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Abstract 

Along with the decline in oocyte quality, numerous defects such as mitochondrial insufficiency and the increase of 

mutation and deletion have been reported in oocyte mitochondrial DNA (mtDNA) following aging. Any impairments 

in oocyte mitochondrial function have negative effects on the reproduction and pregnancy outcome. It has been 

stated that infertility problems caused by poor quality oocytes in women with in vitro fertilization (IVF) and repeated 

pregnancy failures are associated with aging and could be overcome by transferring large amounts of healthy 

mitochondria. Hence, researches on biology, disease, and the therapeutic use of mitochondria continue to introduce 

some clinical approaches such as autologous mitochondrial transfer techniques. Following mitochondrial transfer, the 

amount of ATP required for aged-oocyte during fertilization, blastocyst formation, and subsequent embryonic devel-

opment could be an alternative modality. These modulations improve the pregnancy outcome in women of high 

reproductive aging as well. In addition to overview the clinical studies using mitochondrial microinjection, this study 

provides a framework for future approaches to develop effective treatments and preventions of congenital transmis-

sion of mitochondrial DNA mutations/diseases to offspring. Mitochondrial transfer from ovarian cells and healthy 

oocytes could lead to improved fertility outcome in low-quality oocytes. The modulation of mitochondrial bioactivity 

seems to regulate basal metabolism inside target oocytes and thereby potentiate physiological activity of these cells 

while overcoming age-related infertility in female germ cells.
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Background
Aging is known to cause complications and time-depend-

ent pathologies in cellular functions which affects most 

living organisms. The underlying cause of aging is still not 

fully understood; however, the most prominent theory is 

a mitochondrial free radical theory of aging (MFRTA) 

[1–3]. Based on this theory, reactive oxygen species 

(ROS), and diverse toxic byproducts are produced during 

aerobic metabolisms which are likely involved in cellular 

genomes and mitochondrial DNA (mtDNA) injury and 

mutations. The increased production of ROS causes dis-

tinct impairment in the cellular respiratory chain leading 

to mutation accumulation and imbalanced redox activity 

[1, 4, 5]. The basal levels of ROS are often declined dur-

ing the normal functioning phase of the mitochondrial 

respiratory chain, whereas the surplus amount of cellu-

lar ROS is seen by aging, contributing to the significant 

increase in oxidative damage and the loss of cellular 

activity [4, 5].
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Aging and mitochondria
One of the most important cellular organelles affected 

upon aging is mitochondria. The vital function of energy 

(adenosine 5-triphosphate, ATP) production of mito-

chondria through oxidative phosphorylation makes it 

the powerhouse in each cells [6–8]. While mitochondria 

have been described to take part in the energy metabo-

lism, homeostasis of calcium, growth, and cell apopto-

sis [9–11], they are also touted as the primary source of 

intracellular ROS production [6, 12].

Unlike other intracellular organelles, mitochondria 

have a unique genome known as mtDNA, a double-

stranded and circular DNA with approximately 16.5  kb 

[13]. Due to the lack of genomic repair mechanisms and 

protective mechanisms of histones structure, the muta-

tion rate of mtDNA is approximately 15 times higher 

when compared to nuclear genome mutation rate [14, 

15]. It has been shown that the elevation of mtDNA 

somatic mutations per se can be induced by age-related 

ROS and free radicals accumulation resulting in mito-

chondrial dysfunction [12, 16]. Mammalian mitochon-

dria are naturally inherited maternally, as the sperm 

mitochondria are degraded following fertilization in the 

oocyte in order to protect the embryo and offspring from 

possible transmission of mutations and heteroplasmy [17, 

18]. Although the level of mtDNA heteroplasmic inherit-

ance is low (1–2%) in humans, it has been indicated that 

this low-level heteroplasmy inheritance along with other 

inherited mitochondrial and somatic mutations could 

contribute to the aging-related pathologies [19, 20].

Relationship between mitochondria and oocyte 
aging
The major population consulting fertility and assisted 

reproductive centers are often women of high reproduc-

tive age [12]. A decrement in both the quality and the 

number of oocytes is often associated with advanced 

maternal reproductive aging and the main reasons for 

the suboptimal reproductive outcome [12, 21–23]. Either 

cytoplasmic or nuclear oocyte maturation is essential for 

successful fertilization and embryonic development [23, 

24]. The maturity of oocyte nucleus is characterized by 

the appearance of the polar body as a result of metaphase 

II in meiosis division, whereas the evaluation of mito-

chondrial parameters (such as distribution pattern and 

activity) is applied to assess the cytoplasmic maturity 

[24]. Upon aging, the decline in oocyte quality, defects 

in mitochondrial function as well as the increased level 

of mutation and deletion in oocyte mtDNA have been 

reported [25–27]. It has been shown that fertilization 

potency of the oocytes and subsequent growth potential 

of the embryos are integral to the number of mtDNA and 

mtDNA content in elderly women which closely corre-

late with the production of ATP in developing embryos 

[12, 21, 28–30]. Due to the higher energy requirements in 

developing embryos, the reduction of glycolysis and pres-

ervation of mtDNA function until blastocyst stage in the 

oocytes are considered as the major source for supplying 

the required ATP during the oocyte maturation, cleavage, 

embryo preimplantation and embryogenesis [6, 17, 31]. 

It has been demonstrated that defects in mitochondrial 

biogenesis and ATP production system are associated 

with meiotic abnormalities, chromosomal aneuploidy, 

developmental arrest, follicular atresia, and eventually 

abnormal embryo development [17, 21, 26, 32]. Evidence 

from animal models showed that increased maternal 

age declined energy production efficiency in the oocytes 

which is highly correlated with the accumulation of mito-

chondrial genome mutations, morphological changes, 

increasing ROS production and interruption of the res-

piratory chain [6, 17, 27, 29]. Therefore, the quality and 

quantity of mitochondria in the oocytes are important 

and could be essential indicators for successful fertiliza-

tion and embryo growth [31, 33].

Mitochondria proliferation is initiated in primordial 

germ cells (PGCs) after migration to ovary niche for the 

initiation of oogenesis and the number of mitochon-

dria continues to increase during early and later stages 

of oogenesis process increasing from 200 mtDNA copy 

number to over 200,000 copies. Therefore, the mature 

oocyte carries the most mtDNA copies compared to 

PGCs and immature oocytes [18]. However, owing to 

the lack of replication after maturation, a decline in 

intracellular mitochondrial numbers is observed in fer-

tilized oocytes and blastocyst stage of preimplantation 

embryos. Nevertheless, the mitochondrial replication 

is resumed after the implantation stage [32]. The micro-

scopic examination of mitochondria distribution and 

structure in human oocytes during oogenesis and embry-

ogenesis confirmed that the mitochondria in the meta-

phase I (MI), metaphase II (MII) and fertilized oocytes in 

cleavage stage have inert appearance with round shape, 

dense matrix, transverse cristae and are spread through-

out ooplasm with close association with smooth endo-

plasmic reticulum, whereas mitochondria in the morula 

and blastocysts stages are oval to spherical in shape and 

tend to be localized around nuclei, indicating the high 

mitochondrial dynamic, either in number and structure, 

during embryonic development [34]. The most morpho-

logical changes occur at blastocyst stage coincided with 

mitochondria elongation and development of transverse 

cristae, indicating that mitochondria are highly active 

during blastocyst expansion, differentiation and hatch-

ing. Significant changes in the mitochondrial distribution 

also occur in the pronuclear stage post-fertilization [34].
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To date, various compounds, including antioxidants 

and coenzymes (e.g., l-carnitine [35], coenzyme Q10 

[36], resveratrol [37], and α-lipoic acid [5, 38, 39]) have 

been used to improve mitochondrial function and fertil-

ity outcome. As aforementioned, the isolation of mito-

chondria from oocytes of young and healthy donors and 

transplantation into older and unhealthy oocytes may 

considerably benefit the rate of ATP production and 

oocyte quality in general. The mitochondrial transfer has 

been evaluated by some researchers in mouse, pig, ham-

ster, cattle and human [26, 33, 40–42]. Investigators have 

suggested that mitochondrial transfer is an alternative 

treatment approach proposed for transferring healthy 

mtDNA to the next generation. Following mitochondrial 

transfer, the basal ATP required for aged-oocyte activa-

tion could be achieved during fertilization and blastocyst 

formation, and thereby contribute to subsequent embry-

onic development and an improved pregnancy outcome 

in women of advanced aging as well [12, 29, 43].

Mitochondrial transfer procedures
Unlike the nuclear genome received from both parents, 

mtDNA are transmitted exclusively maternally to the 

embryo in most mammalian species, and any mutations/

dysfunctions in maternal mtDNA reservoir could con-

tribute to the most incurable genetic disorders, such as 

ophthalmoplegia disorders, Kearns-Sayre syndrome, 

maternally inherited Leigh syndrome, mitochondrial 

myopathy, Pearson syndrome, Coenzyme Q10 defi-

ciency, mitochondrial DNA depletion syndromes (MDS), 

benign cytochrome C oxidase deficiency, chronic intesti-

nal pseudo-obstruction (CIPO) etc. in offspring [44–46]. 

Hence, researchers tend to introduce different therapeu-

tic approaches that involve microscopic manipulation 

by replacing aberrant mtDNA through mitochondria 

replacement procedures in the target oocytes to mini-

mize mitochondria-related disorders in the offspring. 

Some of these techniques are described below.

Pronuclear transfer (PNT)

During transfer technique (Fig.  1), pronuclei are 

transferred from one zygote with abnormal mtDNA 

to another zygote with healthy mtDNA. First, both 

recipient and donor oocytes should be fertilized by 

the intended partner’s sperm through intracytoplas-

mic sperm injection (ICSI) or IVF. Soon after the 

oocytes are fertilized and pronuclei is formed, the 

pronuclei from defective oocyte is transferred into the 

enucleated zygote using micromanipulation equip-

ment. Therefore, the reconstructed zygote will have 

healthy mtDNA from the donor with original parents 

nuclear DNA [29, 47]. Results from various stud-

ies demonstrated that the use of PNT has a great 

potential to reduce the transmission of inadequate 

maternal mtDNA to the offspring. Craven et  al. [47] 

showed that the carry-over of mtDNA after PNT was 

low (less than 2%) or even non-detectable after cleav-

age and subsequent development until the blastocyst 

stage in vitro. This technique, however, is perhaps not 

Fig. 1 In this technique, first, both recipient and donor oocytes are fertilized using the intended partner’s sperm through ICSI. As soon as 

the pronuclei is formed, the pronuclei from abnormal mtDNA oocyte is transferred into the enucleated abnormal mtDNA zygote using 

micromanipulation equipment
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fully warranted for the prevention of mtDNA diseases 

carry-over and should be performed along with prena-

tal screening [38, 48].

Spindle transfer

This technique aims to provide healthy mitochondria 

from donor oocytes to deficient and/or aged coun-

terparts; the metaphase II spindle was extracted from 

affected oocytes and transferred into donor healthy 

oocytes with a discarded spindle. After the fertilization 

by ICSI, the produced zygote cell contains mitochon-

dria from the healthy donor and nuclear DNA from its 

original parent [29, 49] (Fig. 2). The first live birth case 

in human implementing spindle transfer was reported 

by Zhang et al. [46] in a 36-year-old woman diagnosed 

with Leigh syndrome with a history of abortion and 

mtDNA mutation rate of 24.5%, in which a healthy boy 

in the 37th week of pregnancy was born after spindle 

transfer. Moreover, a study conducted by Tachibana 

et  al. [50] showed live birth of three healthy offspring 

in non-human primate using spindle transfer technique 

by the genetic analysis. They successfully detected both 

donor oocyte nuclear DNA and original parent oocyte’s 

mtDNA in the subsequent progeny. By using spindle 

transfer, it is estimated that mtDNA carryover to be 

less than 1% and has been introduced to minimize the 

transfer of congenital malformations of mtDNA to off-

spring [48, 51].

Blastomere transfer

This technique is performed following the fertilization 

of affected oocyte containing defective mitochondria 

through either IVF or ICSI and blastomere formation 

after cleavage. A blastomere is transplanted into the 

healthy donor oocyte that its spindle had already dis-

carded. Eventually, the embryo is reconstituted after 

blastomere transfer (Fig. 3). No clinical studies have been 

carried out regarding the effectiveness of blastomere 

transfer in human; however, controversial studies using 

this method such as heteroplasmic babies are described 

in animal studies [29, 52].

Ooplasmic or cytoplasmic transfer

This method involves the simultaneous transfer of a frac-

tion of the donor oocyte’s cytoplasm containing healthy 

mitochondria along with sperm to the recipient oocyte’s 

cytoplasm using ICSI procedure. In this case, the recon-

stituted zygote contains the original parent nuclear 

DNA and mixed mtDNA from both donor and recipient 

oocytes (Fig. 4). It is believed that the donated portion of 

ooplasm possesses healthy mitochondria and other ben-

eficial cytosolic factors for promoting the development 

of oogenesis and embryogenesis [28, 53, 54]. However, 

this technique is not considered as a primary clinical 

technique due to the possibility of the heteroplasmy and 

chromosomal abnormalities in the subsequent embryos 

[29, 55].

Fig. 2 In this technique, the spindle from defective oocytes is extracted and microinjected into donor healthy oocytes in which the spindle is 

removed. After fertilization by ICSI procedure, the zygote is reconstituted
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Polar body transfer (PBT)

In addition to previously described mitochondrial 

transfer techniques, polar body (PB) transfer is another 

method which has been investigated intensively. PB 

transfer has some advantages, such as minimal transfer of 

patient mtDNA to the intended embryos due to the lower 

content of mitochondria in the PB. Moreover, PBs can 

be easily observed and sampled by using a micro-pipette 

without damaging the chromosomes [56, 57].

PB transfer is performed in two subsequent proce-

dures: Polar body 1 (PB1T) and polar body 2 (PB2T) 

transfer (Fig. 5).

Fig. 3 The affected oocytes with abnormal mitochondria are fertilized through either IVF or ICSI and as a result of cleavage, blastomeres are 

formatted. A blastomere is transplanted into the healthy donor oocyte which its spindle had already been removed. Then, the embryo is 

reconstituted after blastomere transfer

Fig. 4 In this procedure a fraction of the donor oocyte’s cytoplasm containing healthy mitochondria is injected into the recipient oocyte’s 

cytoplasm using ICSI procedure along with sperm. After cytoplasmic transfer, the reconstituted zygote contains parent nuclear DNA and mixed 

mtDNA from both donor and recipient oocytes
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PB1T: after enucleating the recipient oocyte, PB1 is 

isolated from donor’s mature MII oocyte. Extracted 

PB1 is fused to enucleated recipient oocyte. Then, 

ICSI procedure is performed with the intended part-

ner’s sperm which will result in reconstituted oocyte 

[57].

PB2T: following fertilization of both donor and recip-

ient oocytes, second polar body from the original 

mother is extracted and injected into the recipient 

zygote in which the female pronuclei is removed. As 

a result, the reconstructed zygote is generated [57].

AUGMENT technology

Autologous germline mitochondrial energy transfer 

(AUGMENT) is the strategy launched by OvaScience in 

2014 to transfer energy-producing mitochondria from 

autologous egg precursor cells into the eggs (Fig. 6). This 

method is implemented to enhance oocyte competence 

and increase the level of energy production required for 

oocyte maturation, normal embryonic development, and 

successful fertilization via providing the adequate quality, 

number, and function of mitochondria [21, 58, 59]. Based 

on reports of clinical studies in both human and animals, 

autologous mitochondria is injected cytoplasmically dur-

ing the ICSI procedure through AUGMENT treatment. 

This action has been shown to enhance the quality of the 

egg and fetus [17, 21, 58]. The mitochondrial popula-

tion is extracted for AUGMENT treatment is known to 

be highly energetic with a minimum level of deletion and 

mutations and as these mitochondria are separated from 

patient’s own cells. As a matter of fact, the probability of 

heteroplasmy in the offspring and presence of the third 

genetic material need scientific approval. It is noteworthy 

to mention that the introduction of exogenous materials 

and allogenic mitochondrial mass to the target oocytes 

must be evaluated regarding cellular immunity. Calling 

attention, some studies however showed that patients 

with multiple previous IVF failure might not be the good 

candidates for mitochondrial transplantation [17, 59–61].

Results of clinical studies following mitochondrial 
transfer
Most studies in animal and human setups have proved 

that ATP content and mtDNA copy numbers are rela-

tively lower in aged oocytes when compared with young 

oocytes [43, 62, 63]. Simsek-Duran et  al. [43] reported 

that the number of mitochondria declines in mouse and 

hamster oocytes during aging, and as a consequence, the 

ATP production falls to 35.4% and 38.4%, respectively. 

Structural changes such as spherical to an elongated 

shape, vacuolization, cytoplasmic lamellae alterations, 

Fig. 5 In PB1 transfer procedure, after enucleating the recipient oocyte, PB1 from donor oocyte is discarded, then removed PB1 is fused to 

enucleated recipient oocyte. After that, the ICSI procedure is performed with partner’s sperm. In PB2 transfer procedure, following both donor 

and recipient oocytes fertilization, PB2 from donor oocyte is extracted and transferred into the recipient zygote in which the female pronuclei is 

removed. Eventually, the reconstructed zygote is produced
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and cristae changes were also identified in the mitochon-

dria during aging using transmission electron micros-

copy (TEM).

Li et al. [41] transplanted the autologous platelet mito-

chondria from young hamster into aged hamster oocytes 

with the aim of examining the biochemical and mor-

phological changes of mitochondria in young and old 

hamster’s oocytes and to increase oocyte quality after 

mitochondrial microinjection. The results indicated that 

ATP level and mtDNA copy number decreased by 21% 

and 56% respectively in elderly hamsters. Morphologi-

cal changes and declined mitochondrial numbers were 

simultaneously observed in older oocytes in compari-

son with young hamster oocytes. An improved fertility 

rate was seen with increased blastocyst formation after 

IVF with autologous mitochondrial microinjection in 

aged oocytes. Li et al. suggested that platelets contain a 

low level of defective mitochondria due to high turnover 

rates (approximately 10 days) and could be considered as 

a good source of healthy mitochondria source compared 

to autologous granulosa cells in which their mtDNA 

mutations and deletions have been reported to increase 

during aging [16, 31, 62, 64]. In this respect, Kristensen 

et al. [12] have observed that oogonial stem cells (OSCs) 

are also not a suitable mitochondria source due to their 

low mitochondrial number as well as practical extraction 

difficulties.

Considering other cell sources for mitochondrial trans-

fer, Tzeng et  al. [65] injected the autologous cumulus 

granulosa cells (cGCs)-derived mitochondria into poor 

quality oocytes in patients with failed IVF/ICSI and 

evaluated the pregnancy outcome. The results revealed 

that the pregnancy rate in mitochondrial and non-mito-

chondrial transfer groups was 35.2% and 6.2%, and the 

abortion rate was 15.4% and 100%, respectively. On day 

3, embryo quality and fertilization rate were much better 

in mitochondrial transfer group compared to non-mito-

chondrial transfer group. Moreover, the DNA fragmen-

tation and cellular apoptosis rates were decreased and 

twenty live births, including 7 twins and 2 ectopic preg-

nancies were confirmed after cGCs-derived mitochon-

drial transfer procedure. In another trial, Kong et  al. 

[66] observed that co-injection of the autologous GCs-

derived mitochondria and sperm during ICSI in oocytes 

improved embryo quality and pregnancy rate (7 clini-

cal pregnancy out of 18 cases in > 37  years old women). 

However, fertilization rates were not statistically different 

between the control and treatment groups.

In line with the concept between aging and mito-

chondria quality, Fragouli et  al. compared the mtDNA 

Fig. 6 In this procedure first, the biopsy is made from ovarian cortex and egg precursor cells (egg PCs) are isolated from biopsied ovarian tissue 

followed by mitochondria isolation. Eventually, the isolated autologous mitochondria are microinjected into affected oocytes through ICSI
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quantity in blastocysts and cleavage stage embryos 

between young and old patients. The results showed 

the high level of aneuploidy in blastocysts as well as low 

level of mtDNA content in cleavage stage embryos from 

older patients [6, 49]. Poor quality oocytes have shown 

to contain low mtDNA copy number than good qual-

ity oocytes [33]. Hua et  al. indicated that the morula, 

blastocyst, hatched blastocysts rates, and blastomere 

numbers in good quality oocytes (G-oocytes) and poor 

quality oocytes along with the mitochondria transfer 

(P-oocytes + MIT) are higher than poor quality oocytes 

(P-oocytes) without GCs-derived mitochondria transfer 

in bovine moldel while there is no difference between 

G-oocytes and P-oocytes + MIT. So, transferring mito-

chondria isolated from GCs of a similar breed of cattle 

could improve the quality of embryo during preimplan-

tation development [33, 63]. In another study conducted 

by Igarashi et  al., they observed that mitochondrial 

membrane potential, oxygen consumption levels and 

mitochondrial transcriptional factor A (TFAM, a regu-

lator of mitochondrial biogenesis) expression in young 

oocytes are higher in compared to aged oocytes. It has 

been reported that above-mentioned defects are associ-

ated with a decrease in ATP production, mitochondrial 

function, oocyte function, embryo development, viabil-

ity, and ultimately poor pregnancy outcome [67–69]. 

Intriguingly, in another study by Igarashi et al., they did 

not observe any improvement in embryo development 

and fertilization rate in aged oocytes following the mito-

chondrial transfer. These authors attributed these find-

ings to a possible defect in other important cytoplasmic 

organelles or factors within the oocyte, such as the endo-

plasmic reticulum and suggested that these organelles 

could also play a role in embryonic development [67]. 

In contrast to human study, Yi et  al. injected the mice 

hepatocytes-derived mitochondria into the 2PN stage 

zygotes of young and older mice. The results showed that 

the development of the embryo to blastocyst stage has 

been remarkably improved in young mice (37.65% ver-

sus 20.91% in injected and control groups, respectively). 

In older mice, 54.35% and 18.92% zygotes developed to 

morula stage and, 43.48% and 8.11% zygotes developed 

to the blastocyst stage in injected and control groups, 

respectively. These findings illustrated that the mitochon-

drial transfer at the zygote stage from older mice could 

significantly enhance the development to morula and 

blastocyst stages unlike human zygots [22, 63].

Since August 2015, two major fertility centers [FAKIH 

IVF (Dubai, United Arab Emirates) and the Toronto 

Center for Assisted Reproductive Technologies (TCART; 

Toronto, Canada)] have set up and developed AUG-

MENT as a therapeutic practice for women with poor 

reproductive performance. The data collected based on 

93 patients following AUGMENT treatment from both 

centers showed that AUGMENT significantly increased 

pregnancy rates up to 3- to 6-fold in TCART and FAKIH 

IVF centers, respectively. Following 104 cycles of AUG-

MENT in these two centers, 4 live births from 6 babies 

were born which is comparable with 5 live births during 

369 cycles of IVF without AUGMENT. Taken together, 

the results of these two centers demonstrated the clini-

cal efficacy of mitochondrial transfer protocol for aged 

patients to improve human reproductive performance 

[21, 58]. Recent studies have shown the existence of 

oogonial precursor cells (OPCs) in the human ovaries 

as one of the autologous sources of “healthy mitochon-

dria”. With this respect, Oktay et al. investigated the clini-

cal effectiveness of injected OPCs-derived autologous 

mitochondria via ICSI in order to improve the quality 

of oocyte in women with multiple IVF failure. Following 

autologous mitochondrial injection (AMI), high fertili-

zation rates and embryonic scores were observed which 

clearly reflects the improvement of oocyte quality. In this 

particular study, 10 women with the mean age of 34.7 

were enrolled and subjected to mitochondrial transfer 

with remarkable improvement of fertilization rates (49.7 

pre-AMI vs 78.3 post-AMI) and better embryo grades 

(2.3 pre-AMI vs 3.1 post-AMI) resulted in four clinical 

pregnancies was observed [25].

Barritt et  al. [70] traced the transferred donor mito-

chondria following ooplasmic transfer in the blood 

samples of human babies by mtDNA fingerprinting 

and confocal microscopy after donor ooplasm stain-

ing. The results showed the distribution and replication 

of injected donor mitochondria after 24 and 48 h by the 

ooplasmic transplantation in preimplantation embryos. 

Also, the authors observed heteroplasmy in baby’s 

blood. This paper was the first report in human germline 

genome modification resulting in healthy babies. Taken 

together, active and healthy mitochondria from healthy 

fertile donor oocytes were transplanted into the recipi-

ent patient oocytes during the ooplasmic transplanta-

tion technique resulted in approximately 30 live births 

worldwide.

Dale et  al. [54] described the successful employment 

of oocyte cytoplasmic transfer to patients who suffered 

from idiopathic infertility due to a high level of embry-

onic fragmentation after IVF or ICSI. In this report, a 

fraction of oocyte cytoplasm of a 25-year-old woman was 

injected into oocytes of the patient during ICSI proce-

dure after confirmation of normal metaphase-II matura-

tion and morphology contributed a live birth of healthy 

twins. This result illustrates the successful application 

of cytoplasmic transfer for enhancing the oocyte and 

embryo quality. In a similar study conducted by Huang 

et  al. [71], cytoplasm from donor’s zygote and recipient 
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husbands’ sperms were injected simultaneously into the 

recipient’s MII oocytes suffering from repeated implan-

tation failure (RIF). Following injection MII oocytes 

developed to cleavage stage embryos and subsequently 

transferred to the patient’s uterus. As a pregnancy out-

come, five healthy babies from four normal pregnant 

recipients were born. This results confirmed the enhance-

ment effect of zygote’s cytoplasmic injection into oocytes 

upon ICSI, in patients with RIF. In an animal study, Chi-

aratti et  al. demonstrated that ooplasmic transfer could 

rescue the exposed bovine oocytes to ethidium bromide 

(the mtDNA transcription and replication inhibitor), and 

promoted embryonic development and heteroplasmic 

calves birth [28, 72].

In another investigation, a 39-years-old woman with 

low ovarian reserve and ooplasmic deficiency (6.5 years 

of treatment history) were received ooplasm of a 27-year-

old woman during ICSI with successful fertilization 

and eventually a healthy baby girl was born in weight of 

4356 g [53].

Lanzendorf et  al. [73] reported a twin pregnancy in a 

35 years old patient with a poor quality embryo history 

following a cytoplasmic transfer from cryopreserved 

donor oocytes into patient oocytes, however using this 

procedure in patients with advanced maternal aging 

(> 40 years of age) resulted in no positive pregnancies.

In an experiment conducted in animal setup, Wang 

et  al. [8] microinjected the autologous mitochondria 

isolated from adipose-derived stem cells (ADSCs) from 

an aged mouse into its own GV oocytes. Examining the 

mtDNA copy numbers, spindle organization status and 

chromosomal alignment in MII oocytes in microinjec-

tion group revealed an enhancement in the matura-

tion process and decline in aneuploidy rates compared 

to control group. They also concluded that autologous 

ADSCs-derived mitochondria microinjection via by 

ICSI procedure could improve the blastocyst rate (up 

to 30% vs. 15%), embryogenesis and fertility outcome in 

aged mice.

In contrary to above-mentioned results, Li et al. [74] 

demonstrated that heterogeneous ooplasmic transfer 

to rabbit mature oocytes led to an apparent decline in 

development rate of blastocysts. However, the homog-

enous ooplasmic transfer did not impact on fertiliza-

tion rate and embryonic development. They pointed 

out that the transmission of ooplasm into defective and 

low-quality oocytes could improve the fertilization rate 

and embryonic development, not oocytes with normal 

quality. The result of mitochondrial and/or ooplasmic 

transfer studies in the reproductive system is summa-

rized in Table 1.

Table 1 Summary of mitochondrial and/or ooplasmic transfer studies in the reproductive system

Species Ooplasm or mitochondria  
transfer

Increased 
fertilization 
rate

Embryo 
development

Improved 
blastocysts 
rate

Clinical pregnancy References

Human Ooplasm √ √ – One baby [53]

Ooplasm √ √ √ 5 baby [71]

Ooplasm √ √ – Twin [73]

Oocyte mitochondria √ √ √ – [70]

Ooplasm √ √ – Twin [54]

cGCs-mitochondria √ √ √ 7 twins 2 ectopic pregnancies [65]

Mouse Ooplasm √ √ √ – [79]

Mitochondria √ √ √ – [80]

Mitochondria √ √ √ – [26]

Somatic cyto/mito – × √ – [81]

Hepatocytes mitochondria √ √ √ – [22]

ADSC-mitochondria √ √ √ – [8]

Ooplasm √ √ √ √ [11]

Mitochondria √ √ √ – [82]

Cow Granulosa cells mitochondria √ √ √ – [33]

Ooplasm √ √ √ – [28]

Pig Mitochondria √ √ √ – [30]

Mitochondria √ √ √ – [40]

Hamster Platelet mitochondria √ √ √ – [41]

Rabbit Ooplasm × × × × [74]
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Ongoing clinical trials around the world 
about the AUGMENT technique
To the best of our knowledge, trials and clinical applica-

tion of mitochondrial transfer increasingly being per-

formed for fertility and reproduction competence. In a 

study compiled by Ishii et  al. [75], different authorities 

have been studied mitochondrial manipulation tech-

niques in clinical setting. In this respect, different insti-

tutes from sixteen countries were selected to analyze 

the legal status of egg donation and genetic modification 

and discussed implications associated with implementa-

tion of current experimental approaches in reproductive 

medicine. The current clinical trials conducted in rela-

tion to AUGMENT treatment in women (ClinicalTrials.

gov1) are summarized in Table  2. The principal objec-

tive of these studies is to increase oocyte and embryo 

quality in patients or elder women with the history of 

IVF failure autologous microinjection of mitochondria 

from different sources. Data showed that mitochondrial 

source are either ovarian stem cells, GCs, and bone mar-

row mesenchymal stem cells in these clinical studies. The 

central consensus in these experimentations are the dete-

rioration of oocyte mitochondrial function and reduced 

mitochondrial copy number as a major consequence of 

maternal aging which has significant negative effects on 

oocyte maturation and embryogenesis. Hence, the pri-

mary goal of these trials is to enrich the energy sources in 

affected oocytes via AUGMENT treatment.

Ethical issues
Numerous in  vitro studies have been carried out on 

transferring the mitochondria between cells to promote 

the restoring process in affected target cells through 

intracellulary and extracellulary mechanisms in the 

various fields including reproduction. Because of some 

ethical concerns related to mitochondrial transfer pro-

cedures, such as the birth of a baby from a third parent, 

transmitting of the genetic disorders and the donation 

of mitochondria from other individuals, the mitochon-

drial transplantation has been considered controversial. 

Despite these limitations, the AUGMENT mitochondrial 

transfer has been introduced as an appropriate method 

for transferring healthy autologous mitochondria to cir-

cumvent the ethical issues and legal concerns. On the 

other hand, more randomized controlled clinical trials 

are demanded to further examine and validate the ethical 

and safety concerns [59, 61, 76].

Conclusion and future directions
The association between ROS, aging, and metabolic 

abnormalities have been clearly illustrated 60  years ago 

[4]. In addition to factors related to aging, other factors 

correlated with poor quality oocytes such as overweight, 

polycystic ovary syndrome (PCOS), type II diabetes, 

and other environmental and genetical deficiencies have 

also been indicated. Oocytes of patients suffering from 

above-mentioned disorders contain a large number of 

mitochondrial malformations including structural and 

functional changes [17, 58, 77]. Due to the strong asso-

ciation between mitochondria and oocyte quality, subse-

quent embryonic development and fertility are likely to 

be affected directly by the quality of the mitochondria 

and mtDNA. Therefore, impairment in mitochondrial 

function and oocyte mitochondrial deficiency may have 

a negative effect on reproduction and fertility, hence 

increasing mitochondrial numbers and/or improving 

mitochondrial function through mitochondrial transfer 

from high-quality oocyte to low-quality oocyte could 

lead to improved fertility outcome and benefit female 

patients suffering from diabetes, recurrent IVF failure 

and repeated pregnancy failure associated with aging.

It has been proposed that the injection a small fraction 

of donor’s oocyte cytoplasm containing healthy mito-

chondria may restore the normal function of oocytes 

[71]. In the past, the transfer of donor oocyte cyto-

plasm resulted in some live births; however, consider-

ing heteroplasmic concerns nowadays, this technique is 

less recommended. To further confirm the safety of the 

procedure, optimal protocols, including maintenance of 

homoplasmy in the offspring through using of approved 

sources of mitochondria (donor mitochondria) without 

deletions or mutations in mtDNA, or implementation of 

ovarian origin egg-precursor cells should be established 

and considered [25, 32, 78]. OvaScience has reported that 

egg precursor cells (EPCs)-derived mitochondria from 

germline and unipotent cells in the outer ovarian cortex 

are the most potential and high-quality sources of healthy 

and active mitochondria to be used in AUGMENT tech-

nique. Therefore, the evaluation of healthy and active 

mitochondria prior to oocyte reconstruction procedures 

can be helpful for the selection of fertilizable oocytes 

[30]. As mitochondria are vital for oocyte maturation 

and embryo development, mitochondria assessment and 

application of appropriate technique for mitochondria 

injection into the defective oocyte are urgently needed 

especially in women at the risk of disorders associated 

with aging.

1 ClinicalTrials.gov known as a database of general and private clinical stud-

ies that have been conducted around the world and a clinical studies source 

founded by the United States NLM (National Library of Medicine).
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MFRTA : mitochondrial free radical theory of aging; ROS: reactive oxygen spe-

cies; MtDNA: mitochondrial DNA; PGCs: primordial germ cells; CIPO: chronic 

intestinal pseudo-obstruction; MDS: mitochondrial DNA depletion syndromes; 

PNT: pronuclear transfer; ICSI: intracytoplasmic sperm injection; IVF: in vitro 

fertilization; PBT: polar body transfer; AUGMENT: autologous germline mito-

chondrial energy transfer; OSCs: oogonial stem cells; CGCs: cumulus granulosa 

cells; AMI: autologous mitochondrial injection; ADSC: adipose tissue-derived 

stem cells; EPCs: egg precursor cells.
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