
In Proceedings of the 2001 I EEE Symposia on Human-Centric Computing Languages and Environments (© IEEE), pp. 150-157.

AutoHAN: An Architecture for Programming the Home

Alan F. Blackwell and Rob Hague
Computer Laboratory

University of Cambridge
{Alan.Blackwell, Rob.Hague}@cl.cam.ac.uk

Abstract

AutoHAN is a networking and software architecture
that enables user-programmable specification of the
interaction between appliances in a domestic house.
This concept represents an immense challenge for
End-User Programming. The characteristics of the
potential user population are far broader than any
other population of end-user programmers. It is
therefore essential to approach the design of the
programming environment from a well-founded
perspective of cognitive ergonomics and user
modelling. We have created a novel programming
language, Media Cubes, which is aimed at the same
user population as existing domestic remote controls.
Moreover, we have applied a cognitive model of
programming behaviour in order to specify a language
that gives the advantages of direct manipulation as
well as the power of more conventional languages.

1. Introduction

The private home is likely to become the most
challenging frontier for end user programming
techniques over the next 10 years or so. We justify this
claim on the basis of three trends: changes in our
homes, changes in the demands of programming, and
resulting changes in the population of end user
programmers. First, our homes are changing rapidly
with the introduction of microprocessor controls into
many domestic appliances. Microprocessors are
increasingly replacing electromechanical technologies
even in simple appliances (toasters, boiler controls), as
well as enabling new generations of complex digital
home technologies (CD players, satellite TV, digital
answering machines). The economics of appliance
manufacture suggest that both these trends will only
continue.

Secondly, new programming demands are already
being introduced in the home as a result of domestic
digital automation. Successful office software products
are notoriously plagued by “feature-creep”. This arises
because software distribution costs are independent of
the number of features, so manufacturers continually
add features to maintain user interest. As the cost of
memory in embedded microprocessors falls, feature
creep also effects domestic appliances – it costs nothing
to ship a product with additional software features, so

manufacturers add them. But additional actuators and
sensors are expensive, so the features are most likely to
be abstract functions – personalisation, macro
commands, and other programming functions.

We argue below that this type of function is not only
called “programming” in casual terminology, but will
come to resemble more conventional types of end-user
programming, especially in its cognitive consequences
and resulting usability challenges. This leads to the
third trend in the challenging frontier of end user
programming for the private home – the domestic
context addresses the widest possible range of previous
programming experience and cognitive skill. Most
previous end user programming research has focused
on the sort of programming tasks that might be
attempted by office workers or other information
professionals. A few research projects address the
demands of programming in educational contexts,
where a wider range of prior cognitive skills might be
encountered. But the domestic context encompasses the
whole population of Western countries, including
people who may never have worked in an office or
completed their schooling. We contend that all normal
adults, whatever their level of schooling or computer
experience, are competent to use a remote control. We
have therefore set ourselves the challenging task of
producing a programming language that is accessible
to users whose skill with abstract tasks may not extend
any further than the operation of a remote control.

1.1. Home Networking

The programming demands introduced by the
abstract functions in any single domestic appliance do
not yet (fortunately) require a full featured
programming language. Programming a VCR,
although relatively simple in algorithmic terms, is
proverbially considered to be the most challenging
programming task in the home (many computer
scientists would not consider this to be true
“programming”, despite the popular use of the term –
we address this below). Nevertheless, some new
categories of domestic appliance are rapidly developing
more recognizable features of general purpose
programming functionality – the ability to record
macro-like sequences of front panel operations, for
example, or the creation of directories and indexed data
structures on new digital audio media.



In Proceedings of the 2001 I EEE Symposia on Human-Centric Computing Languages and Environments (© IEEE), pp. 150-157.

But the potential complexity of domestic
programming is massively increased where digital
devices interact with each other – especially if the
devices are manufactured by different companies, so
that it is the user who has to specify their interaction.
This is not yet a highly significant factor in domestic
electronics. But home networking technologies are
rapidly being deployed, if not in the average person’s
house, then at least in many research environments.
Large companies are experimenting with home
networking. Nascent standardisation bodies are
competing to define networking and communications
protocols (e.g. [1,2]) by which appliances can
communicate with control devices and with each other.

As noted, “programming” a VCR may not be not
real programming in the eyes of most computer
scientists. But if you wanted to instruct your VCR to
start recording from the front door security camera for
a period of 5 minutes after the time that your security
system records someone pressing the front doorbell,
this seems a lot more like real programming. So the
significance of home networking technology is that
programming in your house may suddenly become a
great deal more complicated. If your VCR can talk to
your home security system over the home network, how
will it know what to say? Standardisation efforts are
partly focused on trying to define “sensible” standard
functionality for all possible combinations of
appliances. But we believe such an approach is doomed
to failure. The combinatorial explosion of different
device interactions, and the notorious difficulty of
defining software standards for programming at the
level of domain semantics (compare the “business
object model” of the 1990s) mean that users of
networked domestic appliances are very likely to find
themselves defining functionality through some level of
home programming.

1.2. The AutoHAN project

These issues are the main concern of the AutoHAN
project. A major aim of AutoHAN is to provide
programming facilities that will be accessible to a
domestic end-user whose previous experience of
specifying digital control functions may be limited to
the operation of a remote control. Our aim has been not
simply to speculate about the theoretical characteristics
of such a system, or even to specify the way it would
operate and the programming language it would use,
but actually to build an operational home network with
an integral programming language that can be
evaluated experimentally with a range of typical users.

Our experimental network includes a range of next-
generation appliances such as CD players, digital
telephones, video cameras etc. All of these appliances
have been modified with network interfaces so that
they can communicate with each other, and with
central server facilities. Communication protocols have

been developed to support abstract interaction at a level
suitable for general purpose programming. Finally, a
new kind of programmable remote control has been
developed as the basis for a novel end user
programming language. We describe these facilities in
the rest of the paper.

2. Cognitive demands of domestic end user
programming

We believe that all research in end user
programming should be conducted with the priorities
of user-centred design. If a research prototype purports
to be addressing the needs of a specific user population,
the researchers should analyse the needs of the user
first, and develop their technical solution second. This
is especially true of the domestic context, where users
expect that the products they buy have been designed
with ergonomic and usability criteria in mind. Users of
commercial programming tools may not have such
high expectations, as they are more accustomed to
arbitrary technical solutions assembled with only a
passing awareness of cognitive ergonomics.

Despite the obvious importance of focusing on user
requirements, much of the research literature related to
home automation and networking only mentions this
factor in passing. The IBM pervasive computing group,
in their recent textbook on pervasive computing [3],
only mention usability in a cursory fashion – they
observe that pervasive computing devices should be
made both “convenient” and “intuitive” [3, p.23], but
do not offer any further guidance on how this is to be
achieved. The Microsoft “Easy Living” research group
have created a prototype living room with a range of
networked appliances. If the occupant wants to define
new behaviour, he or she can walk to the computer in
the corner of the living room and write an appropriate
program – in 1999, this was accomplished by writing
in C [4].

2.1. Direct manipulation

The first author of this paper has for some years
taken the approach that end user programming
research must be informed by the research methods of
cognitive psychology, in order to understand the user’s
needs, and then to design appropriate solutions based
on these cognitive requirements. This has led to
important observations regarding the usability
strategies of the AutoHAN project. One of them is
derived from the first author’s discovery that direct
manipulation is far more important than pictorial
metaphors for assisting end-users to learn a novel
programming language [5,6]. The AutoHAN system
has been designed to place the greatest possible priority
on direct manipulation – users program the system by
directly manipulating physical blocks, not just
representations of blocks on the computer screen.



In Proceedings of the 2001 I EEE Symposia on Human-Centric Computing Languages and Environments (© IEEE), pp. 150-157.

2.2. Notational abstraction

A further cognitive principle in the design of
AutoHAN is to recognize that all programming
behaviour involves the user making an investment in
abstraction. In terms of domestic appliances,
abstractions are the aspects of the appliance that we
can’t see or touch. But when a computerised appliance
contains a user interface, the user is expected to
interact with abstractions – by means of what he or she
sees and touches in the interface. To this end, the
interface includes representations of abstraction, or
signs. Users see and manipulate those signs in a
systematic way. If they become sufficiently familiar
with the conventions, they may even think of the sign
as the object, forgetting that they are only manipulating
signs (abstractions are not things, and can never be
touched).

Two research issues arise from this. The first
addresses the status of abstract behaviour: how can the
user interface of an appliance (let’s say a MiniDisc
player) include things we can’t touch? Briefly, this can
occur either because the user is asking the appliance to
do something in the future (like recording a radio
programme – as it is in the future, we can’t interact
with it now), which we call an abstraction over time;
or alternatively because the user is referring to a
number of entities (like a playlist of music to be played
at a party) which we call an abstraction over a class of
entities.

The representations of these abstractions are
notational systems, in the sense of Green’s Cognitive
Dimensions of Notations [7,8]. The user interface of
the appliance includes a notation (a visible
representation of the abstractions) and a physical
means of manipulating the notation. Although very
simple, the two types of abstract situation (over time or
over a class) form the core of all programming
languages, and also of all professional programming
activity. It is on this basis that we claimed in the
introduction that there is a relationship between
“programming” a VCR and a “programming
language”.

2.3. Characterising abstraction users

The characteristics of end-user notational systems
have more often been found in our offices than in our
homes until now. Every office worker is expected to
interpret, manipulate or create specialised abstract
notations related to their work: timetables, flow
diagrams, decision trees, work rosters and many more.
If we use computers in our work, almost every type of
software application includes notations that allow us to
create and manipulate complex and powerful
abstractions. The spreadsheet notation, for example, is
almost as powerful as a general purpose programming
language – which is probably the most challenging

abstraction handling notation that any human ever has
to deal with. But it’s not just professional programmers
or spreadsheet users that face challenges in computer
abstraction.

Professional computer users (especially
programmers) are very experienced at creating and
manipulating abstractions. Is it too difficult for
homeowners to attempt such a challenging intellectual
activity? In a recent empirical study, we addressed this
question directly [9]. We surveyed the office contents
of secretarial workers who were not confident computer
users, and compared them to the offices of computer
science researchers. We found that the secretarial
workers were always creating and maintaining
abstractions: folders, drawers, cabinets, file boxes and
binders. Computer scientists also use such abstractions
– the two groups were perfectly comparable. But in the
computer environment, computer scientists were likely
to create at least one computer abstraction (directories,
folders, macros and style) for every paper abstraction in
their office. Office workers were incredibly reluctant to
invest effort in computer abstractions. It’s not that
office workers are unable to deal with abstract
notations – it’s just that computers don’t serve their
needs as well as paper does.

2.4. A model of abstraction investment

We have modeled the cognitive aspects of this
phenomenon by adapting Kahneman and Tversky’s
Prospect Theory – a model of the psychology of
investment decisions [10]. The experimental subjects in
our study of office workers were not investing money
(as in Kahneman and Tversky’s work), but they were
investing their time and attention in creating
abstractions. This is true whether the abstraction is a
series of labels in a filing cabinet drawer, a word
processor macro, a programmed recording time in a
MiniDisc player, or a complex software application.

In each case the abstraction developer invests some
attention in programming work that could otherwise be
spent in achieving the job itself. Furthermore, the
abstraction route is risky. It may not work, it may work
partially (it contains a bug), or it may turn out to be
inappropriate to what is actually needed when the time
comes to execute it. This risk of failure is just like the
risk of gambling losses in the situations investigated by
Kahneman and Tversky. We have created a cognitive
simulation of this phenomenon in which a simulated
agent makes investment decisions about a simple
abstraction – the search and replace dialog in a word
processor [11].

2.5. Theoretically grounded end-user languages

This theoretical approach to end-user programming
as the facilitation of abstraction investment has already
been applied to a very different research project, in the
application domain of office work. The SWYN system



In Proceedings of the 2001 I EEE Symposia on Human-Centric Computing Languages and Environments (© IEEE), pp. 150-157.

described at a previous end-user programming
workshop [12] provides additional abstraction
management facilities within the functional area of
scripting for word processing tasks [13].

Someone working with a word processor might
regularly create abstractions over a class (e.g. defining
a search and replace operation, or a paragraph style) or
abstractions over time (e.g. a repeating keyboard
macro). SWYN allows users to minimize their initial
investment in abstraction, by defining the abstractions
they need through direct manipulation of example
strings (and hence programming by example [14]). It
also allows the user to assess the degree of risk when
the abstraction is executed, by giving direct feedback in
response to user actions on the notation.

3. The Media Cubes language

The AutoHAN project has taken the same
theoretical approach to supporting end user
programming as in SWYN, but has applied it in the
domestic context. The Media Cubes language allows
the user to associate behaviour directly with a concrete
representation. The user can also directly observe the
effects of abstract actions that are initiated by
manipulating the concrete representation.

This representation is a rather unusual
programming language. It is not displayed on the
screen of a computer, but is a fully tangible
representation of the abstract situation. It is tactile, not
in the sense of Repenning’s “tactile programming”
[15], but in the sense that the user can touch physical
“iconic” representations, as in research by Ishii and
Ullmer [19] for non-programming applications. The
elements of the Media Cubes language are literally
cubes – currently the prototypes are made out of wood.
Two prototype Cubes are shown in figure 1. Each Cube
contains a variety of sensors and transducers, a low-
power PIC microprocessor, three AA-size batteries,
and a motion sensing device allowing it automatically
to become quiescent when not being manipulated. This
delivers a battery life on the order of months.

Figure 1 – “Media Cube” prototypes

The user interface of the individual Cubes is as
simple as possible. We describe them as “one-button
remote controls”, and encourage users to think of them
in this way. Each Cube has a single button, a single
LED which can be used to confirm status, and a piezo-

electric transducer which can be used to notify the user
of local state changes.

The Media Cubes are also equipped with several
interfaces to other AutoHAN components. Each Cube
includes an array of infrared receivers and transmitter,
so that it can communicate with the AutoHAN network
via IR ports in each room. In future iterations of the
prototypes, we hope to replace this communication
channel with a single-chip implementation of
Bluetooth, and are working with a local Bluetooth
developer to that end.

Each Cube also includes induction coils on four
faces of the Cube. These act as short-range antennae,
able to detect direct proximity of another Cube. All
Cubes transmit periodic pulses through these antennae
whenever they are not in the quiescent state (i.e. when
the motion detector recognises that they are being held
in the hand of a user). In the intervals between pulse
transmissions, each Cube listen for pulses from other
Cubes. When a pulse is received, the Cube notifies the
network that this has happened, identifying the faces
that have come into contact. The local state change is
notified to the user by emitting a click from the piezo-
electric transducer.

The induction coil antennae can also be used to
establish a relationship between an appliance and a
Cube. By holding one face of a Cube against the front
of an appliance, the Cube can be associated with some
function of that appliance – either temporarily, or for
as long as the user keeps the Cube in that state (it can
be associated with a different appliance by repeating
the procedure with that appliance).

3.1. Direct manipulation of Media Cubes

By describing Media Cubes as “one-button remote
controls”, we intend that an individual Cube should be
regarded by the user as an intuitively transparent direct
manipulation interface to some appliance function. If a
Cube represents the “play/pause function”, for
example, the user could associate that Cube with a CD
player, and pressing the button would alternately place
the CD player in play and pause mode. If the user then
changed the association of the same Cube, by holding it
against a VCR, it would thereafter control the
play/pause function of the VCR.

This is a new paradigm for interaction with abstract
functions of home appliances. The currently
established paradigm is that the user has many remote
controls in the house, each dedicated to a single
appliance, but with one remote control providing
access to many abstract functions and attributes of the
appliance. In contrast to this paradigm, each Media
Cube represents a single abstraction, but can
implement that abstraction with respect to many
different devices.



In Proceedings of the 2001 I EEE Symposia on Human-Centric Computing Languages and Environments (© IEEE), pp. 150-157.

3.2. Abstract behaviour of Media Cubes

Although users may become familiar with the
behaviour of individual Media Cubes by using them as
one-button remote controls, the true power of the
language is realised through composition of these basic
abstractions. In terms of the psychological
requirements of abstraction investment, the user is able
to gain a better appreciation of the investment risk
associated with individual abstractions by applying
them in a direct manipulation situation before
extending them to compound risk situations.

Cube abstractions are composed by placing two (or
more) Cubes next to each other, and instructing
AutoHAN to store this configuration of Cubes. These
configurations literally act as programs. They are
stored as scripts in the AutoHAN registry, and can be
used to specify arbitrarily abstract behaviour – either
executing home automation processes at some time in
the future, or extending a process across a range of
different situation classes.

As every Cube has a unique identifier, and each face
of every Cube can also be identified, the combination of
Cubes and neighbouring faces can be used to define the
syntactic form of a reasonably powerful programming
language. In fact, they share the rich syntactic potential
of many visual programming languages, because the
four possible adjacency relations between tokens allow
a 2D arrangement of Cubes, rather than the 1D
arrangement of textual programming languages having
only two adjacency relations between tokens (before
and after).

The rich syntactic potential of an arbitrary set of
Cube tokens, each having up to four faces “inflecting”
the basic token, allows many possible styles of
programming. Our only constraint in choosing one has
been to provide a cognitively plausible path for the user
from the direct manipulation experience of using the
Cubes as remote controls. This learning path should
lead first to an appreciation of an individual Cube
evolving from a representation of a specific appliance
function (in the first instance) to a more general
abstract representative of the appliance that can be used
in a program. The second phase of the learning path is
to utilise further Cubes that have completely abstract
interpretations – this is described further in the later
section on programming paradigms for Media Cubes.

4. AutoHAN infrastructure

The AutoHAN infrastructure has been developed to
support both the direct manipulation and abstract
programming functionality described above. This has
been a considerable research effort in its own right. A
more comprehensive technical description has been
published elsewhere [16]. Here we present an overview
of the infrastructure at a level sufficient to explain its
properties as an end-user programming environment.

Living quarters "Broom cupboard" or Attic

House server

GENA

S1

Cable Receiver

Video Archive

Home PBX

S2

VS

cubes
proxy

media
server

connect
mgr

infrared

ATM

ATM

ATM

ATM

ATM

ATM

ATM

ATM

ATM

ATM
ATM

switch

switch

virtual switch

Media Cubes

Figure 2 – AutoHAN architecture

An AutoHAN home network consists of a collection
of devices, connected by a heterogeneous network.
Some of these devices, such as a television, will be in
the living space of the home. Others, such as a digital
cable TV decoder, might only ever be accessed over the
network, and as such may be placed out of the way, for
example in a broom cupboard or attic. A third class of
device consists of virtual devices – software
components running somewhere on the network. As far
as the user is concerned, these virtual devices behind
the walls are no different to the invisible physical
devices in the broom cupboard. In a typical setup, a
“Home Server” would run a collection of virtual
devices, in addition to key AutoHAN services. The
home server need not be physically located in the living
space.

The AutoHAN architecture is designed to be
agnostic to underlying network technologies. In the
current implementation, physical devices mainly
communicate via ATM, while software processes
communicate via IP. However, other network
technologies can, and in several cases have, been
integrated into AutoHAN. Examples include the
infrared links to connect Media Cubes and other
mobile devices, Ethernet, BlueTooth and IEEE 1394
(FireWire/i.Link).

4.1. GENA

AutoHAN devices normally communicate using the
Universal Plug-and-Play (UPnP) Generic Event
Notification Architecture (GENA) [17]. This is an
extended form of Hypertext Transfer Protocal (HTTP).
In cases where the underlying network protocol is not
connection oriented, HTTP-U may be used. This, in
addition to the simplicity of HTTP, allows event
sources to be implemented in relatively modest
hardware and software, making it well suited for
embedding in consumer devices.



In Proceedings of the 2001 I EEE Symposia on Human-Centric Computing Languages and Environments (© IEEE), pp. 150-157.

AutoHAN entities make a subscription request in
order to receive certain types of events (the GENA
Notification Type), setting up something akin to a web
server. When an event of the specified type occurs, an
HTTP “NOTIFY” request is sent to the subscriber,
which responds with a confirmation that the event was
received. Additional parameters, such as identifying
exactly which button on a control panel was pressed,
may be encoded in the GENA Notification Subtype, or
in the message body.

4.2. The DHan registry service

A further key component of AutoHAN is the DHan
registry, which enables devices and other entities to
advertise their properties. The registry is accessed via
standard HTTP; entities may use POST requests to add
or update information about themselves, GET requests
to look up information about other entities, and so on.
DHan uses finite-time leases – when an entity registers
information, it is given an expiry time, after which the
information is removed if it has not been re-registered.

The DHan registry uses XML for storage and
presentation of device properties. XML was chosen for
several reasons; it allows for loose matching and future
expansion, is supported by web browsers, can be
transformed using XSL for presentation purposes, and
allows the register to construct and present a hierarchy
of devices. Objects in the hierarchy are identified via a
point, a fully or partially qualified name in the style of
the W3C’s XLink and XPointer, or distinguished
names in X.500.

4.3. User benefits of AutoHAN architecture

GENA and DHan, along with enabling low-level
technologies, allow the AutoHAN home network to be
largely self-configuring. When a device is added to the
network, it sets up an event source, and registers itself
with DHan. From then on, other entities may retrieve
the details of the device via DHan, using an
appropriate search string, and communicate with it via
GENA. The use of leases enables the system to deal
gracefully with network and power outages, and the
failure or removal of individual devices.

Together, these components of the system ensure
that the end user need not become a systems
administrator in their own home. This type of self-
configuration and graceful degradation is an essential
feature of end-user programmable systems. They allow
users to interact directly at the level of device functions
rather than network infrastructure. This provides
consistent remote control functionality across both
physical appliances and virtual devices, as well as a
platform for generic interaction between devices. User
manipulation of the Media Cubes can define scripts
which are archived in the registry and which, when
executed, result in some new combination of

subscription requests, events and channel
configurations.

5. Programming paradigms for Media
Cubes

The scripting capabilities of the AutoHAN Media
Cubes support a wide range of abstract behaviour. We
have taken great care not to make any unwarranted
assumptions in the design of the Media Cube language.
The physical form of the language is so unusual that it
offers many potential styles of programming. There
have been a few previous programming languages with
physical tokens, such as the AlgoBlock system [18].
These systems have often been a relatively direct
translation of some familiar programming style –
AlgoBlock was based on the Logo language.

Rather than accept the constraint of any one
familiar programming paradigm, we have considered
two alternative paradigms for the Media Cubes
language. One of these is based on a philosophy of
ontological abstraction – the tokens of the language are
designed to represent “natural categories” in the user’s
mental model of the AutoHAN operation. The other is
based on a linguistic abstraction hypothesis, that
abstractions from physical situations are naturally
described in linguistic terms. This has resulted in two
novel language paradigms, which are described
separately below.

Both paradigms proceed from the assumption that
Cubes can be associated with a physical appliance by
placing the Cube next to the appliance, and that Cubes
can also represent virtual devices, such as a media
archive hosted on the home server. Both paradigms
also allow for further generic Cube functions that
provide abstraction capabilities independent of any
specific device.

5.1. Ontological paradigm

Figure 3 – Cubes for ontological paradigm

The ontological paradigm for Media Cubes
programming has been developed by identifying
concepts for which there is a close correspondence
between primitive remote control operations, appliance
functions, capabilities of the AutoHAN architecture,
and user skills. These represent a primitive ontology of
home automation. Cubes are identified with ontological



In Proceedings of the 2001 I EEE Symposia on Human-Centric Computing Languages and Environments (© IEEE), pp. 150-157.

types, which are indicated to the user by graphics on
the Cube, as shown in figure 3. The faces of any given
abstract Cube type correspond to the potential
interpretations or interactions of that abstract type. To
illustrate, we briefly describe four of the abstract types.

An Event Cube is a reference to a change of state in
the home – either a sensor activation (such as a
doorbell), an automated function (an alarm clock being
activated) or any appliance function that can be
specified by the press of a single button. The faces of
the event Cube allow the user to define behaviour on
transitions in either direction: “go”/“stop”, or
“on”/“off”. “Go” and “on” being functionally identical,
but labeled separately in order to help users reason
about equivalence between events and processes.

A Channel Cube provides a reference to a media
channel or stream allocated within the AutoHAN
network. It can be used to associate a channel with a
media source, and to direct data from that source to a
media sink (an output device, an archive device or a
reprocessing device). Media channel data types might
include audio, video, image or text – these could either
be identified with different Cube graphics, or all
controlled by a single Cube. The latter option leads
users to think about functionality of the network at a
more abstract level. The faces of the channel Cube
include channel content (interpreted as either source or
sink, depending on the appliance the Cube is associated
with), and a channel index, which allows specific
temporal points (tracks, programme starts, phone
messages) to be referred to.

An Index Cube selects content from a channel.
Some channels carry indexing information such as
time (of an answerphone message or speech archive),
programme ID (from audio or video broadcast), or
sender (of an email). The indexing Cube can be
associated with a particular index value, and select
content that matches the value. Sources of index values
include time specifications, archive references, or
current broadcasts.

An Aggregate Cube allows the user to refer to
abstract collections rather than individual instances.
Aggregates may be formed by associating a range of
other Cubes to represent (for instance) a collection of
events. An aggregate Cube need not be cube-shaped –
it can be in the shape of a open box, so that the
aggregation is indicated physically by placing other
Cubes within the box.

The channel Cube potentially supports higher order
functions that are accessible to AutoHAN users as they
become more expert. The program scripts themselves
can be represented as a channel, in which case they are
also treated as first class objects in the Media Cubes
language. Playing a script channel activates the script,
which can be archived, indexed, or controlled by other
events in the home. The user transition from direct
specification of appliance functions to higher order
programming thus follows the same abstraction

gradient as the transition from direct operation of
remote controls to basic scripting functions.

5.2. Linguistic paradigm

The second approach to the Media Cubes is based
on linguistic abstraction. Here the Cubes represent
words in a language. For example, one type of Cube
has a single face labelled Clone. When this face is
placed against another Cube face and activated, the
“Clone” face takes on the identity and function of the
other face, allowing users a “shorthand” for referring
to physical (and virtual) objects. This is analogous to a
variable binding in a conventional imperative
programming language.

An extension of the Clone Cube is the List Cube.
This has three active faces – “Add item”, “Remove
item” and “Contents”. Each Cube has an associated list
of items that it “contains”, and the “Contents” face
aliases this list. A type system is to be used to ensure
that the contents of the list “make sense”. As with all
scripts, the list is not stored in the Cube itself, but in a
proxy object residing in a server. The Cubes themselves
are identical and interchangeable, aside from their
labels and a unique identifier that used to discriminate
between their infrared signals. A Cube of this type is
similar to an object in a language such as Java or
Smalltalk – the Cube has an identity, associated with
which is a value and operations.

Standard consumer remote controls may be
integrated with the Media Cubes language by adding
induction coils to them, or by exploiting the
directionality of their infrared signal. This allows users
to create abstractions of the functions associated with
regular remote controls. For example, when we point
the television IR controller at the TV and press ‘1’ it
turns on the TV on BBC-1. If instead we point the
same controller at a ‘time’ Cube, then pressing the ‘1’
button on the IR controller defines a one-time program
to turn on the TV on BBC-1 at that time tomorrow.

One question that the linguistic approach highlights
is that of the computational power required by the
language; in particular, should the language be Turing
powerful? Although current home control interfaces
are certainly not, we decided to experiment with the
inclusion of higher order operations having the
potential to support powerful abstractions. This allows
us to investigate both the new applications that such a
language allows, and any potential pitfalls that it
brings about.

Another factor in the language design is the degree
to which the arrangement of Cubes may be dynamic.
The design outlined above is highly dynamic, in that
the associations between faces that define the
arrangement may be created over a period of time. A
static arrangement, in which the entire program is laid
out at once, would have the advantage of ensuring that
the program as a whole was visible. However, in this



In Proceedings of the 2001 I EEE Symposia on Human-Centric Computing Languages and Environments (© IEEE), pp. 150-157.

type of system, the complexity of the program is
limited by both physical constraints (eg, not having
enough space to lay out the program you desire, or
wanting to place several Cubes next to a single face of
another), and by the number of Cubes available. The
ontological approach would seem to favour a static
arrangement, and the linguistic approach a dynamic
one, but in both cases it is likely that the optimal
solution lies somewhere between those two extremes.

10. Conclusions

We have created an environment that supports a
new style of end-user programming for domestic
contexts. This has required extensive development of
prototype appliances, network infrastructure, and a
prototype programming tool called Media Cubes. This
combination offers an exciting platform for research
into the creation of usable abstraction facilities for the
home that will be accessible to a wide range of
domestic users.

10.1. Further work

At the time of writing, AutoHAN and the Media
Cubes are operational. In keeping with the
psychological concerns of the project, we do not
consider implementation to be the end of the project.
The next phase is to carry out extensive user
evaluation, especially of the two alternative paradigms
for the Media Cubes language.

11. Acknowledgements

Daniel Gordon designed the Media Cube prototypes,
and they were constructed by Dick Kimpton. The
AutoHAN repository and networking protocols were
developed by Umar Saif and Daniel Gordon. The
technical implementation of the AutoHAN project is
led by David Greaves. Alan Blackwell’s research is
funded by the Engineering and Physical Sciences
Research Council under EPSRC grant GR/M16924
“New paradigms for visual interaction”. Rob Hague’s
research is funded by the EPSRC and AT&T
Laboratories Cambridge.

12. References

[1] J. Waldo, JiniTM technology architectural overview,
http://www.sun.com/jini/whitepapers/architecture.html, Sun
Microsystems, 1999.
[2] Microsoft Corporation, Universal Plug and Play device
architecture http://www.upnp.org/download/
UPnPDA10_20000613.htm, 2000.
[3] U. Hansmann, L. Merk, M.S. Nicklous & T. Stober,
Pervasive Computing Handbook, Springer-Verlag, 2001.
[4] B. Brumitt, “Easy Living”, seminar presentation at
Microsoft Research, Cambridge, 10 December 1999.
[5] A.F. Blackwell, “Pictorial representation and metaphor in
visual language design”. To appear in Journal of Visual
Languages and Computing, June 2001.

[6] A.F. Blackwell & T.R.G. Green, “Does metaphor
increase visual language usability?” In Proc. IEEE Symp. on
Visual Languages, 1999, pp. 246-253.
[7] T.R.G. Green & M. Petre, “Usability analysis of visual
programming environments: a 'cognitive dimensions'
framework”. Journal of Visual Languages and Computing 7,
1996, 131-174.
[8] T.R.G. Green & A.F. Blackwell, Design for usability
using Cognitive Dimensions. Tutorial at BCS conf. on
Human Computer Interaction, 1998
http://www.cl.cam.ac.uk/~afb21/
CognitiveDimensions/CDtutorial.pdf
[9] A.F. Blackwell, T.R.G. Green & R.L. Hewson, “Product
design to support user abstractions”. Paper submitted in June
2000 to special issue of ACM ToCHI on “The New
Usability”.
[10] D. Kahneman & A. Tversky, “Prospect theory: an
analysis of decision under risk”. Econometrica 47(2), 1979,
pp. 263-291.
[11] A.F. Blackwell & T.R.G. Green, “Investment of
attention as an analytic approach to Cognitive Dimensions”.
In Proc. 11th Ann. Workshop of the Psychology of
Programming Interest Group, 1999, pp. 24-35.
[12] The Visual End User: unpublished workshop papers on
visual languages for end-user and domain-specific
programming. September 10, 2000, Seattle, WA, USA.
[13] A.F. Blackwell, “See What You Need: Helping end
users to build abstractions”. Paper submitted in December
2000 to Journal of Visual Languages and Computing, special
issue on End-User and Domain-Specific Programming.
[14] A.F. Blackwell, “SWYN: A visual representation for
regular expressions”. In H. Lieberman (Ed.), Your wish is my
command: Giving users the power to instruct their software.
Morgan Kauffman, 2001, pp. 245-270.
[15] A. Repenning & J. Ambach, “Tactile programming: A
unified manipulation paradigm supporting program
comprehension, composition and sharing”. In Proc. IEEE
Symp. on Visual Languages. Boulder, CO. 1996, pp. 102-
109.
[16] U. Saif, D. Gordon, D. Greaves. IEEE Internet
Computing February 2001, pp. 54-63
[17] J. Cohen, S. Aggarwal, and Y.Y. Goland, General Event
Notification Architecture Base: Client to Arbiter, work in
progress. Internet draft, (expires Apr. 2000), available at
http://www.upnp.org/draft-cohen-gena-client-01.txt.
[18] H. Suzuki & H. Kato, “Interaction-level support for
collaborative learning: Algoblock – an open programming
language”. In Proc. Comp. Supported Collaborative
Learning ‘95. Lawrence Erlbaum, 1995
[19] H. Ishii & B. Ullmer, “Tangible Bits: Towards Seamless
Interfaces between People, Bits and Atoms”. In Proc. CHI
’97, 1997


