational curves.

We first introduce some notation that we use in the statement and
in the proof. Let Z =

⋃n
i=1 Ci be a chain of smooth rational curves
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Ci. We denote by Σ(Z) the set of the isomorphism classes of sheaves
OCs∪···∪Ct(as, . . . , at), where 1 ≤ s ≤ t ≤ n and as, . . . , at ∈ Z. ΣC1(Z)
⊂ Σ(Z) is the subset consisting of R ∈ Σ(Z) with SuppR ⊃ C1. We
define the lexicographic order on ΣC1(Z) by setting

OC1∪···∪Cs(a1, . . . , as) > OC1∪···∪Ct(b1, . . . , bt)

if either of the following holds.

• For some integer k (1 ≤ k ≤ s, t), we have ai = bi (1 ≤ i ≤ k − 1)
and ak > bk.

• We have s < t and ai = bi(1 ≤ i ≤ s).

Let x ∈ C1 \ (C1 ∩ C2) be a point. Then, we can see that for R,S ∈
ΣC1(Z), the inequality R ≤ S holds if and only if the restriction map

HomZ(R,S) → HomC(R|x,S|x)

is non-zero.

Lemma 6.1. Let Z =
⋃n

i=1 Ci be a chain of smooth rational curves

Ci and let E be a coherent OZ-module, pure of dimension 1. Then, E
decomposes into a direct sum of sheaves in Σ(Z). Moreover, such a

decomposition is unique up to isomorphism.

Proof. The case n = 1 is due to Grothendieck, so we consider the
case n ≥ 2. We define

l(E) = rank E|C1 + · · · + rank E|Cn

and use induction on l(E). We may assume that Supp E contains C1.
Replacing E with E⊗L for some line bundle L on Z, we may also assume
that Hom0

Z(E ,OC1) 6= 0 and Hom0
Z(E ,OC1(−1)) = 0. Then there exists

an exact sequence
0 → E ′ → E → OC1 → 0,

where E ′ is an OZ-module of pure dimension 1. By the induction hy-
pothesis, we can decompose E ′ into sheaves in Σ(Z). We write

E ′ =
⊕

i

Ei ⊕
⊕

i

Fi ⊕
⊕

i

Gi,

where Ei ∈ ΣC1(Z), Fi ∈ ΣC2(C2 ∪ · · · ∪Cn) and Gi ∈ Σ(C3 ∪ · · · ∪Cn).
It follows from Ei ∈ ΣC1(Z) that

Ext1Z(OC1 , Ei) ∼= H1(HomZ(OC1 , Ei)),

which is zero by Hom0
Z(E ′,OC1(−1)) = 0. Therefore, we have

E ∼= K ⊕
⊕

i

Ei ⊕
⊕

i

Gi,

where K is given by an extension

(6.1) 0 →
⊕

i

Fi → K → OC1 → 0.
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Let e = ⊕ei ∈ Ext1Z(OC1 ,
⊕

i Fi) be the class corresponding to this
extension. If e = 0, then (6.1) splits and consequently E has a desired
decomposition. Thus, we may assume e 6= 0. We reorder the indices i of
Fi so that if i > j, then Fi ≥ Fj holds with respect to the lexicographic
order in ΣC2(C2 ∪ · · · ∪ Cn). Then, the image of the restriction map

AutOZ

(
r⊕

i

Fi

)
→ AutC

(
r⊕

i

Fi|y

)
∼= GL(r, C),

at the point y ∈ C1 ∩ C2, contains every lower triangular matrix in
GL(r, C). Since AutOZ

(
⊕r

i Fi) acts on

Ext1Z(OC1 ,
r⊕

i

Fi) ∼= Cr

through the natural action of GL (r, C), there is an element g ∈
AutOZ

(
⊕r

i Fi) such that if we put g · e =
⊕

i e
′
i, then e′i = 0 except for

one index i = i0. Let F ′
i0

be the unique non-trivial extension of OC1 by
Fi0 . Then, Fi0 belongs to Σ(Z) and there is an isomorphism

K ∼=
⊕

i6=i0

Fi ⊕F ′
i0

,

which proves the existence part of the lemma.
For the uniqueness, fix a point x ∈ C1 \ (C1∩C2) and let R ∈ ΣC1(Z)

be the maximum element that has the property that the restriction map

η : HomZ(R, E) → HomC(R|x, E|x)

is non-zero. We denote by r the rank of the linear map η. Then, in any
decomposition of E as in the lemma, E contains exactly r copies of R as
direct summands. We fix such a decomposition and write E = E1 ⊕ E2

with E1 = Cr ⊗ R. For another such decomposition E = E ′
1 ⊕ E ′

2,
V := HomZ(R, E ′

1) ⊂ HomZ(R, E) is an r-dimensional subspace such
that the restriction η|V is an isomorphism to the image of η. Then, the
composite of the evaluation map evV : V ⊗R → E and the projection
E → E1 is an isomorphism. Since the image of evV is E ′

1, this proves
E2

∼= E ′
2 and completes the proof by induction on l(E). q.e.d.

Lemma 6.1 provides an explicit form of an OZ-module of pure dimen-
sion 1. Our proofs of Propositions 1.6 and 1.7 heavily use this explicit
form. When Z forms a Dn- or an En-configuration, we cannot directly
generalize Lemma 6.1; a purely one-dimensional sheaf on Z (even with
respect to the reduced induced structure) is not necessarily a direct sum
of line bundles on its subtrees.

Till the end of this section, Z and X denote the varieties as in Intro-
duction, namely, X is the minimal resolution of an An-singularity

Y = Spec C[[x, y, z]]/(x2 + y2 + zn+1)
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and Z is the exceptional locus of it with reduced induced structure.
Suppose that a spherical object α ∈ DZ(X) is given. Then, Corol-

lary 4.10 and Lemma 6.1 say that every cohomology sheaf Hp(α) can
be written as

Hp(α) = Rp
1 ⊕ · · · ⊕ Rp

kp
,

where every Rp
l (1 ≤ l ≤ kp) belongs to Σ(Z). Note that

(6.2) Ext1X(Rp
l ,R

p′

m) = 0

for all p, p′, l, m by Corollary 4.10. For example, (6.2) yields

|degC Rp
l − degC Rp′

m| ≤ 1

for any −2-curve C ⊂ SuppRp
l ∩SuppRp′

m. We have another application
of (6.2), which is useful later. In the expression

⊕
p H

p(α) =
⊕

j Rj

with Rj ∈ Σ(Z), we always assume that Rj is a direct summand of
Hp(α) for some p.

Lemma 6.2. Let α ∈ DZ(X) be a spherical object. Suppose that we

have a decomposition

⊕

p

Hp(α) =

r1⊕

j

R1,j ⊕
r2⊕

j

R2,j

with Rk,j ∈ Σ(Z) such that

χ(R1,i,R2,j) = 0

for all i, j. Then either r1 or r2 is zero.

Proof. The vanishing of χ(R1,i,R2,j) and (6.2) implies the vanishing
of Extp

X(R1,i,R2,j) for all p. Especially, we have

Ext2X(R1,i,R2,j) = Ext2X(R2,j ,R1,i) = 0

for all i, j. Then, α splits as in Lemma 4.3. Since α is spherical, we
obtain the assertion. q.e.d.

To obtain Proposition 1.6, as we explain in Introduction, we find an
autoequivalence Ψ ∈ B such that l(α) > l(Ψ(α)), assuming l(α) > 1.
For this purpose, it suffices to find Ψ ∈ B such that

∑
p l(Ψ(Hp(α))) <

l(α) by Lemma 4.11.

6.2. Lemma A: a case where we can reduce l(α). As a first can-
didate for Ψ ∈ B with l(Ψ(α)) < l(α), we consider functors of the form
TOCi

(a). We start with an easy, but fundamental case.

Lemma 6.3. Let α ∈ DZ(X) be a spherical object and C ⊂ Z a

−2-curve. Assume that for every p, we have a decomposition

Hp(α) =

r
p
1⊕

j

Rp
1,j ⊕

r
p
2⊕

j

Rp
2,j ⊕

r
p
3⊕

j

Rp
3,j ⊕

r
p
4⊕

j

Rp
4,j ⊕ Sp,
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where Rp
k,j’s are sheaves of the forms

C

Rp
1,j : h0

Rp
2,j : h0

Rp
3,j : h

−1

Rp
4,j : h

−1

and where SuppSp ∩ C = ∅. In this situation, we have the following:

(i) If
∑

p rp
2 >

∑
p rp

3, then l(TOC(−1)(α)) < l(α).

(ii) If
∑

p rp
2 <

∑
p rp

3, then l(TOC(−2)(α)) < l(α).

Proof. Combining the assumption of (i) with Lemma 4.15, we deduce
that ∑

p

l(TOC(−1)(H
p(α))) <

∑

p

l(Hp(α)),

and then obtain the conclusion from Lemma 4.11.

(ii) can be seen in a similar way. q.e.d.

We cannot always find C as above with
∑

p rp
2 6=

∑
p rp

3 (see Example

4.7 (ii)) and it is important to consider the case
∑

p rp
2 =

∑
p rp

3.

Lemma 6.4. Let α ∈ DZ(X) be a spherical object and C ⊂ Z a

−2-curve. Assume that for every p, we have

Hp(α) ∼=

r
p
2⊕

j

Rp
2,j ⊕

r
p
3⊕

j

Rp
3,j ⊕ Sp

with the properties

• Rp
2,j and Rp

3,j are as in the previous lemma, and

• Sp’s are sheaves satisfying that the composition maps

HomX(OC(−1),Rp
2,j) × HomX(Rp

2,j ,S
q) → HomX(OC(−1),Sq)

HomX(Sp,Rq
3,j) × HomX(Rq

3,j ,OC(−1)) → HomX(Sp,OC(−1))

are zero for all p, q, j.

Then, we have either rp
2 ≤ rp−1

3 for all p or rp
2 ≥ rp−1

3 for all p. Espe-

cially, if
∑

p rp
2 =

∑
p rp

3, then the equality rp
2 = rp−1

3 holds for every p.

Proof. Put Rp
2 =

⊕
j R

p
2,j and Rp

3 =
⊕

j R
p
3,j . Let

ep(α) ∈ Ext2X(Hp(α),Hp−1(α))

be the class determined by α as in Section 4.1. According to the de-
composition

Hp(α) = Rp
2 ⊕Rp

3 ⊕ Sp,
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ep(α) also decomposes and determines classes

ηp ∈ Ext2X(Rp
2,R

p−1
3 ),

ξp ∈ Ext2X(Rp
3,R

p−1
3 ),

ψp ∈ Ext2X(Sp,Rp−1
3 ).

We denote by η̄p ∈ Ext2X(OC(−1)⊕r
p
2 ,OC(−1)⊕r

p−1
3 ) the following com-

posite:

(6.3) OC(−1)⊕r
p
2

η̄p

//

∼=

²²

OC(−1)⊕r
p−1
3 [2]

∼=
²²

HomX(OC ,Rp
2)

Â Ä // Rp
2

ηp

// Rp−1
3 [2] // // Rp−1

3 |C [2]

Assume that the first assertion does not hold. Then, there are i, j

with ri
2 < ri−1

3 and rj
2 > rj−1

3 . It follows from ri
2 < ri−1

3 that there

is a surjection γ : Ri−1
3 |C → OC(−1) with γ ◦ η̄i = 0. Similarly, we

have an injection δ : OC(−1) →֒ HomX(OC ,Rj
2) with η̄j ◦ δ = 0. Let

f : Hi−1(α) → Hj(α) be the following composite:

Hi−1(α) ։ Ri−1
3 |C

γ
։ OC(−1)

δ
→֒ HomX(OC ,Rj

2) →֒ Hj(α)

We claim that f ◦ ei(α) = 0 in Ext2X(Hi(α),Hj(α)). Let f̄ and p be as
follows:

Ri
2 ηi

[2]

##GGG
GG

GGG
G

Hi−1(α)

²²²²

f // Hj(α)

Ri
3

ξi [2]
// Ri−1

3

p
²²²²

f̄ // Rj
2

?Â

OO

Si

ψi

[2] ;;xxxxxxxxxx

Ri−1
3 |C

γ // // OC(−1) Â Ä δ // HomX(OC ,Rj
2)

?Â

OO

It suffices to show f̄ ◦ ηi, f̄ ◦ ξi and f̄ ◦ ψi are all zero. Since γ ◦ η̄i = 0,
we have γ ◦ p ◦ ηi = 0 and therefore, f̄ ◦ ηi = 0. f̄ ◦ ξi factors through
γ ◦ p ◦ ξi ∈ Ext2X(Ri

3,OC(−1)) = 0 and hence is zero. Finally, f̄ ◦ ψi ∈

Ext2X(Si,Rj
2) is in the image of the composition map

Ext2X(Si,OC(−1)) × HomX(OC(−1),Rj
2) → Ext2X(Si,Rj

2)

which is zero by the assumption and the Serre duality. Thus, we showed
the claim. Similarly, we have ej(α) ◦ f = 0.

Therefore, in the spectral sequence (4.1) (for α = β),

f ∈ HomX(Hi(α),Hj(α)) ⊂ E0,j−i
2

lies in the kernel of d0,j−i
2 . This contradicts Proposition 4.5. q.e.d.
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The above proof is actually showing a slightly stronger statement:

Lemma 6.5. Under the assumption of the above lemma, write η̄p =
Mp ⊗C e, where η̄p is defined in (6.3), Mp is an rp−1

3 × rp
2 matrix and

e ∈ Ext2X(OC(−1),OC(−1)) ∼= C is a fixed basis. Then, we have either

rankMp = rp
2 for all p or rankMp = rp−1

3 for all p. Especially, if∑
p rp

2 =
∑

p rp
3, then all Mp are invertible.

Now, we go back to the situation in Lemma 6.3.

Lemma 6.6. Under the assumptions of Lemma 6.3, assume the

equality
∑

p rp
2 =

∑
p rp

3 6= 0 holds. Then, Rp
4 = 0 for all p.

Proof. Put Rp
k =

⊕
j R

p
k,j and write ep(α) = (ep

ij), where ep
ij ∈

Ext2X(Rp
j ,R

p−1
i ). Among these entries, ep

24, e
p
43, e

p
41, e

p
14 are zero because

the corresponding Ext groups vanish. If, in addition, ep
34 and ep

42 are
zero, we have objects α1, α2 such that α ∼= α1 ⊕ α2 with Hp(α1) ∼=
Rp

1 ⊕ Rp
2 ⊕ Rp

3 and Hp(α2) ∼= Rp
4 by Lemma 4.3. Since α is spherical,

either α1 or α2 must be zero and we are done. Thus, it is enough to
show that ep

34 and ep
42 become zero if we change the decomposition

Hp(α) = Rp
1 ⊕Rp

2 ⊕Rp
3 ⊕Rp

4

by suitable automorphisms of Hp(α). ep
34 lies in

Ext2X(Rp
4,R

p−1
3 ) ∼= HomC(Cr

p
4 , Cr

p−1
3 ) ⊗C Ext2X(OC(−1),OC(−1))

and hence is of the form Ap ⊗ e for an rp−1
3 × rp

4 matrix Ap and the
same e as in Lemma 6.5. Lemma 6.5 applied to Sp = Rp

1⊕Rp
4 says that

ep
32 = ηp determines η̄p = Mp ⊗ e with Mp an invertible matrix. We

determine an automorphism gp = (gp
ij) of Hp(α) by

gp
24 = −M−1

p Ap ∈ HomX(Rp
4,R

p
2)

∼= HomC(Cr
p
4 , Cr

p
2 )

and gp
i j = δi j IR

p
i

for the other (i, j). If we replace ep(α) by

(gp−1)−1ep(α)gp, then ep
34 becomes zero and ep

42 does not change. ep
42 is

also of the form Bp ⊗ e for a matrix Bp and in a similar way, we can
find automorphisms that eliminate ep

42 without changing ep
34. q.e.d.

Lemma A. Let α ∈ DZ(X) be a spherical object and let C ⊂ Z be a

−2-curve. Assume that we can write

⊕

p

Hp(α) =

r1⊕

j

R1,j ⊕
r2⊕

j

R2,j ⊕
r3⊕

j

R3,j ⊕
r4⊕

j

R4,j ⊕ S
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where Rk,j’s are sheaves of the forms

C

R1,j : h

R2,j : h

R3,j : h

R4,j : h

and where SuppS ∩ C = ∅. Suppose that either r3 6= 0 or r2 · r4 6= 0
holds, and suppose, furthermore, that Suppα 6= C. Then, there is an

integer a such that l(TOC(a)(α)) < l(α).

Proof. We can freely replace α with α ⊗ L for some L ∈ Pic X by
Lemma 4.20. Hence, we may assume that maxk,j degC Rk,j = 0, and
then, we have degC Rk,j ∈ {−1, 0} for all k, j by (6.2). Note that we
have

χ(R1,j ,R3,i) = χ(S,R3,i) = 0

for any i, j. Hence, if r2 = r4 = 0 (which implies r3 6= 0 by our assump-
tion), then we get

⊕r1
j R1,j ⊕ S = 0 by Lemma 6.2. This contradicts

our assumption that Suppα 6= C. Therefore, because the condition is
symmetric, we may assume r2 6= 0.

When r2 · r4 6= 0 holds, we see from (6.2) that

degC R2,i = degC R4,k = a

for a fixed a ∈ {−1, 0} and for all i, k, and that degC R3,j is a or a− 1.
Then, l(TOC(a−1)(α)) < l(α) holds as desired.

Next, consider the case r2 · r3 6= 0 and r4 = 0. If degC R3,j = −1 for
all j, Lemma 6.3 and Lemma 6.6 imply the conclusion. Hence, suppose
degC R3,j = 0 for some j. Then, degC R2,j = 0 for all j by (6.2), and
so l(TOC(−1)(α)) < l(α) holds, as required. q.e.d.

6.3. Lemma B: another case where we can reduce l(α).

Lemma 6.7. Let α ∈ DZ(X) be a spherical object and W = Cs ∪
· · · ∪ Ct ⊂ Z a chain of −2-curves with s < t. Assume that for every p
we have

Hp(α) =

r
p
1⊕

j

Rp
1,j ⊕

r
p
2⊕

j

Rp
2,j ⊕

r
p
3⊕

j

Rp
3,j ⊕

r
p
4⊕

j

Rp
4,j ⊕

r
p
5⊕

j

Rp
5,j ⊕ Sp,
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where Rp
k,j’s are sheaves of the forms

Cs Cs+1 Ct−1 Ct

Rp
1,j : h0 h0 · · · h0 h0

Rp
2,j : h0 h0 · · · h0 h0

Rp
3,j : h

−1 h0 · · · h0 h0

Rp
4,j : h0 h0 · · · h0 h

−1

Rp
5,j : h

−1 h0 · · · h0 h0

and where SuppSp ∩ W = ∅. Under these assumptions, either of the

following holds:

(i) At least one of l(TOCs (−1)(α)), l(TOCs (−2)(α)), l(TOCt
(−1)(α)) or

l(TOCt
(−2)(α)) is smaller than l(α) or

(ii) rp
4 = rp

5 = 0 for all p.

Proof. Assume that (i) does not hold. Then, Lemma 6.3 applied to
C = Cs and C = Ct imply

∑
p(r

p
2 + rp

4) =
∑

p(r
p
3 + rp

5) and
∑

p rp
5 =∑

p rp
4 respectively. These equalities also deduce

∑
p rp

2 =
∑

p rp
3. Then,

applying Lemma 6.4 in three ways, we obtain

rp
2 + rp

4 = rp−1
3 + rp−1

5

rp
5 = rp−1

4

rp
2 = rp−1

3

for all p. Especially, we have both rp
5 = rp−1

4 and rp
4 = rp−1

5 . Since
Hp(α) = 0 except for finitely many integers p, this means that all rp

4
and rp

5 are zero. q.e.d.

Lemma 6.8. Let α ∈ DZ(X) be a spherical object and fix positive

integers s, t with s < t. Assume

⊕

p

Hp(α)

=

r1⊕

j

R1,j ⊕
r2⊕

j

R2,j ⊕
r3⊕

j

R3,j ⊕
r4⊕

j

R4,j ⊕
r5⊕

j

R5,j ⊕
r6⊕

j

R6,j ⊕ S,
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where Rk,j’s are sheaves of the forms

Cs Cs+1 Ct−1 Ct

R1,j : h0 h0 · · · h0 h0

R2,j : h0 h0 · · · h0 h
−1

R3,j : h0 h0 · · · h0 h0

R4,j : h0 h0 · · · h0 h
−1

R5,j : h
−1 h0 · · · h0 h0

R6,j : h
−1 h0 · · · h0 h

−1

and where SuppS ∩ (Cs ∪ · · · ∪ Ct) = ∅. Suppose that

(6.4) l(α) ≤ l(Φ(α)) for all Φ ∈
〈
TOCl

(a)

∣∣ a ∈ Z, s ≤ l ≤ t
〉

and r3 + r4 + r5 + r6 6= 0. Then, we have r1 = r3 = r5 = 0 or

r2 = r4 = r6 = 0. In particular, degCt
Rk,j does not depend on j and k.

Proof. First note that r3 · r6 = 0 by (6.2). We prove the following:

• If r3 = 0, then we have r1 = r5 = 0.
• If r6 = 0, then we have r2 = r4 = 0.

First, assume that r3 = 0. We apply Lemma 6.3 for C = Cs and then
obtain

(6.5) r4 = r5 + r6

from the assumption (6.4). Put

Φ = TOCs+1
(−1) ◦ · · · ◦ TOCt−1

(−1) ◦ TOCt
(−2)

if t > s + 1, and

Φ = TOCs+1
(−2)

if t = s + 1. Then, Φ(Ri,j) are sheaves, and we have degCs
Φ(R4,j) =

degCs
Φ(R5,j) = 0 and degCs

Φ(R6,j) = −1. If r5 6= 0, then we see
from (6.5) that r4 + r5 > r6 and then from Lemma 6.3 that l(TOCs (−1) ◦
Φ(α)) < l(Φ(α)) = l(α), a contradiction to (6.4). If r1 6= 0, we have
r6 = 0 by (6.2) and again r4 + r5 > r6. This contradicts (6.4) as above.

In the case r6 = 0, we get the assertion by a similar argument, using

Ψ = T ′
OCs+1

(−1) ◦ · · · ◦ T ′
OCt−1

(−1) ◦ T ′
OCt

(−1),

instead of Φ. q.e.d.

The above proof teaches us how to reduce l(α) for the spherical object
α in Example 4.7 (ii); we can see that

l(TOC1
(−1) ◦ TOC2

(−2)(α)) < l(α).
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On the other hand, note that

l(TOCl
(a)(α)) ≥ l(α), l(T ′

OCl
(a)(α)) ≥ l(α)

for any a, l ∈ Z (1 ≤ l ≤ 5) in the same example.

Lemma B. Let α ∈ DZ(X) be a spherical object and fix positive

integers s, t with s < t. Assume that we can write

⊕

p

Hp(α) =

r1⊕

j

R1,j ⊕
r2⊕

j

R2,j ⊕
r3⊕

j

R3,j ⊕
r4⊕

j

R4,j ⊕ S,

where Rk,j’s are sheaves of the forms

Cs Cs+1 Ct−1 Ct

R1,j : h h · · · h h

R2,j : h h · · · h h

R3,j : h h · · · h h

R4,j : h h · · · h h

and where SuppS ∩ (Cs ∪ · · · ∪ Ct) = ∅. Suppose that either r3 6= 0 or

r2 · r4 6= 0 holds. Then, there is

Φ ∈
〈
TOCl

(a)

∣∣ a ∈ Z, s ≤ l ≤ t
〉

such that l(Φ(α)) < l(α).

Proof. For a contradiction, we assume

(6.6) l(α) ≤ l(Φ(α)) for all Φ ∈
〈
TOCl

(a)

∣∣ a ∈ Z, s ≤ l ≤ t
〉
.

Then, it is enough to check r3 = r4 = 0 or r2 = r3 = 0. By Lemma 6.8
and by tensoring with a suitable line bundle on X (cf. Lemma 4.20), we
may assume that degCl

Rk,j = 0 for all l (s < l < t), k and j. Moreover,
we assume

max
k,j

degCs
Rk,j = max

k,j
degCt

Rk,j = 0.

Then, we see that degCs
Rk,j , degCt

Rk,j ∈ {−1, 0} for all k, j by (6.2).
We further claim

degCs
R1,j = degCs

R4,j = 0.

Otherwise, (6.2) implies that degCs
R2,j = degCs

R3,j = −1 and hence,
that l(TOCs (−2)(α)) ≤ l(α)− r2 − r3; (6.6) shows r2 = r3 = 0 as desired.
Similarly, we have

degCt
R1,j = degCt

R2,j = 0.
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Thus, we can write

r2⊕

j

R2,j =

s1⊕

j

S1,j ⊕
s2⊕

j

S2,j

r3⊕

j

R3,j =

s3⊕

j

S3,j ⊕
s4⊕

j

S4,j ⊕
s5⊕

j

S5,j ⊕
s6⊕

j

S6,j ,

r4⊕

j

R4,j =

s7⊕

j

S7,j ⊕
s8⊕

j

S8,j ,

where Sk,j ’s are sheaves of the forms in the following figure.

Cs Cs+1 Ct−1 Ct

R1,j : h0 h0 · · · h0 h0

S1,j : h0 h0 · · · h0 h0

S2,j : h
−1 h0 · · · h0 h0

S3,j : h0 h0 · · · h0 h0

S4,j : h0 h0 · · · h0 h
−1

S5,j : h
−1 h0 · · · h0 h0

S6,j : h
−1 h0 · · · h0 h

−1

S7,j : h0 h0 · · · h0 h
−1

S8,j : h0 h0 · · · h0 h0

Now, applying Lemma 6.3 for C = Cs and Ct, we obtain from (6.6)

(6.7) s1 + s3 + s4 = s2 + s5 + s6

and

(6.8) s3 + s5 + s8 = s4 + s6 + s7

respectively.
If s3 6= 0, we have s2 = s6 = s7 = 0 by (6.2). Substituting it into

(6.7) and (6.8), we get s1 + s3 + s4 = s5 and s3 + s5 + s8 = s4, which is
absurd. By a similar argument, we also arrive at a contradiction when
assuming s6 6= 0. Therefore, we obtain s3 = s6 = 0.

Suppose that s1 6= 0 and s8 6= 0. In this case, we know s2 = s7 = 0
by (6.2). Then, (6.7) and (6.8) become s1 + s4 = s5 and s5 + s8 = s4,
but this is impossible. Next, assume that s1 = s8 = 0. Then, (6.7) and
(6.8) imply that s2 = s7 = 0 and s4 = s5. We have seen r2 = r4 = 0
and thus, we apply Lemma 6.7 to deduce s4 = s5 = 0 from (6.6), as
desired. Finally, suppose that precisely one of s1 and s8 is zero. Because
the conditions are symmetric, we may assume that s1 6= 0 and s8 = 0.
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Recall that we are in the case s3 = s6 = s7 = s8 = 0. Again Lemma 6.7
and (6.6) imply that s4 = s5 = 0. q.e.d.

6.4. Proposition 1.6: The main result of Section 6. For a spher-
ical object α ∈ DZ(X), let us denote by

Σ(α)(⊂ Σ(Z))

the set of all the indecomposable direct summands of
⊕

i H
i(α) obtained

in Lemma 6.1.
Now, we are in a position to prove Proposition 1.6. In the proof, we

freely use the equality

B =
〈
TOCl

(a)

∣∣ a ∈ Z, 1 ≤ l ≤ n
〉

proved in Lemma 4.16.

Proof of Proposition 1.6. Notice that if we show the existence of an au-
toequivalence Φ ∈ B such that l(α) > l(Φ(α)), then we can prove the
statement by induction on l(α). We assume Suppα = Z = C1∪· · ·∪Cn.
Recall that the proof is already done for the case n = 1 (and in partic-
ular the case l(α) = 1) by Proposition 5.1. Hence, we consider the case
n ≥ 2. Put

li(α) :=
∑

p

lengthOX,ηi
Hp(α)ηi

for each curve Ci (see Introduction for the notation). To simplify the
argument, we also put l0(α) = ln+1(α) = 0.

For R ∈ Σ(α) with SuppR = Ck ∪ · · · ∪ Cl, we define s(R) := k and
t(R) := l. Note that (6.2) guarantees that for R ∈ Σ(α), there are no
elements S ∈ Σ(α) such that t(S) = s(R)−1 or s(S) = t(R)+1. Thus,
we have

ls(R)−1(α) < ls(R)(α) and lt(R)(α) > lt(R)+1(α).

Let s ≤ t be integers such that ls−1(α) < ls(α) = · · · = lt(α) > lt+1(α).
Then, we are in the situation of Lemma A (if s = t) or Lemma B (if
s < t). q.e.d.

Remark 6.9. Take an arbitrary element R ∈ Σ(α). Then, in the
proof above, we can find s, t such that s(R) ≤ s ≤ t ≤ t(R). Thus,
Lemma A or B provides

Φ ∈
〈
TOCl

(a)

∣∣ a ∈ Z, Cl ⊂ SuppR
〉

such that l(α) > l(Φ(α)). We shall use this remark in Section 7.

Corollary 6.10. B =
〈
Tα

∣∣ α ∈ DZ(X), spherical
〉
.
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Proof. B is obviously contained in the right-hand side. For a spherical
object α, Proposition 1.6 provides Ψ ∈ B such that Ψ(α) ∼= OCb

(a)[i]
for some b, a and i. Then, Lemma 4.14 (i) shows

Tα
∼= Ψ−1 ◦ TOCb

(a) ◦ Ψ,

which is in B. q.e.d.

7. Proof of Proposition 1.7

The aim of this section is to show Proposition 1.7. In the situation of
Proposition 1.7, put α = Φ(OC1) and β = Φ(OC1(−1)). By Proposition
1.6, we may assume l(α) = 1, and hence Suppα = Cb for an integer b
(1 ≤ b ≤ n). The main part of the proof is the following.

Claim 7.1. In this situation, suppose l(β) > 1. Then, there is an
autoequivalence Ψ ∈ B such that

l(Ψ(α)) = 1 and l(β) > l(Ψ(β)).

In fact, Proposition 1.7 easily follows from this:

Proof of Proposition 1.7. By Claim 7.1, we can reduce the problem to
the case l(α) = l(β) = 1. In this case, the supports of α and β must be
the same, since χ(α, β) = 2. Therefore, we get the conclusion from the
A1 case. q.e.d.

Thus, the rest of this section is devoted to showing Claim 7.1. In
Section 7.1, we list conditions on α and β; our arguments in the subse-
quent subsections are based on these conditions. We divide the proof of
Claim 7.1 into three cases in Section 7.2. We find Ψ in the three cases
in the remaining three subsections.

7.1. Conditions on α and β. Before doing computation, we list con-
ditions that we assume for simplicity or that our situation imposes on
the spherical objects α and β.

We use the shift functor and a line bundle to simplify the computation
as in Lemma 4.20. First, using the shift functor [i] (i ∈ Z), we may
assume that α is a sheaf on X and therefore

α ∼= OCb
(a)

for some a ∈ Z.
Secondly, we take a tensor product with a suitable line bundle to

assume:

Condition 7.2. max{degCb
R|R ∈ Σ(β), SuppR ⊃ Cb} = 0. Es-

pecially, degCb
R = 0 or −1 for all R ∈ Σ(β) with SuppR ⊃ Cb by

(6.2).
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Sometimes, we also put conditions on the degrees on other curves,
depending on the cases.

Relations between OC1 and OC1(−1) impose conditions on a and β.
From the spectral sequence
(7.1)

Ep,q
2 = Homp

X(H−q(β),OCb
(a)) =⇒ Homp+q

D(X)(β, α) =

{
C2 p + q = 0

0 p + q 6= 0
,

we obtain

Condition 7.3. E1,q
2 = 0 for q 6= −1

and

Condition 7.4. d0,−1
2 : E0,−1

2 → E2,−2
2 is injective, d0,0

2 : E0,0
2 →

E2,−1
2 is surjective, and d0,q

2 : E0,q
2 → E2,q+1

2 are isomorphic for all
q 6= 0,−1.

In addition to Conditions 7.3 and 7.4, (7.1) implies

(7.2) dim Coker d0,−1
2 + dim Ker d0,0

2 + dimE1,−1
2 = 2.

Moreover, note that the following holds.

Condition 7.5. c1(α) = c1(β)(= Cb) holds in the Chow group of
curves on X.

Proof. Let us denote the Grothendieck group of DZ(X) by KZ(X)
and the Euler form on it by χ(−,−) : KZ(X) × KZ(X) → Z. Then for
a point x in Z, we have

Z[Ox] =
{
a ∈ KZ(X)

∣∣ χ(a, b) = 0 for all b ∈ KZ(X)
}
,

since χ(−,−) is non-degenerate on KZ(X)/Z[Ox] ∼=
⊕n

i=1 Z[OCi
]. Now,

Φ induces an isometry ϕ on KZ(X) and it preserves Z[Ox] by the above
equality. Because [OC1 ]− [OC1(−1)] = [Ox] and [α]− [β] = [Φ(Ox)], we
get the result. q.e.d.

7.2. More on a, β and the division into cases. From now on, we
do not use Φ in the argument. In fact, it is sufficient to suppose that we
are given α ∼= OCb

(a) and a spherical object β satisfying the conditions
listed above.

Claim 7.6. We have a ≥ −1.

Proof. First note that since c1(β) = Cb, there is an integer q 6= 1 such
that Hq(β) 6= 0. Assume that a ≤ −2 and let R ∈ Σ(β) be a direct
summand of

⊕
q 6=1 H

q(β). Then, it follows from Conditions 7.2 and 7.3
that degCb

R = −1 and a = −2. Therefore, Condition 7.2 implies that

there is a direct summand R′ ∈ Σ(β) of H1(β) such that SuppR′ ⊃ Cb

and degCb
R′ = 0. Especially, we have

Hom0
X(OCb

(−2),H1(β)) 6= 0.
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On the other hand, Condition 7.2 also implies

E0,0
2 = Hom0

X(H0(β),OCb
(−2)) = 0

in (7.1) and accordingly, we obtain

Hom0
X(OCb

(−2),H1(β))∨ ∼= E2,−1
2 = 0

by Condition 7.4, a contradiction to the non-vanishing above. q.e.d.

We sometimes use the following useful fact in the latter subsections.

Claim 7.7. Fix q 6= 0. If E2,−q−1
2 = 0 in (7.1), then we have

degCb
R > a for all direct summands R ∈ Σ(β) of Hq(β) with SuppR ⊃

Cb. If, in addition, we suppose that a ≥ 0, then we get Cb 6⊂ SuppHq(β).

Proof. The assumption and Condition 7.4 show that

Hom0
X(Hq(β),OCb

(a)) = E0,−q
2 = 0,

which implies the first statement. Then, the second statement follows
from Condition 7.2. q.e.d.

Now, we divide the proof into cases. If there is an element R ∈
Σ(β) with SuppR ∩ Cb = ∅, then we can find Ψ ∈ 〈TOCl

(a)

∣∣ a ∈

Z, Cl ⊂ SuppR〉 such that Ψ(α) ∼= α and l(β) > l(Ψ(β)) by Remark
6.9. Therefore, we may assume that

SuppR∩ Cb 6= ∅

for all R ∈ Σ(β) and we have only to consider the three cases:

Division into Cases. We divide the proof of Claim 7.1 into the
following cases.

(i) Cb ⊂ SuppR for all R ∈ Σ(β),
(ii) there is R ∈ Σ(β) with SuppR∩Cb = Cb+1 ∩Cb, but there is not

R′ ∈ Σ(β) with SuppR′ ∩ Cb = Cb−1 ∩ Cb,
(iii) there are R,R′ ∈ Σ(β) with SuppR∩Cb = Cb+1∩Cb and SuppR′∩

Cb = Cb−1 ∩ Cb.

We subdivide the Case (i) according to the value of a: (i.1) a ≥ 1, (i.2)
a = 0, and (i.3) a = −1. We also subdivide Case(ii) into (ii.1) a = 0
and (ii.2) a = −1, after showing a ≤ 0. We further subdivide (ii.1) and
(ii.2) into two cases respectively.

7.3. Case (i).

Case (i.1): a ≥ 1. In this case, it follows from Condition 7.2 that

E2,−2
2

∼= Hom0
X(OCb

(a),H2(β))∨ = 0

in (7.1). Hence, Claim 7.7 and the case assumption show that H1(β) =

0 and consequently that E1,q
2 = 0 for all q in Condition 7.3. Then,

Condition 7.2 implies that a = 1 and Σ(β) = {OCb
}. This case has

been already treated in Proposition 5.3.
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Case (i.2): a = 0.

Claim 7.8. O···∪Cb
(∗,−1),OCb∪···(−1, ∗),O···∪Cb∪···(∗,−1, ∗) 6∈ Σ(β).

Proof. Note that any sheaf R in the assertion satisfies Hom1
X(OCb

,R)
6= 0. Thus, if OCb

∈ Σ(β), then the assertion follows from (6.2). There-
fore, we may assume that OCb

6∈ Σ(β). Under this assumption, the

same argument as in Case (i.1) shows that E1,q
2 = 0 for all q in (7.1). It

follows that the sheaves in the assertion cannot be in Σ(β). q.e.d.

By Claim 7.8, we see that l(R) ≥ l(TOCb
(−1)(R)) for all R ∈ Σ(β)

and that the inequality is strict if R = O···∪Cb
(∗, 0) or OCb∪···(0, ∗).

Hence, if l(β) = l(TOCb
(−1)(β)), then Σ(β) consists only of OCb

(∗) and

O···∪Cb∪···(∗, 0, ∗). Now, we know c1(β) = Cb from Condition 7.5 and
therefore, Σ(β) must contain OCb

(∗). Then, Lemma 6.2 shows Supp β =
Cb and Proposition 5.3 completes the proof for the case (i.2). q.e.d.

Case (i.3): a = −1. We put

⊕

p

Hp(β) =

r1⊕

j

R1,j ⊕
r2⊕

j

R2,j ⊕
r3⊕

j

R3,j ⊕
r4⊕

j

R4,j

where Rk,j ’s are sheaves as follows:

Cb

R1,j : h

R2,j : h

R3,j : h

R4,j : h

When Suppβ = Cb, we can apply Proposition 5.3, and hence, we may
assume that Supp β 6= Cb. On the other hand, since c1(β) = Cb, we can
see either r3 6= 0 or r2 · r4 6= 0 holds. Therefore, the proof of Lemma A
in Section 6.2 implies l(β) > l(Ψ(β)) for Ψ = TOCb

(−1) or TOCb
(−2). In

each case, we can see l(Ψ(α)) = 1.

7.4. Case (ii). The existence of R ∈ Σ(β) with SuppR∩Cb = Cb∩Cb+1

and (6.2) imply the non-existence of S ∈ Σ(β) with SuppS ∩ Cb+1 =
Cb ∩ Cb+1. Thus, we have

Σ(β) ⊂
{
OCb∪···(a

′, ∗),OCb+1
(∗),OCb+1∪···(∗),

O···∪Cb∪···(∗, a
′, ∗)

∣∣ a′ = −1, 0
}
.

By Condition 7.3, R as above exists only in H1(β). Moreover, because of
the condition c1(β) = Cb, H

1(β) has precisely one such direct summand
R. It also follows from Condition 7.3 and Claim 7.6 that a = −1 or 0.
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Case (ii.1): a = 0. In this case,

E2,q
2

∼= Hom0
X(OCb

,H−q(β))∨ = 0

holds for all q in (7.1). Therefore, Claim 7.7 implies that Hq(β) = 0 for
q 6= 0, 1 and that SuppH1(β) 6⊃ Cb. Then, from Condition 7.2 and the
condition c1(β) = Cb, we can see

(H0(β),H1(β)) = (OCb∪···∪Cb′′
(0, ∗),OCb+1∪···∪Cb′′

(∗))

with b + 1 ≤ b′′. Applying Lemma 6.8 (n.b. Cs in Lemma 6.8 is Cb′′

here), we may assume that degCl
Hq(β) = 0 for all l (b + 1 < l < b′′)

and all q. Now, we can classify spherical objects with such cohomology
sheaves. Note that by virtue of Lemma 4.3, we have

(7.3) Ext2X(H1(β),H0(β)) 6= 0.

We divide the proof into two cases:

Case (ii.1.a): b + 1 < b′′. In this case, we may assume degCb”
H0(β) 6=

degCb”
H1(β) by Lemma 6.3. Then, by virtue of (6.2) and the conditions

listed above, the cohomology sheaves of β must be of the following forms,
up to tensoring a line bundle:

Cb Cb+1 Cb+2 Cb′′−1 Cb′′

H0(β) : h0 h0 h0 · · · h0 h
−1

H1(β) : h
−1 h0 · · · h0 h0

In this case, Ψ := TOCb
◦ TOCb+1

(−2) satisfies the conditions l(β) >

l(Ψ(β)) and l(Ψ(α)) = 1 as desired.

Case (ii.1.b): b + 1 = b′′. In this case, (6.2), (7.3) and Condition 7.2
show

(H0(β),H1(β)) = (OCb∪Cb+1
,OCb+1

),

up to tensoring a line bundle. Then, we can see that TOCb+1
(−1)(β) =

OCb∪Cb+1
(1,−2) and TOCb+1

(−1)(α) = OCb∪Cb+1
(1,−1). Hence, we ob-

tain l(β) > l(Ψ(β)) and l(Ψ(α)) = 1, where Ψ = TOCb
◦ TOCb+1

(−1).

Case (ii.2): a = −1. By the argument in the beginning of Case (ii),
we can write

(7.4)
⊕

p

Hp(β) =

r0⊕

j

R0,j ⊕
r1⊕

j

R1,j ⊕
r2⊕

j

R2,j ⊕
r3⊕

j

R3,j ⊕R4,
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where Rk,j and R4 are sheaves of the forms in the following figure.

Cb Cb+1

R0,j : h h

R1,j : h h

R2,j : h h

R3,j : h h

R4 : h
−1 ____

α : h
−1

Here, noting that R4 ⊂ H1(α) is unique, we normalize the degrees on
Cb+1 by the condition

degCb+1
R4 = −1.

In addition, we can see

(7.5) degCb
R0,j = degCb

R3,j = 0

as follows. If OCb∪···(0, ∗) ∈ Σ(β), then (6.2) and Condition 7.2 imply
(7.5). Thereby assume OCb∪···(0, ∗) 6∈ Σ(β). Then, we get

E2,−2
2

∼= Hom0
X(OCb

(−1),H2(β))∨ = 0

in Claim 7.7, and therefore degCb
R0,j (or degCb

R3,j) is zero if it is a

direct summand of H1(β). From this and Condition 7.3, we conclude
that (7.5) holds for all j.

As a consequence of (7.5) and the uniqueness of R4, we have

dimE1,−1
2 = 1 in (7.1). Thus, (7.2) becomes

(7.6) dim Coker d0,−1
2 + dim Ker d0,0

2 = 1.

Now, we divide the proof of Case (ii.2) into the two cases: (a) l(R4) > 1
and (b) l(R4) = 1.

Case (ii.2.a): l(R4) > 1. In this case, (6.2) implies that degCb+1
R2,j =

degCb+1
R3,j = −1 and that degCb+1

R0,j , degCb+1
R1,j ∈ {0,−1}. Thus,

specifying degrees in (7.4), we write

⊕

p

Hp(β) =

r0⊕

j

R0,j ⊕
s1⊕

j

S1,j ⊕ · · · ⊕
s6⊕

j

S6,j ⊕
r3⊕

j

R3,j ⊕R4,
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where Sk,j ’s are sheaves of the forms in the following figure.

Cb Cb+1

R0,j : h0 h

S1,j : h0 h0

S2,j : h
−1 h0

S3,j : h0 h
−1

S4,j : h
−1 h

−1

S5,j : h0 h
−1

S6,j : h
−1 h

−1

R3,j : h0 h
−1

R4 : h
−1

Then, (7.6) and Condition 7.4 imply that

(7.7) |s1 + s3 + s5 − s2 − s4 − s6| = 1.

We first consider Ψ′ = TOCb
(−1) ◦ TOCb+1

(−2) and note that Ψ′(α) ∼=

OCb+1
(−2). Moreover, we obtain

∑

p

l(Ψ′(Hp(β))) − l(β) = s1 − s2 − s3 + s4 − s5 − s6 − 2r3 − 1

from direct computation. Then by Lemma 4.11, we have

(7.8) l(Ψ′(β)) − l(β) ≤ s1 − s2 − s3 + s4 − s5 − s6 − 2r3 − 1.

From (7.7) and (7.8), we get

(7.9) l(Ψ′(β)) − l(β) ≤ 2s4 − 2s3 − 2s5 − 2r3

and

(7.10) l(Ψ′(β)) − l(β) ≤ 2s1 − 2s2 − 2s6 − 2r3.

If l(β) > l(Ψ′(β)), then we have nothing to do any more. Hence, let us
consider the case

l(β) ≤ l(Ψ′(β)).

Now, note that s1 · s4 = 0 by (6.2). If s1 = 0, (7.10) implies s2 = s6 =
r3 = 0 and l(Ψ′(β)) = l(β). Then, (7.8) means

s4 ≥ s3 + s5 + 1.

It follows from this that s4 6= 0, which implies s5 = 0 and degCb+1
R0,j =

−1 by (6.2). Hence, in this case, we have

l(TOCb∪Cb+1(−1,−2)
(β)) − l(β) ≤ 2s3 − 2s4 + 1 ≤ −1
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and TOCb∪Cb+1(−1,−2)
(α) ∼= Ob+1(−3)[1] as desired. If s4 = 0, by a similar

argument, we see s3 = s5 = s6 = r3 = 0, degCb+1
R0,j = 0 and s1 ≥

s2 + 1. Then, we obtain

l(T ′
OCb∪Cb+1

(β)) − l(β) ≤ 2s2 − 2s1 + 1 ≤ −1

and T ′
OCb∪Cb+1

(α) ∼= Ob+1[−1], which finishes the proof.

Case(ii.2.b): a = −1 and l(R4) = 1. In this case, (6.2) implies that
degCb+1

R0,j = degCb+1
R1,j = 0. Noting (7.5), we specify the degrees

in (7.4) and write

⊕

p

Hp(β) =

r0⊕

j

R0,j ⊕
s1⊕

j

S1,j ⊕ · · · ⊕
s8⊕

j

S8,j ⊕R4,

where Sk,j ’s are sheaves of the following forms.

Cb Cb+1

R0,j : h0 h0

S1,j : h0 h0

S2,j : h
−1 h0

S3,j : h0 h0

S4,j : h0 h
−1

S5,j : h
−1 h0

S6,j : h
−1 h

−1

S7,j : h0 h
−1

S8,j : h0 h0

R4 : h
−1

Claim 7.9. Under the above assumption, we have the following.

(i) |s1 + s3 + s4 − (s2 + s5 + s6)| = 1.
(ii) If s3 = s6 = s7 = s8 = 0, then we have s1 6= s2.
(iii) If s1 = s2 = s3 = s6 = 0, then we have s7 6= s8.

Proof. (i) follows from Condition 7.4 and (7.6). To show (ii), assume

(7.11) s3 = s6 = s7 = s8 = 0

and

(7.12) s1 = s2.

(i) means that |s4 − s5| = 1 in this case. Write sk =
∑

p sp
k where sp

k

counts the number of direct summands Sk,j in Hp(β). By (7.12), we

can apply Lemma 6.4 to deduce that sp
1 = sp−1

2 for all p. On the other
hand, Condition 7.4 under the assumption (7.11) gives rise to equalities
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and inequalities sp
5 + sp

2 = sp+1
4 + sp+1

1 for p 6= 0, 1, s0
5 + s0

2 ≥ s1
4 + s1

1 and

s1
5 + s1

2 ≤ s2
4 + s2

1. Thus, we obtain sp
5 = sp+1

4 for p 6= 0, 1, s0
5 ≥ s1

4 and
s1
5 ≤ s2

4. Moreover, (7.6) says either
{

s0
5 = s1

4 + 1

s1
5 = s2

4

or

{
s0
5 = s1

4

s1
5 = s2

4 − 1

holds. We consider only the first case because the second case is similar.
In this case, Lemma 6.4 applied to C = Cb+1 yields sp−1

4 ≤ sp
5 for all p.

Then, we have

s2
5 = s3

4 ≤ s4
5 = s5

4 ≤ · · · and s0
4 ≤ s1

5 = s2
4 ≤ s3

5 = s4
4 ≤ · · · .

Because β is a bounded complex, we have sp
4 = sp

5 = 0 for p ≫ 0, and
consequently s2

5 = s0
4 = 0. It follows from this and (7.11) that

Ext2X(H2(β),R4) = Ext2X(R4,H
0(β)) = 0.

Recall R4 is a direct summand of H1(β) by Condition 7.3. Then, Lemma
4.3 implies that R4[−1] is a direct summand of β. Since β is spherical,
this means that β = R4[−1] and hence that c1(α) 6= c1(β). This is a
contradiction to Condition 7.5. (iii) can be shown in a similar way. q.e.d.

Since c1(β) = Cb holds by Condition 7.5, we see that r0+s1+s2 is even
and r0+s1+ · · ·+s8 is odd. Therefore, s3+ · · ·+s8 is odd and especially
we have s3 + s5 + s8 6= s4 + s6 + s7. Since l(TOCb

(−1) ◦TOCb+1
(k)(α)) = 1

for all k, the following completes the proof for the case (ii.2.b).

Claim 7.10.

(i) If s3+s5+s8 > s4+s6+s7, then l(TOCb
(−1)◦TOCb+1

(−1)(β)) < l(β).

(ii) If s3+s5+s8 < s4+s6+s7, then l(TOCb
(−1)◦TOCb+1

(−2)(β)) < l(β).

Proof. To prove (i), suppose that the inequality

(7.13) s3 + s5 + s8 > s4 + s6 + s7

holds. If we further assume s6 6= 0, then (6.2) implies r0 = s1 =
s3 = s8 = 0 and (7.13) becomes s5 > s4 + s6 + s7. This contradicts
|s4 − (s2 + s5 + s6)| = 1 from Claim 7.9 and thus, we obtain

s6 = 0.

Then, putting Ψ = TOCb
(−1) ◦ TOCb+1

(−1), we have

(7.14) l(Ψ(β)) − l(β) ≤ (s2 + s4 + 2s7 + 1) − (s1 + s3 + s5 + 2s8)

by Lemma 4.11.
We first consider the case s3 = 0. By contradiction, assume that

l(Ψ(β))−l(β) ≥ 0. Then, combining (7.14) with s5−s4 = s1−s2±1 from
Claim 7.9 (i) and s5−s4 > s7−s8 from (7.13), we see s5−s4 = s1−s2+1
and s1 − s2 = s7 − s8. Now, we have s1s7 = s2s8 = 0 by (6.2) and
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therefore, we obtain s1 = s2 and s7 = s8. Since either of these is zero,
this contradicts Claim 7.9 (ii) and (iii).

Next, consider the case s3 6= 0. In this case, we have r0 = s2 = s6 =
s7 = 0 by (6.2). Then, (7.14) and (7.13) imply

(7.15) l(Ψ(β))− l(β) ≤ (s4 + 1)− (s1 + s3 + s5 + 2s8) ≤ −s1 − s8 ≤ 0.

Assume l(Ψ(β)) = l(β). Then, the equalities hold in (7.15) and it
follows that s1 = s8 = 0 and s4 + 1 = s3 + s5. Combining it with
|s3 + s4 − s5| = 1 from Claim 7.9 (i), we also see s3 = 1 and s4 = s5.
Moreover, since the equality holds in (7.14), the spectral sequence in
Lemma 4.11 must be E2-degenerate. Namely, for the class ep(β) ∈
HomX(Hp(β),Hp−1(β)[2]), the map

H−1(Ψ(ep(β))) : H−1(Ψ(Hp(β))) → H1(Ψ(Hp−1(β)))

is zero (see Proposition 4.1). Note

• Ext2X(F ,S3,1) for F = S4,j ,S5,j ,R4.
• The map Ext2X(S3,1,F) → HomX(H−1(Ψ(S3,1)),H

1(Ψ(F))) in-
duced by Ψ is isomorphic for F = S5,j ,R4 and of rank 1 for
F = S4,j .

Hence, for F as above, if an entry of ep (β) in Ext2X(F ,S3,1) or
Ext2X(S3,1,F) is non-zero, then it must be in the kernel of Ext2X(S3,1,

S4,j) → Ext2X(S3,1,S4,j |Cb+1
). This contradicts the surjectivity of d0,0

2

in Condition 7.4. Thus, we obtain (i). The proof of (ii) is similar. q.e.d.

7.5. Case (iii). Condition 7.4 implies that R and R′ above must be
in H1(β). Moreover, they are unique in a decomposition of H1(β), by

virtue of the inequality dimE1,−1
2 ≤ 2 from (7.2). Thus, (6.2) allows us

to write
⊕

p

Hp(β) =

r1⊕

j

R1,j ⊕
r2⊕

j

R2,j ⊕R3 ⊕R4,

where Rk,j ’s, R3 and R4 are sheaves of the following forms.

Cb−1 Cb Cb+1

R1,j : h h h ____

R2,j : h h h ____

R3 : ____ h
−1 h ____ : R4

α : ha

Here, we assume that degCb−1
R3 = −1 by tensoring a suitable line

bundle.

Claim 7.11. We have a = −1.

Proof. Claim 7.6 says a≥−1. If a≥0, then we have Ext1X(OCb
(a),R)

6= 0 for any R ∈ Σ(β). It follows from Condition 7.3 that Hq(β) = 0 for
q 6= 1. This is absurd, since c1(β) = Cb by Condition 7.5. q.e.d.
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The inequality dimE1,−1
2 ≤ 2 from (7.2) also implies that

Ext1X(Rk,j ,OCb
(−1)) = 0

for k = 1, 2 and for all j. In particular, we get

degCb
R1,j = degCb

R2,j = 0.

Now, we give a proof for Case (iii) by induction on l(R3). First,
suppose l(R3) = 1. We write

r1⊕

j

R2,j =

s1⊕

j

S1,j ⊕
s2⊕

j

S2,j ,

where Sk,j ’s are sheaves of the following forms.

Cb−1 Cb Cb+1

R1,j : h0 h0 h ____

S1,j : h0 h0 h ____

S2,j : h
−1 h0 h ____

R3 : h
−1 h ____ : R4

α : h
−1

Because of the existence of R3, we have s1 6= s2 by Lemma 6.6. Define

Ψ0 =

{
TOCb−1∪Cb

(−1,−1) if s1 < s2,

T ′
OCb−1∪Cb

if s2 < s1.

Then, (Ψ0(α), Ψ0(β)) fits in Case (ii) and Ψ0(β) satisfies l(Ψ0(β)) ≤
l(β). Since, we have proved Case (ii), we finish the case l(R3) = 1.

Next, suppose l(R3) > 1. In this case, (6.2) implies

degCb−1
R2,j = −1.

Define

Ψ′ = TOCb
(−1) ◦ TOCb−1

(−2).

Then, we have Ψ′(α) ∼= OCb−1
(−2) and l(Ψ′(β)) ≤ l(β). Moreover, we

can see that Ψ′(β) satisfies the induction hypothesis (on l(R3)). This
finishes the proof of Case (iii) and we get the assertion of Proposition 1.7.

q.e.d.
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