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Abstract

Current wireless network design is built on the ethos of avoid-
ing interference. In this paper we question this long-held de-
sign principle. We show that with appropriate design, suc-
cessful concurrent transmissions can be enabled and exploited
on both the uplink and downlink. We show that this counter-
intuitive approach of encouraging interference can be exploited
to increase network capacity significantly and simplify net-
work design. We design and implement AutoMAC, a novel
MAC and PHY protocol that exploits recently proposed rate-
less coding techniques to provide such concurrency. We show
via a prototype implementation and experimental evaluation
that AutoMAC can provide a 60% increase in network capac-
ity on the uplink compared to traditional Wifi that does om-
niscient rate adaptation and a 35% median throughput gain
on the downlink PHY layer as compared to an omniscient
scheme that picks the best conventional bitrate.

Categories and Subject Descriptors

C.2 [Computer Systems Organization|: Computer - Com-
munication Networks

General Terms
Algorithms, Performance, Reliability, Design

Keywords

Wireless Communication, MAC Protocol, Interference exploita-
tion, Successive Interference Cancellation

1. INTRODUCTION

A basic precept of current wireless design is that at any
instant only one transmission should be happening on any
given frequency. For example, WiFi networks attempt to en-
sure that at any time a single client transmits to the AP via
a random access MAC protocol. Similarly, cellular networks
use synchronous scheduling techniques such as OFDMA, and
the AP ensures that on any given subcarrier, only one node is
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transmitting at any instant. Correspondingly, when the AP is
transmitting to clients, it ensures that only one client’s packet
is transmitted on any given frequency at any time *.

The key reason for this design approach is of course to avoid
the harmful effects of interference. If concurrent transmis-
sions are allowed on the same frequency, packets interfere and
the receiver cannot decode the constituent packets. Avoiding
such interference when the basestation is transmitting is sim-
ple since the basestation controls to whom it transmits. But,
when client nodes are transmitting, current network designs
spend significant overhead (in the form of control traffic such
as RTS/CTS, backoffs) to sense and avoid interfering with
each other. Consequently, such an interference avoidance ap-
proach limits throughput, both fundamentally since only one
node can transmit at any time, as well as due to protocol
overheads such as RTS/CTS that are needed to avoid inter-
ference.

In this paper, we take the opposite approach. Instead of
avoiding interference, we show that with the appropriate de-
sign, networks can systematically exploit interference to sig-
nificantly increase throughput. We design and implement Au-
toMAC, a new PHY/MAC design that encourages multiple
clients to transmit simultaneously to the AP on the uplink
and similarly allows the AP to transmit packets to multiple
clients concurrently on the downlink. Inevitably inerference
results and the current design would be forced to throw away
the receptions since they are undecodeable. Instead in Au-
toMAC, we design a novel rateless PHY layer encoding and
decoding algorithm that allows the receivers to decode all the
constituent packets from interfered receptions. The rateless
code provides another critical benefit: it allows successful con-
current transmissions without requiring that the sender know
either their channel to the receiver nor the identities of the
other concurrent senders, each node simply sends a continous
stream of rateless encoded symbols until the receiver decodes.
As we will show in Sec. 2, traditional PHY layer modulation
and coding techniques would incur enormous MAC layer coor-
dination overhead to realize the benefits of exploiting interfer-
ence. In AutoMAC, the rateless property of its PHY ensures
that concurrency benefits can be realized with a simple, low
overhead MAC.

We provide detailed intuition on how AutoMAC exploits
interference in the following section 2, but we first summa-
rize our main contributions. Theoretically, we show that Au-
toMAC is asymptotically optimal, i.e. it achieves the capac-

!The above discussion is for a single antenna. MIMO allows
multiple transmissions on the same frequency, but separates
them on the spatial dimension, and our approach naturally
generalizes on the spatial dimension.



ity of the Gaussian Multiple Access channel on the uplink,
and the Gaussian broadcast channel on the downlink. For
experimental evaluation, we have prototyped AutoMAC in
the GNURadio [3] SDR platform and evaluated it in an in-
door testbed via experiments using USRP2s, as well as trace
drive simulations. We compare AutoMAC with the standard
802.11 MAC which performs omniscient rate adaptation. This
scheme has perfect channel knowledge, and always picks the
optimal bitrate. However, it suffers from the inefficiencies of
the 802.11 MAC protocol. Our evaluation shows that:

e On the uplink, AutoMAC’s decoding algorithm can han-
dle and decode an interfered signal that consists of up to
3 concurrent transmissions. AutoMAC thus completely
eliminates hidden terminals. Similarly, on the downlink,
AutoMAC can send 3 packets concurrently to different
nodes in the same transmission.

e AutoMAC achieves a median throughput that is 35%
better than the ommniscient scheme on the downlink due
to its ability to multiplex concurrent packets.

e In comparison with 802.11 carrier sense with omniscient
rate adaptation, we show that AutoMAC achieves nearly
60% throughput improvement on the uplink in dense
networks. The source of the gains come from both be-
ing able to exploit interference, as well as having an
efficient MAC protocol.

Finally, we note that there has been considerable interest
in recent work in combating collisions and interference [4].
However, all of them still consider interference as a necessary
evil that can be dealt with in smarter ways when it inevitably
happens, but the main goal is still to avoid it. AutoMAC
makes a fundamental leap: it shows that interference should
be encouraged and exploited to increase capacity. We believe
AutoMAC thus represents the next step in the evolution of our
understanding of how to handle interference, from avoiding it
in current designs with CSMA [23, 7], to dealing with it [11,
4,9, 8], to exploiting it.

2. INTUITION

To give intuition about AutoMAC, we use the classic exam-
ple of two nodes Alice and Bob connected to an AP. Through-
out this section, we assume that the channel attenuation be-
tween Alice and Bob to the AP is hi and ho respectively.
For exposition simplicity, we assume channel reciprocity and
hence the channels from the AP to the two nodes have the
same parameters. We assume that all nodes transmit with
power P, and the noise at all nodes is V.

2.1 Exploiting Interference on the Uplink

To avoid interference on the uplink, the optimal current
system will schedule Alice and Bob to transmit one after the
other in separate time slots. Assuming no MAC overhead,
a fair (equal) time allocation to both Alice and Bob, and
capacity achieving codes, information theory tells us that the
throughput of the system is given by:

1 hi|*P ho|?P
Rmm:§<log2 (1+| 1]17 >+log2 (1+| 2]\|[ )) (1)

In our approach, Alice and Bob are explicitly asked to in-
terfere. In other words, Alice and Bob transmit concurrently

and the AP receives
Yy = h1331 =+ ]’LQ{I’Q +n (2)

How might the AP decode Alice or Bob’s signals? One pos-
sible approach is for the AP to try and decode one of the
packets while treating everything else (including the other in-
terfering transmission) as noise, and if successful, subtract the
decoded packet out and then decode the second packet inter-
ference free. This approach is referred to in the literature as
Successive Interference Cancellation (SIC).

Assuming Alice’s transmission is decoded first, the optimal
throughput that Alice can achieve is given by:
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Once Alice’s transmission is decoded, the AP can subtract her
contribution to the received signal h1x1 (feasible now since the
AP knows both h; and z1), to obtain y' = haza + N. The
AP can now decode Bob’s signal at a rate which is exactly
the same as when Bob alone was transmitting and there was
no interference from Alice:

ha|*P
RB:10g2(1—|—|2]\|] ) (4)

The benefits of exploiting interference are now apparent.
Specifically, Bob is able to decode his signal interference-
free, as if Alice had not transmitted at alll Hence the ex-
tra throughput that Alice obtained is over and above the
throughput Bob would have obtained if there was no interfer-
ence, and thus strictly better than the interference-free case.
If the decoding order is reversed (i.e. if Bob’s packet is de-
coded first and then subtracted out to decode Alice’s), Alice’s
transmission would see an interference free channel and thus
any throughput Bob would achieve would be essentially for
free compared to the non interference case. Assuming the
AP equally alternates between these two decoding orders, the
sum throughput of the system can be shown to be:

2 2

Rsic = log, (1 + (Pl + [ha[)P )P> (5)
N

As we can see Rsic > Rpint, i.e. the system throughput

achieved by SIC is strictly greater than that achieved by the

optimal interference-avoidance scheme.

Said another way, for every transmission that the opti-
mal interference-avoidance system makes (either from Alice
or Bob), the other node can also transmit concurrently and
get extra throughput without hurting the ongoing transmis-
sion which can be decoded interference free after SIC. The
above intuition is not our contribution, information theory
calls this the multiple access channel and its well known that
exploiting interference in this manner provides significantly
higher performance than avoiding interference. Fig. 1 plots
the achievable throughput combinations for Alice and Bob
when they are exploiting interference compared to the con-
ventional interference avoidance scheme.

2.2 Exploiting Interference on the Downlink

In the downlink, the AP is transmitting to Alice and Bob.
The current practice is to send to Alice and Bob one after
the other using power P for each transmission. In that case,
the downlink system throughput of the optimal interference
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Figure 1: Throughputs Alice and Bob can achieve
by exploiting interference compared to the optimal
interference avoidance scheme in the uplink.

avoidance scheme is

1 P|hi|? P|hy|?
Rmm:§<log2 (1+ |Nl| >+log2 (1—|— |N2| )) (6)

We show that we can do better using ideas from information
theory [1] where the problem of downlink transmission is
termed the broadcast channel and the best possible rates for
each of the users has been characterized analytically. Wireless
is a broadcast medium, so every transmission from the AP
reaches both Alice and Bob, even if it is not meant for them.
AutoMAC takes advantage of this property to send packets
concurrently for both Alice and Bob in the same transmission.

Suppose the AP needs to send the symbols ;1 and z2 for
Alice and Bob respectively. It has a power budget of P per
transmission that must be allocated between z; and z2. Since
the AP has no channel knowledge, we decide to split the power
equally among Alice and Bob. Thus, the AP sends (z1 +
x2)/+/2 so that each symbol has power P/2.

How can Alice and Bob decode? Bob receives the signal
hox1/vV/2 + hawa/v/2 + N. Notice that this is similar to the
uplink interference case, except that both symbols experience
the same channel and the channel depends on the receiver,
i.e. Alice or Bob. One can imagine using the same successive
interference cancellation (SIC) approach to decode. However,
there is one critical difference. In the downlink, Alice or Bob
require only the packet intended for them, while in the uplink,
the AP needed to decode all the packets. This implies that the
node with the weaker channel from the AP should simply try
to decode his packet treating everything else as interference.
The reason is that it will take him the same amount of time
to decode either his or the other packet, since both of them
are allocated equal power and experience the same channel.
Hence there is no reason to try decoding anything else, the
node with the weak channel just decodes the packet intended
for it.

However, the node with the stronger channel doesn’t have
to do the same. Instead, since the AP has to transmit enough
to ensure that the weaker channel node can decode, the num-
ber of transmissions will be greater than that required by the
stronger channel node to decode the packet of the weak node.
Hence, the strong node first decodes the weak node’s packet,
and then applies SIC to cancel the interference, and decode
his own packet interference free.

To understand rigorously why allowing users to interfere
with each other produces higher rates, we refer the reader
to [21]. The intuitive (but less precise) reason is that the
Shannon capacity function is concave with increasing power:
increasing the power of a transmission provides diminishing
returns beyond a certain level. Hence instead of using all
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Figure 2: Throughputs Alice and Bob can achieve
by exploiting interference compared to the optimal
interference avoidance scheme in the uplink.

the transmission power for one node, an AP is best served
by dividing it and sending to multiple nodes concurrently.
To show the effect visually, Fig. 2 plots the optimal rates
achieved using the above scheme by Alice and Bob for various
realistic SNR combinations. The scheme achieves higher sum
throughput when Alice and Bob have different SNRs and the
same sum throuhgput as traditional interference-free schemes
when Alice and Bob have equal SNRs.

2.3 What’s the Catch?

While the above intuitions on how exploiting interference
can help improve throughput in both the uplink and the
downlink have been well understood, realizing them in prac-
tice has been challenging due to one basic challenge: rate
adaptation. Modern wireless networks perform rate adap-
tation, i.e. the senders estimate the channel quality to the
receiver and pick the best bitrate that maximizes throughput
while ensuring that the receiver can decode. Even assuming
that nodes can do perfect rate adaptation (i.e. pick the op-
timal bitrate) given the channel to their receiver, the above
scheme fails in the presence of interference. For example in
the uplink, if multiple clients transmit concurrently, the ef-
fective SINR each of their transmissions will see will be lower
than the channel SNR the transmitters had estimated earlier
because the receiver has to treat the other interfering trans-
missions as noise when decoding. Consequently, none of the
transmissions will be decoded since bitrates exhibit a thresh-
old behavior [5], if the actual SINR is lower than the min-
imum required to decode that bitrate, decoding fails. This
is consistent with the observations in [18] which doubts the
future of SIC based protocols. The other design choice is
of course to coordinate, i.e. each node tries to learn in ad-
vance the identity of the concurrent senders, their channels
to the AP, and then appropriately encode its own transmis-
sion for the SINR his transmission will experience at the re-
ceiver. However, that approach adds enormous coordination
overhead and is at odds with the random access nature of
WiFi.

The same effect holds on the downlink since clients are us-
ing the same SIC approach to decode their respective pack-
ets, and the SINR a packet experiences is a function of both
the channels as well as the interference. Remember that the
strong channel node is using SIC to decode its packet, while
the weak channel node decodes assuming everything else is
noise. To ensure that they can decode, the AP has to en-
code their respective packets such that they are decodeable
at the SINR of their respective transmissions. To do so, the
AP would need to have accurate knowledge of the channels
to both clients, else once again decoding will fail due to the
threshold effect of current encoding techniques. Such channel



estimation adds overhead and might be impractical in dense
or mobile networks.

24 AutoMAC

The basic challenge in exploiting interference is that the
sender does not know the SINR his packet will experience at
the receiver in advance, yet it has to be able to encode its
data such that the receiver can decode even when there are
collisions and bootstrap SIC. In other words, we want the
sender’s encoding to have a rateless property, i.e. the sender
should be able to generate a stream of rateless transmissions
which enable the receiver to decode the original data after a
certain number of rateless transmissions commensurate with
the actual channel SINR are received, and in effect achieve
the same throughput as one would achieve if the sender had
known the SINR in advance and had encoded its data at the
correct rate.

AutoMAC leverages recent work on rateless codes [6, 15] to
solve the above problem. These codes allow the receiver to
bootstrap SIC, since the senders transmit a stream of rate-
less coded transmissions until the receiver can decode. Hence
eventually one of the colliding packets will be decoded and
SIC kickstarts. So a simple MAC protocol would be to let
both senders keep transmitting with the rateless code until
their transmissions get ACKed. The receiver would employ
SIC and ACK the senders as soon as their respective packets
are decoded.

However, the above simple MAC protocol fails. Consider
the case when the channels from Alice and Bob to the AP
are equally strong, e.g. 10dB. Using the above MAC pro-
tocol they would keep transmitting concurrently until both
their packets could be decoded. For simplicity, lets assume
the AP tries to decode Alice’s packet first. Since it is treat-
ing Bob’s packet as noise when decoding Alice’s, the effective
SINR for Alice’s transmission is 0dbB. Consequently Alice
has to transmit quite a few rateless coded transmissions be-
fore the AP can decode. For example, with the Strider rateless
code [6], Alice has to send 15 rateless transmissions before the
AP can decode her packet. However, once the AP decodes, it
can completely cancel Alice’s contribution and decode Bob’s
signal interference free. In effect, this means Bob’s transmis-
sions see a SINR of 10dB, and can be decoded with far fewer
transmissions compared to Alice. Again with Strider’s rate-
less code, with a SNR of 10dB, Bob would need to only send
5 rateless transmissions. But since the AP does not ACK
until it can decode Bob’s packets fully, which it cannot until
Alice’s packet is decoded, Bob ends up sending 10 wasteful
transmissions or nearly 3x the number he actually needs to
transmit. Thus the naive MAC protocol leads to tremendous
waste.

AutoMAC’s second main contribution is a novel PHY /MAC
protocol that solves the above challenges and allows one to ex-
ploit collisions through rateless codes. The key technique is
speculative ACKing. Intuitively, in the above example, if the
AP could speculatively ACK Bob’s transmissions after it has
received a sufficient number (around 5) to ensure it can de-
code Bob’s packet after eventually decoding Alice’s packet,
then Bob can move on to his next packet and ensure that
channel time is not wasted. The basic problem is that the
AP has to estimate even before it has decoded either Alice
or Bob’s packets, when to speculatively ACK. The decision
is dependent on the SNR of the channel from Bob which the
AP now has to estimate in the presence of interference. Au-

toMAC designs a novel detection and prediction algorithm
that allows it to accurately estimate channels under interfer-
ence, and speculatively ACK to avoid waste.

3. DESIGN
In this section we describe the design of AutoMAC.

3.1 MAC Protocol

AutoMAC uses a simple AP driven MAC protocol. In
AutoMAC the AP has an opportunity to transmit after ev-
ery packet transmission in the network. In the uplink, af-
ter receiving the concurrent transmissions, the AP sends an
ACK/NACK packet to inform the clients if any of their pack-
ets have been decoded. In the downlink, the AP is of course
transmitting a packet. The basic idea is that whenever the
AP is transmitting a packet (either data or ACK), if it wants
to accept transmissions from the clients in the next slot, the
AP appends a short contention advertisement at the end of its
transmission. The contention advertisement informs nodes of
the number, n of users that may transmit concurrently in the
next slot. The advertisement may also include requests from
the AP for retransmission of specific packets from particuar
nodes, which as we will see in Sec. 3.2.1 is needed to ensure
robustness when decoding fails after speculative ACKing.

After hearing the contention advertisement, nodes that have
outstanding traffic enter into a contention period to determine
which n nodes may transmit concurrently. We build on the re-
cently proposed frequency domain backoff technique [17] that
allows nodes to pick a random subcarrier out of the 64 avail-
able ones, and send a single tone on that subcarrier. The
contention period lasts for 4 time slots, and the clients ran-
domly pick one slot out of the four and one subcarrier out of
the 64 to transmit the tone. Next, the AP just retransmits
the information about the subcarriers and time slots on which
it received tones in the contention period. The n nodes with
the n smallest subcarriers and time slots win the contention
period, and transmit concurrently after the contention period
ends. Since there are a total of 256 time-frequency slots, the
probability of two clients picking the same slot and subcarrier
in a reasonably sized network is low. However, if network size
grows, the contention period can always be increased. Note
that the contention period is only needed when the AP wants
to accept transmissions from new clients. If not, the existing
set of clients continue to transmit concurrently after receiving
the ACK/NACK packet.

Note that the AP can choose to not advertise any con-
tention spots. In this case, two events can occur. One the
AP itself may chose to transmit in the next slot. Or, the AP
might ask the nodes which were concurrently transmitting in
the previous slot to continue. The contention advertisement
contains a special field to inform all nodes about these cases.
The above MAC protocol provides each node with an equal
amount of channel transmission time. However that by itself
does not ensure fairness, as the discussion in Sec. 2 shows, the
throughput a node achieves is also a function of the order in
which it is decoded by SIC and the SNRs of the other collid-
ing transmissions. In Sec. 3.6 we describe a novel algorithm
that ensures fairness even under collisions.

3.2 Exploiting Interference on the Uplink

The n nodes that win the contention period transmit con-
currently after the contention period ends. Each node uses
the standard OFDM PHY with 64 subcarriers spread over



20MHz. As with normal WiFi, data symbols are sent only
on 48 subcarriers, the remaining 16 are used for pilots and
padding. The only change we make is replacing convolutional
coding with the rateless code. We first describe how each
node generates its packet.

3.2.1 Packet Encoding

Each node uses a rateless code to encode its data. Au-
toMAC is orthogonal to the choice of the rateless code, and
can use either Strider [6] or spinal codes [15]. Since Strider
has linear decoding complexity and is simpler to implement,
we choose to use it in our current design.

Strider encodes data using the following steps:

1. Packet data is divided into chunks of size S KB. In each
block we have D data blocks of length L bytes each.
Current default values are D = 30, L = 200 and S = 6.

2. Each of the D data blocks is passed through the base
code (Strider’s current implementation uses a 1/5 rate
tubo code and a QPSK constellation as the base code),
to produce D blocks with 5L /2 complex symbols each.

3. The D blocks are passed through Strider’s encoding ma-
trix R, which is a M x D matrix, where M stands for the
number of transmissions. To generate the ¢’th transmis-
sion, the sender uses the i’th row of the encoding matrix
and so on. The sender can generate as many transmis-
sions as it needs since Strider is a rateless code.

The output of the Strider encoder is a frame of 5L/2 com-
plex symbols. These are divided into 48 equal sized sets which
are mapped to the 48 OFDM subcarriers typical in WiFi.
Next the standard OFDM PHY is used to generate the ac-
tual transmitted wireless signal, which includes doing a IFFT,
adding a cyclic prefix, adding pilots on four subcarriers and
adding a preamble at the start of the frame.

3.2.2 Decoding All the Constituent Packets with SIC

The concurrently transmitted frames go through the wire-
less channel and are received at the AP. Assuming h;; is the
channel for the j’'th rateless transmissions from the 7’th node.
The signal at the AP for the j’th transmission is

K
Y = Z hi]'l'ij + N (7)
i=1
where x;; is the rateless symbol transmitted by the 7’th node
in the j’th slot and N is the noise.

AutoMAC uses successive interference cancellation to de-
code the transmissions from the K nodes. To kickstart the
process, the AP attempts to decode the first node’s packet
treating everything else as interference. Hence the first node’s
transmissions at the AP can be modeled as

K
y; = bz + Y higwi + N (8)
i=2

Lets assume we need M rateless transmissions from the
first node to decode its packet using Strider’s rateless code.
To decode the original data, Strider first needs to estimate
the channel for each of the M rateless transmissions.

Per Frame Channel Estimation: AutoMAC uses known

training symbols at the start of the transmitted OFDM frames.

The estimation uses the least square algorithm due to its low
complexity. Since the training symbols are defined in the fre-
quency domain — each OFDM subband is narrow enough to

have a flat frequency response, AutoMAC estimates the chan-
nel in the frequency domain as a complex scalar value at each
subcarrier. Specifically, let X = (P;;[0],-- , P;;[64]) be the
vector of the training symbols used across the 64 subcarri-
ers for a single OFDM symbol for the j’th transmission from
node ¢, and C' be the number of such OFDM training symbols.
Let Yj(c), c=1,---,C, be the corresponding values at the
receiver after going through the channel. The least squares
algorithm estimates the channel frequency response of each
subcarrier k for the j’th transmission as, H;;[k], as follows:

1 <A
Pyj[n] (2 g )[n]>]

Decoding the Packet using Strider: Next, AutoMAC
decodes the data from the first node using the Strider rateless
code. Since the AP has received M transmissions from node
1, it estimates the channel for all M transmissions as above.
Since we are using OFDM, the received symbol on the n’th
subcarrier can be written as

Ayln) =5

Y;j[n] = Hy;[n|Xs5[n] + N 9)

It then uses Strider’s rateless decoding technique to decode
the original packet from node 1. We skip the details of the
rateless decoding algorithm and refer the reader to [6], but
for our discussion it suffices to assume that the packet from
node 1 is now decoded.

Subtracting Node 1’s contributions from the collision:
Next, the AP subtracts node 1’s transmissions from the re-
ceived collisions. Note that the AP has to do this for all the
M rateless transmissions from node 1. However, since the
actual interference happens in the time domain, we have to
subtract the decoded signal in the time domain even though
the rateless decoding happens after the FF'T in the frequency
domain.

To do so, we first compute the time domain channel re-
sponse by applying the inverse fast Fourier transform (IFFT)
to the frequency response of the channel estimated above.
This is done for all M transmissions. Next, the AP re-encodes
the decoded data using Strider’s rateless code and OFDM
to re-generate the M rateless transmissions. Each rateless
transmission is then passed through the time-domain chan-
nel response computed above to obtain the exact interference
contribution in the received signal.

The time domain channel response is represented using a
standard finite impulse response (FIR) filter in the digital
domain. To generate the digital samples for cancellation, Au-
toMAC convolves the known signal with the FIR filter rep-
resenting the channel. Let s1;[n] be the known transmitted
digital sample at time n by node 1 in the j’'th rateless trans-
mission. These digital samples are fed into the FIR filter. The
output z1,[n| of the filter is the linear convolution of hi;[n]
(the time domain FIR representation of the channel response)
S1j5 [n]:

oiylnl = 3y klsln — K]

After this step, the radio subtracts the estimates of the
transmit signal from the received samples y;[n]:

9;[n] = yi[n] — z15(n]



The above process is repeated recursively until all n packets
are decoded. As soon as a particular node’s packet is decoded,
a spot opens up in the next slot for another node to transmit
concurrently. The AP signals this open slot via the contention
advertisement discussed in Sec. 3.1.

3.3 Accurate Channel Estimation Under Inter-
ference

To apply the above SIC technique, the AP needs to now
estimate channels from all the n nodes. The above Least
Squares algorithm works very well when there is a single node
transmitting, but can be inaccurate if the training symbols
used for channel estimation collide with other training sym-
bols. To ensure that we obtain accurate channel estimates,
AutoMAC leverages the AP driven MAC protocol.

Specifically, after the contention period ends, the succesful

nodes transmit training blocks in separate time slots in or-
der of their contention winning sequence. In other words, the
node with the smallest contention subcarrier and time slot in-
dex transmits 4 OFDM symbols, the first one is a symmetric
pseudorandom sequence for time and frequency synchroniza-
tion via Schmidl-Cox [16], and the next two symbols are the
preamble used for channel estimation. The fourth symbol is
used for identifying the node and the packet. Next, there is
a short guard interval of 2us, and then the node with the
next highest contention subcarrier index transmits the train-
ing symbols and so on. Such clean training symbol trans-
mission one after the other is possible because the nodes can
synchronize on the reception of the contention advertisement,
which essentially acts like a common clock for the network.
AutoMAC is now free to use the standard least squares al-
gorithm for all nodes since pilots and preambles are obtained
cleanly for all of them. After n such training block transmis-
sions, all the nodes start transmitting their rateless encoded
frames concurrently.
Estimating Wireless Hardware Distortions: Apart from
the channel, the training symbols help estimate two other
practical hardware effects that distort the signal. The first
one is carrier frequency offset (CFO) which exists because
the oscillators at the sender and receiver are never perfectly
synchronized to the same frequency. Consequently, there is
always a small frequency offset §f;, between the i'th trans-
mitter and receiver. The CFO causes a linear displacement
in the phase of the received signal that increases over time,
ie.

yiln] =D hie™ N a4 N (10)
=1

In AutoMAC, the receiver calculates the CFO for every
transmitter thats part of a collision. We use the standard
Schmidl-Cox algorithm [16] on training symbols. Remem-
ber that the first symbol is pseudorandom repeating sequence
that is used by the Schmidl-Cox algorithm for packet detec-
tion. By correlating shifting halves of samples, the receiver
can figure out the start of the packet where the peak occurs.
The phase of the correlation peak also provides an estimate
of the fractional CFO, defined as a fraction of the OFDM
subcarrier width.

When decoding a packet, CFO correction is applied on all
the received samples. However, once decoded AutoMAC has
to cancel the decoded packet’s contribution from the received
signal. Hence it has to apply back the CFO distortion to
ensure that it cancels exactly the signal that interfered in the

time domain. Applying CFO back is a matter of multiplying
the time domain samples by a factor of e?27%fim,

3.4 Speculative ACKing

AutoMAC sends multiple packets in every time-slot from
different clients to the AP. The channel between each client
and the AP will be different, i.e. some will be stronger than
the others. Consequently, packets from different clients can
be decoded at different times. The exact time is a function
of two factors: the order of decoding, and the relative SNRs
of the different client-AP channels that are involved in the
concurrent transmission.

However, as described, the above PHY and MAC proto-
col will keep sending rateless transmissions for packets even
though they could have been decoded with far fewer transmis-
sions. The reason is of course that the AP does not ACK a
packet until it has actually decoded that packet. For example
the packet that is decoded last after interference contributions
from all other transmissions are subtracted out is ACKed only
after the sender has sent at least as many transmissions as the
first packet that has to be decoded while considering all other
packets as interference. Clearly decoding the first packet re-
quires far more rateless transmissions since its effective SINR
is low due to interference from the other packets, while the
last decoded packet requires far fewer since it sees a much
better SNR.

AutoMAC designs a novel speculative ACKing technique
to combat the above waste. The key insight is an algorithm
that accurately estimates how many rateless transmissions
any packet will take to be decoded. Prior work on Strider
[6] has shown that there is a fixed relationship between the
number of rateless transmission required to decode a packets
and the SINR at which the transmisisons are received. Hence,
if a node can estimate the effective SINR for any packet, it
can accurately estimate how many rateless transmissions it
will take to decode that packet.

The challenge then is to estimate the effective SINR for
any packet. This is a function of both the raw channel from
the specific client, the position at which that client’s packet
is decoded, and the raw channels from the other clients. To
keep track, the receiver keeps track of the total SINR we have
accumulated for a specific packet p as follows

1. For every transmission, the node estimates the channel
for all the packets that are part of the transmission.
Note that this is possible because of the MAC protocol
that allows nodes to send training blocks before each
transmission one after the other.

2. For packet p, the receiver keeps track of total power
received as T}, = Zf{ h; P where h; is the channel gain
for p’s 7’th rateless transmission and P is the transmit
power. It does the same for all the other packets that
are received in any transmission.

3. The total interference I, for decoding p is computed as
the sum of the powers for all the other packets that are
concurrently transmitted with p and act as interference
for p’s decoding. In other words they get decoded after
p does.

4. The effective SINR for p after receiving M transmissions
that contain it is then computed as Ty, /(I + M * N).

To estimate if M transmissions are enough, the receiver
consults the SINR vs number of transmissions graph for Strider.
If M is equal to or greater than the number required, then
the receiver speculatively ACKs packet p.



Note that when the receiver speculatively ACKs, p will
likely not actually be decoded yet. That happens when all
the other packets that are supposed to be decoded before p
get decoded. Of course, there will be cases where the specula-
tive ACK might be optimistic, i.e we may need more rateless
transmissions to decode p. In that case, the receiver can send
an ACK that specifically requests more rateless transmissions
for packet p from the appropriate sender. Fig. 3 demonstrates
an example of AutoMAC’s MAC protocol including specula-
tive ACKing for a three node scenario with Alice, Bob and
Charlie transmitting to the AP.

3.5 Exploiting Broadcast on the Downlink

AutoMAC uniquely allows the AP to use the same encod-
ing technique on the downlink. Assuming the AP wishes to
transmit n packets on the downlink to n different nodes, it
uses the following procedure

1. Encode each packet using Strider’s rateless code to cre-
ate a stream of rateless frames, without yet passing them
through the OFDM PHY.

2. Take the n rateless encoded frames, add them up in the
complex domain to generate one frame.

3. Next it prepends the appropriate headers which include
information about all the packets being sent together.
Finally, the frame is passed through the OFDM PHY
and transmitted.

3.5.1 Decoding at the Clients

To decode the above rateless encoded frames, the client
uses a similar procedure as the uplink. Lets say the client has
accumulated m such rateless frames each having a packet in-
tended for it among the n packets that are encoded together.
In effect, except for its own packet, everything else acts as
interference. The client can use a technique similar to succes-
sive interference cancellation to decode its own packet.

Remember from the discussion in Sec. 2 that in the down-
link case, the client with the strongest channel should decode
its packet after having decoded and cancelled all the other
packets. The next strongest channel node should decode his
second-last and so on. How can each client know the relative
strengths of the SNRs of all the other clients? Assuming such
channel knowledge is untenable for AutoMAC since its main
goal is to eliminate the need for such coordination.

AutoMAC’s key insight is to let every client pretend that it
is decoding its own packet last, i.e. every client believes that
it has the best channel initially. Eventually, the node with
the actual strongest channel will accumulate enough trans-
missions to ensure that the effective SINR is sufficient to de-
code the packet intended for it. As soon as that happens,
it will speculatively ACK just like in the collision case. The
next speculative ACK will come from the node with the sec-
ond strongest channel and so on. Thus, in effect the AP will
get an ordering of the channel strengths. The AP uses this
information to signal to all the clients the order in which they
should decode the transmissions to recover their own packets.
Each client now applies SIC in the specified decoding order
to decode their own packet.

Finally, note that speculative ACKs serve the same purpose
on the downlink as the uplink. After a node speculatively
ACKs, a new slot opens up for the AP to transmit a packet
to a different node in the downlink. The AP picks one of the
outstanding packets, according to the fairness policy discussed
next.

3.6 Fairness

The MAC protocol as described does not ensure fairness.
To see why consider the uplink case where nodes are concur-
rently transmitting. The node whose packet is decoded while
treating all other packets as interference experiences very low
SINR, while the node whose packet is decoded last achieves
the best SNR. Thus even though both nodes use the same
power and get the same channel time, the node decoded last
will achieve much better performance than the node decoded
first. The same effect exists in the downlink since the exact
same SIC algorithm is used in there too.

AutoMAC attempts to ensure the following notion of fair-
ness. A node should not achieve a lower throughput with
AutoMAC than that it would achieve with a conventional
MAC protocol that allocates equal channel time to all nodes.
The reasoning is that AutoMAC should never be less fair than
what a well designed conventional MAC protocol would have
achieved in current networks.

Ensuring Uplink Fairness: In order to ensure uplink fair-
ness as described above, AutoMAC requires the AP to esti-
mate the maximum possible throughput that each contending
node could achieve using a conventional PHY /MAC scheme.
This estimate is arrived at and subsequently updated based
on the signal strength observed whenever the corresponding
node transmits a packet. The actual throughput that the
node would achieve in a conventional setting with time based
fairness can then be calculated by simply dividing this esti-
mate by the number of contending nodes. This throughput
value is deemed to be the node’s fair share.

The key idea is whenever a node that has been under-
served, wins the contention, the AP should allow it to trans-
mit multiple packets without contending again. By under-
served, we mean the node’s actual throughput is significantly
lower than its fair share. To achieve this, all nodes are re-
quired to set one bit in their transmitted packets based on
whether or not they have more data to send. When the AP
decodes an under-served node’s packet and observes this bit
to be set, it asks the corresponding node to continue trans-
mitting the next batch without going into contention.
Ensuring Downlink Fairness: AutoMAC aims to provide
the same time-based notion of fairness on the downlink, i.e.
traffic to each client gets an equal amount of channel time on
the downlink. Similar to the uplink, the client decoding his
packet last experiences an interference free channel, as if the
AP was transmitting only to that client. Thus as long as the
AP ensures that every node gets equal opportunity to decode
its packet last, it will ensure the required fairness.

However, the challenge is that in the downlink the AP does
not have the same luxury of choosing random packet decoding
orders, the order is fixed by the relative channel strengths of
the clients. Hence, the probability of a weak channel node be-
ing the last to decode is lower than that of a strong channel
node. Consequently, the AP uses a slightly different algo-
rithm. For each client, it keeps track of how many times it
has been asked to decode last. When the next opportunity
arises to pack multiple packets in a downlink transmission,
it picks the client whose packets have been decoded last the
least number of times. It then searches for a client with out-
standing packets which it knows in the past has had a weaker
channel than the first client (because it was asked to decode
before the first client). That client’s transmission is added
to the broadcast transmission. The process is repeated re-
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gains we could get from multiplexing concurrent transmis-
sions. However, AutoMAC consciously makes this tradeoff
to ensure fairness. Over the long run, the above algorithm
ensures that each client’s packets gets equal amount of time
being decoded last in the downlink broadcast transmissions,
ensuring the desired fairness.

4. EVALUATION

We evaluate AutoMAC on an indoor testbed of 15 USRP2s
and trace driven simulations. For evaluating the AutoMAC’s
PHY layer gains we compare with omniscient scheme. This
scheme has perfect advance knowledge of the channel strength,
and picks the maximum possible bitrate that can be decoded
error free. The bitrate choices are from the 8 different bi-
trates available in the 802.11 standard. For the evaluation
of AutoMAC’s MAC protocol, we compare AutoMAC with
the 802.11 protocol doing omniscient rate adaptation.
This scheme also has perfect advance channel knowledge, and
picks the best possible Wifi bitrate. However, it suffers from
the inefficiencies of the 802.11 MAC protocol. This is done
in order to exclude the benefits of Rate Adaptation, achieved
due to Strider’s implementation [6] in our analysis.

As observed in [6] we achieve a throughput that is roughly
30% higher than the omniscient scheme on the uplink. The
rest of our findings are summarized below:

e In our testbed experiments, AutoMAC outperforms the
omniscient scheme by 35% on the downlink too!

e AutoMAC’s decoding algorithm can decode all constituent

packets within collisions with upto 3 packets. AutoMAC
thus eliminates hidden terminals in our testbed. Fur-
ther, on the downlink it can multiplex upto 3 packets
together.

e AutoMAC’s design accurately estimates channels, fre-
quency and sampling offsets even under collisions.

e In networks with contention, AutoMAC provides a through-

put gain of 60% over 802.11 MAC doing omniscient rate
adaptation on the uplink and 50% over an 802.11 style
MAC ensuring time based fairness.

S. INDOOR TESTBED EXPERIMENTS

In this set of experiments, we evaluate AutoMAC using
experiments in our indoor testbed of USRP2s. We compare
with the omniscient scheme which has perfect advance chan-
nel knowledge and picks the best bitrate which can be de-
coded. This is done in order to exclude the benefits of rate
adaptation via Strider and focus on the gains due to exploit-
ing interference.
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Figure 4: AutoMAC: CDF of throughput gains on uplink

5.1 AutoMAC: Exploiting Interference on the
Uplink

Method: In this experiment, we statically place one USRP
node which acts as the AP. Next, we randomly place 10 client
nodes in the testbed so that they have different channels to
the AP. For each client-AP link, we transmit 1000 packets
between the two nodes using all the different bitrates, and
pick the one which achieves the maximum throughput. Next,
we connect all the client nodes together to a common clock
as described in prior work [13] to ensure that they transmit
one after the other according to an omniscient schedule that
allocates equal channel time to all nodes and avoids collisions.
For AutoMAC, we use the same clock setup, but allow a ran-
dom set of two nodes to concurrently transmit.

Recall from Sec. 3.3 that in order to accurately estimate
the channel under interference, we require the training blocks
to arrive in different time slots. In a commerical deployment
we envision the clients would synchronize based on the re-
ception of the conntention advertisement from the AP which
essentially acts like a clock. However, in our setup we need
to rely on an external common clock for the synchronization.
This is the distinguishing factor from the collision experiments
done in [6], which were asynchronous.We repeat this exper-
iment 10 times for the same location of the nodes and take
the average throughput for either scheme, expressed in terms
of bits/second /Hz. We then change the locations of the client
nodes to get a different SNR and repeat the above procedure.
We plot the CDF of throughputs achieved by the two schemes
in Fig. 4.

5.1.1 Accuracy of Channel and CFO Estimation

In this experiment, we evaluate the accuracy of AutoMAC’s
channel and CFO estimation techniques. We select 3 client
nodes and allow them to transmit to the AP using AutoMAC.
Next, we immediately make them transmit to the AP sepa-
rately one after the other without collisions using the stan-
dard WiFi OFDM PHY . Note that while doing Successive
Interference Cancellation, any error in channel estimates of
the stronger client, leads to increased interference for all the
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Figure 5: Reduction in Channel SINR post cancellation
due to errors in Channel and CFO Estimation

clients that need to be decoded subsequently. We plot the cor-
responding reduction in channel SINR for the weaker client
as a function of the signal strength of the stronger client in
Fig. 5.

5.1.2  Accuracy of Speculative ACKing

In this experiment, we evaluate the accuracy of AutoMAC’s
speculative ACKing technique. We check when the AP specu-
latively ACKs in anticipation of being able to decode a packet
after SIC, what fraction of the time it actually is succesful.
Using the results of the experiment, we observe that the AP
is totally accurate in atleast 80% of the scenarios. In 10% of
the scenarios, the AP sends a speculative ACK before it is
actually capable of decoding. We believe, these errors do not
cost much in terms of the system throughput, since the AP
can request more rateless transmissions from the appropriate
sender. These additional transmissions contribute construc-
tively towards the packet decoding and hence are not waste-
ful. However, in 10% of the scenarios, the AP fails to send the
speculative ACK on time. This results in wasteful transmis-
sions (typically just 1 extra transmission) which could have
been avoided. Overall, the inaccuracies of speculative ACK-
ing have negligible effect on the system throughput (2 — 3%).

5.2 AutoMAC: Exploiting Interference on the
Downlink

Method: In this experiment, we statically place one USRP
node which acts as the AP. Next, we randomly place client
nodes in the testbed so that they have different channels to
the AP. For each client-AP link, we transmit 1000 packets
between the two nodes using all the different bitrates, and pick
the one which achieves the maximum throughput. Finally, we
repeat the experiment with AutoMAC’s downlink technique.
We plot the CDF of throughputs achieved by AutoMAC and
the conventional PHY in Fig. 6.

Analysis: AutoMAC provides a median throughput gain of
35% over the optimal conventional downlink scheme. The rea-
son is of course higher concurrency, a AutoMAC AP manages
to deliver packets to multiple destinations in every transmis-
sion. The gains vary and as in the uplink, are a function of
the relative SNRs between the clients. We plot the relative
gains of AutoMAC as compared to the omniscient scheme as a
function of the relative SNRs in Fig. 7. The figure shows that
the throughput of the omniscient scheme is almost as good as
AutoMAC when the SNRs of the clients are similar, but the
gains increase as the relative SNR increases. This is consis-
tent from the theoretical insight about broadcast channels as
discussed in Sec. 2 and in [1].
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Figure 6: AutoMAC: CDF of throughput gains on down-
link
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6. TRACE DRIVEN EMULATION

Similar to prior work [22, 10] we turn to trace driven emula-
tion to evaluate AutoMAC’s performance in a larger network
setting with varying traffic. We compare against a state-of-
the-art 802.11 MAC protocol which performs optimal rate
adaptation. We also compare against an 802.11 style MAC
protocol with CSMA and exponential backoffs which also en-
sures equal channel time fairness. However, since these tech-
niques require fast turnaround times to send ACKs and syn-
chronized feedback etc, which the USRP2s are not equipped
to do. Additionally, it is hard to generate controllable high-
contention and varying traffic in experimental settings.
Trace: We collect real channel information for the simula-
tions via a high precision channel sounder [2]. The channel
sounder is an equipment designed for high precision chan-
nel measurement, and provides almost continuous channel
state information over the entire measurement period, and
can measure channel SNRs as low as -3dB. Our experiments
are conducted at night on the band between 2.426 and 2.448GHz
which corresponds to WiFi channel 6, and include some inter-
ference from the building’s WiFi infrastructure which oper-
ates on the same channel. The transmit node of the channel
sounder is placed at ten different locations in our testbed,
and its channel to the receive node is measured over a period
of 100 seconds where the receive node records and estimates
detailed channel state information for all frequencies in the
20Mhz channel. We collect around 100000 measurements over
a 100 second period for 10 different locations of the transmit
node.

Emulator: We feed this trace to a custom emulator writ-
ten in MATLAB with the AutoMAC’s implementation. Au-
toMAC allows for 2 concurrent transmissions on the uplink in
each time slot. The emulator implements a 802.11 style MAC
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with ACKs, CSMA and exponential backoff with the default
parameters. This scheme is allowed perfect knowledge of the
channel strength and can pick the optimal conventional bi-
trate. This is done in order to ensure that the gains of rate
adaptation [6] do not show up in our analysis.

To better judge the source of the gains, the emulator also
implements an 802.11 style MAC with CSMA and exponen-
tial backoffs, which ensures a notion of time based fairness.
That is, it ensures all contending nodes get roughly the same
channel time. This is done by allocating a fixed time win-
dow to each node whenever it wins the contention. The user
can only transmit on the channel for this fixed period of time
irrespective of its channel strength.

6.1 Performance

Method: We compare AutoMAC with the 802.11 MAC pro-
tocol which does omniscient rate adaptation and with an
802.11 style MAC which ensures time based fairness. In these
experiments, we simulate the network with 8 nodes connected
to an AP. We plot the evolution of throughput on the uplink
with time in the three scenarios in Fig. 8.

Analysis: AutoMAC provides a 60% gain on the uplink over
the conventional 802.11 MAC protocol with omniscient rate
adaptation, and a 50% gain over the 802.11 style MAC pro-
tocol ensuring time based fairness. The gain due to imposing
time based fairness on 802.11 MAC is consistent with the ob-
servations in [20].

In Fig. 9, we plot the fraction of time spent by the network
in different activities (i.e. useful data transmission, collisions,
Overheads (SIFS, ACK, packet header) and contention) for
the three different MAC protocols.

A close observation of Fig. 9 leads us to a better under-
standing of the source of the gains.We observe the following:

e The breakup of times spent looks similar for the Con-
ventional Wifi and the Time fair Wifi. The main differ-
ence between the two protocols shows up only when we
analyse the individual nodes seperately.
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Figure 10: AutoMAC guarantees atleast as much fairness
as the optimal conventional scheme

e Note that the nodes in other MAC protocols waste a
significant portion of their channel access oppurtunities
due to lack of coordination and inability to decode from
collisions. The centralized MAC protocol of AutoMAC
reduces collisions to a minimum. Here, collision is de-
fined as observing more than 2 simultaneous transmis-
sions on the channel.

e The contention time is also comparatively lower in Au-
toMAC, due to the frequency domain backoff technique
[17].

e The comparison of overheads is slightly more involved.
Overheads here include the time spent by nodes in in-
terframe spaces, (i.e. SIFS, DIFS), while receiving ACK
and while transmitting packet headers and training sym-
bols. The time spent in receiving ACK is comparatively
lower in AutoMAC, since, AutoMAC requires an ACK
to be sent only once every batch. However, the inter-
frame spaces and packet headers are significantly higher
in AutoMAC due to the smaller packet size. Overall,
the time spent in overheads is comparable across the 3
schemes.

e Due to AutoMAC’s efficient MAC protocol, the fraction
of time spent in sending useful data is 20% higher as
compared to the conventional MAC protocols.

Keep in mind that beyond these gains, the protocol also gains
from being able to exploit the uplink interference in the PHY
layer.

6.2 Fairness

Fig. 10 plots the node-wise throughputs of AutoMAC and
traditional Wifi normalized by the node-wise throughputs of
the time fair Wifi scheme. Note that AutoMAC achieves
atleast as much throughput for all the individual nodes as
a Wifi scheme with time based fairness. Conventional Wifi
is worse for certain nodes since the MAC cannot perfectly
schedule all the nodes to ensure fairness. As the figure shows,
AutoMAC provides fairness and in fact higher throughput due
to factors discussed earlier.

7. RELATED WORK

AutoMAC is related to prior work in rateless codes and hy-
brid ARQ. Rateless codes such as LT [14] and Raptor codes [19]
allow one to automatically achieve the capacity of an erasure
channel without knowing the packet loss probability in ad-
vance. However, these techniques require whatever packets
are received to be correctly decoded, and do not work in wire-
less channels where packets are corrupted. AutoMAC builds



on recent work on rateless coding for Gaussian channels [6,
15]. AutoMAC’s key contribution is to design a MAC protocol
that exploits these rateless codes to systematically encourage
and take adavntage of interference.

AutoMAC is related to prior work on interference cancel-
lation [9, 4, 11, 12, 8]. However, all prior techniques require
that the colliding packets be encoded at the correct bitrate to
enable them to decode collisions. For example in SIC, if the
colliding packets have been encoded at a bitrate correspond-
ing to the idle channel (which will happen because the collid-
ing hidden terminal senders cannot know in advance that they
will collide), SIC will fail to work [4, 18]. Zigzag has a similar
but less acute problem, since it also needs correct decoding
of its interference free chunks, which requires the packets to
be encoded at the correct bitrate. Further Zigzag needs the
same set of packets to collide across successive collisions. Au-
toMAC does not have any of these problems, since its rateless
property automatically adjusts the effective bitrate to enable
it to decode collisions, and it can decode even if collisions are
between different sets of packets.

8. CONCLUSION

AutoMAC provides a rateless MAC design that system-
atically exploits interference and consistently achieves very
good performance across both uplink and downlink scenar-
ios. AutoMAC suggests a number of avenues for future work
including extending it to 802.11n MIMO scenarios as well as
OFDMA.
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