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Abstract | Autologous haematopoietic stem cell transplantation (AHSCT) is a 

multistep procedure that enables destruction of the immune system and its 

reconstitution from haematopoietic stem cells. Originally developed for the treatment 

of haematological malignancies, the procedure has been adapted for the treatment of 

severe immune-mediated disorders. Results from ~20 years of experience make a 

compelling case for selective use and further trials of AHSCT in patients with highly 

active multiple sclerosis (MS). Immunological studies support the notion that AHSCT 

causes qualitative immune resetting, and have provided insight into the mechanisms 

that might underlie the powerful treatment effects that last well beyond recovery of 

immune cell numbers. Indeed, studies have demonstrated that AHSCT can entirely 

suppress MS disease activity for 4–5 years in 70–80% of patients, a rate that is 

higher than those achieved with any other therapies for MS. Treatment-related 

mortality, which was 3.6% in studies before 2005, has decreased to 0.3% in studies 

since 2005. Current evidence indicates that the patients who are most likely to 

benefit from and tolerate AHSCT are young, ambulatory and have inflammatory MS 

activity MS. Clinical trials are required to rigorously test the efficacy, safety and cost-

effectiveness of AHSCT against highly active MS drugs.
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Ablation of the immune system followed by autologous haematopoietic stem cell 

transplantation (AHSCT) for the treatment of multiple sclerosis (MS) has been 

explored for approximately two decades, since the original, pivotal report of its 

feasibility1. Studies have demonstrated that AHSCT has a high efficacy for the 

suppression of inflammatory MS activity (clinical relapses and activity detectable with 

MRI)2,3 and provided evidence that the procedure leads to neurological improvement 

in patients with relapsing–remitting MS (RRMS)4. AHSCT-related mortality, which 

was initially high and deterred referrals for the treatment (offered either in trials or 

compassionately) has decreased over the past decade. The field has been 

strengthened by mechanistic studies that have demonstrated that so-called immune 

resetting underlies the anti-inflammatory effects of the treatment5-8 and by the 

publication of clinical studies in the past 2 years that have demonstrated 

considerable efficacy and acceptable safety9-14. Furthermore, mass media has 

repeatedly featured AHSCT, raising public interest but also inducing some unrealistic 

expectations among patients with MS and their families, as well as causing confusion 

among clinicians who are inexperienced in this treatment.  

 

In this Review, we aim to provide a clear and informative description of the treatment 

procedure for AHSCT, and an overview of current knowledge and outstanding 

questions about the mechanism of action of the treatment. We then present an up-to-

date critical analysis of the published evidence on the efficacy and risks of AHSCT, 

and give our expert opinion on optimal patient selection and treatment methodology. 

We also discuss further research required to optimally define the safety, efficacy and 

cost-saving opportunities of AHSCT compared with currently approved therapies for 

MS. 

 

[H1] Unmet needs in MS therapy 

MS affects over 2.3 million people worldwide and is the most common nontraumatic 

cause of disability in young adults. Besides the incalculable effect on individuals’ 

quality of life, the annual fiscal cost of MS in Europe has been estimated at €14.6 

billion15. Nevertheless, the development of treatments for MS has been a success 

story since the 1990s, when the first therapeutics were licensed for the treatment of 

RRMS. The introduction of the number of brain lesions detected with MRI as an 

outcome in phase II trials in RRMS has accelerated the licensing of new therapies 

owing to its excellent association with relapses in trials of up to 3 years16. At least ten 

disease-modifying treatments are now available for RRMS. Treatment development 

in RRMS has been characterized by phase II trials in which the MRI markers of 
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disease activity have been targeted, and phase III trials of up to 3 years in which 

clinical relapses and/or evolution of disability evolution have been targeted. However, 

trials have not demonstrated consistent effects on disability progression which has 

the greatest impact on the lives of people with MS. In addition, little evidence is 

available to inform the optimal choice of disease-modifying treatment for individual 

patients or when to stop and change therapy. Opinions and practices are split 

between escalation and induction approaches. In escalation therapy, the safest 

agent — which is not necessarily the most effective — is tried first and more active 

agents, which usually entail higher risks, are only used if disease activity persists or 

breaks through. Induction therapy aims to stop or cure the condition before it 

produces major adverse effects, although might be associated with higher risks. 

Alemtuzumab is the licensed therapy that most closely meets the definition of an 

induction therapy, but is used more frequently after failure of first-line agents.  

 

Besides uncertainty about optimal treatment strategies for RRMS, clear unmet needs 

exist for effective disease-modifying treatment in certain sub-groups of MS: 

aggressive MS, treatment-refractory MS and progressive MS (Box A). These non-

mutually exclusive groups can occur at different stages in the natural history of MS, 

but are all thought to be associated with a worse prognosis than mild to moderate 

RRMS that responds adequately to disease-modifying treatment. 

 

AHSCT is a one-off treatment designed to eradicate or induce long-term suppression 

of MS, and could meet the definition of an ideal induction therapy that could be used 

to treat even the most aggressive disease. To date, however, AHSCT has 

predominantly been employed as a rescue therapy after an escalation sequence in 

which more than one line of treatment has failed. 

 

[H1] Fundamentals of AHSCT 

 

Haematopoietic stem cell transplantation is a well-established multistep procedure 

designed to replace the blood and lymphoid systems of a patient with a new one 

derived from haematopoietic stem cells (HSCs). HSCs can be collected from either a 

healthy donor (allogeneic transplantation) or from the patient (autologous 

transplantation). The procedure has been used extensively in the past 50 years for 

the treatment of aggressive haematological malignancies, such as leukaemia and 

lymphoma17. Allogeneic transplantation is most frequently used for malignant 

indications, but carries the risk of graft-versus-host disease (GVHD), which increases 
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transplant-related mortality. The risk is partially offset by a lower incidence of 

leukemia relapse than that observed with autologous transplantation, an advantage 

that is attributed to a graft-versus-leukaemia effect. The prevention of relapse by 

means of graft-versus-host effects has also been reported in autoimmune disease 

(graft-versus-autoimmunity)18, but the risk of transplant-related mortality from 

allogeneic transplantation is generally considered unacceptable in non-neoplastic 

diseases. Consequently, only autologous transplantation is being developed for the 

treatment of MS19. 

 

[H2] The procedure 

The AHSCT procedure comprises four main steps: HSC mobilization, HSC 

harvesting, ablative conditioning and HSC re-infusion or ‘transplantation’ (Figure 1). 

Initially, HSCs were obtained by aspiration of the bone marrow, but are increasingly 

harvested from peripheral blood after so-called mobilization. HSC mobilization (step 

1) involves administration of granulocyte colony-stimulating factor (G-CSF), either 

alone or with cytotoxic chemotherapy, such as cyclophosphamide. HSCs that have 

been mobilized are then harvested from peripheral blood by leukoapheresis (step 2). 

The HSCs are cryopreserved and stored frozen until the patient is ready for 

transplantation. Before transplantation, ablation of the haemato-lymphopoietic 

system is achieved with high-dose chemotherapy (or chemo-radiotherapy when 

associated with total body irradiation, which is no longer used for MS but is for other 

indications; this stage is known as the preparative or conditioning regimen (step 3). 

Immediately after completion of the conditioning regimen, patients develop 

pancytopaenia and a transient bone marrow aplasia, and intravenous infusion of the 

stored HSCs (transplantation, step 4) is required to enable marrow repopulation, 

recovery of haematopoiesis, and immune reconstitution. 

The duration of steps 1 and 2 is 5–15 days, depending on the protocols employed, 

and can be performed in day care or with a short hospital admission. Steps 3 and 4 

require hospital inpatient admission to enable close monitoring and supportive care. 

Ablative conditioning therapy generally starts at least 2–4 weeks after completion of 

HSC harvesting, but should not be delayed if it is safe to proceed. Patients are 

usually admitted for 3 weeks20. 

 

[H2] Mechanisms of action 

 

[H3] Rationale 
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Immune-related genetics are important in the aetiology of MS: the HLA-DR15 

haplotype is a major risk factor, and >100 common genetic variants — which are 

enriched for immunologically relevant genes — are associated with the disease21. 

However, genetics explain only a small amount of the risk of developing MS. Several 

environmental risk factors, including Epstein–Barr virus infection22, low vitamin D3 

levels 23, smoking24 and obesity25, have been identified. Events that can initiate MS 

have not yet been identified, but current evidence suggests that the process involves 

aberrant activation or failed regulation of proinflammatory T cells, including CD4+ TH 

cells that secrete IFN-γ (TH1 cells), IFN-γ and IL-17 (TH1* cells), and IL-17 alone 

(TH17 cells). In pattern II MS pathology, TH2 cells26 have been identified, together 

with CD8+ T cytotoxic cells, B cells and macrophages. Detailed information about the 

immunopathological process is available elsewhere27,28. On this basis, the application 

of AHSCT to MS is intended to eliminate the aberrant adaptive immune system via 

the conditioning regimen and subsequently rebuild the immune system in the hope 

that immune tolerance will be re-established. 

 

  

[H3] Immune resetting 

Studies from the past decade have shown that rebuilding of the immune system is 

indeed possible. Immediately after the AHSCT procedure, a broad spectrum of 

lymphoid and myeloid cells is either completely eliminated or depleted (depending on 

the intensity of the conditioning regimen) — these cells include adaptive immune 

cells (T cells and B cells) and innate immune cells (natural killer cells, dendritic cells, 

monocytes and granulocytes). Subsequently a ‘new’ immune system gradually 

develops from the CD34+ haematopoietic stem cells. Natural killer cells, CD8+ T cells 

and B cells are repopulated in the first few weeks to 6 months29-33, whereas 

reconstitution of the CD4+ repertoire takes up to 2 years5. Important questions that 

have been addressed about this process include how immune cells redevelop in 

adults with an inactive remnant thymus, and whether the immune repertoire after 

AHSCT is indeed new, rather than the result of expansion of and possible acquisition 

of new functional phenotypes by cells that survive the conditioning or are present in 

the graft. Studies that have addressed these questions, described below, have 

allowed a working model to be constructed for the mechanisms of AHCST in MS 

(Figure 2). 

  

[H3] T cells 
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On the basis of our understanding of MS pathogenesis, outlined above, the effect of 

AHSCT on T cells has been the main focus of research into the mechanisms. The 

first notable observation about T-cell repertoire reconstitution was that naive T cells 

re-emerged over time after AHSCT and showed signs that they had developed in a 

re-activated thymus5. In the first notable study, analysis of the cellular marker CD31 

and so-called T cell receptor excision circles, which mark recent thymic emigrants, 

showed that T cells generated after AHSCT had undergone positive selection and 

matured in the thymus5. Further evidence for true T cell renewal was obtained from 

DNA sequencing to enable comparison of the complementarity determining region 3 

(CDR3) of T cell receptors (TCRs): comparison of CDR3 sequences from CD4+ and 

CD8+ T cells before and after AHSCT demonstrated not only that the T cell repertoire 

was substantially more diverse after AHSCT but also that almost all CD4+ T cells that 

were present before AHSCT had gone, and new clones had developed5. A deep 

sequencing study that included millions of TCRs confirmed that repertoire renewal is 

almost complete for CD4+ T cells, but is less so for CD8+ T cells, in which clonal 

persistence was seen8. One phenotypic study has revealed that levels of presumably 

pathogenic CD4+ TH17 cells were reduced after AHSCT, whereas the frequencies of 

TH1 and TH2 cells, which have the potential to induce inflammation and antibody 

production, respectively, in MS, did not change7. Besides transient increases of 

CD4+CD25highFoxP3+ Treg cells and of CD56bright natural killer cells (cells with reported 

immune regulatory activity27), the post-transplant T-cell repertoire was characterized 

by expansion of CD8+CD57+ T cells with the potential to kill autologous CD4+ T cells 

and therefore curtail TH activities6. In the same study, mucosal associated invariant T 

(MAIT) cells (characterized by expression of CD8, high expression of CD161 and 

secretion of IL–17 and IFN–γ) were observed in active MS lesions in post-mortem 

brain tissue and in the peripheral blood of patients before therapy, but this candidate 

inflammatory cell population was significantly more depleted after AHSCT than after 

conventional treatments.  

Limited data are available about the antigen specificity of T cells after AHSCT. 

Myelin-specific T cells are known to develop after AHSCT7,34, but such T cells are 

part of the physiological immune repertoire35 and more detailed studies of their 

antigen avidity, functional phenotype and migratory potential are needed to discern 

whether potentially pathogenic cells redevelop. Evidence from AHSCT for juvenile 

idiopathic arthritis and dermatomyositis indicates that Treg cells have limited TCR 

diversity before AHSCT, but are present in greater numbers and more diverse after 

AHSCT36. Expansion of CD4+CD25highFoxP3+ Treg cells and increased expression of 
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the regulatory markers CTLA-4 and GITR on CD4+CD25high cells after AHSCT37 

suggest improved control of T cell activation. 

[H3] B cells 

The effects of AHSCT on B cells and the humoral immune response have been 

studied less than those on T cells, particularly in MS. Ablative conditioning eliminates 

B cells at almost all stages of differentiation, except long-lived plasma cells. During 

development of the post-AHSCT B cell repertoire, naive and memory B cell subtypes 

are reconstituted although data on their functional phenotypes are lacking. In 

systemic lupus erythematosus (SLE), AHSCT reduces or eliminates anti-DNA 

antibodies, normalizes B cell homeostasis and induces recovery of B cell numbers38. 

These data are consistent with the demonstrated development of a diverse and 

adult-like immunoglobulin repertoire beyond 4 months after AHSCT39. Whether these 

findings are the same in MS is currently unclear, but the persistence of oligoclonal 

bands in one study suggests that immunoglobulin-producing cells in the CNS 

compartment are insufficiently ablated 40. 

[H3] Gene expression 

Gene expression and regulation by microRNAs (miRNAs) in the newly emerging 

immune repertoire have been studied to gain insight into the mechanisms of immune 

reconstitution. Comparison of gene expression profiles of CD4+ and CD8+ T cells 

from patients with MS before and after AHSCT has demonstrated normalization of 

the profiles: in CD8+ cells, the profiles were more similar to those of cells from 

unrelated healthy controls than to those of patients’ pre-treatment or early post-

treatment cells41. In another study, expression of the miRNAs miR-16, miR-155 and 

miR-142-3P, which regulate T cell activation and are aberrantly expressed in MS, 

normalized after AHSCT; expression of their putative target genes — FOXP3, 

FOXO1, PDCD1 and IRF2BP2 — increased, as expected37. These data agree with 

previous findings that the gene and miRNA expression signatures of CD34+ HSCs of 

patients with MS is not different from healthy controls, indicating that these cells do 

not have a preprogrammed proinflammatory state42. 

[H1] Clinical use of AHSCT 

[H2] Efficacy 

Besides isolated reports of AHSCT being used for early treatment of highly 

aggressive relapsing inflammatory forms of MS43,44, the initial clinical studies of 
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AHSCT in MS were conducted almost exclusively in patients with high levels of 

disability and progressive disease45-48. Accordingly, in a retrospective long-term 

analysis published in 201260, 78% of 281 patients with MS who underwent AHSCT 

between 1996 and 2005 had progressive MS (66% had secondary progressive MS) 

and the median EDSS score before the procedure was 6.5. In this study, a younger 

age, RRMS and fewer prior disease-modifying treatments were associated with 

better neurological outcomes. Consequently, subsequent studies of AHSCT have 

predominantly included patients with RRMS and an aggressive disease course9-11,49. 

Almost all studies of AHSCT in MS have been observational cohort studies in which 

the efficacy was evaluated by comparing disease activity before and after 

transplantation. Although this approach generates uncontrolled evidence, it is 

justified in studies of patients who have an overwhelmingly active or rapidly 

progressive course that has not responded to appropriate disease-modifying therapy, 

as randomized controlled studies with these patients would be unethical. 

Suppression or clear stabilization of such aggressive disease activity after AHSCT 

can reasonably be regarded as a consequence of the procedure. 

One comparative phase II randomized clinical trial of AHSCT has been published — 

the ASTIMS trial12 — in which the effect of the treatment was compared with that of 

mitoxantrone in patients with aggressive RRMS or secondary progressive MS. The 

number of participants was low (n = 21), some data were missing and the 

methodology had other limitations as a result, in part, of the purely academic 

development of the study and the limited financial support; nevertheless, the number 

of new T2 lesions that occurred over 4 years (the primary endpoint of the study) was 

79% lower among patients who underwent AHSCT than among those who received 

mitoxantrone (P <0.001). The proportion of patients in the ASTIMS trial whose 

disability progressed after AHSCT was 33% at 2 years and 57% at 4 years, but most 

participants (67%) had secondary progressive disease at baseline. Many participants 

of other studies that have involved patients with progressive disease45,48 have also 

continued to lose neurological function, which has been interpreted as the result of 

unaffected neurodegenerative processes such as axonal injury and neuronal loss. In 

the HALT-MS study, in which only patients with RRMS were enrolled, the proportion 

of patients with disability progression after AHSCT was <10% at 2 years and 5 years9. 

Further experience of AHSCT strengthened the evidence that the therapy is most 

successful if performed in the earlier inflammatory stages of MS9,11,14, when profound 

effects are seen on MRI measures2 and relapse activity10. A study published in 2016 
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demonstrates the complete suppression of inflammatory activity that can be achieved 

with AHSCT13. For the 24 patients enrolled in this study, the mean number of 

relapses between diagnosis and AHSCT was 1.2 per year, and the mean number of 

Gadolinium-enhancing lesions seen on the baseline MRI scan (taken in the months 

preceding the start of the procedure) was 3.9. After AHSCT, no clinical relapses 

occurred in any of the 23 surviving patients during up to 13 years of follow-up, and 

none of 327 post-transplantation MRI scans showed Gadolinium-enhancing lesions.  

In the absence of direct comparisons between the efficacy of AHSCT and that of 

approved disease-modifying therapies, some insight can be gained by considering — 

with caution — the degree of control over disease activity that has been achieved in 

clinical trials of AHSCT and of treatments that have been licensed on the basis of 

their efficacy in trials. The level of control is indicated by the proportion of patients 

who achieve no evidence of disease activity (NEDA), a composite endpoint (no 

relapses, no disability progression and no MRI activity) that is often reported at 

2 years in contemporary trials and has been proposed as a treatment goal in patients 

with RRMS50. Five trials of AHSCT published since 2010 have reported the 

proportion of patients with RRMS for whom NEDA was achieved at 2 years after 

transplantation9-11,13,14,47, and these reports have enabled comparisons with trials of 

other disease-modifying therapies that are either approved or close to approval51. A 

cross-sectional analysis reveals that the proportion for whom NEDA was achieved at 

2 years was 7–16% among those who received placebo, 13–27% among patients 

who received IFNβ-1a, and 22–48% among patients who received other active drugs; 

among patients who underwent AHSCT, the proportion was considerably higher, at 

70–92% (Figure 3). Moreover, in trials of drugs, NEDA status was more frequently 

lost owing to new inflammatory activity, whereas disease activity after transplantation 

is mainly accounted for by disability progression, especially in studies that included 

patients with progressive disease12,45,48. 

As noted51, these comparisons must be made with caution because the patient 

populations and follow-up schedules differed between trials. Nevertheless, the 

difference in the achievement of NEDA with AHSCT and drug therapies cannot be 

explained by differences in the populations alone, particularly because participants of 

AHSCT trials had more aggressive disease than those of all the other clinical trials52. 

This severity of disease is illustrated by the characteristics of patients included in 

AHSCT studies published in the last 2 years (Table 2) For example, in comparison 

with the CARE MS-II trial53 — the only trial of a currently approved therapeutic that 

required one prior treatment failure for patient eligibility and consequently included a 

similar population to those in studies of AHSCT —the median EDSS score is 3.5–6 in 
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AHSCT trials, versus 2.5 in the CARE MS-II trial. Similarly, the median number of 

previous treatments was two or three versus one, and the disease duration was 5–

10.5 years versus 4.5 years, all factors that would predict a lower rate of NEDA the 

AHSCT trials than in the CARE MS-II trial. The mean age, however, was comparable: 

28–38 years versus 35 years. 

 

Some evidence suggests that AHSCT can not only reduce disease activity, but also 

improve neurological function4,9-14,54. In one large single-centre case series (n = 145), 

disability scores had improved at 2 years after AHSCT in one-third of patients11, 

predominantly those with RRMS and mild to moderate disability. Work by the same 

researchers showed that AHSCT failed to improve neurological function and stop 

worsening in patients with high levels of established disability as a result of 

progressive MS30. This dichotomy is demonstrated on a larger scale by a 

retrospective long-term analysis that demonstrated significant improvements in 

neurological function during the first year after AHSCT in patients with RRMS but not 

those with progressive MS (median EDSS score change 1 year after transplantation, 

–0.76 versus –0.14, P <0.001)60.  

 

[H2] Safety and tolerability 

The risks and adverse effects of AHSCT are influenced by the intensity of the 

procedure, and the intensity of the conditioning regimen has a dominant role. The 

clinical condition of the patient, their age and the presence of comorbidities are also 

important. 

 

[H3] Intensity of AHSCT 

The overall intensity of AHSCT can vary widely, and is determined by four main 

variables: whether chemotherapy is administered for HSC mobilization; whether the 

haematopoietic graft is manipulated to enrich HSCs (CD34+ selection) and remove 

immune cells (ex vivo T-cell depletion); the intensity of the conditioning regimen, 

which depends on the type and dose of the agents used; and whether in vivo 

lymphodepleting serotherapy, such as antilymphocyte or antithymocyte globulin 

(ATG), is administered. Working definitions that evolved around haematopoietic 

transplantation for the treatment of cancer are used to distinguish between 

myeloablative conditioning, reduced-intensity conditioning and nonmyeloablative 

conditioning, based on the duration of cytopaenia and on the requirement for HSC 

support55. These designations have also been used by some clinicians to qualify 

different conditioning regimens for autoimmune disease, and have been popular in 
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discussions on social media amongst people with MS. In transplantation for 

autoimmune disease, conditioning regimens are classified and defined in the 

European Society for Blood and Marrow Transplantation (EBMT) guidelines56 as 

high-intensity, intermediate-intensity and low-intensity. In a recent meta-analysis of 

AHSCT for MS, the reported conditioning regimens were classified according to the 

EBMT guidelines57. High-intensity regimens, which usually include the use of high-

dose busulfan or total body irradiation combined with cyclophosphamide and in vivo 

and ex vivo T cell depletion, were more frequently used in earlier trials30,31,45,48,58, 

partly as a result of sporadic reports of AHSCT for autoimmune disease in which less 

intense protocols were used and were followed by a high incidence of relapses59. 

Neither a retrospective registry study60 nor a literature meta-analysis61, however, 

documented any advantages of high-intensity regimens over low-intensity regimens 

in terms of progression-free survival, at least in secondary progressive MS. In 

addition, life-threatening infections were reported in studies in which high-intensity 

conditioning regimens were used48,62. Partly on the basis of these concerns, low-

intensity regimens that involve administration of cyclophosphamide and ATG — also 

called nonmyeloablative regimens55 — were introduced, enabling toxicity to be 

reduced, which increased confidence in offering AHSCT earlier in the disease course, 

before the accumulation of irreversible disability in RRMS4,11. 

An intermediate-intensity conditioning regimen called BEAM, which involves a 

combination of the chemotherapeutics bis-chloroethylnitrosourea (BCNU), etoposide, 

cytosine arabinoside (ARA-C), and melphalan, has been the most frequently used 

protocol in Europe (Table 1), and has been used in American9,14,47 and Asian63 trials. 

Other intermediate-intensity, BEAM-modified regimens have also been used64,65. The 

different protocols that have been used in the treatment of MS are expected to 

produce different lymphoablative and myeloablative effects (Figure 5). Differences 

between the populations treated with different regimens mean that a reliable 

comparison of the risk–efficacy ratios between low-intensity and intermediate-

intensity regimens cannot be made.  

 

[H3] Adverse effects 

AHSCT primarily targets the immune system, and immune suppression is, therefore, 

a necessary and expected (on-target) effect of the procedure. In an analysis of 169 

patients, 79% of the early non-neurological adverse effects of AHSCT were 

secondary to the immunosuppression, and included neutropaenic fever, sepsis, 

urinary infections and viral reactivations60. 
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AHSCT can also have several off-target adverse effects. Neurological toxicity was 

reported in 26 of 149 (17%) evaluable patients in one study, and occurred within 

60 days of transplantation60. Transient alopaecia and amenorrhoea are common 

adverse effects. A small study of patients who underwent low-intensity or 

intermediate-intensity regimens demonstrated recovery of the menstrual cycle in all 

patients who were aged ≤32 years, but recovery of menstruation after treatment was 

reported up to age 41 years66. Permanent infertility is a risk, but in a retrospective 

study of 324 women who underwent HSC transplantation for autoimmune disease, 

15 pregnancies were reported, and no congenital, developmental or other disease 

was reported in the children67. Patients with MS who undergo AHSCT can 

experience disease-specific adverse effects, such as frequent urinary tract infection, 

the Uhtoff phenomenon, limb spasticity and reduced mobility, all of which can 

increase the risk of complications and require expert management68.  

Late effects, which are considered to be adverse events that arise months or years 

after completion of the procedure but might be related to it, are less common, but 

include secondary autoimmune disease, mostly thyroiditis. In two EBMT Registry 

analyses published in 2006 and 2011, the incidence of secondary autoimmune 

disease was 3.6% and 6.4%60,69. A similar incidence was reported in a study 

published in 2017 that included patients from the EBMT and the Center for 

International Blood & Marrow Transplant Research (CIBMTR) databases: new 

autoimmune disease occurred in 14 of 281 patients (5%) over a median follow-up of 

6.6 years after AHSCT that followed failure of standard immunomodulatory and 

immunosuppressive therapies (two or more previous therapies in ~70% of patients)54. 

In the same study, other late adverse events included malignancies in nine patients 

(3.2%)54. Multiple factors contribute to an individual’s risk of developing cancer, and 

the ability to estimate the additional risk as a result of AHSCT remains elusive. 

Further detail about the complications of AHSCT for the treatment of autoimmune 

disease is available elsewhere70. 

 

[H3] Treatment-related mortality 

Mortality is the main concern that has limited the development and use of AHSCT. In 

the EBMT Registry, the overall treatment-related mortality among patients with MS 

who received AHSCT is 2.0% of 829 evaluable patients (as of May 2017, with 

incomplete data for 2016). This number still incorporates high treatment-related 

mortality of 7.3% from the earliest use of the treatment during 1995–2000; marked 

decreases have been reported since, with treatment-related mortality of 1.3% during 
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2001–2007 71, further decreasing to 0.7% (4 of 565) during 2008–2016 and down to 

0.2% (1 of 439) in the past five calendar years (Figure 4). 

Similarly, a meta-analysis of 15 published studies (which included non EBMT-

registered cases) revealed treatment-related mortality of 0.3% among the 349 

patients included in seven studies in which the estimated year of transplantation was 

after 2005, a marked reduction from 3.6% among the 415 patients treated in the 

older studies57. The same meta-analysis identified an inverse relationship between 

treatment-related mortality and the proportion of patients with RRMS (rather than 

progressive MS)57. A retrospective long-term analysis of 281 patients with MS who 

underwent AHSCT during 1996–2005 produced similar findings: treatment-related 

mortality was 2.8%60, and a higher EDSS score was significantly associated with a 

higher risk of death from any cause (treatment-related and not treatment-related), 

and progressive MS and high-intensity conditioning regimens were over-represented. 

In combination, these findings indicate that improved patient selection — treatment of 

patients with RRMS and low EDSS scores — and decreased use of high-intensity 

conditioning regimens underlie the reduction in treatment-related mortality. Improved 

supportive care might also be an important factor. 

 

 

[H1] Optimization and recommendations 

[H2] Patient selection 

The opportunity for a patient to benefit from AHSCT depends mainly on their clinical 

status, in line with the hypothesis that a clear therapeutic window exists during the 

course of MS72. Given the risk and adverse effects of AHSCT, the treatment cannot 

currently be recommended for the general population of patients with MS. 

Nevertheless, AHSCT has been designated as a clinical option in the EBMT 

guidelines for the treatment of patients with aggressive MS that is unresponsive to 

conventional and approved therapies56. A critical point for patients and clinicians to 

understand, however, is that AHSCT is not a neuroregenerative treatment or a 

treatment that should be used as a last resort after failure of all available treatments. 

Rather, the optimal timing is right after failure of licensed treatment, when the 

aggressive clinical course of the disease is clear but the patient remains minimally 

compromised. The current evidence enables us to refine the profile of the ideal 

candidate for AHSCT on the basis of several important factors: relapses and the 

phase of the disease, MRI activity, age and disease duration, neurological disability, 

comorbidities, cognitive impairment and response to prior treatments (Box 1). 
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[H3] Relapses and phase of disease 

Although initial studies of AHSCT in MS predominantly included patients with 

progressive disease, a profound effect on relapses was soon documented in patients 

with RRMS32 and confirmed to varying degrees in all subsequent studies; one recent 

study demonstrated total long-term suppression of relapses13. A large body of 

evidence, therefore, supports the general consensus that the patient who would 

benefit most from AHSCT is still in the relapsing–remitting phase of the disease with 

inflammatory clinical activity (that is, relapses that can be highly effectively 

suppressed by the treatment). 

Some studies have indicated favorable outcomes of AHSCT in progressive forms of 

MS63-65,73. Following the 2013 revision of the various clinical courses of MS74, the fact 

that some patients with progressive MS experience clinical (relapses) and/or exhibit 

inflammatory activity on MRI (Gadolinium–enhancing lesions or new or enlarging T2-

positive lesions) is more widely recognized. In these patients, the inflammatory 

activity might be effectively targeted with AHSCT, as it has been with the 

immunosuppressants rituximab75 and ocrelizumab76. However, rigorous evidence 

that AHSCT improves outcomes in patients with progressive MS, even with 

inflammatory activity, is lacking. 

 

[H3] MRI markers of activity 

Gadolinium-enhancing lesions and new or enlarging T2 lesions are well-established 

indices of inflammatory MS activity. It has been clear since 2001 that AHSCT can 

completely suppress inflammatory lesion activity detectable with Gadolinium-

enhancing MRI for at least 36 months2. This abrogation of MRI activity has been 

replicated over a follow-up period of 6–7 years13. Nevertheless, a complete absence 

of MRI activity after transplantation has not been observed in every study. In one 

study in which a cyclophosphamide-based low–intensity conditioning regimen was 

used, reoccurrence of MRI inflammatory activity was frequently seen 6–12 months 

after AHSCT49. Among patients who were treated with intermediate-intensity regimes, 

such as BEAM, in several studies, 8–10% of them exhibited new or active lesions on 

MRI scans at 2–5 years after treatment9,10,14,73. 

Progression-free survival was significantly better in patients with MRI lesion activity 

at baseline than in those without in two reports10,73. The evidence from these studies, 

together with the need to demonstrate active inflammation to advocate use of a 

treatment strategy that targets inflammation, justify recent MRI inflammatory activity 

as a key requirement in patient selection for AHSCT. 
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[H3] Age and duration of disease 

In one large case series, patients aged <40 years who underwent AHSCT within 

5 years of disease onset had better progression-free survival than older patients with 

longstanding disease60. The onset of progressive disease is age-dependent, and 

usually occurs at age 40–50 years; the frequency of relapses decreases with 

increasing age77,78. In a long-term analysis, age was identified (together with 

progressive MS and number of prior immune-modifying therapies) as an independent 

factor associated with neurological progression-free survival60. The duration of 

clinical disease strongly correlates with age, so a shorter disease duration is 

expected to be associated with a higher probability of active inflammatory disease. 

Therefore, although older age alone does not negatively affect overall survival after 

AHSCT for lymphoma79, in the treatment of MS, the evidence provides the strongest 

rationale for AHSCT in young patients (aged <45 years) with a short disease duration 

(<10 years). 

 

[H3] Neurological disability 

In studies of AHSCT conducted before 2005, the baseline disability of patients was 

usually high: one study of long-term outcomes60 showed that the median EDSS 

score was 6.5. In this study, a higher EDSS score was significantly associated with 

poorer overall survival (HR 2.03 per EDSS point). Similarly, in a meta-analysis, a 

baseline EDSS score >6 was significantly associated with a higher treatment-related 

mortality (P = 0.013)57. These associations can be explained by a high incidence of 

comorbidities (such as urinary tract infections and chronic lung disease) and their 

attendant complications in non-ambulatory patients, 80 as well as a higher risk of 

death from progression of MS. Partly on the basis that higher EDSS scores are 

frequently associated with progressive MS than with RRMS, recent AHSCT studies 

have excluded patients with severe disability by, for example, limiting baseline EDSS 

scores to 5.59,11,14. 

In rare cases of extremely aggressive MS that causes a high degree of disability in a 

matter of weeks, AHSCT can be considered as a potentially lifesaving treatment and 

has been used successfully in this context43,44,81,82. Besides these situations, however, 

patients with an EDSS score <6 (ambulatory without aid) are the most appropriate 

candidates for AHSCT and, on the basis of published evidence60,57 and our clinical 

experience, we suggest that patients with established EDSS scores ≥7 are at high 

risk of complications and treatment failure, so are not appropriate candidates for 

AHSCT. 
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[H3] Previous response to MS therapies 

In the vast majority of cases, AHSCT has been offered as part of a clinical study or 

as compassionate therapy after failure of one or more disease-modifying therapies. 

Given the risks and adverse effects, treatment with AHSCT outside clinical trials 

seems reasonable and ethical only after failure of approved therapy. In line with 

contemporary views on the management of RRMS83,84, we suggest that failure of one 

licensed disease-modifying drug of high efficacy (defined as Category 285: currently 

alemtuzumab or natalizumab, but likely to include rituximab and ocrelizumab once 

approved — ocrelizumab is approved in the USA, but not yet in Europe) owing to a 

demonstrated lack of efficacy is sufficient to consider offering AHSCT to otherwise 

clinically appropriate patients with aggressive RRMS.  

For patients with average active MS (distinct from aggressive), the current prevailing 

opinion is to initiate treatment with a first-line therapy, followed by escalation to 

natalizumab, fingolimod or alemtuzumab in those who fail to respond83. In our 

opinion, escalation through two lines of therapy before considering AHSCT is 

acceptable but not required: patients who experience persistence of their disease or 

breakthrough of substantial clinical and MRI inflammatory activity during induction 

treatment with a high-efficacy monoclonal antibody (as defined above) administered 

as a first-line therapy could be considered as candidates for AHSCT, as well as for 

alternative approved high-efficacy treatment options. More than two prior 

immunotherapies, however, is associated with poorer progression-free survival after 

AHSCT 60, highlighting the limited window of opportunity for effective MS treatment, 

and that treatment escalation over several years precludes the chances of success 

with any treatment that is given too late. With >10 currently approved drugs for MS, 

the risk of missing this therapeutic window is of particular concern. 

 

[H3] Comorbidities and cognitive impairment 

Systemic and organ-specific comorbidities affect survival after AHSCT79. 

Substantial cardiac, renal, pulmonary or hepatic dysfunction, active infections, or 

other conditions that could increase the risk of severe complications and mortality, 

are contraindications for AHSCT68. The pre-transplantation workup must always 

include screening and assessment for such conditions, as detailed elsewhere56. 

Furthermore, adequate cognitive capacity is required to fully understand the possible 

adverse effects and risks of AHSCT, and to comply with treatments and 

recommendations, which are important elements in the safety of the procedure. 

 

[H2] AHSCT methodology 
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Increasing clinical experience with AHSCT is enabling refinement of the methodology 

for the procedure and development of a recommended protocol (Box 2). 

 

[H3] HSC mobilisation 

For HSC mobilization, use of high-dose cyclophosphamide with G-CSF is preferable 

to use of G-CSF alone for several reasons: the HSC yield is better; the induction 

treatment effect is potentiated by sequential immunosuppression during mobilization 

and conditioning; a lack of disease exacerbations, which have been reported with 

mobilization obtained by G-CSF alone; the number of mature immune cells in the 

graft is lower, and recovery of T cell clones from the autologous graft is poor, which 

reduces the potential for carryover of disease-mediating T cells with the transplant86. 

We support the mobilization regimen recommended by the EBMT56: 

cyclophosphamide at 2–4 g/m2 of body surface area with mesna and cautious 

hyperhydration for bladder protection, followed by 5–10 μg/kg G-CSF daily until the 

completion of HSC collection. 

 

[H3] Conditioning regimen 

The optimal intensity of the conditioning regimen remains an open question, given 

the lack of published comparative data. High-intensity regimens are burdened by a 

high toxicity profile, as indicated by previous analyses48,60, although these findings 

have not been confirmed in a larger study87. The regimen that includes high-dose 

busulfan, described in 200968 and uniquely used for treatment of MS in the study 

reported in 201613, completely suppressed MS inflammatory activity, but caused 

severe liver toxicity in two patients, which resulted in the death of one. Low-intensity 

regimens, such as those based on cyclophosphamide, are safer and require less 

supportive care; however, some data indicate that these regimens are associated 

with a higher incidence of disease reactivation4,47. The conditioning regimens with the 

strongest traction within each intensity category are cyclophosphamide and ATG (low 

intensity), BEAM and ATG (intermediate intensity) and cyclophosphamide, busulfan 

and ATG (high intensity). In the absence of evidence from randomized comparisons, 

we endorse the preferential use of BEAM and ATG — the scheme that is specifically 

recommended for the treatment of MS in the EBMT guidelines56 — by virtue of its 

extensive track record that indicates good safety and high efficacy14,73, and of the 

opportunity it provides for comparisons across data sets. 

 

[H3] Autologous HSC enrichment and dose 
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The advantage of graft purification, with CD34 selection for example, is unclear. A 

theoretical advantage is a lower risk of re-introducing mature leukocytes that might 

include pathogenic cells. However, the only randomized study in which CD34-

selected and unselected HSC grafts have been compared — conducted in patients 

with rheumatoid arthritis — showed no difference in outcomes88. Similarly, a 

retrospective analysis of AHSCT for systemic sclerosis failed to demonstrate any 

benefit of CD34 selection on patient outcomes89. Evidence in MS is limited to a small 

study of patients with progressive MS, but this work also demonstrated no obvious 

advantage of CD34 selection90. These consistently negative findings have weakened 

support for the use of CD34 selection56, especially when HSC mobilization is carried 

out with the use of high-dose cyclophosphamide with G-CSF rather than with G-CSF 

alone.  

Irrespective of graft manipulation, we support the EBMT recommendation for 

transplantation that a minimum dose of 2 × 106 CD34+ cells/kg should be reinfused56. 

However, evidence is accumulating from treatment of haematological malignancies 

that higher doses of HSC can promote faster platelet engraftment and are associated 

with better overall survival91,92,93. Consequently, a dose of 5 × 106 CD34+ cells/kg is 

currently defined as optimal94,95. 

 

[H3] Serotherapy 

Use of serotherapy, such as antilymphocyte or ATG, administered with or 

immediately following the conditioning regimen complements the 

immunosuppressive effect of conditioning, as the resulting T cell depletion can be 

critical in preventing the engraftment of any T cells that are reinfused; this effect is 

expected to be especially important with an unselected HSC graft. In addition, ATG 

has known immunomodulatory effects, including induction of adaptive regulatory 

T cells96, that might influence the earliest, and perhaps most critical, stages of 

immune reconstitution. 

 

[H3] Antimicrobial prophylaxis and monitoring 

General guidelines for prevention and management of infections in patients 

undergoing haematopoietic stem cell transplantation are available. Additionally in 

patients with MS, monitoring of cytomegalovirus and Epstein–Barr virus viraemia in 

the 3 months after transplantation is recommended, and might require a pre-emptive 

treatment in case of increasing viral load.”  

This recommendation is mostly based on the experience in allogeneic transplantation 

which results in a higher degree of post-transplantation immunosuppression than the 
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autologous; however, the administration of ATG in the latter, commonly done in 

protocols for treatment of patients with MS, can increase the risk of viral reactivation. 

 

 

 

[H1] Conclusions 

AHSCT provides a unique approach to the treatment of MS. Unlike current disease-

modifying therapies that either modulate or partially suppress the immune system, 

AHSCT relies on ablation of the immune and, to a variable extent, myeloid systems, 

followed by reconstitution of a profoundly modified immune system, in a process with 

characteristics of immune ‘resetting’. This approach is associated with risks that are 

generally greater than those associated with disease-modifying therapies, but are 

predominantly ‘front loaded’, whereas the risks of chronic or cyclic immune 

modulation or suppression, although initially low, increase over time. Furthermore, 

evidence from trials suggests that AHSCT is considerably more effective than current 

disease-modifying therapies at arresting inflammatory activity in MS. 

Patients who are most likely to benefit from AHSCT are those with RRMS, a high 

frequency of relapses, MRI markers of inflammatory activity, a young age and short 

duration of disease and limited disability, and who have been referred soon after a 

highly active MS therapy has failed and who are not affected by substantial 

comorbidities and cognitive impairment. As is the case for disease-modifying 

therapies, beneficial effects of AHSCT on neurological progression in MS are 

plausible, but cannot be reliably demonstrated without well-conducted, long-term 

randomized controlled trials. 

To date, a lack of support from the pharmaceutical industry, among other factors 

(Box 3), has slowed the development of AHSCT. Yet the current evidence from 

studies of AHSCT in MS makes a strong case to support the need for clinical trials, 

firstly to establish the safety, efficacy and cost-effectiveness of AHSCT in 

comparison with disease-modifying therapies in patients with highly active RRMS, 

and secondly to assess whether AHSCT might have a place in the treatment of early-

stage forms of progressive MS with inflammatory activity. Indeed, preliminary 

evaluations suggest that the treatment could be cost-effective97 and offer savings to 

patients and/or health authorities when compared with the cost of current biologics. 

Trials are needed to establish whether AHSCT could be recommended for the 

treatment of patients with inflammatory activity who have not tried high-efficacy 

disease-modifying therapies, but we believe that enough evidence already exists to 

support the use of AHSCT for treatment of patients with aggressive RRMS and those 
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with active RRMS in whom high-potency approved disease-modifying therapy has 

failed because of a lack of efficacy. Indeed, in December 2016, the Swedish Board of 

Health and Welfare included AHSCT as an option alongside fingolimod and 

alemtuzumab (as well as natalizumab for people with a negative JC virus antibody 

test or with low antibody levels) in their treatment recommendations for active 

RRMS98. We advocate healthcare organizations in all other countries to consider 

introducing AHSCT as the standard of care for these indications, and to regularly 

reassess and update their guidelines on the basis of new evidence that could alter 

the indications. 
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Box A | Subtypes of MS with unmet clinical needs 

Aggressive MS 

Aggressive MS represents almost 10% of all MS cases84. Definitions are variable, but 

commonly include frequent relapses, early acquisition of disability (often with 

incomplete resolution) and highly active disease seen as new Gadolinium-enhancing 

lesions and/or new T2 lesions on MRI84. ‘Rapidly evolving severe MS’ and ‘malignant 

MS’ are other terms used to refer to disease associated with a poor prognosis. We 

prefer the term ‘aggressive MS’ over ‘malignant MS’99 because it evokes a clinical 

challenge that can be tackled with aggressive therapies, including AHSCT. ‘Rapidly 

evolving severe MS’ was introduced by healthcare authorities, and is defined as 

relapsing–remitting MS with two or more disabling relapses in the past year, and one 

or more Gadolinium-enhancing lesion on MRI or an increase in the T2 lesion load 

from the previous MRI100. Although this term has a specific definition, external 

validation of the criteria is lacking, and we prefer the more generic term of aggressive 

MS. 

 

Treatment-refractory MS 

MS that persists or breaks through despite disease-modifying treatment is referred to 

as treatment-refractory MS. Currently, this definition implies failure to respond to a 

highly active therapy, though it has been used to refer to failure of first-line therapies. 

 

Progressive MS 

In aggressive and treatment-refractory MS, the eventual outcome is accumulation of 

disability, usually measured as persistent increases in Expanded Disability Status 

Scale (EDSS) scores in trials and, to a variable extent, in clinical practice. Increasing 

EDSS scores can result from residual damage from relapses or from progressive 

disease. Progressive disease, defined by gradual worsening of neurological function 

for at least 6 months with or without superimposed relapses, is associated with 

neurodegenerative processes that cause axonal loss. However, progression might 

be driven by inflammation behind the blood–brain barrier101-103, so targeting this 

inflammation might ameliorate progression to some extent, as suggested in trials of 

B-cell targeted therapies76. 
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Box 1 | Profile of a candidate for AHSCT 
 

• Relapsing–remitting MS or progressive MS for a short period of time 

• Recent clinical inflammatory activity (relapses) 

• Recent MRI inflammatory activity (Gadolinium-enhancing areas or an 
increase in the number of T2 lesions compared with a recent previous 
scan) 

• Young age (<45 years) 

• Short disease duration (no longer than 10 years) 

• Low to moderate disability (EDSS score lower than 6 or up to 6.5 if the 
highest score has been reached within the last few months and the 
patient has clinical and MRI inflammatory activity 

• Failure of approved, high-efficacy disease-modifying therapy 
(preferably not more than two disease-modifying therapies) 

• No substantial comorbidities 

• Has the capacity to give informed consent and to adhere to treatments 
and recommendations for prophylaxis in the immune compromised 
phases 

 
 
Box 2 | Recommended AHSCT methodology for treatment of MS 
 
 
Mobilization 
Cyclophosphamide at 2–4 g/m2 body surface area with mesna and 
hyperhydration, followed by 5–10 μg/kg G-CSF daily 
 
Immunoablative conditioning 
BEAM (bis-chloroethylnitrosourea (BCNU), etoposide, cytosine arabinoside 
(Ara-C and melphalan) 
 
Autograft 
Unselected peripheral blood product: minimum dose of 2 × 106 CD34+ cells/kg, 
and preferably ≥5 × 106 CD34+ cells/kg (before cryopreservation) 
 
Serotherapy for in vivo T cell-depletion 
Antithymocyte globulin (ATG) from horse or rabbit, alongside administration of 
corticosteroids to attenuate side-effects 
 
 
 
Box 3 | Challenges preventing randomized controlled trials of AHSCT for 
MS 
 
Lack of funding  

• AHSCT does not rely on proprietary new therapeutics and has not 
benefited from pharmaceutical industry support 
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• Competition for time, patients and resources with trials that are well 
supported by the pharmaceutical industry 

• Ever-increasing regulatory and administrative burden, which make low-
funded academic trials particularly unsustainable 

Clinician-related factors 

• Safety concerns were strongly established by early data on transplant-
related mortality (5–10%) and not updated to current figures (0.3%) 

• Competing interests related to personal financial support from the 
pharmaceutical industry that reduce incentive to develop AHSCT 

• A perception that AHSCT is not an elegant or ‘clever’ selective immune 
intervention 

• Unwillingness to collaborate with or rely on other specialists for the 
administration of treatment for MS 

Patient-related factors 

• Low acceptance of randomization to control therapies from patients 
who are entering a trial and want AHSCT 

Study design difficulties 

• Impossible double (patient) blinding 

• Continuous introduction of new and increasingly effective therapies for 
MS over past 15 years  
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Table 1 | Conditioning regimens for AHSCT reported to the European Society 

for Blood and Marrow Transplantation Registry (March 2016) 
 
Conditioning regimen Number 

of 
patients 

% 

Cyclophosphamide + thiotepa  3 0.4 

Busulphan + antithymocyte 

globulin  

11 1.5 

BEAM ± antithymocyte globulin  441 58.9 

Cyclophosphamide + 

antithymocyte globulin  

171 22.8 

Other  52 6.9 

No information on conditioning 

regimen 

71 9.5 

Total 749 100 
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Table 2 | Characteristics of patients treated with AHSCT in recent clinical 
papers that reported sufficient information about most variables we 
considered. 

Study 
Median 

age 
(years) 

Median EDSS 
score at 
baseline 

(range) 

Patients 
with 

RRMS 

(%) 

Median 
MS 

duration 

(years) 

Mean relapse 
rate in 

previous year 

Median 
number of 
previous 

treatments 

Reference 

Burman et al., 2014
  

31.0  6.0 (1.0-8.5) 85 6.3 4.1 2 10 

Burt et al., 2015
 

37.0  4.0 (3.0- 5.5) 81 5.1 >1.5 3 11 

Mancardi et al., 2015
 

36.0  6.5 (5.5- 6.5) 22 10.5 1.3 2 12 

Currò et al., 2015
 

28.0  6.0 (5.0- 7.0) 100 
6.5 2.4 Not 

reported 
55 

Muraro et al., 2017 37.0  6.5 (1.5- 9.0) 22 
6.8 Not 

reported 
2 61 

Shevchenko et al., 
2015

 34.6  3.5 (1.5- 8.5) 46 
5.0 Not 

reported 
Not 

reported 
72 

Atkins et al., 2016
 

34 5.0 (3.0-6.0) 50 6.5 1.2 2 13 

Nash et al., 2017 37  4.5 (3.0- 5.5) 100 5.0 - 3 14 

 
Table 3 | Study design and outcomes in recent clinical studies of AHSCT for 

MS that reported sufficient information about most variables we considered. 

Study 
Sampl
e size 

Median 

follow-up 
(months) 

Regimen type 

Patients with 

disability 
progression 

at 2 years (%) 

Patients with 

disability 
progression 

at 5 years (%) 

Reference 

Burman et al., 2014
  

41 47.4  Intermediate 10 23 10 

Burt et al., 2015
 

145 24.0 Low 7 13 11 

Mancardi et al., 2015
 

9 48.0 Intermediate 
33 Not 

reported 
12 

Currò et al., 2015
 

7 60.0 Low 14 43 55 

Muraro et al., 2017 281 79.2  Mixed 16 54 61 

Shevchenko et al., 
2015

 99 48.9 Intermediate 
1 13 72 

Atkins et al., 2016
 

24 80.4 Intermediate 30 30 13 

Nash et al., 2017 25 62  Intermediate 10 14 14 
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Figure legends 

Figure 1 | Outline of the autologous haematopoietic stem cell transplantation 

(AHSCT) procedure. Key steps of the procedure, drugs administered and white 

blood cell (WBC) and CD34+ haematopoietic stem cell (HSC) counts are arranged 

from top to bottom. The indicative time scale covers 10 weeks. The procedure starts 

with mobilization of HSCs from the bone marrow by injection of cyclophosphamide 

intravenously and granulocyte-colony stimulating factor (G-CSF) subcutaneously. 

The autologous graft harvested from the peripheral blood by leukoapheresis, and 

which can undergo CD34 selection to enrich HSCs or can be unmanipulated, is 

cryopreserved for subsequent use. The procedure can be paused for a few weeks or 

aborted, if necessary, at this point. Ablation of the immune and, to a variable extent, 

myeloid system is most commonly achieved by high-dose conditioning with a 

combination of cytotoxic drugs. The autologous haematopoietic graft is then 

reinfused (transplantation), and antithymocyte globulin is often administered with the 

conditioning regimen to deplete T cells, and owing to its long half-life it will also 

deplete and prevent the engraftment of any T cells that were present in the 

autologous graft (so called in vivo graft T cell depletion). Different levels of supportive 

care are required during the procedure; the conditioning, transplantation and in vivo 

T cell depletion steps require inpatient admission until the patient has recovered from 

neutropaenia and the management of any complications is complete. 

 

[Au: Edited to incorporate text from the figure that has been removed to 

simplify the figure. OK?] Figure 2. Proposed model of therapeutic mechanisms 

of autologous haematopoietic stem cell transplantation (AHSCT). Ablative 

conditioning leads to radical depletion of pathogenic immune cells. During the 

6 months after transplantation, homeostatic expansion of the T cell repertoire 

produces CD8+ and, in smaller numbers, CD4+ T cells, and antigens are encountered 

through infection and reimmunization. These processes are associated with 

potentiation of immune regulation. Subsequently, more effective 1–2 years after 

transplantation, immune renewal via thymopoiesis leads to increased numbers of 

naive CD4+ and CD8+ T cells and of CD31+ and sjTREC+ recent thymic emigrants, 

which results in diversification and normalization of the T cell repertoire. ,  In parallel 

naïve B cell reconstitution possibly restores the B cell repertoire and antibody 

diversity. Some normalization of gene expression profiles that favour restoration of 

tolerance has been demonstrated after completion of immune reconstitution at 

2 years after AHSCT. Further work is required to demonstrate which immune 

changes are essential for the efficacy of AHSCT in suppressing the inflammatory 

disease activity in multiple sclerosis. MAIT, mucosal associated invariant T cell; 

sjTREC, signal joint T- cell receptor excision circle. 

 

Figure 3 | Proportion of patients for whom no evidence of disease activity (NEDA) 

was achieved at 2 years with disease-modifying therapies (approved or 

effective in phase III trials) and AHSCT. Bars represent 95% confidence intervals. 

Although studies included different patient populations and smaller numbers in the 

AHSCT studies, higher rates of NEDA were achieved with AHSCT than with any 

other disease-modifying therapy, including those that are considered to have high 

efficacy. The findings suggest that AHSCT has a more profound effect on disease 
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activity than do current disease-modifying therapies. AHSCT, ablative therapy 

followed by autologous haematopoietic stem cell transplantation; NEDA, no evidence 

of disease activity. 

Figure 4 | Number of autologous haematopoietic stem cell transplantation 

(AHSCT) procedures for treatment of MS reported to the EBMT Registry and 

treatment-related mortality. The overall (1995–2016) treatment-related mortality is 

2.0%. Treatment-related mortality has decreased over time, however, and was 0.2% 

during the last five years (2012–2016). Data from 2016 (*), however are incomplete 

and data from 2017 are not yet available. 

 

Figure 5 | Estimated lymphoablative and myeloablative effects of autologous 

haematopoietic stem cell transplantation protocols for MS. The expected 

relative lymphoablative and myeloablative effects are depicted. Quantitative metrics 
are unavailable and the large size of circles indicate the error range in the estimation 

as well as the variability of the lympho- and myelo-ablative effects that are attained in 

the individual patient. The dotted line represents the threshold of the myeloablative 
effect above which haematopoietic stem cell (HSC) support is required for 

haematopoietic recovery and patient survival; in the most patients treated with 

protocols below this threshold haematopoiesis can recover without HSC 
transplantation, albeit with a longer recovery interval. These protocols are therefore 

considered non-myeloablative62. 
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Glossary 

 
Leukapheresis = a process that separates white blood cells from the peripheral blood, 

which in this article’s context is carried out with a semi-automated medical device to harvest 
the patient’s autologous haematopoietic stem cell-enriched blood product after mobilisation 
 

Bone marrow aplasia = a state of failure of the bone marrow to generate adequate 

numbers of haematopoietic stem cells to repopulate the blood with red blood cells, white 
blood cells and platelets, which in this article’s context follows the conditioning regimen 

(irreversibly after myeloablative conditioning, which requires haematopoietic stem cell 

support for survival) 
 

T cell receptor excision circles =  episomal DNA circles that are byproducts of intra-thymic 

T cell receptor rearrangement that persist in T cells as detectable markers of their recent 
thymic origin 

 

Recent thymic emigrants = T cells which have recently emerged from the thymus after 

differentiation and thymic selection 
 

Antithymocyte globulin (ATG): a T cell-depleting polyclonal immunoglobulin from horse or 

rabbit 
 
Uhtoff phenomenon = recurrence or worsening of pre-existing neurological symptoms, 

usually transient, experienced by patients with MS after exposure to internal (fever) or 
external (heat) high temperatures 

  
Pattern II MS pathology = one of four described patterns of tissue pathology in MS, 

characterized by anti-myelin antibodies and complement factors {Lucchinetti, 1996 #679} 
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