
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which
this version may no longer be accessible.

AutoGMap: Learning to Map Large-scale Sparse
Graphs on Memristive Crossbars

Bo Lyu, Shengbo Wang, Shiping Wen, Senior Member, IEEE, Kaibo Shi, Yin Yang, Lingfang Zeng
and Tingwen Huang, Fellow, IEEE

Abstract—The sparse representation of graphs has shown great
potential for accelerating the computation of graph applications
(e.g., Social Networks, Knowledge Graphs) on traditional com-
puting architectures (CPU, GPU, or TPU). But the exploration
of large-scale sparse graph computing on processing-in-memory
(PIM) platforms (typically with memristive crossbars) is still
in its infancy. To implement the computation or storage of
large-scale or batch graphs on memristive crossbars, a natural
assumption is that a large-scale crossbar is demanded, but with
low utilization. Some recent works question this assumption,
to avoid the waste of storage and computational resource, the
fixed-size or progressively scheduled “block partition” schemes
are proposed. However, these methods are coarse-grained or
static, and are not effectively sparsity-aware. This work proposes
the dynamic sparsity-aware mapping scheme generating method
that models the problem with a sequential decision-making
model, and optimizes it by reinforcement learning (RL) algorithm
(REINFORCE). Our generating model (LSTM, combined with the
dynamic-fill scheme) generates remarkable mapping performance
on a small-scale graph/matrix data (complete mapping costs 43%
area of the original matrix) and two large-scale matrix data
(costing 22.5% area on qh882 and 17.1% area on qh1484). Our
method may be extended to sparse graph computing on other
PIM architectures, not limited to the memristive device-based
platforms.

Index Terms—Memristor, Sparsity, Large-scale graph, LSTM,
Reinforcement learning

I. INTRODUCTION

GRAPH data structure is typically represented by an
adjacency matrix, which has extensive sparsity [1]–[4].

It relies on traditional matrix compression format, e.g., CSR,
CSC, and COO, to save substantial storage resources, and is
effectively processed by the sparse-based computing algorithm
or library (SpMM, SpMV) on traditional computing devices
(CPU, GPU, or TPU) [5]. However, in terms of processing-in-
memory (PIM) or computation-in-memory (CIM) platforms,
which are typically implemented by memristive crossbars,

This publication was made possible by NPRP grant: NPRP 9-466-1-103
from Qatar National Research Fund. The statements made herein are solely
the responsibility of the authors. (Corresponding authors: Shiping Wen.)

B. Lyu and L. Zeng are with Zhejiang Lab, Hangzhou, China, 311121,
(email: {bo.lyu; zenglf}@zhejianglab.com). S. Wang is with School of Com-
puter Science and Engineering, University of Electronic Science and Technol-
ogy of China, Chengdu 611731, China (e-mail: shnbo.wang@foxmail.com).
S. Wen is with Australian AI Institute, Faculty of Engineering and Infor-
mation Technology, University of Technology Sydney, NSW 2007, Aus-
tralia (shiping.wen@uts.edu.au). K. Shi is with School of Information
Science and Engineering, Chengdu University, Chengdu, 611040, China,
(email: skbs111@163.com). Y. Yang is with College of Science and
Engineering, Hamad Bin Khalifa University, 5855, Doha, Qatar (email:
yyang@hbku.edu.qa). T. Huang is with Science Program, Texas A & M Uni-
versity at Qatar, Doha 23874, Qatar (e-mail: tingwen.huang@qatar.tamu.edu).

the graph data must be restored from the storage format to
the computing format (adjacency matrix) [1] before mapping.
Directly mapping large-scale sparse graph data on a crossbar
is not appropriate, for it will seriously affect the utilization and
power consumption of memristive platforms. In addition to the
large-scale graph data, it is also fatal for batch graphs com-
puting, in which the adjacency matrices are usually integrated
into a large-scale super-matrix, with only the sub-graphs being
internally connected, and the adjacency relationship across
the graphs are null [6]. Unfortunately, the current fabrication
technology of memristor crossbars is immature, and it is
difficult to fabricate large-scale memristive crossbars with high
yield. Therefore, it is necessary to make efficient usage of the
discrete small-scale crossbars on memristor-based computing
platforms.

In recent years, some PIM-based literature [1], [2], [7] have
made effective attempts in the efficient computation of sparse
graphs on neuromorphic computing platforms. Following clus-
tering or reordering [8] the sparse adjacency matrix, some
fixed-size block partition or progressive partition schemes
are proposed, among which only the blocks with non-zero
entries need to be mapped to the crossbar [1], [2], [6]. From
our perspective, these schemes fail to propose an effective
mapping scheme for the graph data, which should be feasible,
scalable, dynamic, and flexible, especially in the scenario
of large-scale graph or batch graphs computing. This paper
focuses on filling this gap, which is crucial in optimizing
the computing/storage efficiency and resource utilization of
large-scale graphs on the memristive platforms. According
to the scenarios and characteristics of memristive crossbar
based computing, we first propose several principles of dy-
namic sparsity-aware mapping and coding framework. We then
model the problem as a sequential decision-making problem,
which is heuristically sampled and optimized by a policy
gradient-based reinforcement learning algorithm. Eventually,
our experiments show remarkable mapping results on both
small-scale and large-scale graph/matrix datasets.

Overall, our contributions can be summarized as follows:
• Modeling We simplify the mapping scheme genera-

tion problem, and further formulate it as the sequential
decision-making problem.

• Optimization We further exploit LSTM + Dynamic-fill to
model the problem, and optimize it heuristically by the
reinforcement learning algorithm.

• Scalability Our method can meet the real constraint
(allowable limited crossbar size, the complexity of pe-
ripheral circuits, etc.) of the deployed platforms, that is,

1

ar
X

iv
:2

11
1.

07
68

4v
3

 [
cs

.L
G

]
 3

 M
ar

 2
02

3

2

it is flexible and scalable.
Our work eliminates the dependence of large-scale graph com-
puting on integrated crossbars and allows for the utilization of
discrete crossbars with limited sizes. This improves the utiliza-
tion and feasibility of memristive crossbars, enabling dynamic
sparsity-aware mapping in large-scale graph computing. Our
code is available at https://github.com/blyucs/AutoGMap.

II. RELATED WORK

Processing-in-memory and neuromorphic computing.
Data exchange between PUs and off-chip storage devices
(hard drives, flashes) consumes two orders of magnitude
more energy than a floating-point operation [9]. It becomes
more serious for neural network applications and real-time
automatic systems [10]–[13], which substantially rely on data
storage and memory exchange (both w.r.t. feature maps and
weight parameters). The “Memory Wall” problem in von-
Neumann architecture will surely become a bottleneck for
progress in these areas. Given the capacity to achieve low-
power consumption and low inference latency, PIM [14]–[16]
is a feasible solution to tackle these issues [17], [18], which
integrates the computation and data storage.

Memristor crossbar-based computation. The emerging
studies of memristor [19]–[22] have shown its great potential
on PIM platforms. With the memristors structured into the
crossbar, it performs matrix-vector multiplication efficiently
and has been widely studied to accelerate neural network
(NN) applications. Much more works have studied the de-
ployment of different types of neural networks (ex-situ) w.r.t.
different benchmark tasks on memristor crossbar arrays [23]–
[25]. Other works also study the training procedure of neural
networks (in-situ) [26]–[31]. Wen et.al [23] propose a novel
memristor-based computational architecture for the Echo State
Network (MESN) with the online Least Mean Square (LMS)
algorithm. Chen et.al [32] design the memristor-based circuit
to implement Fully Convolutional Networks (FCNs) for image
segmentation application. Recently, as a newly evolutionary
neural network structure, the Transformer [33] has also been
studied under the scenario of memristor crossbar arrays [25].
Our work is also partially motivated by [32] and [34], which
are concerned with the acceleration of the hardware imple-
mentation of artificial neural networks.

Resource-aware computation and energy saving. Re-
cently, much more attention has been paid to the re-
sources and energy consumption of computing. Some no-
table works on resource-aware computation optimization and
software/hardware co-design models [35], [36] are proposed.
Targeting the resource consumption and energy saving on
neuromorphic computing platforms, some works [37], [38]
propose some effective ways for accelerating the memristor-
based CNNs on classification or segmentation tasks.

Graph data processing and acceleration. Towards the
sparse matrix-vector multiplication based on memristor cross-
bar, Cui et.al. [7] propose an improved/generalized reordering
algorithm based on Cuthill-McKee reordering to reduce the
bandwidth of graph adjacency matrix, thus improving the
efficiency of the crossbars, whereas no blocks mapping scheme

is studied after reordering. Balong et.al. [6] directly utilize
the Cuthill-McKee reordering algorithm followed by three
densified diagonal-blocks coverage, to speed up the training
efficiency, thus demonstrating the competitive efficiency on
TPUv2 (dense acceleration hardware) to GPU (sparse acceler-
ation hardware). Targeting the heterogeneous accelerators for
graph computation on PIM architecture, some works [1], [2]
propose sparse graph partition schemes to improve the storage
efficiency. GraphR [1] statically partitions adjacency matrix,
and combines sparse compression format, to reduce memory
consumption. On the WikiNote dataset, it cost only 0.2% of
the original size when combined with the COO representation.
GraphSAR [2] proposes the sparsity-aware partition scheme
to store the large-scale sparse matrix. After partitioning the
adjacency matrix into fixed-small-size (e.g. 8 × 8), it only
directly stores the blocks with a non-zero density larger
than 0.5, otherwise further divides the blocks into 4 × 4.
By this means, the large-scale graphs data are stored in the
form of small matrices, thus greatly increasing the utilization
of the discrete fragmentary crossbars. Although these works
endeavor to improve the computation efficiency and resource
utilization by block partition scheme, no dynamic and real
sparsity-aware partition methods are proposed.

III. PRELIMINARY

In parallel computing on conventional hardware (CPU,
GPU), the Intel MKL, NVIDIA cuBLAS library, cuSparse,
and other libraries directly implement SpMV based on the
compressed format. However, for large-scale graph data or
batch graphs, although the memristor-based crossbar operation
utilizes a process-in-memory architecture to reduce the com-
plexity of matrix-vector multiplication from O(n2) to O(1),
it is clear that the complete mapping of the integrated matrix
to the crossbar is unwise. Taking spectral-based GCN [39] as
an example, the layer-wise propagation as Eq. (1):

Zl+1 = σ(D̂−1/2ÂD̂−1/2ZlWl) (1)

It involves the whole sparse adjacency matrix, so complete
mapping of graphs on crossbar/hypercube is very resource-
consuming. A preferable way is to divide the sparse matrix
into blocks, and only the blocks containing non-zero elements
need to be mapped [6], [7]. However, the non-zero elements of
the sparse matrix with graph structure are generally scattered,
which will increase the complexity of peripheral circuits and
communication between sub-crossbars (blocks) [7]. Targeting
the goal of “communication optimal” [7], the communication
of the blocks in the same row needs to be minimized, thus
reducing the complexity of the peripheral circuit. To achieve
this, non-zeros need to be located closer enough and preferably
distributed around with the diagonal.

Matrix-vector multiplication is the common atomic opera-
tion of current Artificial Intelligence applications (e.g. CNNs
[40]–[42], RNNs [43], GNNs [39], [44], [45]), and consists
of the multiplication and accumulation. In the computation
of the memristive crossbar, multiplication is implemented by
Ohm’s law, and accumulation is implemented by Kirchhoff’s
Current Law in analog domain [46]. Fig. 1 showcases the

https://github.com/blyucs/AutoGMap

3

circuit simulation process of a matrix-vector multiplication
propagation (y = Ax) by reordering and its corresponding
post-transformation. Supposing the original calculation of the
matrix-vector multiplication is:

y = Ax (2)

By Cuthill-Mckee reordering, the matrix A is transformed to:

A
′
= PAPT (3)

which is feasible to be deployed on the crossbar with fewer
cost [7]. To ensure the calculation rules of block matrix mul-
tiplication, the input vector needs the transformation, denoted
as:

x
′
= Px (4)

The calculation after the transformation is represented as:

y
′
= A

′
x

′
= PAPTPx = PAx = Py (5)

Then, after the calculation of crossbars, the compositive output
vector y

′
needs to be reversely transformed back to y, denoted

as:
y = PT y

′
(6)

which may be realized by the switch circuit during the
hardware design.

A
D

C
A

D
C

A
D

C
.

DAC

…

…

4*4

DAC

…

…

4*4

DAC

…

…

4*4

…
…

…

…
…

…

'*TP y y'y

4*1

4*1

4*1 Switch circuit

x'

' * * TA P A P=

Fig. 1. Diagram of matrix-vector multiplication propagation (y = Ax) with
the matrix reordering method. The matrix A

′
is programmed into a batch

of small-scale crossbars, and the transformed vector x
′

serves as the inputs
of the crossbars. Finally, the switch circuit is resorted to realize the reverse
transformation y = PT y

′
.

More acceleration and deployment background is proposed
in [47]. Considering only diagonally connected block partition,
as shown in Fig. 2, different block schedule schemes come up
with different coverage ratio and total area (cost). Therefore,
the question worth exploring is how to generate the best
mapping scheme (complete coverage) with minimum cost.

IV. PROBLEM FORMULATION

For simplicity, we first consider the formulation of the
mapping scheme with only diagonal blocks. The optimization
objective is to maximize the expectation of the reward function
of the candidate scheme, as Eq. (7):

argmax
s

f(s1, s2, s3, ..., sn)

s.t.
n∑
n=1

sn = N

n ≤ N

(7)

Area=74

Coverage ratio=100%

Area=50

Coverage ratio=93.75%

Area=50

Coverage ratio=81.25%

Fig. 2. The comparison of coverage ratio and blocks area (cost) under different
mapping schemes. To realize the complete mapping (coverage), the mapping
blocks generally cost much more area, as the left scheme shows. But the
middle and rights schemes are infeasible for the deployment, which fails to
reach the complete coverage.

where f is the reward function of one candidate mapping
scheme, and s is the “size” vector of the sequential blocks,
N is the diagonal size. In terms of the solution space, this
problem can be analogous to a typical pure numerical problem,
the integer factorization by addition, that is, given a positive
integer n, the number of the factorization schemes is 2N−1.
So the algorithm complexity of the violent solution is O(2N).
Considering a large numerical value N (e.g. 100, 1000),
solving this problem violently is obviously computationally
impossible. Additionally, it is infeasible to formulate this prob-
lem as the integer programming or the discrete optimization
problem, for the variable number is uncertain.

We endeavor to transform the expression of the solution
space, instead of using the size variables with an uncertain
number, we resort to N−1 variables (0/1) to form the solution
space. This may be detailed interpreted as that there exist N−1
decision points on the diagonal of the adjacency matrix, and
the action space of each point is 0: Start a new block, 1:
Continued to expand the previous block, represented by xi.
Then the optimization problem is transformed to Eq. (8):

argmax
x

f(p(x1, x2, x3, ..., xN));

s.t. xi ∈ {0, 1}
(8)

where p is the parse function that transfers 0-1 decision
variable x to the block size vector s. Although the size of
the solution space is the same with Eq. (7), 2N−1, consistent
with the 0-1 nonlinear integer programming problem, it is
easier to formulate this problem as a programming problem.
Unfortunately, it still can not be solved by optimization
methods, for the definition of the optimization objective is
not a continuous high-dimensional hyperplane, but regarding
the distribution of nonzero elements of the matrix, which is in
a discrete space. Based on the background of the crossbar and
the formulated problem, we put forward the basic principle of
mapping large-scale sparse graphs on memristive crossbars:

• Complete coverage capability, valid for arbitrary non-
zeros distribution, and do not exceed the whole area.

• No overlaps between blocks.
• Adaptable to the deployment and compile system, that

means, coding rules should be simple for the circuit
design.

• Least cost of crossbar area.

4

0
0

1
0

1

0

0

2

3

2

3

S1

S2

S3

Sn xn-1

xn

Fixed to be 1,
start a new block

{0,1}

1

nx

n N

= −n

1

1

n N

S N

x1

x2 x3
x4

x5
x6

1

Fig. 3. Left: Illustration of the optimization problem defined in Eq. (2).
The block size is the optimization variable, but the number of which is not
determined. Right: Illustration of the optimization problem defined in Eq. (3).
Each grid point on the diagonal needs a decision indicating whether to start
a new block or continue the frontier one, the variable number is determined.

V. METHODOLOGY

A. Modeling

Modeling diagonal-blocks. Based on the problem formula-
tion and the background of crossbar-based computation (Fig.
1), optimization variables defined in Eq. (8) are pre-and-post
related, we may treat it as a sequential generation problem and
further leverage the classical LSTM networks as the sampling
controller. For each time-step (t, stands for the decision points
number), the output embedding data models the representation
of each action and serves as the input vector of the next time-
step, and the propagation of LSTM cell calculates as the Eq.
(9)-(14):

ft = σ(Wf [ht−1, xt] + bf) (9)

it = σ(Wi[ht−1, xt] + bi) (10)

gt = tanh(Wg[ht−1, xt] + bg) (11)

ot = σ(Wo[ht−1, xt] + bo) (12)

ct = ft ∗ ct−1 + it ∗ gt (13)

ht = ot ∗ tanh(ct) (14)

where W denotes the weights and b represents the bias. At
time-step t, ft, it, gt, ot represents the forget gate, input gate,
cell state, and output gate, respectively. ht−1 and xt signify the
hidden state at time t−1 and the input at time t, respectively.
The sequential generation technique can be formulated as a
classification problem and accomplished by a fully connected
network that takes the LSTM cell’s output embedding vector
(per time-step) as input.

pt = softmax(W t
fc ∗ outt + bt) (15)

The output indices that represent the index/operations are
sampled according to the multinomial distribution (pt1, ···, ptC),
where C is the classification number of FC. The sampling
details are presented in Algo. 1.

Modeling fill-blocks. As shown in Fig. 2, schemes with
only diagonal-blocks are not enough to provide the feasible
coverage solution, for the joints of two adjacent blocks are
blind areas. We heuristically employ the methods in work [6],

in which “fill the gaps” blocks are distributed on two sides of
the diagonal. The difference is that our solution is dynamic
rather than static. Intuitively, we may model the decision of
the “fill the gaps” blocks the same as the diagonal-blocks.
Thus the optimization formula is presented in Eq. (16), in
which the FCs serve as the binary classifiers to determine
whether to fill the gap with fixed-size or not. Unfortunately,
this strategy will inevitably come up with a waste of resources
(memristors, energy). To address this, we creatively propose
a dynamic-fill scheme to prevent this limitation and further
improve the utilization. In this strategy, the FCs serves as the
multi-classifier, and the output classification value stands for
the fill-block size, in the form of a proportion of the current
diagonal-block. The illustration of two schemes (fixed-size fill
and dynamic size fill) is shown in Fig. 4. Since only when
the diagonal-block decision is “to start a new block”, the
corresponding fill-block needs to be decided, the fill-block
sequence needs to be masked by the diagonal-block sequence.

argmax
x,z

f(p(x, z));

s.t. xi ∈ {0, 1}
zi ∈ {0, 1}

(16)

argmax
x,z

f(p(x, z));

s.t. xi ∈ {0, 1}
zi ∈ {0, 1/m, 2/m, ..., 1}

(17)

0/1
Flag: Fill or not

LSTM

CELL

…
…

h=0/1/2/
…/m

LSTM

CELL

…
…

Fixed-size

fill

h
m

fz Z=

Decision point z

S
z

FC

FC
Dynamic

-size fill Decision point z

sz

T
h

re
sh

o
ld

 lin
e

Fig. 4. Up: Fill the gaps with fixed-size blocks, with the fully-connected
network model the binary classification problem, the output value means to
fill or not, as Eq. (11). Down: Fill the gaps with dynamic size blocks, with the
fully-connected network model the multi-classification problem, as Eq. (12),
the classification output stands for the portion of current fill-block size, e.g.,
indices [0, 1, 2, 3, 4, 5] stands for the ratio [0, 1/5, 2/5, 3/5, 4/5, 1].

Taking matrix-vector multiplication (y = Ax) as an exam-
ple, Fig. 5 showcases the mapping of graph data on crossbar.
Diagonal and fill-blocks are mapped to the allowable small-
scale crossbars. Based on the Kirchhoff’s Current Law, blocks
in the same row are connected, and the corresponding sub-
vector (splitting follows the rule of “block matrix multiplica-
tion”) is the data input of the crossbar, respectively. In this way,
the allowable small-scale crossbars can be effectively utilized.

B. Optimization

The optimization objective is to maximize the expected re-
ward of the sampled schedule scheme, and the reward function
is not differentiable with respect to the controller parameters,

5

…

…

…

…s2

z2

z1

S1 …

…

…

…

… …… ……

………

…

…… …

Matrix Mapping

Circuit connect
Crossbars

S1*S1 z2*z2

S2*S2z1*z1

z2

z1 S1

S2

Matrix A Vector x

Vector input

Fig. 5. Illustration of the adjacency matrix mapping onto the crossbar for
matrix-vector multiplication. The diagonal and fill-blocks are mapped onto the
allowable small-scale crossbars. According to the Kirchhoff’s Current Law,
blocks in the same row are connected, and the corresponding sub-vector serves
as the input of the crossbar, respectively.

so the policy gradient algorithm is used to construct the
gradient estimates of the controller’s weight parameters. The
issues that need to be addressed are as follows:
• In such a huge action space, how to sample the block

scheduling scheme directionally and heuristically.
• Reward the sampled schedule scheme efficiently and

timely, which should be instructive to the training.
• When evaluating, multiple metrics need to be considered,

including the coverage ratio, block area, which could be
contradictory, as well as the trade-off between the two.

TABLE I
THE RL NOTATION AND DEFINITION OF CURRENT PROBLEM.

Notation Definition

Environment (e) Original matrix A
Reward (R) f(p(x, z))
Agent (θ) LSTM and FCs
Action (a) Sequentially sampled decision indices
Action space Fixed-fill: 2N , dynamic-fill: 2N−1 ∗ (m +

1)N−1

Further, the reinforcement procedure is formulated as to opti-
mize the θ to achieve the optimal reward (R) of the candidate
mapping scheme, as Eq.(18):

θ∗ = argmax
θ

J (θ) = argmax
θ

Eπ(a1:T ;θ)(R) (18)

where J (θ) is the optimization objective function, represented
by the expectation of the reward achieved by coverage se-
quence action a1:T , where T is the length of action vector.

∇θJ (θ) =
T∑
t=1

Eπ(a1:T ;θ)[R∇θ log(π(at|a1:t−1; θ))] (19)

the gradient value is approximately calculated by sampling,
that is:

∇θJ (θ) ≈
1

M

M∑
m=1

T∑
t=1

Eπ(a1:T ;θ)[Rm∇θ log(π(at|a1:t−1; θ))]

(20)
the algorithm of the training of the agent is presented in Algo.
2. As for the reward Rm, it involves two objectives:

• Coverage ratio, which relates to the performance of the
computation on the crossbar.

• Area cost, which relates to memristor and energy con-
sumption.

Distinctly, there exists the contradiction between the two,
that is we attempt to maximize the coverage ratio (or even
complete coverage) and minimize the area cost of crossbars.
To achieve this, we leverage the single-policy MORL [48]–
[50] which resort to the scalarization function to transform
the multi-objective problem into a standard single-objective
one. The scalarization function f projects an objective vector
v to a scalar one: vw = f(v,w) where w is a weight vector
parameterizing f . We employ the simple way of weight-sum
as the scalarization function, as Eq. (21):

Rm = a ∗ Coverage(x, z) + (1− a) ∗Area(x, z) (21)

where a is the harmonic coefficient. In general, the application
scenario requires complete coverage (coverage ratio is 1), con-
sequently, what’s serious is the crossbar’s consumption (area).
In such a large action space, an extremely large proportion of
the candidate schemes is capable to reach complete coverage,
but with different area ratios. So if we set a to be 1 or close
to 1 from the beginning, the agent would tend to sample the
complete coverage schemes with high probability, which even
with different costs, the reward keeps consistent, thus it makes
the gradient of the controller disappear. Consequently, we must
have the weighted-sum coefficient a serves as the hyperpa-
rameter that is empirically tuned. In addition, the balance
of exploration and exploitation is achieved by probabilistic
sampling.

C. Overall algorithm

Our whole structure of the method is presented in Algo.3.
The overall diagram of our modelling and optimization method
is shown in Fig. 6.

LSTM LSTM

0 0

LSTM

0

……

FC FC FC

Output OutputOutput

Agent

Action

Gradient
estimation by
REINFORCE

Reward:

x1 z1 x2 z2 x3

LSTM

FC

Output

LSTM

0

FC

Output

0
z3 xn-1 xn

1 1

Parse Diagonal block size (s): [3,2,2,2,3]

Fill flag (z): [1,1,0,1]
x: [0,0,1,0,1,0,1,0,1,0,0]
z: [0,0,1,0,1,0,0,0,1,0,0]

Mask

0
S1

S3
S2

S5

S4

Envz2

z2 z3

z3

z4

z4

f(p(x,z))

Fig. 6. LSTM sequentially samples the action vectors x, z, which represent
the mapping scheme, followed by the mapping scheme parsing and the
evaluation according to non-zero elements distribution in the original matrix.
After evaluation, the reward is exploited to constitute the gradient estimation
value of the agent (LSTM + FCs).

D. Relation and comparisons with other works

In [7], a generalized reordering method to reduce the
bandwidth of the matrix [8] is proposed, which can handle

6

Algorithm 1: Agent sampling.
Input: Null
Output: diagonal actions, fill actions, log prob

1 inputs, hidden = random initialize;
2 for i← 0→ action len− 1 do
3 output, hidden ← LSTM(inputs, hidden);
4 logits ← the ith diagonal fcs output;
5 softmax logits ← softmax(logits);
6 d action ← multinomial sampling by

softmax logits ;cur log prob ←
-nll loss(log(softmax logits), d action);

7 log prob = log prob+ curr log prob;
8 diagonal actions append d action;
9 inputs← output;

10 /*"Fill" masked by "Diagonal", 0:
Start a new block*/;

11 if d action == 0 then
12 output, hidden ← LSTM(inputs, hidden);
13 logits ← the ith fill fcs output;
14 softmax logits ← softmax(logits);
15 d action ← multinomial sampling by

softmax logits ; cur log prob ←
-nll loss(log(softmax logits), f action);

16 fill actions append f action;
17 log prob← log prob+ curr log prob;
18 inputs← output;
19 end
20 end

Algorithm 2: Optimizing the sampling agent (REIN-
FORCE with baseline).

Input: log prob, Reward
Output: Null

1 baseline← decay ∗ baseline+ (1− decay) ∗ reward;
2 adv ← reward− baseline;
3 loss ← −log prob ∗ adv;
4 loss.backward() /*Gradients (loss is

differentiable w.r.t. the parameter
weights of the LSTM and the FCs)
calculated by autograd*/;

5 Gradients applied /*Gradient descend by the
optimizer.*/;

any asymmetrical rectangle matrix, compared with the original
Cuthill-McKee reordering algorithm that can only handle the
symmetrical squares. However, this work does not address
the mapping scheme and its optimization. Our work does not
focus on the innovation and generalization of the reordering
algorithm, but rather on the automatically generating an ef-
ficient and reasonable deployment scheme after reordering
a large-scale sparse matrix. In GraphR [1], the adjacency
matrix of a graph is partitioned into four sub-graphs with the
consideration of the sparsity, the method in GraphSAR [2]
remains the same pattern that even is progressively partitioned.
Their partition scheme is fixed, whereas our work makes

Algorithm 3: AutoGMap.
Input: A(Matrix), agent config, a
Output: digonal blks, fill blks

1 Agent ← create agent(agent config) for
epoch← 0→ num epoch− 1 do

2 diagonal action, fill action, log prob ←
Agent.sample();

3 diagonal blks ← parse d(diagonal action);
4 fill blks ← parse f(fill action);
5 C ratio ← C cal(diagonal action, fill action);
6 A ratio ← A cal(diagonal action, fill action);
7 Reward← a ∗ C ratio+ (1− a) ∗A ratio;
8 train agent(log prob, Reward);
9 end

the scheme flexible and scalable by intelligent generating. In
work [6], to improve the training efficiency of sparse graph
neural networks on TPU device (sparse hardware), a batch
of diagonal-blocks and two additional batches of blocks to
“fill the gap”, in which the size of the block keep consistent
and the coverage schemes are fixed without considering of
the distribution of the non-zero elements. Our overall mapping
framework is similar to [6] (a batch of blocks arranged along
with the diagonal, and two batches fill the gaps), what’s the
difference is that our method is dynamic and sparsity-aware,
with the consideration of the adaptability to the compilation
and deployment system. Overall, compared with these related
works, we adopt an intelligent generating method to achieve
dynamic sparsity-aware mapping, which compares favourably
with these previous works.

VI. EXPERIMENT

Environment. We conduct our experiments using PyTorch
1.0 framework on Intel CPU. In terms of the policy gradient
training in reinforcement learning, our realization relies on
PyTorch’s Autograd mechanism to backwardly update the
parameter weights (policy).

Dataset. We first resort to small-scale graph data, an adja-
cency matrix (22 × 22) that numbered 5828 in a chemical
molecular dataset QM7 [51], [52]. In terms of the large-
scale dataset, we experiment on two large-scale symmetric
matrices, qh882 (882×882) and qh1484 (1484×1484). In our
experiments, the matrices are reordered to lower-bandwidth
symmetric matrices by Cuthill-McKee reordering algorithm as
the pre-processing.

0 5 10 15 20

qm7_5828

0

5

10

15

20

0 200 400 600 800

qh882

0

100

200

300

400

500

600

700

800

0 500 1000

qh1484

0

200

400

600

800

1000

1200

1400

Fig. 7. Visualization of the datasets: QM7-5828 (22×22), qh882 (882×882),
and qh1484 (1484× 1484).

7

Metrics. C ratio, represents the coverage ratio of the non-
zero elements of the scheme, defined as:

C ratio =
Nonzero countmapped blocks
Nonzero countoriginal

(22)

it is scaled to be [0, 1], and we attempt to reach 1 in our
experiment, which means all non-zero elements must be
mapped. A ratio, the area ratio of the mapping blocks to
the original matrix, defined as:

A ratio =
Areamapped blocks

Areaoriginal
(23)

it also stays in [0, 1], the lower the better of the candidate
schemes. Sparsity, means the utilization of the mapped
crossbar of the scheme, may be viewed as the comparison
metric with the original sparsity, defined as:

Sparsity =
Nonzero countmapped blocks

Areamapped blocks
(24)

Coverage ratio:1.0

Area ratio:0.455

Coverage ratio:1.0

Area ratio:0.471

Coverage ratio:1.0

Area ratio:0.558

Coverage ratio:1.0

Area ratio:0.430

Fig. 8. Visualization of four representative mapping schemes of QM7-5828,
which are outstanding solutions (bold) in the Table.II. For a 22× 22 matrix,
it is burdensome and challenging to manually observe and output an optimal
full-coverage scheme, but our agent can easily generate reasonable schemes
with minimal area cost.

Experimental results on QM7-5828 are presented in Table.II,
which showcases the comparison and ablation study. The
comparison includes the fixed-size diagonal-block partition
(Vanilla), fixed-size diagonal-block with additional fill-blocks
(Vanilla with fill), our proposed method “LSTM + RL” that
only target the diagonal scheduling, while “LSTM + RL +
Fill” additionally utilize two series of blocks to “fill the gap”.
Based on the knowledge fusion among decision points, we
study the effect of BiLSTM. Experiments show that, compared
with LSTM, BiLSTM achieves no significant improvements.
This also happens when we significantly increase the layer
number of LSTM and the hidden size. In Table.III, we present
the computational complexity comparison of different methods

Coverage

Reward

Area

Fig. 9. The optimization objective curves of the coverage ratio (as Eq.(22)),
area ratio (as Eq.(23)), and reward of reinforcement learning (as Eq.(21))
during the training on QM7-5828 graph data. After 5K epochs, the coverage
ratio converges to 1 (with small fluctuation), and the area ratio converges to
a specific smaller value compared with the early stage of the training.

Coverage ratio:0.998

Area ratio:0.196

Coverage ratio:0.998

Area ratio:0.204

Coverage ratio:0.995

Area ratio:0.2

Coverage ratio:1.0

Area ratio:0.225

Fig. 10. Visualization of four representative mapping schemes of qh882 in
Table.IV.

Coverage
Reward

Area

Fig. 11. The optimization objective curves of the coverage ratio (as Eq.(22)),
area ratio (as Eq.(23)), and reward of reinforcement learning (as Eq.(21)) of
the training on qh882 dataset. The optimization effect is consistent with that
of QM7-5828 in Fig.9.

in Table.II. The training of the LSTM (BPTT algorithm)
costs most of the computational consumption, thus we omit
the complexity of back-propagation of FCs. Visualizations
of several typical outstanding mapping schemes (complete

8

TABLE II
COMPARISON AND ABLATION STUDY RESULTS ON SMALL-SCALE GRAPH QM7-5828.

Methods Block
size

Grid
size

Fill size/
grades num

Reward ratio Schemes Coverage
ratio

Area
ratio Sparsity†a 1-a Diagonal-blocks size Fill-blocks size

Vanilla
4

/ / / /
[4, 4, 4, 4, 4,2]

/
0.5 0.174 0.620

6 [6, 6, 6, 4] 0.531 0.256 0.726
8 [8, 8, 6] 0.813 0.339 0.683

Vanilla+Fill 4 / 4 / / [4, 4, 4, 4,4,2] [1, 1, 1, 1, 1, 1] 0.938 0.445 0.721
6 6 [6, 6, 6, 4] [1, 1, 1, 1] 1.0 0.62 0.787

LSTM+RL / 2 / 0.6 0.4 [8, 2, 12] / 0.875 0.438 0.735
0.8 0.2 [8, 14] 0.938 0.537 0.769

LSTM+RL+Fill / 2

2 0.8 0.2 [8, 12, 2] [0, 1] 0.938 0.455 0.727
4 0.8 0.2 [2, 2, 4, 2, 6, 4, 2] [0, 1, 0, 1, 1, 1] 0.969 0.388 0.670
4 0.9 0.1 [4, 12, 4, 2] [1, 1, 1] 1.0 0.521 0.746
6 0.9 0.1 [8, 2, 10, 2] [1, 1, 1] 1.0 0.537 0.754
6 0.8 0.2 [4, 4, 2, 2, 8, 2] [1, 0, 1, 1, 1] 1.0 0.455 0.709
6 0.7 0.3 [4, 4, 2, 2, 6, 2, 2] [1, 0, 1, 1, 1, 1] 0.969 0.438 0.708

BiLSTM+RL+Fill / 2

2 0.8 0.2 [8, 12, 2] [0, 1] 0.938 0.455 0.727
4 0.8 0.2 [2, 2, 4, 2, 6, 4, 2] [0, 1, 0, 1, 1, 1] 0.969 0.388 0.670
4 0.9 0.1 [2, 2, 12, 4, 2] [0, 1, 1, 1] 1.0 0.504 0.738
6 0.9 0.1 [4, 4, 2, 2, 8, 2] [1, 1, 1, 1, 1] 1.0 0.488 0.729
6 0.8 0.2 [8, 2, 2, 8, 2] [0, 1, 1, 1] 1.0 0.471 0.719
6 0.7 0.3 [4, 4, 2, 2, 8, 2] [1, 0, 1, 1, 0] 0.938 0.455 0.727

LSTM+RL+
Dynamic-fill / 2

grades: 4 0.9 0.1 [2, 6, 2, 2, 8, 2] [3, 1, 2, 2, 3] 1.0 0.558 0.763
grades: 4 0.8 0.2 [2, 2, 14, 4] [0, 2, 2] 1.0 0.558 0.763
grades: 4 0.75 0.25 [2, 2, 4, 2, 2, 6, 4] [1, 3, 0, 2, 3, 2] 1.0 0.43 0.692
grades: 4 0.7 0.3 [2, 6, 2, 8, 4] [0, 1, 2, 2] 0.938 0.442 0.720
grades: 6 0.8 0.2 [8, 2, 2, 10] [5, 2, 3] 1.0 0.521 0.746
grades: 6 0.75 0.25 [2, 2, 4, 2, 8, 4] [4, 5, 0, 3, 4] 0.969 0.397 0.677

† Sparsity of original matrix: 0.868.

TABLE III
COMPLEXITY COMPARISON OF DIFFERENT METHODS.

Methods† Grid
size T I H K Complexity

LSTM+RL 2 12 1 10 1 O(T(4IH+4Hˆ2
+3H+HK))

LSTM+RL
+Fill 2 36

1 10 1
O(T(4IH+4Hˆ2
+3H+HK))

1 10 1
1 10 1
1 10 1

BiLSTM+RL
+Fill 2 36

1 10 1
O(2T(4IH+4Hˆ2
+3H+HK))

1 10 1
1 10 1
1 10 1

LSTM+RL+
Dynamic-fill 2 36

1 10 1 O(T(4IH+4Hˆ2
+3H+HK))1 10 1

1 10 1
†: Taking QM7-5828 as example, T is the time step number of LSTM, I is

the input size, H is the hidden size, K is the cell number.

coverage scheme with different area ratios) are shown in Fig.
8. These four results are the promising solutions (in bold) in
Table. II in order. The objectives (reward) optimizing curves
of experiments on QM7-5828 are shown in Fig. 9. With the
continuous rise of the coverage ratio, the area ratio gradually
converges to a small value after the big fluctuation in the early
stage. The area ratio converges to an ideal ratio, but not at the
expense of the coverage ratio, which can steadily converge to
1 after 40k epochs of training under an Intel CPU (without
GPU). In the later stage of our experiment, the controller is
basically convergent, and the slight sampling fluctuation of
the objectives is normal, because our model is a probabilistic
sampling model, even if the LSTM controller parameters are

Coverage ratio:0.992

Area ratio:0.148

Coverage ratio:0.999

Area ratio:0.185

Coverage ratio:0.993

Area ratio:0.173

Coverage ratio:1.0

Area ratio:0.171

Fig. 12. The visualization of four representative mapping schemes on the
qh1484 graph dataset in Table.IV.

fully converged, the sampling is still probabilistic.
Further experiments based on large-scale graph data/matrix

(qh882, qh1484) are shown in Table. IV, in which we directly
adopt “LSTM + RL + Dynamic” strategy. To reduce the scale
of the problem, we partition the original matrix into grids.
Considering the grid size k× k, thus the grid number is N =
D/k, where D is the size of the matrix. Empirically, we set
the grid size of qh882 and qh1484 to be 32, and the fill grades

9

TABLE IV
EXPERIMENTAL COMPARISON RESULTS ON LARGE-SCALE MATRIX DATASET: QH882 AND QH1484.

Dataset Grid
size

Fill
grades

Reward ratio Solutions Coverage
ratio

Area
ratio Sparsity†a 1-a Diagonal-blocks size Fill-blocks size

qh882

32 4 0.7 0.3 [32, 32, 32, 192, 96, 96, 64, 64, 96,
96, 64, 18

[2, 3, 1, 2, 2, 2, 2,
2, 2, 2, 2] 0.998 0.196 0.978

32 4 0.8 0.2 [32, 128, 96, 128, 96, 64, 64, 96, 96,
32, 50]

[2, 2, 2, 2, 2, 2, 2,
2, 3, 2] 0.998 0.204 0.979

32 6 0.7 0.3 [32, 32, 160, 160, 128, 96, 96, 128,
32, 18]

[4, 4, 2, 3, 3, 3, 2,
5, 3] 0.995 0.2 0.979

32 6 0.8 0.2 [32, 192, 160, 96, 160, 96, 64, 82] [2, 3, 4, 2, 3, 4, 3] 1.0 0.225 0.955

qh1484

32 4 0.7 0.3 [96, 32, 32, 288, 192, 160, 64, 32, 64,
64, 32, 64, 32, 128, 32, 32, 64, 32, 44]

[1, 2, 1, 2, 2, 3, 3, 2, 2,
3,2, 3, 1, 2, 3, 2, 2, 3] 0.992 0.148 0.981

32 4 0.8 0.2 [96, 64, 288, 192, 128, 96, 128, 32,
96, 32, 128, 64, 32, 96, 12]

[2, 2, 2, 2, 3, 2, 3, 2,
3, 1, 3, 3, 2, 2] 0.999 0.185 0.985

32 6 0.7 0.3 [128, 224, 288, 224, 160, 64, 64, 160,
64, 32, 64, 12]

[5, 2, 2, 3, 3, 2, 2, 4, 0,
2, 4] 0.993 0.173 0.984

32 6 0.8 0.2 [32, 96, 256, 288, 128, 96, 64, 64,
128, 160, 64, 32, 64, 12]

[4, 5, 2, 4, 4, 4, 5, 3,
2, 2, 3, 3, 3] 1.0 0.171 0.984

† Sparsity of qh882 is 0.995, sparsity of qh1484 is 0.997.

Coverage

Reward

Area

Fig. 13. The optimization objective curves of the coverage ratio (as Eq.(22)),
area ratio (as Eq.(23)), and reward (as Eq.(21)) of the training on qh1484
graph data. The effect is consistent with that of qh882 in Fig.11.

number to be 4, the action space is 2b882/32c × 4b882/32c =
2.4× 1024, and 2b1484/32c × 4b1484/32c = 3.4× 1041, respec-
tively, following the calculation rule of action space in Table.
I. As shown in Table. IV, fill-block size grades number of 6
can achieve better results (qh882: coverage ratio 1 with area
ratio 0.225, qh1484: Coverage ratio 1 with area ratio 0.171)
than that of 4. That means more fine-grained fill size grades
can achieve better results, this is also expected because the
utilization of the mapped blocks is high (with lower sparsity)
in this way. Visualizations of qh882 mapping schemes are
shown in Fig. 10, and the objectives optimizing curves of the
promising configuration (bold in Table.IV) are shown in Fig.
11. Similarly, the visualization of qh1484 mapping scheme is
shown in Fig. 12, and the corresponding objectives optimizing
curves are shown in Fig. 13.

In real-world scenarios, the grid size is set subject to the
allowable crossbar’s size. The complexity of the peripheral
circuit also depends on the grid size and the granularity of
the dynamic-fill grade number, which ultimately jointly affect
the area consumption of the final complete coverage solution.
In principle, a smaller grid size and much more grades of the
dynamic-fill-blocks will result in better mapping performance
(complete coverage solutions with less area cost). Unavoid-

ably, this also increases the action space of reinforcement
learning, namely, the difficulty of agent optimization. These
hyper-parameters can be tuned according to actual deployment
scenarios, which demonstrates that our framework is flexible
and scalable.

VII. CONCLUSION

Some recent works have made attempts at the efficient
computation of sparse graphs, e.g., mapping the large-scale
graph data by block coverage around the diagonal after matrix
reordering. But their mapping methods are fixed or static,
instead of proposing an effective mapping schedule scheme,
which should be feasible, scalable, and flexible. Based on the
background of PIM crossbar computing and the characteristics
of block coverage schedule problems, we put forward the prin-
ciples of the mapping framework as the criterion of subsequent
research. We creatively propose to formulate this problem
into a sequential decision-making problem whose solution
space is equal to the 0-1 integer programming problem, and
creatively propose the dynamic-fill method to “fill the gaps”,
which well meets our proposed basic principles of the mapping
framework. We model the sequential decision-making problem
using a generation agent consisting of LSTM and FCs, and
leverage the reinforcement learning algorithm (REINFORCE)
to optimize it. Finally, the comparison and ablation experi-
ments on a small dataset and two large matrix data show that
flexible and scalable mapping schemes can be generated with
limited training epochs and time cost, and are suitable for
the deployment and compilation systems. This method may
also be extended to other PIM architectures, not limited to
the memristive device-based platforms. Our proposed basic
principles of mapping large-scale sparse graphs on memristive
crossbars are worthy to be spread to the research community.

From our perspective, the limitation lies in that we only ex-
ploit the fundamental sequence-to-sequence model. Although
we have tried to increase LSTM’s model scale (layers and
hidden size), we did not carry out in-depth discussions and
research on the knowledge fusion model, which may reach bet-

10

ter decision-making performance. Similarly, the fundamental
policy gradient algorithm is utilized. In addition, our method
is based on matrix reordering, by which to reduce the matrix
bandwidth. The matrix needs to be a symmetric square matrix,
such as a graph adjacency matrix. Therefore, there exist some
limitations in the generalization of the scheme. Currently, it
is not suitable for popular image classification models, e.g.,
CNNs or Transformers. Future, we plan to study the fusion of
the automatic mapping scheme and the sparse storage (CSC,
CSR, COO), thus further accelerating the pipeline of the graph
processing on memristive crossbars of PIM/CIM platforms.
Further, our proposed sparsity-aware mapping learning algo-
rithm may be further extended with the combination of sparsity
[53] and fault-tolerant training, or some device-circuit non-
idealities of memristive crossbars, e.g., variation and defect
[54]–[56].

ACKNOWLEDGMENTS

This work is supported in part by the Zhejiang provin-
cial “Ten Thousand Talents Program” (2021R52007), the
Science and Technology Innovation 2030-Major Project
(2021ZD0114300), the Joint Research Project of Zhejiang Lab
(K2022DA0AM01), and the National Key R&D Program of
China (2022YFB4500405).

REFERENCES

[1] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating
graph processing using reram,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2018, pp.
531–543.

[2] G. Dai, T. Huang, Y. Wang, H. Yang, and J. Wawrzynek, “Graphsar: a
sparsity-aware processing-in-memory architecture for large-scale graph
processing on rerams,” in Proceedings of the 24th Asia and South Pacific
Design Automation Conference, 2019, pp. 120–126.

[3] Z. Song, X. Yang, Z. Xu, and I. King, “Graph-based semi-supervised
learning: A comprehensive review,” IEEE Transactions on Neural Net-
works and Learning Systems, 2022.

[4] W. Zhao, S. Tan, Z. Guan, B. Zhang, M. Gong, Z. Cao, and Q. Wang,
“Learning to map social network users by unified manifold alignment
on hypergraph,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 12, pp. 5834–5846, 2018.

[5] G. Huang, G. Dai, Y. Wang, and H. Yang, “Ge-spmm: General-purpose
sparse matrix-matrix multiplication on gpus for graph neural networks,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2020, pp. 1–12.

[6] M. Balog, B. van Merriënboer, S. Moitra, Y. Li, and D. Tarlow, “Fast
training of sparse graph neural networks on dense hardware,” arXiv
preprint arXiv:1906.11786, 2019.

[7] J. Cui and Q. Qiu, “Towards memristor based accelerator for sparse
matrix vector multiplication,” in 2016 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 2016, pp. 121–124.

[8] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in Proceedings of the 1969 24th National Conference, New
York, NY, USA, 1969, p. 157–172.

[9] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“Gpus and the future of parallel computing,” IEEE micro, vol. 31, no. 5,
pp. 7–17, 2011.

[10] S. Ghapani, W. Ren, F. Chen, and Y. Song, “Distributed average tracking
for double-integrator multi-agent systems with reduced requirement on
velocity measurements,” Automatica, vol. 81, pp. 1–7, 2017.

[11] W. Ao, Y. Song, and C. Wen, “Distributed secure state estimation and
control for cpss under sensor attacks,” IEEE transactions on cybernetics,
vol. 50, no. 1, pp. 259–269, 2018.

[12] L. Zhang, L. He, and Y. Song, “New results on stability analysis of
delayed systems derived from extended wirtinger’s integral inequality,”
Neurocomputing, vol. 283, pp. 98–106, 2018.

[13] K. Zhao, Y. Song, C. P. Chen, and L. Chen, “Adaptive asymptotic
tracking with global performance for nonlinear systems with unknown
control directions,” IEEE Transactions on Automatic Control, vol. 67,
no. 3, pp. 1566–1573, 2021.

[14] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture,
2015, pp. 105–117.

[15] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “Top-pim: Throughput-oriented programmable process-
ing in memory,” in Proceedings of the 23rd international symposium on
High-performance parallel and distributed computing, 2014, pp. 85–98.

[16] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 27–39, 2016.

[17] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and X. Qian,
“Graphq: Scalable pim-based graph processing,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 712–725.

[18] J. Lin, Z. Zhu, Y. Wang, and Y. Xie, “Learning the sparsity for
reram: Mapping and pruning sparse neural network for reram based
accelerator,” in Proceedings of the 24th Asia and South Pacific Design
Automation Conference, 2019, pp. 639–644.

[19] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on circuit theory, vol. 18, no. 5, pp. 507–519, 1971.

[20] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” nature, vol. 453, no. 7191, pp. 80–83, 2008.

[21] X. Hu, G. Feng, S. Duan, and L. Liu, “A memristive multilayer
cellular neural network with applications to image processing,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 28, no. 8,
pp. 1889–1901, 2016.

[22] O. Krestinskaya, A. P. James, and L. O. Chua, “Neuromemristive circuits
for edge computing: A review,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 31, no. 1, pp. 4–23, 2019.

[23] S. Wen, R. Hu, Y. Yang, T. Huang, Z. Zeng, and Y.-D. Song, “Memristor-
based echo state network with online least mean square,” IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 9, pp.
1787–1796, 2018.

[24] C. Yakopcic, M. Z. Alom, and T. M. Taha, “Extremely parallel memristor
crossbar architecture for convolutional neural network implementation,”
in 2017 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2017, pp. 1696–1703.

[25] X. Yang, B. Yan, H. Li, and Y. Chen, “Retransformer: Reram-based
processing-in-memory architecture for transformer acceleration,” in
Proceedings of the 39th International Conference on Computer-Aided
Design, 2020, pp. 1–9.

[26] Z. Yan, J. Chen, R. Hu, T. Huang, Y. Chen, and S. Wen, “Training
memristor-based multilayer neuromorphic networks with sgd, momen-
tum and adaptive learning rates,” Neural Networks, vol. 128, pp. 142–
149, 2020.

[27] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. C. Adam, K. K. Likharev,
and D. B. Strukov, “Training and operation of an integrated neuromor-
phic network based on metal-oxide memristors,” Nature, vol. 521, no.
7550, pp. 61–64, 2015.

[28] I. Kataeva, F. Merrikh-Bayat, E. Zamanidoost, and D. Strukov, “Efficient
training algorithms for neural networks based on memristive crossbar
circuits,” in 2015 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2015, pp. 1–8.

[29] B. Li, Y. Wang, Y. Wang, Y. Chen, and H. Yang, “Training itself: Mixed-
signal training acceleration for memristor-based neural network,” in 2014
19th Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2014, pp. 361–366.

[30] M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang,
“Time: A training-in-memory architecture for memristor-based deep
neural networks,” in 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2017, pp. 1–6.

[31] S. Duan, X. Hu, Z. Dong, L. Wang, and P. Mazumder, “Memristor-based
cellular nonlinear/neural network: design, analysis, and applications,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 26,
no. 6, pp. 1202–1213, 2014.

[32] J. Chen, Y. Wu, Y. Yang, S. Wen, K. Shi, A. Bermak, and T. Huang,
“An efficient memristor-based circuit implementation of squeeze-and-
excitation fully convolutional neural networks,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 33, no. 4, pp. 1779–1790,
2021.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

11

[34] H. Veluri, U. Chand, Y. Li, B. Tang, and A. V.-Y. Thean, “A low-
power dnn accelerator enabled by a novel staircase rram array,” IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[35] B. Lyu, S. Wen, K. Shi, and T. Huang, “Multiobjective reinforcement
learning-based neural architecture search for efficient portrait parsing,”
IEEE Transactions on Cybernetics, 2021.

[36] B. Lyu, H. Yuan, L. Lu, and Y. Zhang, “Resource-constrained neural
architecture search on edge devices,” IEEE Transactions on Network
Science and Engineering, 2021.

[37] S. Wen, H. Wei, Z. Yan, Z. Guo, Y. Yang, T. Huang, and Y. Chen,
“Memristor-based design of sparse compact convolutional neural net-
work,” IEEE Transactions on Network Science and Engineering, vol. 7,
no. 3, pp. 1431–1440, 2019.

[38] S. Wen, J. Chen, Y. Wu, Z. Yan, Y. Cao, Y. Yang, and T. Huang,
“Ckfo: Convolution kernel first operated algorithm with applications in
memristor-based convolutional neural network,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2020.

[39] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[43] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[44] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017, pp. 1025–
1035.

[45] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[46] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, J. J. Yang, and R. S. Williams, “Dot-product engine
for neuromorphic computing: Programming 1t1m crossbar to accelerate
matrix-vector multiplication,” in Proceedings of the 53rd Annual Design
Automation Conference, 2016.

[47] B. Lyu, M. Hamdi, Y. Yang, Y. Cao, Z. Yan, K. Li, S. Wen, and
T. Huang, “Efficient spectral graph convolutional network deployment
on memristive crossbars,” IEEE Transactions on Emerging Topics in
Computational Intelligence, 2022.

[48] Z. Gábor, Z. Kalmár, and C. Szepesvári, “Multi-criteria reinforcement
learning,” in Proceedings of the 15th International Conference on
Machine Learning, 1998, pp. 197–205.

[49] S. Mannor and N. Shimkin, “A geometric approach to multi-criterion
reinforcement learning,” Journal of Machine Learning Research, pp.
325–360, 2004.

[50] V. K. Moffaert, M. M. Drugan, and A. Nowé, “Scalarized multi-objective
reinforcement learning: Novel design techniques,” ADPRL, pp. 191–199,
2013.

[51] L. C. Blum and J.-L. Reymond, “970 million druglike small molecules
for virtual screening in the chemical universe database gdb-13,” Journal
of the American Chemical Society, vol. 131, no. 25, pp. 8732–8733,
2009.

[52] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. Von Lilienfeld, “Fast
and accurate modeling of molecular atomization energies with machine
learning,” Physical review letters, vol. 108, no. 5, p. 058301, 2012.

[53] C. Song, B. Liu, W. Wen, H. Li, and Y. Chen, “A quantization-aware
regularized learning method in multilevel memristor-based neuromor-
phic computing system,” in IEEE 6th Non-Volatile Memory Systems and
Applications Symposium, NVMSA 2017, Hsinchu, Taiwan, August 16-18,
2017. IEEE, 2017, pp. 1–6.

[54] B. Liu, H. Li, Y. Chen, X. Li, Q. Wu, and T. Huang, “Vortex: variation-
aware training for memristor x-bar,” in Proceedings of the 52nd Annual
Design Automation Conference, San Francisco, CA, USA, June 7-11,
2015. ACM, 2015, pp. 15:1–15:6.

[55] S. Jin, S. Pei, and Y. Wang, “A variation tolerant scheme for memristor
crossbar based neural network designs via two-phase weight mapping
and memristor programming,” Future Gener. Comput. Syst., vol. 106,
pp. 270–276, 2020.

[56] D. Gao, G. L. Zhang, X. Yin, B. Li, U. Schlichtmann, and C. Zhuo, “Re-
liable memristor-based neuromorphic design using variation- and defect-
aware training,” in IEEE/ACM International Conference On Computer
Aided Design, ICCAD 2021, Munich, Germany, November 1-4, 2021.
IEEE, 2021, pp. 1–9.

	I Introduction
	II Related work
	III Preliminary
	IV Problem Formulation
	V Methodology
	V-A Modeling
	V-B Optimization
	V-C Overall algorithm
	V-D Relation and comparisons with other works

	VI Experiment
	VII Conclusion
	References

