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Background

Alzheimer's Disease (AD) is associated with neurofibril-
lary tangles containing tau proteins, and with extracellular
amyloid plaques containing fibrils formed by AB(1-40),

Abstract

Background: Soluble Alzheimer's AP oligomers autoinsert into neuronal cell membranes,
contributing to the pathology of Alzheimer's Disease (AD), and elevated serum cholesterol is a risk
factor for AD, but the reason is unknown. We investigated potential connections between these
two observations at the membrane level by testing the hypothesis that APB(I—42) relocates
membrane cholesterol.

Results: Oligomers of AB(1—42), but not the monomeric peptide, inserted into cholesterol-
containing phosphatidylcholine monolayers with an anomalously low molecular insertion area,
suggesting concurrent lipid rearrangement. Membrane neutron diffraction, including isomorphous
replacement of specific lipid hydrogens with highly-scattering deuterium, showed that AB(1—42)
insertion was accompanied by outward displacement of membrane cholesterol, towards the polar
surfaces of the bilayer. Changes in the generalised polarisation of laurdan confirmed that the
structural changes were associated with a functional alteration in membrane lipid order.

Conclusion: Cholesterol is known to regulate membrane lipid order, and this can affect a wide
range of membrane mechanisms, including intercellular signalling. Previously unrecognised ApB-
dependent rearrangement of the membrane sterol could have an important role in AD.

AB(1-42) and AB(1-43), amyloid-p (AB) peptides gener-
ated by intracellular proteolytic cleavage of Amyloid Pre-
cursor Protein (APP), specifically the neuronal membrane
APP homologue, APLP-1. Although AP peptides, espe-
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cially AB(1-42), are known to play an active role in the
development of AD [1], recent observations suggest that
extracellular AP fibrils and plaques are relatively inert [2],
like other amyloid fibrils (e.g. those formed by Islet Amy-
loid Polypeptide, IAPP [3]), raising questions about the
precise mechanism of AP peptides.

Attention has recently become focussed on pre-fibrillar A
assemblies, especially globular oligomers [4-6] normally
containing from 2 to 6 molecules. Unlike mature fibrils,
AP oligomers are soluble and "membrane-active". They
may be crucial to the toxicity of AB because they can form
specific ion channels, or disrupt and permeabilise mem-
branes through less well-defined mechanisms [7]. Inter-
estingly, different AB peptides form specific, soluble
oligomers in diverse ways [6], which could help to explain
their individual "toxicities", and although early studies
suggested that monomeric AP, as opposed to oligomeric
AP, formed discrete ion channels [8], the active species
may well have been a (lipid-promoted) oligomer [9]. In
terms of a testable theory to explain the mechanism of
AD, membrane permeabilisation by membrane-active
forms of A could compromise cell function and promote
cell death [10].

Although the precise role of AB oligomers in AD remains
speculative, their discovery calls for caution in the use of
plaque-disrupting anti-Ap antibodies [11], because
increasing the relative levels of membrane-active forms of
AP might in fact accelerate the disease. These recent find-
ings have also highlighted significant gaps in our under-
standing of the structural basis of the interactions of AP
peptides with cell membranes, including the importance
of individual membrane lipids, especially cholesterol.
Cholesterol is a well-established risk factor in AD, but its
role is complex, and many of its disease-related activities
appear to be metabolic [12] rather than structural. How-
ever, a plasma-membrane like concentration of choles-
terol (30 mol%) promoted AB(1-40) insertion and
channel formation in planar lipid bilayers [13], suggest-
ing the (non-esterified) sterol (as opposed to total choles-
terol, including circulating cholesterol esters) may be
directly implicated in the pathological mechanism of AB
at the level of the cell membrane. We set out to test the
idea that well-defined oligomers [4] of AB(1-42) can
insert into cholesterol-containing membranes, and pro-
mote changes in membrane structure.

Our first objective was to establish that oligomeric AB(1-
42) inserts into membranes, and to confirm that (as pre-
dicted) monomeric AB(1-42) does not. Having found
that cholesterol promoted the insertion of Af oligomers
into phosphatidylcholine monolayers, with a paradoxi-
cally small molecular insertion area suggesting concurrent
lipid rearrangement, we used lamellar neutron diffraction
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to locate the individual membrane components. We dis-
covered that peptide insertion is associated with signifi-
cant displacement of the sterol towards the polar surfaces
of the bilayer, leading to a measurable effect on mem-
brane lipid order.

Results

Autoinsertion of Af oligomers into membranes
Monolayers (Langmuir-Blodgett films) provide a useful in
vitro model system to investigate membrane/protein inter-
actions [14,15]. We noted that oligomeric AB(1-42), but
not monomeric AB(1-42), inserted spontaneously into
mixed chain palmitoyl-oleoyl phosphatidylcholine
(POPC) monolayers containing cholesterol (Chol) (Fig.
1a), with an exclusion pressure of ~20 mN/m (Fig. 1b).
Insertion was inhibited by 5 uM rifampicin, as shown pre-
viously for IAPP oligomers [16]. The oligomers also
inserted into negatively charged PO-phosphatidyleth-
anolamine/PO-phosphatidylserine monolayers, but not
into POPC monolayers in the absence of cholesterol, con-
sistent with the lack of AB channel activity in POPC planar
bilayers [13].

The oligomers had an unexpectedly small "molecular
insertion area" (Fig. 1c), especially in POPC/Chol, lower
than the minimum cross-sectional area of a single alpha
helix (~100 A2). This suggested that protein insertion was
accompanied by changes in lipid packing, with a net
reduction in lipid surface area, and we proceeded to exam-
ine the structure of AB/cholesterol-containing lipid bilay-
ers using membrane neutron diffraction.

Lipid profiles derived from lamellar neutron diffraction
data

Unlike X-rays, cold neutrons are well tolerated by biolog-
ical materials, and cause relatively little structural damage.
Taking advantage of this, neutron diffraction measure-
ments were carried out on multibilayer lipid samples
enclosed in airtight humidified chambers, with and with-
out pre-incorporated oligomeric protein. The lamellar D-
repeat of 7:3 (mol/mol) POPC:Chol multibilayers, calcu-
lated using the Bragg equation from 5 orders of diffraction
at a relative humidity of 93.6%, was 57.2 + 0.97 A (mean
+ SD, n = 3). This was slightly reduced following the incor-
poration of AB(1-42) oligomers, to 56.5 + 0.42 A (mean
+ SD, n = 6). However, the difference is not significant.
Observations over 24 hours confirmed that the diffraction
peak positions and intensities (areas) did not alter with
time, indicating the samples were fully equilibrated, and
remained structurally stable.

To help phase the diffraction data, and obtain more
detailed structural information, the lamellar D-repeat was
systematically varied by changing the membrane hydra-
tion. The D,0/H,0 ratio was also varied in samples with

Page 2 of 11

(page number not for citation purposes)



BMC Structural Biology 2006, 6:21 http://www.biomedcentral.com/1472-6807/6/21

d
110

4 — oligomer
904 —— —  monomer 1.5 uM

1.0 uM

surface area (cm?)
N
o
|

1.5 uM monomer

0 1000 2000 3000

oy
o

0.12 __-38
© 010 -O- POPCIChol 5 A =25 R?
D -+ POPE/POPS ® 40+ P
‘_cz 0.08 1 -\ POPC T
= 0.06 [=
= S 427
© 0.047 )
o S
@ 0.027 < 44+
< = 4
0.00 7 -
-0.02™ r Y v 4.6 v r r v . .
5 10 15 20 0 2 4 6 8 10 12
surface pressure (mN/m) surface pressure (mN/m)
Figure |

Insertion of AB(1-42) oligomers into lipid monolayers. Panel a illustrates spontaneous insertion of oligomeric but not
monomeric AB(1—42) into a monolayer containing 7:3 (mol/mol) POPC:Chol compresssed to a lateral surface pressure of |5
mN/m (representative of 6 similar experiments). Panel b shows exclusion of peptide oligomers at a surface pressure of ~20
mN/m in binary lipid mixtures containing POPE/POPS or POPC/Chol. Note the lack of insertion in POPC monolayers without
Chol. Panel c shows the molecular insertion areas of the peptide oligomer. All the points are means of 2 experiments, and the
molar concentrations of the peptide refer to the initial monomer concentrations.
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and without incorporated peptide, to determine the water
profile across the bilayer. Fig. 2 illustrates how the data
were fitted to assign signs (phases) to structure factors
derived from diffraction peak intensities. In Fig. 2a,
unscaled structure factors for 5 orders of diffraction at up
to 3 different relative humidities (i.e. up to 3 different
lamellar spacings) were plotted in reciprocal space and
systematically assigned positive or negative values to
achieve the best least-squares fit to a smooth continuous
transform, and thereby satisfy Shannon's sampling theo-
rem. The phased structure factors were then placed on a
relative absolute scale, and the scattering length density
profile (SLD) shown in Fig. 2b was derived by Fourier syn-
thesis.

As illustrated by the space-filling POPC molecular models
in part b, the lowest point of the profile, with negative
scattering, marks the exact centre of the bilayer, corre-
sponding to the hydrogen-rich terminal methyl groups of
the POPC acyl chains. The peaks of positive neutron scat-
tering are associated with the phosphoester region of
POPC, situated towards the polar surfaces of the bilayer.
The centrosymmetric "kinks" in the profile, ~10 A from
the midpoint, reflect the oleoyl acyl chain double bonds.
A table of all the experimentally derived structure factors
used to calculate transbilayer SLD profiles in the presence
of 8.06 mol% D,O, including the form factor errors from
the fitting procedure (see Methods), is provided in Addi-
tional File 1.

Ap oligomers displace membrane cholesterol

We next carried out experiments to locate the two mem-
brane lipids, POPC and Chol, in the presence and absence
of 1 mol% peptide, incorporated as pre-formed oligom-
ers. Appropriate neutron diffraction data were phased and
placed on a relative absolute scale, and SLD profiles were
constructed by Fourier synthesis. Difference (subtraction)
profiles revealed the transbilayer distribution of specific
membrane components, including components in which
specific hydrogen atoms were isomorphously replaced by
deuterium. As previously noted [17], 4 orders of diffrac-
tion were sufficient to achieve optimum (sub-A) resolu-
tion of the specifically labelled components, and the
mean positions of the labels were well-defined by sym-
metrical, single-component Gaussian distributions in
each leaflet of the centrosymmetric bilayer.

The location of membrane cholesterol was determined by
collecting and analysing data from membranes in which
the lipid was either unlabelled (protonated), or deuter-
ated on its planar sterol rings. The resulting difference pro-
file (Fig. 3a) was compared to a difference profile from
samples containing AB(1-42) oligomers (Fig. 3b). Strik-
ingly, in the presence of the peptide, membrane choles-
terol was displaced towards the surface of the bilayer, by
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Calculation of bilayer scattering length density pro-
files from neutron diffraction data. Panel a shows struc-
ture factors obtained from POPC/Chol (70:30 mol%)
membranes, and fitting to a continuous transform for phase
determination (- - + - + for orders #1-5 in this example).
The data points (open circles) include measurements at up to
3 different relative humidities (i.e. 3 different lamellar spac-
ings). Panel b shows the scattering length density (SLD) pro-
file calculated by Fourier synthesis using the signed form
factors obtained in part a, after scaling the data to match the
mean scattering length of the bilayer unit cell. The main fea-
tures of the centrosymmetric profile, corresponding to the
space-filling model of POPC, are described in detail in the
text.

2.0 A in each leaflet. The 95% confidence limits of the
experimental profiles (shown for regions corresponding
to the maxima of the two difference peaks) were well sep-
arated, and the calculated fits showed a highly significant
difference in the position of membrane cholesterol with
and without the peptide (P < 0.001). In contrast, the posi-
tion of the (labelled) phospholipid acyl chains was only
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slightly altered, in the opposite direction (Fig. 3, parts ¢
and d).

The membrane locations of Af3 oligomers and water

A similar difference Fourier approach was used to locate
the peptide oligomer, and membrane-associated water, in
bilayers containing cholesterol (Fig. 4). Two centres of
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mass were apparent for the unlabelled peptide oligomers,
each 13.0 A from the centre of the bilayer, consistent with
deep penetration of the peptide into each leaflet of the
membrane. Transbilayer water distributions were revealed
by comparing the SLD profiles of paired samples, with or
without incorporated peptide, between 8.06 mol% D,O,
where the water is effectively "invisible" to neutrons, and
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Displacement of membrane cholesterol by AB(1-42) oligomers. Panels a and b illustrate how the positions of the
labels in deuterated Chol were determined, in the presence and absence of AB(1—42), respectively. The solid black lines are

the SLD profiles obtained with unlabelled Chol, and the solid red lines are the profiles with labelled Chol. The dotted lines are
the corresponding difference (plus or minus peptide) profiles, and the dashed lines are best-fit single Gaussian fits to these dif-
ference profiles, showing peaks at 15.11 % 0.39 A from the bilayer centre (without peptide), and 17.06 + 0.26 A from the
bilayer centre (with peptide), respectively (mean mid-peak positions + SD). The errors bars show the 95% confidence intervals
of the SLD profiles at the mid-difference profile positions. Panels ¢ and d show similar difference profiles and fits without and
with membrane AB(1—42) for the uniformly-labelled palmitoyl acyl chains of POPC, with similar figure labelling.
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20 mol% D,O, where it diffracts strongly. Unlike IAPP)
[18], the incorporation of AP oligomers was not associ-
ated with a pore-like water column extending all the way
through the bilayer, and the water profiles were very sim-
ilar in the presence and absence of the peptide (Fig. 4).

Membrane lipid order

The relatively rigid, planar rings of membrane cholesterol
intercalate between the flexible acyl chains of neighbour-
ing phospholipids, making the sterol a key determinant of
membrane lipid order in eukaryotic cell membranes. To
determine whether the outward displacement of choles-
terol affects membrane lipid order, as predicted, we calcu-
lated the generalised polarisation (GP) of laurdan, which
undergoes a water dipole-dependent shift in its emission
spectrum that can be directly related to lipid order.
[19,20]. At 25°C, membrane POPC was highly disor-
dered, as expected, with a very low mean GP (Fig. 5). The
value was unchanged in liposomes co-reconstituted with
1 mol% AP oligomers, which do not insert into POPC
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Figure 4

Intramembrane positioning of A3(1-42) oligomers,
and the distribution of membrane water. The peptide
was localised (dotted green line) by subtracting profiles
obtained in 8.06 mol% D,O in the presence and absence of
the peptide (dashed and solid black lines, respectively). The
difference profile was fitted to 2 Gaussian distributions (solid
green lines), as described for Fig. 3. The water difference
profiles (dotted blue lines) were constructed by subtracting
profiles obtained in 8.06 mol% D,O in the presence and
absence of peptide, from profiles of the same samples in 20
mol% D,O (dashed and solid red lines, respectively). The
water distributions are fitted to single Gaussians (dashed and
solid blue lines, with maxima at the edges of the profiles).
Note the substantial overlap in the presence and absence of
peptide.
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membranes in the absence of cholesterol (Fig. 1b). The
GP value for POPC/Chol liposomes was much higher,
reflecting the appearance of an ordered, cholesterol-medi-
ated, Lo phospholipid phase. The incorporation of AB(1-
42) was accompanied by a significant increase in lipid
order, whereas co-reconstitution of liposomes with the
non-membrane active reverse peptide, AB (42-1), had no
effect.

Discussion

Experimental materials

We reconstituted AB(1-42) rather than partial-length pep-
tides, to enhance the relevance of our in vitro structural
studies to the interaction of AB peptides with cholesterol-
containing membranes in vivo. We also avoided mixing
lipids and proteins in non-physiological organic solvents,
and prepared membrane-active water-soluble oligomers,
as described in the Background to this report. Finally, we
used POPC, containing one saturated and one mono-
unsaturated acyl chain. POPC has a main chain melting
(gel to liquid-crystalline phase transition) temperature
close to 0°C, well below the experimental temperature of
25°C, but because it is a synthetic mixed-chain phosphol-
ipid, it cannot physically separate into complex 2-compo-
nent mixtures containing saturated and unsaturated
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Figure 5

Modification of membrane lipid order by AB(1-42)
oligomers. Lipid order as reported by laurdan GP analysis
("laurdan GP") is low in POPC liposomes reconstituted with
or without the peptide, but the GP values are much higher in
the presence of 30 mol% cholesterol, consistent with phos-
pholipids in mixed liquid ordered (Lo) and liquid disordered
(Ld) phases. The disorder decreases significantly in liposomes
reconstituted in the presence of AB(1—42) but not AB(42—-1).
All the data are means + SD of 6 independent experiments
carried out at 25°C.
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phospholipids. However, it still allows membrane choles-
terol to intercalate normally in the bilayer [21].

Many previous structural studies have been carried out on
the amyloidogenic AP fragment AB(25-35), including
membrane-based studies involving (small angle) X-ray
diffraction [22] and neutron diffraction [23]. The frag-
ment can be incorporated into both neutral and nega-
tively-charged bilayers, and like AB(1-42) it is located
within the hydrophobic, acyl-chain region. The peptide
was exposed to lipid membranes for prolonged periods of
up to 90 min, and could have become incorporated as an
oligomer or as a monomer. AB(1-40), a physiological
form of AP, has also previously been incorporated into
monolayers [24]. The membranes had to be negatively
charged, as in the present study in the absence of choles-
terol, and the exclusion pressure was between 20-32 mN/
m, also similar to the present study, again suggesting that
spontaneous insertion requires relatively "loose" lipid
packing. Interestingly, the AB(1-40) solution was equili-
brated for 1-2 hours in a low-ionic strength buffer at
room temperature. AB(1-40) comprises a mixture of
monomers and oligomers [6], and incubation for 1-2
hours will have encouraged polymerisation [4].

Membrane autoinsertion of Af(1-42) oligomers
AB(1-42) oligomers (but not monomers) incorporated
spontaneously into POPC monolayers containing choles-
terol, but not into pure POPC monolayers. Their paradox-
ically small molecular insertion area (< 100 A2) suggested
concomitant lipid rearrangement, and membrane neu-
tron diffraction showed that peptide insertion was accom-
panied by significant outward displacement of membrane
cholesterol as the peptide was accommodated between
the POPC acyl chains. Lamellar diffraction does not probe
structures in the plane of the bilayer, and any expansion
of the unit cell in this direction would remain undetecta-
ble on the "per lipid" scale we adopted. However, despite
our inability to see lateral reorganisation due to peptide
insertion, we noted slight membrane thinning in the pres-
ence of the peptide (compare Fig. 3c to Fig. 3d), consistent
with the idea that the protein is accommodated between
the phospholipid acyl chains. This reflects the conserva-
tion of lipid volume. Briefly, following insertion of a pep-
tide taking up potential "lipid headgroup" space, a larger
"effective surface area" per lipid will require a reduction in
length, and shift the centre of mass towards the centre of
the unit cell.

Our study does not provide detailed information about
the structure of membrane-located AB oligomers, other
than to suggest that (because of their position) the local
environment is highly non-polar. NMR structures of mon-
omeric AB(1-42) in an apolar solvent revealed a hairpin-
like molecule containing two a-helices between residues

http://www.biomedcentral.com/1472-6807/6/21

8-25 and 28-38, respectively [25]. However, the confor-
mations of the AB peptide in oligomers may differ sub-
stantially, and further insights may only be possible when
the solution or membrane structures of the membrane-
active oligomers become available. The absence of a con-
tiguous "transbilayer" water profile (c¢f[18]) does not
entirely exclude the possibility of proteineaceous trans-
membrane channels, which may be mostly closed in our
conditions. The discrete peptide peaks may, however,
argue against a conventional transmembrane protein
pore.

At 25°C, POPC membranes containing 30 mol% choles-
terol adopt a mixture of fluid, liquid-ordered (Lo) and lig-
uid disordered (Ld) phases [26], and the sterol is laterally
well-dispersed [21]. In our study, in the absence of A, the
centre of mass of (labelled) membrane cholesterol (15.1
A from the centre of the bilayer in each membrane leaflet)
places its hydroxyl group 17.0 A from the bilayer centre,
just into the hydrophilic region of the bilayer [27]. This is
consistent with promotion of the Lo phase. Outward dis-
placement of the sterol by 2 A in the presence of AB(1-42)
oligomers increased membrane lipid order, consistent
with the effect of AB(1-40) on membrane lipid order pre-
viously reported by the steady-state anisotropy of diphe-
nylhexatriene in cholesterol-containing liposomes [28],
which also required aggregated forms of AP [29]. "Verti-
cal" (as opposed to lateral) relocation of membrane cho-
lesterol, even to the extent of "extruding" the sterol [30],
together with accompanying changes in membrane lipid
order, could have an important impact on cell mem-
branes [31], affecting for example receptors [32], signal
transduction systems [33] and endocytosis [34].

Ap(1-42) oligomers and cholesterol as risk factors for AD
Kuo et al. [35] noted over 10 years ago that the cerebral
cortices of brains from patients with AD contained a large
excess of water-soluble forms of AB(1-40) and AB(1-42),
including monomeric and oligomeric forms of the pep-
tides. In primary human neurones, dimers actually
appeared to form within the cell itself [36], and in experi-
ments on animals, dimers and trimers were shown to
inhibit synaptic long-term potentiation (LTP) in vivo [37].
LTP is believed to be a key molecular process underlying
some forms of learning and memory, and this important
modification was mainly caused by trimers [38]. Dimers
and tetramers are less effective [38], and memory deficits
in Tg2576 mice (transgenic animals that express a human
AD-associated APP variant) have recently been attributed
to oligomers containing up to 12 peptides [39]. In line
with all these findings, localisation studies (e.g. [40] have
supported the idea that oligomeric forms of Ap preferen-
tially associate with synaptic membranes.
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Cholesterol affects the production of Ap peptides, consist-
ent with its multiple, complex roles in cells [12], but
increased levels of the peptides appear to be associated
with low, not high, membrane cholesterol [41], as seen
for example with the reduced membrane choles-
terol:phospholipid ratio in post-mortem brain samples
from patients with AD [42]. Cholesterol-deficient cell
membranes are also more susceptible to the destabilizing
effects of AP [10]. These observations appear to suggest
that increasing the amount of the membrane sterol ought
to protect against AD, and increased serum cholesterol
may be a risk factor for completely unrelated reasons [41].
Yip et al. [43] applied fibrillar and oligomeric forms of
AB(1-40) to NGF-differentiated PC12 cells, and found
that adding cholesterol reduced cell surface AB staining,
whereas depleting membrane cholesterol (using cyclodex-
trin) increased staining. The authors suggested that ele-
vated (membrane) cholesterol is a risk factor for AD
because it increases membrane lipid order, which in turn
inhibits the interaction of A} with the membrane, leaving
more of the peptide free in the extracellular space to form
potentially damaging fibrils.

Our structural study has focussed on oligomeric AB(1-42)
rather than fibrillar AB, and we have demonstrated that
membrane cholesterol relocates towards the bilayer sur-
face following spontaneous incorporation of the peptide.
This is consistent with the known toxicity of AB oligomers,
and also with the previous observations of Yip et al. [43],
where AB oligomers and membrane cholesterol appeared
to "compete" for a similar membrane location. Relocation
of the free sterol following the autoinsertion of AB(1-42)
oligomers could affect many important membrane proc-
esses both directly and indirectly (e.g. by changing mem-
brane lipid order), and we suggest that the transbilayer
location of membrane cholesterol may be a key factor in
AD.

Conclusion

Oligomeric AB(1-42) autoinserts spontaneously into
cholesterol-containing membranes, and insertion is
accompanied by striking outward displacement of the
sterol by 2 A in each membrane leaflet, leading to func-
tional alterations in membrane lipid order. Our findings
suggest that in patients with AD, the specific membrane
location of cholesterol may be more important than the
absolute amount. Even if membrane cholesterol is
reduced in AD (perhaps because it is displaced or extruded
by AP oligomers), any increase in the amount that
remains (induced, for example, by an elevated serum cho-
lesterol concentration) could have a very marked effect on
neuronal cell function, because of the unusual location of
the lipid.

http://www.biomedcentral.com/1472-6807/6/21

Methods

Materials

POPC, POPC labelled with deuterons on the palmitoyl
chain, PO-phosphatidylethanolamine (POPE), PO-phos-
phatidylserine (POPS) and cholesterol were purchased
from Avanti Polar Lipids (AL, USA). Chol containing 6
non-acyl deuterons ([2,2,3,4,4,6-2H,) cholesterol) was
obtained from CDN Isotopes (Pointe-Claire, Quebec,
Canada). Laurdan (6-dodecanoyl-2-dimethylaminonaph-
thalene), from Molecular Probes Europe (Invitrogen, Pais-
ley, UK), was a kind gift from Rory Duncan (University of
Edinburgh). Alzheimer's AB(1-42) and AB(42-1) pep-
tides were synthesised by Biopeptide (San Diego), and
AB(1-42) oligomers were prepared and separated from
fibrillar AB as detailed previously [4] (Additional File 2.).
Protein concentrations were determined by the micro Bio-
Rad procedure, using AB(1-42) standards.

Langmuir-Blodgett (LB) films

LB films (monolayers) were formed as previously
described [16] in a Nima Technology trough (Coventry,
UK), and experiments were carried out under both con-
stant area and constant pressure conditions. Exclusion
pressures were determined by clamping the surface area at
different initial surface pressures (1, mN/m), and measur-
ing the change in © over 200 s. Peptide molecular inser-
tion areas (A,) were determined by clamping n and
measuring the relative change in monolayer area (AA)
over 200 s. Given that AA, = A, .exp(-A,n/kT), In(AA,,/
Ap,) =-A,/kTn, so that the slopes of suitable plots provided
-A,/KT (where KT is 4.2 x 10-2! Joules).

Sample preparation for neutron diffraction

POPC and Chol were weighed in glass tubes and dis-
persed in chloroform at a total lipid concentration of 50
mg/ml and a molar ratio of 7:3, respectively. The chloro-
form was removed by drying under a stream of N, to leave
a thin lipid film, and drying was completed under vacuum
for at least 12 hrs. AB(1-42) oligomers (450 ng/ml), pre-
pared as described above, were dialysed for 2-3 hours
against ultrapure water containing 20% (w/v) PEG 32K
(adjusted to a pH of 7.4 with a trace of KOH), to reduce
the projected final sample volume to 0.5 ml. The dried
lipid films were re-wetted in pure water or a solution of A
oligomers (1 mol%, calculated as the original monomer
concentration), and the components were mixed by bath
sonication under N, until the lipid film had been com-
pletely resuspended to produce a turbid, multilamellar,
proteolipid vesicle suspension. This was then applied to a
clean silicon crystal substrate, allowed to dry undisturbed
in air to avoid the formation of air bubbles, and finally
dried to completion under vacuum. The dried multibilay-
ers were mounted in sealed sample cans immediately
before use, and rehydrated in situ as described below.
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Neutron data collection

Lamellar diffraction measurements were carried out on
membrane diffractometer N5 at the Canadian Neutron
Beam Centre (CNBC), Chalk River Laboratories, Ontario,
Canada, using a wavelength of 2.37 A. Samples contain-
ing 10 mg lipid were thermostatically maintained at 25°C
in the presence of saturated solutions of KCI, KNO; or
K,SO,in 8.06 mol% or 20 mol% D,O. The salt solutions
set the relative humidity to 84.3%, 93.6% or 97.3%,
respectively. We ensured that the entire sample remained
vertical and completely within the beam as the sample
holder was rotated by & degrees and the detector was
scanned around 26 to record Bragg peaks. Data corre-
sponding to 1-5 orders of diffraction were collected with
counting errors below 1%, and corrected for variations in
beam intensity.

Neutron data analysis

After fitting and subtracting the backgrounds around the
Bragg reflections, peak areas (intensities,I) were fitted to
Gaussian distributions using PeakFit (SPSS), and the
lamellar repeat distance (Bragg spacing, d) was calculated
by least squares fitting the midpoints of the peaks to the
Bragg equation: n/ = 2d.sind,, for orders n = 1 to 5. Struc-

ture factor amplitudes (SFA) were calculated by square-
rooting the corrected peak intensities:

|F(q)| = /CupsCiorI - The correction factor C = af(1-€%)

was applied to account for neutron absorption (@ = 2 uz/
sing, where 4 is the calculated absorption coefficient and
z is the sample thickness) and the geometric Lorentz cor-
rection factor C,, = sin26 was applied to compensate for
the fixed axis of rotation of the sample.

8.06 mol% D,O does not contribute to the diffraction
pattern (because at this molar ratio the negative scattering
of hydrogen nuclei is exactly balanced by the positive scat-
tering of oxygen and deuterium nuclei), so structure fac-
tors obtained from samples in 8.06 mol% D,O at 3
different relative humidities (i.e. with 3 different lamellar
repeats) were phased directly in reciprocal space by recon-
structing the continuous form factor curve using Shan-
non's sampling theorem. The procedure was carried out as
previously described [44], simultaneously least squares
fitting the data to sets of model structure factors F(H),
each corresponding to a d repeat of D.

Hmax
F(h) Y, F(H)[sin(zDh/d-rH)/(xDh/d-nH)] (1)
H=0

The form factors and scattering length density profiles (see
Eq. 3 below) were scaled to match p(0), the average scat-

http://www.biomedcentral.com/1472-6807/6/21

tering length density of the unit cell, defined as a bilayer
(two monolayers):

p(0) = 2/d(byp + byre)  (2)

where b, and b, represent the coherent scattering
lengths of an "average" lipid molecule and 1 mol% pep-
tide (where present), respectively. Note that F(0) corre-
sponds to p(0)d/2. The scattering lengths of the
component atoms were obtained from standard tables.
Finally, the phased and scaled structure factors and corre-
sponding Bragg spacings were used to reconstruct trans-
bilayer coherent neutron scattering density profiles by
Fourier synthesis:

Hmux
p(x)=p(0)+2/d Z F(h)cos(2rxh /d) (3)
H=1
Although the composition of the unit cell is known, its
volume (S x d, where S is the "average" area per lipid) is
not. However, multiplying both sides of equation [3] by S
introduced a "per lipid" scale, and provided convenient
dimensionless units of "scattering density" [45]. The
errors of the profiles were calculated from.

Hmwc
Ap(x)=2t/d] Y (AF(h))* cos® (2rxh /d)]* (4)
H=0
where Ap(x) is the error in x at a confidence limit of 95%
(t = 1.96), and 4F(h) are the (independent) form factor
errors from the fitting process described by equation [1].

Membrane lipid order

Multilamellar lipid (or proteolipid) vesicles were pre-
pared exactly as described for membrane neutron diffrac-
tion, apart from the addition of 5 mol% laurdan.
Measurements were carried out at 25°C (at a lipid concen-
tration of 50 uM) in a Shimadzu RF-5000 spectrofluoro-
photometer, using the protocol previously described [20],
and following excitation at 350 nm generalised polarisa-
tion (GP) was calculated from the relationship: GP = (I35
- Iso0)/ (Iuss + Isg0), Where 1,55 and I are the steady-state
emission intensities at 435 nm and 500 nm, respectively.

Statistical analysis
Differences were assessed by t-testing, and were consid-
ered significant if P < 0.05.

Abbreviations

AB, amyloid-B protein; AD, Alzheimer's Disease; Chol,
cholesterol; GP, generalised polarisation; POPC, palmi-
toyl-oleoyl phosphatidylcholine; SLD, scattering length
density.
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Additional material

Additional file 1

Structure factors obtained in 8.06 mol% D,O. Q is the peak position in
reciprocal space, and F(h) and AF(h) are the form factors and their
errors, respectively.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-6-21-S1.PDF]

Additional file 2

Oligomeric profile of AB(1-42). Six independent oligomer preparations
(0,-Oy) were subjected to non-reducing 16.5% (w/v) Tris-Tricine SDS-
PAGE with silver staining, as described by Lambert et al. [4], using Bio-
Rad Precision Plus unstained markers supplemented with human insulin
(lanes labelled "S" in each experiment). The first gel includes a sample of
monomeric AP(1-42) prior to oligomerisation, which was carried out as
described [4]. Three major molecular species of A(1-42) — monomer,
trimer and tetramer — are arrowed to the right of the gels. The overall grey
background arises from the silver staining procedure (PlusOne Silver
Staining Kit, Amersham Pharmacia Biotech).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-6-21-S2.pdf]
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