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Pulmonary arterial hypertension (PAH) is a progressive life-threatening disease. The

notion that autoimmunity is associated with PAH is widely recognized by the observations

that patients with connective tissue diseases or virus infections are more susceptible to

PAH. However, growing evidence supports that the patients with idiopathic PAH (IPAH)

with no autoimmune diseases also have auto-antibodies. Anti-inflammatory therapy

shows less help in decreasing auto-antibodies, therefore, elucidating the process of

immunoglobulin production is in great need. Maladaptive immune response in lung

tissues is considered implicating in the local auto-antibodies production in patients

with IPAH. In this review, we will discuss the specific cell types involved in the lung

in situ immune response, the potential auto-antigens, and the contribution of local

immunoglobulin production in PAH development, providing a theoretical basis for drug

development and precise treatment in patients with PAH.
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INTRODUCTION

Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling in
pathology, leading to the elevation of mean pulmonary arterial pressure. Pulmonary vascular
remodeling is seen as a result of perivascular inflammatory cells infiltration and pulmonary arterial
wall dysfunctions (1, 2). The inflammatory cells infiltration is considered as both the cause and the
consequence of pulmonary vascular remodeling. Innate response and adaptive response are found
in the lung tissues of clinic PAH and experimental PH (1–4). The innate response is participated
by macrophages/monocytes (5), mast cells (6), neutrophils (7), etc. These cells are recruited from
peripheral blood and infiltrated around pulmonary vessels. Macrophages, especially interstitial
macrophages, function by releasing cytokines or chemokines, such as IL-6, TNFα, and CCL2. TNFα
suppressed BMPRII expression in pulmonary arterial endothelial cells (PAECs) and pulmonary
arterial smooth muscle cells (PASMCs) (8). IL-6 promotes PASMC proliferation and activates
fibroblasts (9). CCL2 will recruit more inflammatory cells into the lung tissues and promotes
crosstalk between macrophages and PASMCs (10). Mast cells and neutrophils belonged to the
granulocytes, which will degranulate once activated. Granule content, such as myeloperoxidase
(MPO) in neutrophils or protease in mast cells, contributes to pulmonary vascular remodeling
(6, 11). Antigen-presenting cells (APCs) will also be attracted by chemokines in the early stage
(12). The identification of dendritic cells (DCs) revealed the link between the innate response and
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adaptive response (13). Adaptive immunity is participated by
T cells and B cells. APCs mediate T cell differentiating into
subtypes, such as helper T cells or cytotoxic T lymphocytes.
Furthermore, T cells interact with B cells and promote B-cell
maturation. Moreover, auto-antibodies with atopy are produced,
even in the patients with idiopathic PAH (IPAH) without a
diagnosis of autoimmune diseases (14). This research suggests
the local adaptive response in IPAH lung. The innate response
has been recognized for decades (15); however, the role of
adaptive response is reported in recent years. This review aimed
to update the contribution of adaptive immune cells in patients
with experimental PH and IPAH, summarize the potential target
auto-antigens, discuss the types and functions of locally produced
immunoglobulins, and provide promising therapeutic targets for
clinic treatment.

IMMUNE CELLS INVOLVED IN ADAPTIVE
IMMUNITY

In 2005, Dr. Nicolls had hypothesized the in situ adaptive
immune response and immunoglobulin generation in the IPAH
lung tissues without direct evidence (16). Decades later, the key
components involved in this hypothesis have been reported. The
concept of local adaptive response is that pulmonary vascular
injury leads to auto-antigens exposure, which are phagocytized
by DCs and then presented to T cells; T cells are activated and
interact with B cells, leading to B-cell antibody class-switching
recombination and immunoglobulins production (1, 16). In this
process, DCs, T cells, and B cells play essential roles.

Dendritic Cells
The infiltration of DCs is observed in both IPAH and
experimental pulmonary hypertension (PH) (17). Infiltrated DCs
showed different gene expression signatures among the different
species, which have been discussed in a previous review (18). In
IPAH, perivascular DCs exhibit CD1a−, for rat PH, the signature
is OX-62+ (17). This signature indicated the perivascular DCs is
immature, possessing the ability for antigens presentation (17).
Immature DCs are also considered as steady state and can be
classified as conventional DCs (cDCs) and plasmacytoid DCs
(pDCs) (13, 18). cDCs raise more attention as they show a higher
frequency compared with pDCs (18). cDCs have two subsets,
among which the conventional DCs subtype 2 (cDC2s) is the
major population in both blood and lung tissues. The cDC2s
are highly expressed MHCII, while cDC1s are superior in MHCI
expression (19). The MHCI/II expressed in cDCs suggests its
power in presenting the antigens. The previous studies show
that in the patients with IPAH, cDCs are decreased in the blood
(20) but increased in the lung tissues (21). This observation
can be explained by the infiltration and retention of DCs in
lung tissue. CCR7 is crucial in DCs recruitment to lymph-vessel
(22, 23). CCR7 deficiency resulted in the failure of DCs homing,
eventually being accumulated in the lung tissue (12). The role
of cDCs is predicted by Tnfaip3/A20 deficient mice in which
cDCs are activated through NF-κB signaling (24). Activated
cDCs increased perivascular inflammation and subsequently

aggravated PH in mice (24), suggesting its detrimental role in
PAH/PH development. The infiltration of pDCs in IPAH lung
tissues was first reported in 2018 (21). As a lower frequency
subset, pDCs were captured by single-cell sequencing and
identification in lung tissues of the patients with IPAH. Increased
pDCs number was confirmed by flow cytometry and its location
was revealed by staining. Although we have observed pDCs
accumulation around pulmonary vessels in IPAH (21), it is hard
to clarify its function as a lack of experimental evidence. Based
on the function of pDCs in other tissues (25), we predicted pDCs
is crucial in antivirus as it is capable in expressing interferon
gene signature (such as IFN-γ, CXCL4, and CXCL10) (21, 25).
These cytokines and chemokines suggest their unique pattern in
cross-linking with T cells and leukocytes activation (26).

T Cells
Naïve T cells that received antigen presentation by DCs will be
activated and differentiate into CD4+ T cells or CD8+ T cells.
Different DCs subtypes have the variant capacity in stimulating
T-cells differentiation. cDC2s are more powerful in promoting
CD4+ T cells, while cDC1s are superior in activating CD8+

T cells (19, 27). The microenvironments surrounded the cross-
presentation site between DCs and naïve T cells decide the
differentiation destination of T cells. Conventionally, CD4+T
cells are divided into T helper 1 (Th1), Th2, Th17, and regulatory
T cells (Treg) (28). Th1 polarization is triggered by IFN-γ, IL-
12, and IL-18, and suppressed by IL-4 and TGF-β (29). Th1
cells release Th1 cytokines, such as IL-12, IFN-γ, and TNF-α,
however, their contributions in clinic PAH and experimental PH
are not reported clearly. Th2 polarization is induced by IL-4
and suppressed by IFN-γ (29, 30). Th2 cytokines include IL-4,
IL-5, and IL-13 (30). Th2 cells infiltration and Th2 cytokines
production are observed in the lung tissues of patients with
IPAH and experimental subjects (31, 32). The previous studies
have demonstrated that Th2 promotes PASMCs proliferation
through IL-4 and IL-13 releasing (31, 32). Moreover, Th2 cells
and Th2 cytokines (IL-4 and IL-5) are capable of the activation
of B cells, and it facilitates immunoglobulin class-switching
in B cells (33–35). Th17 polarization is stimulated by IL-1β,
IL-6, IL-23, and TGF-β. Th17 cytokines are featured as IL-
17 and GM-CSF. Th17 cells infiltration and IL-17 elevation
are observed in the clinic and experimental PAH/PH (36, 37).
Over-expressing IL-17 or blocking IL-17 in mice regulates the
PH development through directly affected PAECs and PASMCs
function (37). T cells that received IL-2, IL-10, and TGF-β
stimulation will be polarized into Treg (28). Treg is well-known
as a suppressor for the inflammatory cells in many diseases (38).
In PAH/PHdevelopment, Treg suppresses vascular inflammation
and alleviates PH development. These functions are observed
as rats that lack Treg are more susceptible to PH (39–41),
and reconstituting Treg to hypoxic mice protected against PH
development (42). In patients with IPAH, circulating Treg
portion increased and exhibited aberrant subtypes compared
with control subjects (43–45), whether these changes are seen in
lung tissues need further exploration. CD8+T cells are activated
by cDC1s (19, 27). In patients with IPAH, circulating CD8+

T cells portion decreased compared with control subjects (46),
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but increased in PAH lung tissues, especially in obstructed sites
(46, 47). Single-cell sequencing identified increased CD8+ T cells
proportion in lung tissues of patients with IPAH (21), however, its
role in PAH development needs more experimental exploration.
T cells that expressed T-cell receptor (TCR) and received DCs
cross-presentation (as described above) belong to the αβT cells.
The other subset of T cells without TCR are named as γδT-cells
(48). The presence of γδT-cells is first identified in 2018 (21). Dr.
Marsh showed increased γδT-cells proportion in the lung tissues
of patients with IPAH (21). The γδT-cells response is independent
of antigen presentation by DCs, therefore γδT-cells belong to the
innate immune (48).

B Cells
The B cells are the core components in adaptive response and
immunoglobulins production. The infiltration of B cells in lung
tissues is seen in the patients with IPAH and experimental PH
subjects (49, 50). Deletion of B cells protected rats against MCT-
induced PH development (50). In adaptive response, B cells are
activated by cross-linking with CD4+T cells. The activated B
cells are named plasma cells (51), as they possess the ability to
produce immunoglobulins. Plasma cells are detected in blood
and lung tissues of patients with IPAH (51, 52), supporting
the notion of auto-antibody production in the patients with
IPAH. Immunoglobulin production in B cells is a complicated
process, as B cells will experience the VDJ recombination and the
antibody class-switching recombination. Conventionally, naïve
B cells are producing IgM. Once being activated, B cells switch
the heavy chain constant region from IgM to IgG, IgA, or
IgE, without changing the antigen-binding site (53). Cytokines
released by Th play crucial roles in mediating class-switching.
IL-4 released by Th2 prompts the B cells to switch into IgG
and IgE isotype (54). IFN-γ released by Th1 promotes IgG
class-switching. TGF-β and IL-5 participate in IgA isotype class-
switching (26, 34). Although T-cell independent pathways are
also involved in B-cell class-switching, the present focus of T
cells could be expanded into T cell-mediated B-cell interactions.
Dr. Blum analyzed the circulating B cells in the blood of the
patients with IPAH through single-cell sequencing and found
that these cells are increased in number and changed in transcript
signature (51). The observation of mature antibody production
suggested the class-switching occurred in plasmablasts in patients
with IPAH. In this process, different immunoglobulin isotypes
might be produced (51). Another study found B-cell activation
in circulating blood, indicated by increased Bruton’s tyrosine
kinase (BTK) expression in B cells from the patients with IPAH,
suggesting the enhanced BCR signaling in these patients (55).

Tertiary Lymphoid Organs
Tertiary lymphoid organs are structures observed in the lung
tissues of clinic IPAH and experimental PH (49, 52). TLOs are
similar to lymph nodes, locating around pulmonary vessels. The
plasma cells constituted the core of TLOs structure with Th
surrounded and DCs infiltrated in the border (49). The presence
of TLOs suggested the immune cells as discussed above are
not scattered in the lung tissue but have a close histological
relationship instead. As described above, the formation of

TLOs is the result of cells infiltration and retention. First,
downregulation of CCR7 in PH subject block DCs homing.
Then, activated DCs release cytokines that attract T cells and B
cells, such as CCL19/21, lymphotoxin β receptor (LTBR), and
CXCL13 (49, 52). Block DCs homing through CCR7 antagonism
enlarged the size of TLOs in MCT-induced PH rats, while
block B-cells infiltration through LTBR blockade decreased the
size of TLOs (49). Experimental reduction of the TLOs also
decreased the production of immunoglobulins in rat PH. This
evidence suggests that the TLOs facilitate the cell-cell interaction
during the adaptive response in the PH lung and are crucial
for auto-antibody production and PH development (as shown
in Figure 1).

AUTO-ANTIGEN EXPOSURE

Antigens mediate the pathogen recognition process and receive
antibody binding in adaptive response. Therefore, identifying
the local auto-antigens is crucial in IPAH and experimental PH.
Vascular injury is considered the initiator of adaptive response in
autoimmunity-involved vascular diseases (56, 57). Similarly, the
pulmonary vascular lesion is considered as the repository of the
auto-antigens in clinic IPAH or experimental PH. Experimentally
stabilizing pulmonary vessels through Salubrinal decreased the
TLOs formation and auto-antibodies production in MCT-
induced rat PH (49). Among the cells constructed in the vessels,
pulmonary endothelial cells and fibroblasts are the sources of
auto-antigens in PAH. The identification of target antigens was
revealed through the proteome approach, and the potential target
antigen is listed in Table 1.

Auto-Antigens in Fibroblasts
Approximately 40% of the patients with IPAH carrying anti-
fibroblast antibodies (AFAs) suggest the pool of antigens exposed
in fibroblast (58). Dr. Terrier identified 16 potential target
antigens through MALDI-TOF MS in sera of human IPAH (58).
These target antigens are mainly involved in the cytoskeletal
organization (vimentin, calumenin, and phosphatidylinositol 3-
kinase), cell contraction (Tropomyosin 1), and oxidative stress
(heat shock protein (HSP) 27, HSP 70, and glucose-6-phosphate
dehydrogenase) (58). Similarly, the auto-antigens expressed in
the fibroblasts were observed in experimental PH (49). In both
hypoxia-induced PH rats and MCT-induced PH rats, auto-
antibody was specifically combined with pulmonary adventitial
fibroblasts (49, 61), suggesting the auto-antigens exposure
in fibroblasts.

Auto-Antigens in Endothelial Cells
In patients with IPAH, serum IgG antibody showed higher
intensity in binding with endothelial cells extracts, suggesting the
potential target antigen exposed in pulmonary endothelial cells
(62). The prevalence of anti-endothelial cell antibodies (AECAs)
in the patients with IPAH was 62.1% in IgG isotype and 44.8%
in IgM isotype (14), however, in small populations. Similarly,
by proteomic approach, lamin A/C and tubulin β-chain were
identified as the target of AECAs (59).
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FIGURE 1 | The structure and immune response in tertiary lymphoid organs (TLOs). TLOs are found around the pulmonary vascular lesion in the lung tissues of clinic

pulmonary arterial hypertension (PAH) and experimental pulmonary hypertension (PH). The lymphoid structure of TLOs is constituted by dendritic cells (DCs) at the

border, B cells and immunoglobulins at the core, and T cells at the interlayer. This structure facilitates the cell-cell interaction in TLOs. DCs are located in the outer layer

of TLOs, closed to the remodeled vessels. Antigens exposed by vessels are phagocytized by DCs and presented to T cells. T cells are activated and differentiated into

various subtypes when cross-presenting with DCs. The cytokines released by different T-cell subtypes determine the antibody class-switching destination of B cells

when T-B cell interaction occurs. IgG, IgM, IgE, and IgA are released by B cells and can be detected in the lung tissues, serum, and BALF of PAH/PH subjects.

TABLE 1 | Target auto-antigens identified in vessel cells from the patients with

idiopathic PAH (IPAH).

Target cell Auto-antigens Mainly functions

Fibroblasts (58) Vimentin, calumenin,

phosphatidylinositol 3-

kinase

Tropomyosin 1

HSP 27, HSP 70,

glucose-6-

phosphate dehydrogenase

Cytoskeletal organization,

cell contraction, oxidative

stress.

Endothelial cells

(59)

Lamin A/C, tubulin

β-chain

Nuclear membrane,

microtubules.

Smooth muscle

cells (60)

Stress-induced

phosphoprotein 1,

α-enolase

Vascular contraction.

Auto-Antigens in Smooth Muscle Cells
Dr. Bussone reported that the antigens exposed in vascular
smooth muscle cells also attract auto-antibodies binding (60).
They reported two targets identified through the proteomic

approach, which are stress-induced phosphoprotein 1 and α-
enolase (60). The detection rate of anti-smooth muscle cells
antibody to stress-induced phosphoprotein 1 is 24% in the
patients with IPAH (60).

AUTO-ANTIBODIES PRODUCTION

In PAH/PH lung tissues, B-cell infiltration and activation
facilitate the local auto-antibodies production. Immunoglobulins
contain Fab fragment and Fc fragment, which are combined
with antigens and Fc receptors, respectively. The auto-antigens
exposed by vascular cells have been discussed above. The Fc
receptors vary with the Fc fragment embedded in different
immunoglobulin isotypes. As the Fc receptors are expressed by
different effector cells, the injury caused by immunoglobulins
varies with the specific effector cells (Table 2).

IgG Isotype
IgG isotype is the preponderant population in immunoglobulins.
Most auto-antibodies observed in clinic IPAH (such as AFAs
and AECAs) are IgG isotypes (58, 62). In MCT-induced
rat PH, auto-antibody in IgG isotype also showed elevation
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TABLE 2 | The function of auto-antibodies in PAH.

Isotype Present Fab fragment targets Roles Fc receptors Effector cells

IgG Blood of IPAH

patients (58–60),

experimental PH

subjects (49, 61)

Fibroblasts, smooth

smooth muscle cells

and endothelial cells

(58–60)

Induce pro-inflammatory

cytokines release in fibroblasts

and endothelial cells (49, 63, 64),

Change phenotypes in

fibroblasts (65), Induce apoptosis

in endothelial cells (66),

activate complement system (61)

FcγRI, FcγRII,

FcγRIII

Monocytes,

macrophages,

dendritic cells, NK

cells (67, 68)

IgM Blood of IPAH

patients (14),

experimental PH

subjects (61)

Endothelial cells (14) Activate complement system

(61), immune homeostasis

(69, 70)

FcµR B cells, T cells, NK

cells (71)

IgE BALF of experimental

PH subjects (32)

Unclear Attract effector cells FcεRI Mast cells (72)

IgA Circulating

plasmablasts of IPAH

patients (51, 73)

Unclear Attract effector cells FcαRI Neutrophils (74)

(49). Dr. Colvin collected the autoantibody-containing plasma
from MCT-injected rat and transferred into native rats. Rats
transferred auto-antibody showed severe PH (49), suggesting
the detrimental role of auto-antibody in PH development. In
the cell injury process, on one hand, IgG bind with the target
antigens in fibroblasts or endothelial cells through Fab fragment
(58, 62). These combinations cause phenotype changes in the
fibroblasts or endothelial cells. In fibroblasts, AFAs positive
IgG stimulation induces profibrotic and proinflammatory
chemokines production (49, 63), such as CXCL1, CXCL8, IL-
1β, and IL-6. Moreover, fibroblasts change into myofibroblasts
phenotypes when received AFAs treatment (65), observed as
increased α-SMA expression. In endothelial cells, the AECA
positive IgG induces ECs apoptosis (66), highly express adhesion
molecular and proinflammatory cytokines (64). The phenotype
changes in fibroblasts and endothelial cells partially explained
perivascular inflammation, endothelial cells dysfunction, vessel
stiffness, and muscularization. On the other hand, the Fc
fragment in IgG links the effector cells with the antigens.
For IgG isotype, its Fc receptors contain FcγRI (CD64),
FcγRII (CD32), and FcγRIII (CD16) (67, 68). These receptors
are mainly expressed in macrophages, monocytes, NK cells,
and DCs (67, 68). Macrophages and monocytes occupy a
large population in the lung tissues, and they play a crucial
role in PAH/PH development (5, 75). The infiltration of
macrophages is observed in clinic PAH and experimental
PH. The function of IgG stimulated macrophages is widely
recognized as cytokines releasing [such as IL-6 and IL-10
(76)]. The DCs also expressed IgG receptor. DCs mediate T-
cell activation upon IgG stimulation (77). IgG receptor FcγRII
also expressed in endothelial cells and smooth muscle cells
in the systemic circulation (68), whether it is expressed in
pulmonary vascular cells is unknown. Although no direct
evidence shows the similar function in IgG auto-antibodies
extracted from PH subject, these research studies suggest that
effector cells participate in the IgG auto-antibodies mediated
vascular injury.

IgM Isotype
Autoantibodies in IgM isotype were identified along with IgG
isotype in the patients with IPAH (14). The present IgM isotype
autoantibodies are mostly AECAs (14). The abnormal IgM
is also seen in the experimental PH mice and rats, and it
deposits in the luminal/medial area (61). These observations
suggest that the IgM isotype mainly targets intima injury. IgM
functions as activating complement system in pathophysiology.
Due to its pentameric structure, it shows more powerful than
the IgG isotype (78). The complement system is a newly
identified participator in perivascular inflammation during
PAH/PH development (79, 80). By proteomic analysis, the
activation of complement cascades was discovered as one of the
most upregulated signaling pathways in the early stage of PAH
development (61). Similarly, the complement activation was also
observed in the hypoxia-induced PH mice/rats, MCT-induced
PH rats, and Sugen 5416 followed by hypoxia (SuHx)-induced
PH rats. Moreover, the level of the complement component is
correlated with clinical outcomes of patients with PAH (80).
These observations suggest the essential role of the complement
system in PAH/PH development. A previous study demonstrated
that IgM and IgG are critical for the activation of the complement
system in hypoxia-induced PH subjects (61). IgM deposition
correlated with C4, suggesting its role in initiating classical
and lectin pathways (61). Immunoglobulin deficient mice (µMT
mice) failed to activate complement cascade, subsequently
decreased the perivascular inflammation (61). Therefore, the
IgM and IgG are the key initiator of complement cascade.
The Fc receptor of IgM is named FcµR, and it is mostly
expressed in lymphocytes (B cells, T cells, and NK cells in
human; only B cells in mice) (71). The present knowledge
of FcµR is based on Fcmr-ablated mice. Fcmr-ablated mice
exhibited altered the subset of B cells, elevated IgM level, and
dysregulated immune responses (69, 70), suggesting that IgM
maintains immune homeostasis through FcµR. A polymeric
immunoglobulin receptor (pIgR) is another receptor of IgM
that binds with the J chain that is carried by polymeric
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immunoglobulins (such as pentameric IgM and dimeric IgA)
(81). Th17 and IL-17 upregulated the pIgR expression (82, 83),
however, the present studies show pIgR mostly expressed in the
epithelial cells. Whether pIgR is expressed in leukocytes and
whether pIgR participates in IgM mediated pulmonary vascular
dysfunction needs further investigation.

IgE Isotype
IgE elevation is commonly seen in allergic diseases or infectious
diseases (84), however, in cardiovascular diseases, IgE also
elevates. Serum IgE level increases in atherosclerosis, left heart
failure, and abdominal aortic aneurysm (85–87). A variety
of research studies indicate that IgE contributes to PAH/PH
development. Ovalbumin (OVA) is an antigen commonly used
in mice asthma models (31). OVA-stimulated mice exhibited
pulmonary vascular remodeling without right ventricular systolic
pressure (RVSP) elevation. The mice that received Sugen 5416
pre-injection showed severe PH when combined with OVA
stimulation (88). Moreover, hypoxia combined with OVA-
induced mice PH development (32). These observations indicate
the contribution of IgE in PAH/PH development. IgE production
occurs when B cells interact with Th2 cells (33, 35). As Th2
cells and Th2 response present in clinic PAH and experimental
PH (31, 32), these facilitate B-cell class-switching into IgE
isotype. Indeed, in the Th2 activation model, IgE elevated
in bronchoalveolar lavage fluid (BALF) of PH subjects (32).
Mast cells are one of the effector cell types of IgE, as it
expresses the IgE high-affinity receptor FcεRI. FcεRI binds
with IgE Fc fragment through its subunit (72). In clinic PAH
and experimental PH, mast cells infiltrate and locate around
pulmonary vessels (6, 89, 90). Mast cells inhibition prevents PH
development in MCT-induced rats (11). Upon IgE stimulation,
mast cells release vascular endothelial growth factors, IL-6, IL-
13, and IL-33 (91). These growth factors and cytokines have
been reported to contribute to perivascular inflammation and
vascular remodeling (92–95). These results strongly suggest the
association of IgE in PAH/PH development. Omalizumab is an
IgE antagonist (96). Omalizumab is used in treating asthma
through blocking IgE (96). Blocking IgE through Omalizumab
attenuated left heart failure and abdominal aortic aneurysm
(85). Therefore, Omalizumab therapy is a promising strategy in
PAH/PH treatment once the contribution of IgE is demonstrated.

IgA Isotype
Immunoglobulin A is the secondmost abundant isotype in serum
immunoglobulins, but the most frequent subtype at the mucosal
site (97). IgA that is enriched in the respiratory system and
intestinal tract is named mucosal IgA, as it participates in host-
pathogen defense in the mucosal lumen. Mucosal IgA is dimeric
IgA (linked by J chain) while circulating serum IgA is monomeric
(98). Serum IgA elevation is reported in severe PH associated
with primary Sjögren’s syndrome (73), and IgA-producing
plasma cells are found in the blood of patients with IPAH
(51). IgA Fc receptor FcαRI (CD89) is expressed by neutrophils.
IgA activated neutrophils release leukotriene B4 (LTB4), which
attract more neutrophils infiltration (74). Neutrophils infiltration
and activation are observed in clinic PAH and experimental

PH. The activated neutrophils released neutrophil extracellular
traps (NETs), containing elastase, cytokines, chemokines, and
proteases (7). These contents cause tissue damage and vascular
disorder, such as ET1 release in PAECs and proliferation in
PASMCs (7, 99). These results showed that IgA might induce
neutrophil infiltration and activation in lung tissues of PAH/PH
subject through Fc receptor FcαRI, subsequently induce tissue
damage. Moreover, dimeric IgA also has a J chain structure
(81). Therefore, whether pIgR participates in IgA mediated
vascular dysfunction will be determined by the structure of IgA
(dimeric or monomeric structure). Several strategies have been
designed to block IgA and FcαRI to alleviate autoimmune injury.
MIP8a, the anti-FcαRI mAb, reduced neutrophils activation,
NETs formation, and tissue damage in rheumatoid arthritis (RA)
patients (100, 101). Also, the peptides that mimic IgA or FcαRI
sequences block the binding between IgA and FcαRI, decrease
the infiltration of neutrophils induced by IgA (102).

DISCUSSION

Growing evidence indicates that adaptive response occurred
in the lung tissues leads to local immunoglobulin production.
These results support the observation that IPAH patients without
autoimmune diseases also showed positive in auto-antibodies.
The injury of auto-antibodies focuses on (a) vascular damage
caused by antigen-antibody binding through Fab fragment; (b)
leukocytes attraction and activation by Fc receptor. Moreover,
the presence of TLOs and Th subtypes strongly suggested the
B-cell activation and the diversity of immunoglobulin isotypes.
IgE and IgA auto-antibodies might also exist besides IgG and
IgM. Macrophages, mast cells, and neutrophils are known as
participations in non-specific immunity. These innate immune
cells are attracted by chemokines and activated by non-specific
pathogens. Whether auto-antibodies are another attractors and
activators for these effector cells warrant further investigation.

Based on clinical observation and experimental animal
models, the production of auto-antibodies is both the cause
and the consequence of IPAH development. Auto-antigens in
pulmonary vessels should be phagocytized by APCs, which is
the prerequisite in initiating the antibodies production. However,
some experimental evidence is missing in this process: (a) if cell
injury and cell death are needed in phagocytosis by APCs; (b)
if antigen-presenting is stronger in mutation carriers. BMPR2
mutation promotes a pro-inflammatory and pro-apoptosis state
in the endothelial cells (103). Whether endothelial cell apoptosis
caused by BMPR2 mutation triggered APCs phagocytosis needs
further investigation. The present studies demonstrated that
AECAs promote adhesion and inflammation (64), other than the
proliferation (66) in normal endothelial cells. Whether AECAs
cause more severe vascular dysfunction in mutation carriers are
unknown. Considering the incomplete penetrance in BMPR2
mutation, we hypothesize auto-immunity acts as an additional
trigger that participates in disease progression in unaffected
mutation carriers.

Remarkably, the auto-antibodies identified in patients with
IPAH showed some similarities and differences with those
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in PAH with connective tissue diseases (PAH-CTD). Antigen
targets are the most obvious differences. For the patients with
IPAH, the antigen targets are exposed in pulmonary vessels, such
as Lamin A/C in endothelial cells (Table 2), however, the targets
in PAH-CTD are commonly nuclear (identified as antinuclear
antibodies) or DNA (identified as anti-double-stranded
DNA antibodies) (104). Then, the inner relationship between
auto-antibodies and PAH is different. In PAH-CTD, auto-
antibodies heavily deposit in the connective tissues prior to the
lung. PH is secondary to connective tissue diseases. However,
for the patients with IPAH, auto-antibodies impaired pulmonary
vessels first, while other tissues impairment is less reported.What
is in common is that, autoantibodies reported in two kinds of
PAH aggravate pulmonary vascular dysfunction. AECAs purified
from IPAH and PAH-CTD show pro-inflammatory and pro-
adhesive effects in endothelial cells, however, only AECAs from
PAH-CTD promote proliferation in endothelial cells (64, 66).
AFAs purified from the patients with SSC induced fibroblast
activation (58). Auto-antibodies targeting the smooth muscle
cells induced the contraction of cells (60). Auto-antibodies
found in the experimental PH models activated complementary
systems and aggravated inflammation in the PH lung (61).

Anti-inflammatory therapy has been evaluated for years. IL-6
is one of the most promising targets in treating the PAH (9). A
pre-clinical study showed blocking IL-6 is effective in attenuating
PH development in MCT rats, SuHx rats, and hypoxic mice
(9, 95, 105); however, the clinical trials of Tocilizumab (an IL-6
receptor antagonist) is less effective than expected (106). Other
targets are also considered, such as TNFα (etanercept) and IL-
1 (anakinra). Of note, the anti-inflammatory drugs are feeble

in suppressing the production of the immunoglobulin (4, 14),
therefore, the other strategy should be taken to decrease the
vascular injury caused by auto-antibodies. For IgE and IgA,
which are less important in maintaining host-defense, targeting
the immunoglobulins themselves (such as Omalizumab and
targeting IgE) or their Fc receptors (such as anti-FcαRI mAb
and targeting Fc receptor of IgA) might be effective in blocking
autoimmune response. More directly, targeting B cells might
limit the activation of B cells and slash the production of aberrant
immunoglobulins. Rituximab is an anti-human CD20 type I
chimeric antibody. Blocking CD20 by rituximab inhibits the
proliferation of stimulated B cells. Rituximab is used to treat
certain autoimmune diseases through decreasing auto-antibody
production. The clinical trial revealed rituximab improved
6MWD in patients with PAH-CTD (NCT01086540). Whether
restricting B cells affects IPAH development and whether
rituximab is listed as first-line treatment will be uncovered in the
near future.
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