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Abstract—Autofocus (AF) is a widely investigated subject in the
fields of natural scene images, industrial assembly and biologic
microscopy. This paper proposes a new effective AF method for
infrared (IR) microscopy in the context of the Integrated Circuit
industry (IC). The proposed method operates in the wavelet
domain using a custom orthogonal wavelet for the 2D Discrete
Wavelet Transform (DWT). The quality criterion of our AF
algorithm relies on the standard deviance of the DWT coefficients,
computed per subband and per level. Tested on several optical
magnifying lenses, our method is robust time-efficient, and usable
on-the-fly in the IC location system.

Index Terms—Infrared imaging, Microscopy, Focusing, Image
analysis, Image quality, Image decomposition, Wavelet trans-
forms, Statistics

I. INTRODUCTION

Integrated Circuits (ICs1) are electronic components whose

applications seem unlimited: they are used in many fields such

as wearable technologies and IoT (Internet of objects). In

order to protect the privacy of users, some ICs need to be

secured, and their security needs to be validated. One way

to characterize a secure IC is to study its behavior following

a physical disruption. Such disruption may be obtained by a

laser shot targeted on the internal structures of the IC. The

accuracy of the shot relies on the precision of the laser power

calibration and 3D positioning inside the IC. In our study, the

Object Of Interest (OOI) is considered as made of three layers

of different materials: (1) the silicon, (2) a conductor material

forming the conductive tracks, and (3) an electrical insulator,

as illustrated in Fig. 1.

The internal OOI structures are visible on the surface of the

conductive tracks, which is the Surface Of Interest (SOI). The

Project funded by the Association Nationale de la Recherche et de la

Technologie (ANRT).
1A glossary is present at the end of this paper.

Fig. 1: Concept mapping of three materials composing our IC.

3D positioning of the laser on the SOI is done with an infrared

(IR) camera that can see through the silicon layer. In our work,

the optical system and the laser source are interdependent,

so the optical adjustment implies laser position adjustment.

Usually, these adjustments are made manually by skilled men,

which raises two problems: time loss and non-reproducibility

of the characterization (because of potential imprecision). An

autofocus (AF) system could partially solve this problem by

automating one dimension of the 3D positioning process.

Section (II) shortly introduces some works related to the AF.

Then, section III presents our particular work environment.

Section IV describes the AF method we propose, and section

V details the overall experiment results.

II. AROUND THE AUTOFOCUS

The AF mechanism is a deterministic algorithm that deter-

mines the lens position for which the system is "well focused"

on the scene/object of interest (see Fig. 2), that is, the position

for which the image of the scene or object is sharpest.

Two AF approaches exist: active and passive. The active

approach depends on an additional system measuring the

distance from the system to the scene/object. For example,

ultrasonic sound waves and IR light reflection are two ways of

measuring distances. Once the optics-scene distance is known,

the correct lens position to obtain a focused image is estimated.

Such an active system is not available, so we consider a passive

approach relying on image analysis. This analysis determines

the most relevant object/scene image, which we then use to

find the correct focus. At this point, we are confronted with

the issue of Image Quality Assessment (IQA).

Fig. 2: Minimalist optical system; the image on plane 2 (green)

is well focused on the optical sensor whereas the image on

plane 1 is not.



The Human Visual System (HVS) is the most reliable tool

for IQA: the main difficulty is the interpretation of human

subjectivity with algorithms following objective rules and

criteria [1].

Some subjective methods attempt to emulate HVS using

the Mean Opinion Score, but they are time-consuming and

generally non-deterministic; these methods are partly based on

objective metrics pooled together to predict the quality score

[2].

Objective IQA methods attempt to be correlated with the

HVS. Depending on the amount of available information from

the image source, methods are categorized as Full-Reference

(FR) based if an original, non-distorted image is available [3]

or No-Reference (NR) based otherwise [4]. If just some of

the original image features are known, the method is qualified

as Reduced-Reference (RR) based. See reference [5] as an

example. RR-IQA methods are generally guided/optimized

NR-IQA methods. In the AF context, both of the NR and

RR-IQA methods are used, since the quality criterion is

hypothetical. Images are ranked according to this criterion,

and the best-ranked image is associated with the correct lens

position.

Statistics of order 1, 2 and higher are widely used in signal

processing since the 1960’s. In image analysis, each statistic

point out an image feature [6]:

• Average Gradient (AG): reflects the contrast and the

clarity of the image. It can be used to measure the spatial

resolution of a test image, where a larger average gradient

indicates better spatial resolution.

• Mean metric: indicates the image average brightness

level. For equivalent scenery, image brightness increases

with the mean.

• Auto-Correlation (AC): spotlight redundant data. If an

image is blurred or the edges are smoothed, the correla-

tion between neighboring pixels becomes high.

• Entropy metric: measures the information quantity of an

image. If the probability of occurrence of each gray level

is low, the entropy is high, and vice versa.

• Standard Deviation (SD): reflects the contrast of the

image; the image contrast increases with the SD.

• Kurtosis metric: a statistical measure of the degree of

sharpness or flatness of a distribution (i.e., average slope

and energy concentration). Increases with the depth of

focus.

• Skewness metric: a statistical measure of the direction and

extent to which a data set deviates from a distribution. For

a standard normal distribution, high skewness indicates

asymmetry of the data. In this case, the data contains a

greater amount of information.

These statistics can be computed on the image data or on

its transform, that is, in spatial, frequency or time-frequency

domains.

Since AF algorithms rely on specific image analysis, they

cannot be generalized. Several methods exist, each adapted

to its context such as images of natural scenes [5], [7]–[9],

low-contrast images [10] or microscopic images [11]–[13]. In

paper [13], the author studied several autofocus methods in

a particular case (lipid droplets inside microscopic worms).

The focus criterion is clarity-evaluation based. He tested

the performance and accuracy of sixteen autofocus methods:

histogram, intensity, statistic, derivative and transform-based.

He found that the absolute Tenengrad algorithm had the best

performance against accuracy for its specifics. Finally, each

approach uses well justified metrics. In our proposal we define

metrics adapted to IR microscopy for the IC industry, which

implies some constraints (see Section III).

III. WORK ENVIRONMENT

A. Available material

Observation of the SOI under the silicon layer is possible

thanks to its optical properties. Indeed, around the wavelength

1µm and higher, the silicon absorption coefficient is not

significant [14], [15]. In other words, silicon is "transparent"

to lights whose wavelengths are around 1µm and above (such

as IR light).

Our motorized optical system provided by AlphaNov2 is

composed of:

• an uncooled IR camera

• an optical microscope with 4 magnifying lenses (2.5x,

5x, 20x and 50x) allowing us to observe the OOI (around

5mm2) and its internal structures (micro-metric scale)

Three types of IR camera are available on the market: Long-

Wave, Mid-Wave and Short-Wave (LWIR, MWIR and SWIR,

respectively). On the one hand, MWIR and LWIR sensors

detect thermal emissions from objects, and are efficient when

these are warmer than their surroundings. On the other hand,

SWIR cameras use the reflected light, much like the slightly

shorter wavelengths of the visible spectrum (see Fig. 3). In

our experiment we worked with the latter type of camera.

With the unique capabilities of our SWIR camera, we are

able to see the SOI through the silicon layer. To propose an

automated method for focusing on the SOI, our algorithm must

take in account some specifics arising from the camera and

from the SOI (see Section III-B).

B. Constraints and special features

Concerning the camera:

2www.alphanov.com

Fig. 3: Infrared wavelength in the electromagnetic spectrum.
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The IR camera sensor is an InGaAs, sensitive to a large

IR wavelength range (900nm to 1700nm); the embedded

Wide Dynamic Range technology (WDR) dynamically detects

the relevant wavelengths to take into account for best image

quality. Despite its accuracy, this camera stays sensitive to

external thermal interference. Since the sensor is uncooled

(thermally not insulated), the thermal instability of the en-

vironment produces thermal noise, which affects the image

acquisition (see Fig. 4).

Cooled IR camera Uncooled IR camera

Fig. 4: An example of images acquired with cooled and

uncooled infrared cameras (source: flir.com).

Concerning the object of interest:

Two distinct surfaces are considered for the autofocus

algorithm: the silicon and the SOI. As said in III-A, silicon is

transparent to our IR light and should not be visible. However,

in many cases, contaminants (e.g. dusts) are ingrained on the

silicon, which reveals the surface to any light. This implies a

possible conflict of interest, considering the sharpness crite-

rion: the silicon surface with its contaminants may be sharper

than the SOI. This point underlines that sharpness is not, in

practice, the appropriate criterion to exclusively characterize

an SOI. Fig. 5 shows to the notable states during the autofocus

process.

We may compare the conductive layer of an IC to a

city, and its internal structures to buildings. As shown in

Fig. 5: Images acquired at several focal point positions (green

points) according to the Z-axis. Component out of focus (left),

focused on the silicon surface (middle) and on the conductive

track surface (right).

Fig. 6, everything is orthogonally disposed, in regard to the

rectangular shape of the component. This criterion is a good

candidate for our AF algorithm.

However, a difficulty arises from the SOI image texture. An

IC is built by microscopic material deposition, which implies

a textural grain visible with a high magnifying lens (20x and

50x). Considering the SOI images, this grain can be compared

to a noise in the images: structures are clusters of points, more

or less dense (illustrated in Fig. 7). In the worst case, detection

of the structure boundaries turns out to be difficult and the

images could need preprocessing to be well treated.

To sum up, we may state that:

a. Sharpness is not a good criterion to make the difference

between the silicon surface and the SOI.

b. On the SOI, horizontal and vertical structures boundaries

are visible.

c. Because of textural grain and noise, topological informa-

tion is not pertinent (e.g. line detection).

d. The AF method has to be effective for each magnifying

lens (2.5x, 5x, 20x and 50x).

Since we know which features are expected in the targeted

image (b.), our IQA can be qualified as RR-based. To avoid

preprocessing such as image denoising (c.), we propose a

transform-based analysis in the next section.

IV. AUTOFOCUS METHOD PROPOSAL

The criterion analyzed for an AF system has to be strong

enough to prevent false results. In that sense, for a robust AF

algorithm, we need a robust quality metric.

A. Analysis domain proposal

As previously described, image preprocessing should be per-

formed before any image-based analysis (e.g. denoising). But

it could break information continuity in our images (e.g. spatial

information), and could be time-consuming. To preserve this

continuity, our approach is transform-based, which may also

save computation time. This transform is described below.

Wavelet transform:

Several image transforms exists. One of the most commonly

used is wavelet decomposition, but has limitation due to its or-

thogonality (i.e. there is little orientation information). Others

exist such as the steerable pyramid and curvelet transforms:

Fig. 6: A simple representa-

tion of an IC and its internal

structures.

Fig. 7: Two lines delimiting

structures boundary (50x).
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the steerable pyramid transform overcome this orientation

limitation and the curvelet transform is an extension of the

wavelet concept, with less redundancy and more orientation

information [16]–[18]. However, according to the features

described in section III-B, the main information needed for

our analysis is the horizontal and vertical components of

images. Therefore, we only consider wavelet decomposition

for our IQA. Moreover, it may permit skipping some useless

information related to material texture or even noise. For this

purpose, the wavelet choice is important, considering that each

wavelet matches specific signal information.

Wavelet choice:

Wavelets are used to decompose signal information, depend-

ing on their characteristics and topology. Here we need to find

the best wavelet matching to the interesting information in our

IR images, that is, the structures contours. Vu and Chandler

[19] described a method to construct an image sharpness map

based on 2D wavelet decomposition. The implementation of

such a sharpness map could allow us to visually evaluate how

image information is decomposed by a wavelet.

To that end, we took three photos of the SOI with 5x,

20x and 50x magnifying lenses. For each image, we built a

sharpness map considering the following: two orthogonal and

two bi-orthogonal wavelets, respectively:

1. Haar wavelet [20], since the image can be interpreted as

binary: reflexive versus non-reflexive materials, structures

versus background (I).

2. A Custom Orthogonal Wavelet (COW) built from a father

wavelet whose scaling coefficients are defined in (1) and

and from which filter bank coefficients are computed in

Tab. III. See its illustration in Tab. II.

φ =
[

1

k

1

k

1

k

1

k

]

(1)

TABLE I: Haar wavelet illustration

Scaling function (φ) Wavelet function (ψ)

TABLE II: Custom Orthogonal Wavelet (COW) illustration

Scaling function φ Wavelet function ψ

3. Cohen-Daubechies-Fauveau (CDF 9/7) 9/7 wavelet [21],

having a great capacity to extract textures, is illustrated

in Tab. IV.

4. An Optimized CDF 9/7 9/7 wavelet proposed in [22] and

illustrated in Tab. V.

Our goal is to find which wavelet match the most the

relevant information in the image, that is, structures salience.

Tab. VI shows obtained sharpness maps. We visually estimate

that COW seems to match the interesting information, that

is, relative to structures’ salience. Contrary to CDF 9/7 9/7

wavelet, COW seems to avoids a great part of the image

information relative to thermal noise and textural grain.

B. Our IQA method

In [19], Vu and Chandler also proposed a wavelet-based

algorithm for estimating both the global and local image sharp-

ness (Fast Index SHarpness - FISH). Their IQA comes from

the log-energy calculation of a three-level separable Discrete

Wavelet Transform (DWT) using CDF 9/7 9/7 wavelet. The

choice of this wavelet can be justified by its effectiveness to

match textures, and thus to extract a large range of data. The

energy evaluation brings information about the overall data

values. The sharper an image is, the more its DWT contains

high frequencies; and the more there are sparse frequencies,

the higher the energy is. Here the sharpest image could be

either a well focused image, or an unfocused one, because

each contains sparse high frequencies.

We generalize a DWT analysis as follows:

1) 2D DWT of grayscale image using a given wavelet, on N

levels. Let XYn denote the DWT subbands at each level

n, where XY is either LH , HH or HL DWT subbands.

2) Given a statistic function F , FXYn
is F computed on

each subband XY at each decomposition level n.

3) For each decomposition level n, Fn is the pounding sum

of each FXYn
:

Fn = α FLHn
+ β FHLn

+ γ FHHn
(2)

TABLE III: COW filter bank

k Analysis LPF Analysis HPF Synthesis LPF Synthesis HPF

0 0.35355339 -0.35355339 0.35355339 0.35355339

1 0.35355339 0.35355339 0.35355339 -0.35355339

2 0.35355339 -0.35355339 0.35355339 0.35355339

3 0.35355339 0.35355339 0.35355339 -0.35355339

TABLE IV: CDF 9/7 9/7 wavelet illustration

Analysis scaling function φ Analysis wavelet function ψ
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TABLE V: Optimized CDF 9/7 9/7 wavelet illustration

Analysis scaling function φ Analysis wavelet function ψ

where α, β and γ are coefficients with α+ β + γ = 1.

4) The total Ftot of the DWT is the sum of each Fn weighted

as follows:

Ftot =

N
∑

n=1

2N−nFn (3)

Our algorithm follows these four steps, with the specifics

listed below:

• According to the study in section IV-A, COW is used to

match the relevant image information.

• We consider the Standard Deviation (SD) (4), reflecting

the image data variability or diversity, since we cannot

rely on statistics based on spatial arrangement informa-

tion, or on its quantity/quality estimation (see section

III-B).

SDXYn
=

√

√

√

√

1

C

C
∑

c=1

(SXYn
(c)− µ)2 (4)

where µ is the mean of the considered subband, and c is

the coefficient number of this subband from 1 to C.

• Only the HL and LH subbands (5) are used: horizontal

and vertical components are kept, leaving the diagonal

information held by HH (see section III-B).

SDn =
SDLH + SDHL

2
(5)

• The weighting to obtain SDtot is reversed compared to

Ftot described below:

SDtot =

N
∑

n=1

2nSDn (6)

For each decomposition level, some information are

dropped due to the sub-sampling. Then, in the highest

level, the root image information remains.

With this IQA we are then able to rank images by their

estimated quality. Our AF method is based on this criterion:

the best ranked image in a video corresponds to the focused

image, from which the focus position can be estimated (see

next section).

V. EXPERIMENT AND DISCUSSION

Considering a linear movement given to the optical system

toward the OOI, we take a video. The initial position is the

farthest position from the OOI, the last is the nearest possible

(the physical limits). We make such an acquisition for each

magnifying lenses (2.5x, 5x, 20x and 50x), at 80 FPS. From a

video, images are extracted so that each image correspond to

a lens position, and are evaluated with our proposed quality

metric. In this way, the highest-ranked image gives the best

matching focus according to our quality criterion.

A. Results

We firstly compare our algorithm to FISH [19]. Fig. 8

presents the results.

The two approaches have different behaviors. With every

magnifying lens, our algorithm effectively catch the SOI focus

position (the star in Fig. 8); however, we observe unexpected

behaviors around the focus point, which could correspond to

optical distortions. The FISH algorithm catch the SOI focus

position, but is largely more sensitive to distortions from

the optics, the camera and other non-relevant information.

This reflects the importance of the textural overcoming the

structural information. This sensitivity bias the result, which

is inoperable for 2.5x and 5x magnifying lenses. These results

show that our method is adapted and robust to our specifics.

In order to better describe the image characteristics, we

compute other statistics on the same scheme as our algorithm:

entropy, Auto-Correlation (AC), skewness and kurtosis. See

Fig. 9.

Considering the interpretation of each statistic applied to

images, these measures reveal a complex image information.

Dis-focused or not, images are saturated: in natural scenes,

dis-focused images are considered as blurred. In this case

the image data are smoothed and contains little information.

In our study the textural part of the data is strong, and

light distortions implied by the optical system add unexpected

features to the images. Then, even using the DWT with our

COW, spatial information is too noisy to be interpreted without

preprocessing. The SD measure has a greater abstraction level,

enough to remain a reliable quality criterion.

B. Runtime

As studied in [23] and [24], the computational complexity

of DWT using filter banks implementation is O(n). Our algo-

rithm threat the wavelets decomposition linearly per subband.

Since only two subbands per level are considered, and for a

three-level DWT, the global complexity is around:

O(n) + 2O(
n

2
) + 2O(

n

4
) + 2O(

n

8
) ≈ O(n) (7)

We implemented our architecture in Python language, on an

64-bit PC with an Intel Core i5-6200U at 2.30GHz and 8Gb

of RAM. The camera resolution is 320x256 pixels. Additional

packages are used for matrix operations (NumPy) and for

DWT (PyWavelet) using filter banks.

For a video containing 1500 images, our implementation run

in around 3.37 seconds. Then, an image quality is computed

in 2.24 ms. In our application, this time is not disturbing: the

focus research can be reduced if a previous AF is already

done. This solution may considerably reduce video length and

so the image stack.
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TABLE VI: Sharpness map in function of magnifying factor and wavelet in use

Sharpness map depending on the wavelet used

Magnifying
lens

Original view Haar COW CDF 9/7 9/7 OCDF 9/7

5x

20x

50x

(a) (b) (c) (d)

Image index

F
o

cu
s

m
ea

su
re

Image index

F
o

cu
s

m
ea

su
re

Image index

F
o

cu
s

m
ea

su
re

Image index

F
o

cu
s

m
ea

su
re

Fig. 8: Graphs of focus measures of images extracted from videos, based on FISH (red) and on ours (black), for different

magnifying factors: 2.5x (a), 5x (b), 20x (c) and 50x (d); the stars mark the real SOI focus positions.

C. Evaluation of silicon thickness

As said in Section I, two adjustments are necessary before

a laser shot: the 3D positioning, and the laser power. The

laser power setting depends on the silicon thickness on the

SOI. A simple way to measure the silicon thickness consists

in subtracting the positions of the SOI (1) and the silicon

surface (2). The SOI position is available with the proposed

algorithm. Changing our AF criterion may permit to focus on

(2) instead of (1). For example, in the case of contaminated

silicon surface, the sharpness could be a good criterion.

VI. CONCLUSION

We proposed a robust passive autofocus algorithm. Our

quality criterion allows us to efficiently focus on the conduc-

tive track surface inside an integrated circuit, independently

of the magnifying lens. This proposal responds to a need for

accuracy and reproducibility improvement in the context of

the security characterization of integrated circuits using laser

shots. The proposed algorithm is based on wavelet decom-

position analysis, using a wavelet designed for our specifics.

Other approaches may be adopted to study our IR images, as

steerable pyramid transforms, or any image-based approach,

but they require some preprocessing. Note that data such as

the diagonal details of the DWT decomposition stay untapped,

and may also be used for IR images denoising. Despite the

optical system limitations arising from the uncooled camera,

the proposed approach does not need any image enhancement;

its time efficiency makes our autofocus method usable for on-

the-fly characterizations.
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GLOSSARY

AC Auto-Correlation. 2, 5

AF Autofocus. 1, 2, 3, 5

AG Average Gradient. 2

CDF 9/7 Cohen-Daubechies-Fauveau 9/7. 4

COW Custom Orthogonal Wavelet. 4, 5, 4

DWT Discrete Wavelet Transform. 1, 4, 5, 6

FR Full-Reference. 2

IC Integrated Circuit. 1, 2, 3

IQA Image Quality Assessment. 1, 2, 3, 4, 5

IR Infrared. 1, 2, 3, 4, 6

NR No-Reference. 2

OOI Object Of Interest. 1, 2, 5

RR Reduced-Reference. 2, 3

SD Standard Deviation. 2, 5

SOI Surface Of Interest. 1, 2, 3, 4, 5

SWIR Short Waves Infrared. 2
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