
AUTOMAN: A Platform for Integrating

Human-Based and Digital Computation

Daniel W. Barowy Charlie Curtsinger Emery D. Berger Andrew McGregor

Department of Computer Science

University of Massachusetts, Amherst

Amherst, MA 01003

{dbarowy,charlie,emery,mcgregor}@cs.umass.edu

Abstract

Humans can perform many tasks with ease that remain diffi-

cult or impossible for computers. Crowdsourcing platforms

like Amazon’s Mechanical Turk make it possible to harness

human-based computational power at an unprecedented scale.

However, their utility as a general-purpose computational

platform remains limited. The lack of complete automation

makes it difficult to orchestrate complex or interrelated tasks.

Scheduling more human workers to reduce latency costs real

money, and jobs must be monitored and rescheduled when

workers fail to complete their tasks. Furthermore, it is often

difficult to predict the length of time and payment that should

be budgeted for a given task. Finally, the results of human-

based computations are not necessarily reliable, both because

human skills and accuracy vary widely, and because workers

have a financial incentive to minimize their effort.

This paper introduces AUTOMAN, the first fully automatic

crowdprogramming system. AUTOMAN integrates human-

based computations into a standard programming language

as ordinary function calls, which can be intermixed freely

with traditional functions. This abstraction lets AUTOMAN

programmers focus on their programming logic. An AUTO-

MAN program specifies a confidence level for the overall

computation and a budget. The AUTOMAN runtime system

then transparently manages all details necessary for schedul-

ing, pricing, and quality control. AUTOMAN automatically

schedules human tasks for each computation until it achieves

the desired confidence level; monitors, reprices, and restarts

human tasks as necessary; and maximizes parallelism across

human workers while staying under budget.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

Categories and Subject Descriptors H.1.2 [Information

Systems]: Human information processing; D.3.2 [Language

Classifications]: Specialized application languages; G.3

[Probability and Statistics]: Probabilistic algorithms (includ-

ing Monte Carlo)

General Terms Languages, Algorithms, Human Factors

Keywords Crowdsourcing, Programming Languages, Qual-

ity Control

1. Introduction

Humans perform many tasks with ease that remain difficult

or impossible for computers. For example, humans are far

better than computers at performing tasks like vision, mo-

tion planning, and natural language understanding [22, 26].

Most researchers expect these “AI-complete” tasks to remain

beyond the reach of computers for the foreseeable future [27].

Recent systems streamline the process of hiring humans

to perform computational tasks. The most prominent exam-

ple is Amazon’s Mechanical Turk, a general-purpose crowd-

sourcing platform that acts as an intermediary between labor

requesters and workers [2, 15]. Domain-specific commercial

services based on Mechanical Turk include CastingWords and

ClariTrans, which perform accurate audio transcription, and

Tagasaurus and TagCow, which perform image classification.

However, harnessing human-based computation in general

and at scale faces the following challenges:

• Determination of pay and time for tasks. Employers

must decide in advance the time allotted to a task and the

payment for successful completion. It is both difficult and

important to choose these correctly since workers will not

accept jobs with a too-short deadline or too little pay.

• Scheduling complexities. Employers must manage the

trade-off between latency (humans are relatively slow)

and cost (more workers means more money). Because

workers may fail to complete their tasks in the allotted

time, jobs need to be tracked and reposted as necessary.

• Low quality responses. Human-based computations al-

ways need to be checked: worker skills and accuracy vary

widely, and they have a financial incentive to minimize

their effort. Manual checking does not scale, and simple

majority voting is insufficient since workers might agree

by random chance.

Contributions

This paper introduces AUTOMAN, a programming system

that integrates human-based and digital computation. AUTO-

MAN addresses the challenges of harnessing human-based

computation at scale:

Transparent integration of human and digital computation.

AUTOMAN incorporates human-based computation as func-

tion calls in a standard programming language. The AUTO-

MAN runtime system transparently manages scheduling, bud-

geting, and quality control.

Automatic scheduling and budgeting. The AUTOMAN

runtime system schedules tasks to maximize parallelism

across human workers while staying under budget. AUTO-

MAN tracks job progress and reschedules and reprices failed

tasks as necessary.

Automatic quality control. The AUTOMAN runtime sys-

tem performs automatic quality control management. AUTO-

MAN automatically creates enough human tasks for each

computation to achieve the confidence level specified by the

programmer.

For example, given a desired confidence level of 95% and

a function with five possible answers, AUTOMAN initially

schedules at least three tasks (human workers). Because the

chances of all three agreeing due to random chance is under

5%, a unanimous response would be considered acceptable.

If all three workers do not agree, AUTOMAN will schedule

another three tasks, at which point 5 out of 6 must agree to

achieve a 95% confidence level (Section 5).

2. Background: Crowdsourcing Platforms

Since crowdsourcing is a novel application domain for pro-

gramming language research, we start by summarizing the

necessary background on crowdsourcing platforms. Our dis-

cussion in this section focuses on Amazon’s Mechanical Turk,

but other existing crowdsourcing platforms are similar.

Mechanical Turk acts as an intermediary between em-

ployers (known as requesters) and employees (workers, or

colloquially, turkers) for short-term assignments.

Human Intelligence Tasks (HITs). In Mechanical Turk

parlance, individual tasks are known as HITs, which stands

for human intelligence tasks. HITs include a short description,

the amount the job pays, and other details. Most HITs on

Mechanical Turk are for relatively simple tasks, such as “does

this image match this product?” Compensation is generally

low, since employers expect that work can be completed on

a time scale ranging from seconds to minutes. Pay for HITs

range from a single penny to several dollars.

Each HIT is represented as a question form, composed

of any number of questions, and associated metadata such

as a title, description, and search keywords. Questions can

be one of two types: a free text question, where workers can

provide a free-form textual response, or a multiple-choice

question, where workers make one or more selections from

a list of possible options. We refer to the former as open-

ended questions and the latter as closed-ended questions;

AUTOMAN currently only supports closed-ended questions.

Requesters: Posting HITs. Mechanical Turk allows HITs

to be posted manually, but also exposes a web service API

that allows basic details of HITs to be managed programmati-

cally [2], including posting HITs, collecting completed work,

and paying workers. Using this API, it is straightforward to

post similar tasks to Mechanical Turk en masse. HITs sharing

similar qualities can be grouped into HIT groups.

A requester may also instruct Mechanical Turk to paral-

lelize a particular HIT by indicating whether each HIT should

be assigned to more than one worker. By increasing the num-

ber of assignments, Mechanical Turk allows additional work-

ers to accept work for the same HIT, and the system ensures

that the parallel workers are unique (i.e., that a single worker

cannot complete the same HIT more than once).

Workers: Performing Work. Mechanical Turk workers can

choose any of the available tasks on the system for which

they are qualified (see below): as of this writing, there are

approximately 275,000 HITs posted. When workers choose

to perform a particular HIT, they accept an assignment, which

grants them a time-limited reservation for that particular piece

of work; that is, no other worker may accept it.

HIT Expiration. HITs have two timeout parameters: the

amount of time that a particular HIT should remain in the

listings, known as the lifetime of a HIT, and the amount of

time that a worker has to complete an assignment once it is

accepted, known as the duration of an assignment. If after

accepting an assignment for a HIT, a worker exceeds the

assignment’s duration without submitting completed work,

the reservation is cancelled, and the work is returned to the

pool of available assignments. If a HIT reaches the end of its

lifetime without its assignments having been completed, the

HIT expires and is removed from the job board.

Requesters: Accepting or Rejecting Work. Once a worker

completes and submits an assignment, the requester is noti-

fied. The requester then can accept or reject the completed

assignment. Acceptance of an assignment indicates that the

completed work is satisfactory, and the worker is then au-

tomatically paid for his or her efforts. Rejection withholds

payment, and the requester, if so inclined, may provide a tex-

tual justification for the rejection. AUTOMAN automatically

manages acceptance and rejection; see Section 3.2.

Worker Quality Control. A key challenge in automating

work in Mechanical Turk is attracting and retaining good

workers, or at least discouraging bad workers from partici-

pating. However, Mechanical Turk provides no way for re-

questers to seek out specific workers.

Instead, Mechanical Turk provides a qualification mecha-

nism to limit which workers may perform a particular HIT.

A common qualification is that workers must have an over-

all assignment-acceptance rate of 90%. However, given the

wide variation in tasks on Mechanical Turk, overall worker

accuracy is of limited utility.

For example, the fact that a worker who is skilled in and

favors audio transcription tasks may have a high accuracy

rating, but there is no reason to believe that this worker

can also perform Chinese-to-English language translation

tasks. Worse, workers who cherry-pick easy tasks and thus

have a high accuracy rating actually may be less qualified

than a worker who routinely performs difficult work that is

occasionally rejected.

3. Overview

AUTOMAN is a domain-specific language embedded in

Scala [24]. AUTOMAN’s goal is to abstract away the de-

tails of crowdsourcing so that human computation can be as

easy to invoke as a conventional function.

3.1 Using AUTOMAN

Figure 1 presents an example (toy) AUTOMAN program. The

program “computes” which of a set of cartoon characters does

not belong in the group. Notice that the programmer does

not specify details about the chosen crowdsourcing backend

(Mechanical Turk) except for account credentials.

Crucially, all details of crowdsourcing are hidden from the

AUTOMAN programmer. The AUTOMAN runtime manages

interfacing with the crowdsourcing platform, schedules and

determines budgets (both cost and time), and automatically

ensures the desired confidence level of the final result.

Initializing AUTOMAN. After importing the AUTOMAN

and Mechanical Turk adapter libraries, the first thing an

AUTOMAN programmer does is to declare a configuration

for the desired crowdsourcing platform. This configuration is

then bound to an AUTOMAN runtime object, which instanti-

ates any platform-specific objects.

Specifying AUTOMAN functions. Functions in AUTO-

MAN consist of declarative descriptions of questions that the

workers must answer; they may include text or images, as

well as a range of question types, which we describe below.

Confidence level. An AUTOMAN programmer can option-

ally specify the degree of confidence they want to have in

their computation, on a per-function basis. AUTOMAN’s de-

fault confidence is 95% (0.95), but this can be overridden

as needed. The meaning and derivation of confidence is dis-

cussed in Section 5.

1 import edu.umass.cs.automan.adapters.MTurk._
2

3 object SimpleProgram extends App {
4 val a = MTurkAdapter { mt =>
5 mt.access_key_id = "XXXX"
6 mt.secret_access_key = "XXXX"
7 }
8

9 def which_one () = a.RadioButtonQuestion { q =>
10 q.budget = 8.00
11 q.text = "Which one of these does not belong?"
12 q.options = List(
13 a.Option(’oscar , "Oscar the Grouch"),
14 a.Option(’kermit , "Kermit the Frog"),
15 a.Option(’spongebob , "Spongebob Squarepants "),
16 a.Option(’cookie , "Cookie Monster"),
17 a.Option(’count , "The Count ")
18)
19 }
20

21 println ("The answer is " + which_one ()())
22 }

Figure 1. A complete AUTOMAN program. This program

computes, by invoking humans, which cartoon character

does not belong in a given set. The AUTOMAN programmer

specifies only credentials for Mechanical Turk, an overall

budget, and the question itself; the AUTOMAN runtime

manages all other details of execution (scheduling, budgeting,

and quality control).

Metadata and question text. Each question requires a title

and description, used by the crowdsourcing platform’s user

interface. These fields map to Mechanical Turk’s fields of the

same name. A question also includes a textual representation

of the question, together with a map between symbolic

constants and strings for possible answers.

Question variants. AUTOMAN supports multiple-choice

questions, including questions where only one answer is cor-

rect (“radio-button” questions), or where any number of an-

swers may be correct (“checkbox” questions), as well as

restricted-text entry forms. Section 5 describes how AUTO-

MAN’s quality control algorithm handles these different types

of questions.

Invoking a function. An AUTOMAN programmer can in-

voke a function as if it were any ordinary (digital) func-

tion. Here, the programmer calls the just-defined function

which_one() with no input. The function returns a Scala

future object representing the answer, which can be passed

to other Questions in an AUTOMAN program before the hu-

man computation is complete. AUTOMAN functions execute

in the background in parallel as soon as they are invoked. The

program does not block until it references the function output,

and only then if the human computation is not yet finished.

3.2 AUTOMAN Execution

Figure 2 depicts an actual trace of the execution of the pro-

gram from Figure 1, obtained by executing it with Amazon’s

Mechanical Turk. This example demonstrates that ensuring

valid results even for simple programs can be complicated.

Starting Tasks. At startup, AUTOMAN examines the form

of the question field defined for the task and determines that,

in order to achieve a 95% confidence level for a question with

five possible choices, at minimum, it needs three different

workers to unanimously agree on the answer (see Section 5).

AUTOMAN then spawns three tasks on the crowdsourcing

backend, Mechanical Turk. To eliminate bias caused by the

position of choices, AUTOMAN randomly shuffles the order

of choices in each task.

AUTOMAN’s default strategy is optimistic. For many tasks,

human workers are likely to agree unanimously. Whenever

this is true, AUTOMAN saves money by spending the least

amount required to achieve the desired statistical confidence.

However, AUTOMAN also allows users to choose a more

aggressive strategy that trades a risk of increased cost for

reduced latency; see Section 4.3.

Quality Control. At time 1:50, worker 1 accepts the task

and submits “Spongebob Squarepants” as the answer. Forty

seconds later, worker 2 accepts the task and submits the same

answer. However, twenty seconds later, worker 3 accepts

the task and submits “Kermit”. In this case, AUTOMAN’s

optimism did not pay off, since worker 3 does not agree

with worker 1 and 2. Because this result is inconclusive,

AUTOMAN schedules three additional tasks.

At this point, AUTOMAN recomputes the minimal number

of agreements, which turns out to be five out of six. Sec-

tion 5.2 presents a full derivation of the closed-form formulas

that AUTOMAN uses to compute these values.

Memoization of Results. During program execution, AUTO-

MAN saves the intermediate state of all human functions,

namely scheduler objects, to a database. This means that if

a program is interrupted, AUTOMAN’s scheduler is able to

resume the program precisely where it left off. Memoiza-

tion is automatic and transparent to the programmer. This

abstraction serves two purposes. First, the AUTOMAN func-

tion may be called an arbitrary number of times, resulting

in substantial time savings. Second, if the program’s execu-

tion is interrupted in any way, the programmer may resume

the program without losing their investment in human labor.

Programmers who do not want to use memoized results need

only delete the memo database at startup.

Initial Time Estimates. When defining a task, the program-

mer can specify the task “duration”, the time available to

work once the task has been accepted. On Mechanical Turk,

this number serves as an indication to the worker of the dif-

ficulty of the task. In AUTOMAN, this figure is set to 30

seconds by default.

A second time parameter, the “lifetime” of a task, indicates

how long the crowdsourcing backend should keep the task

around without any response from workers. In AUTOMAN,

the task lifetime is set to 100× the duration.

At 51 minutes into the computation, task 6 exceeds its

lifetime and is cancelled. Since AUTOMAN does not yet have

Which%one%of%these%doesn’t%belong?%

[95%%conf.]%

AUTOMAN:%spawns%3%tasks%@%$0.06;%30s%work%%

t
1#

t
2#

t
3#

AUTOMAN:%inconclusive;%spawns%3%more%

1m%50s%

2m%30s%

2m%50s%

t
4#

t
5#

t
6#

7m%

18m%50s%

51m%AUTOMAN:%task%6%Jmed%out;%
spawn%t

7
%@%$0.12;%60s%work%

%
t
7#

1h%9m%50s;%

cost%=%$0.36%

AUTOMAN:%5%out%of%6%
% %95%%confidence;%

return%%%

Figure 2. A schematic of an actual execution of the example

program in Figure 1, with time advancing from top to bottom.

AUTOMAN first spawns 3 tasks, which (for five choices)

suffice to reach a 95% confidence level if all workers agree.

Since the 3 workers do not agree, AUTOMAN schedules three

additional tasks (5 of 6 must now agree). When task 6 times

out, AUTOMAN spawns a new task and doubles both the

budget and time allotted. Once task 7 completes, AUTOMAN

returns the result.

a statistically valid result, it reschedules the task, this time

extending both the task timeout and lifetime by a factor of

two (see Section 4.1).

Rebudgeting: Time and Pay. AUTOMAN does not require

the programmer to specify exactly how much each worker

should be paid. AUTOMAN currently uses the timeout param-

eter and calculates the base cost for the task using the US

Federal minimum wage ($7.25/hr). For 30 seconds of work,

the payment is $0.06 US Dollars.

AUTOMAN automatically manages task rewards and du-

rations by doubling both whenever a task’s lifetime expires,

which maintains the same minimum wage (see Section 4.1).

In the absence of an automatic mechanism, programmers

would be required to determine the fair wage of the task mar-

ketplace manually. Given the subjectivity of a “fair wage,”

knowing the appropriate wage a priori is difficult or impossi-

ble in most cases.

Automatic Task Acceptance and Rejection. AUTOMAN

does not accept or reject work until the quality control al-

gorithm has chosen the correct answer. Payment is deferred

until the computation completes. If the programmer’s account

runs out of funds before the program is complete, AUTOMAN

returns the answer with the highest confidence. The program-

mer may then choose to either add more money to their ac-

count and resume the computation, using stored results from

the memoization database, or to accept the lower-quality an-

swer and pay all of the workers.

One hour and 9 minutes into the computation, a worker

submits a sixth answer, “Spongebob Squarepants”. AUTO-

MAN again examines whether the answers agree and it finds

that 5 out of the 6 answers agree. AUTOMAN can now reject

the null hypothesis, i.e., that 5 workers agreed by choosing

the same answer randomly, with a 95% confidence level. The

runtime system then returns the answer to the program, and

the user’s regular program resumes.

AUTOMAN then informs the crowdsourcing backend to

pay the five workers whose answers agreed. Four workers

are paid $0.06, and one is paid $0.12. The one worker whose

answer did not agree was not paid. For Mechanical Turk,

which supports rejection notifications, AUTOMAN informs

workers who provided incorrect responses that their work

was not accepted, and includes the correct response and

confidence as justification.

The fact that AUTOMAN does not pay for incorrect work

reduces its cost, especially as the number of workers increases.

For example, if 12 responses have been received for a ques-

tion with 5 choices, only 7 must agree to achieve a 95%

confidence level. As the number of workers increases, the

proportion required for agreement drops further, making re-

jecting incorrect work even more desirable.

4. Scheduling Algorithm

Figure 3 presents pseudo-code for AUTOMAN’s main sched-

uler loop, which comprises the algorithms that the AUTO-

MAN runtime uses to manage task posting, reward and time-

out calculation, and quality control.

4.1 Calculating Timeout and Reward

AUTOMAN’s overriding goal is to recruit workers quickly

and at low cost in order to keep the cost of a computation

within the programmer’s budget. AUTOMAN posts tasks in

rounds, which have a fixed timeout during which tasks must

be completed. When AUTOMAN fails to recruit workers in

a round, there are two possible causes: workers were not

willing to complete the task for the given reward, or the time

allotted was not sufficient. AUTOMAN does not distinguish

between these cases. Instead, the reward for a task and the

time allotted are both increased by a constant factor k every

1 wage = DEFAULT_WAGE
2 value_of_time = DEFAULT_VALUE_OF_TIME
3 duration = DEFAULT_DURATION
4 reward = wage * duration
5 budget = DEFAULT_BUDGET
6 cost = $0.00
7 tasks = []
8 answers = load_saved_answers ()
9 timed_out = false

10 confident = false
11

12 while not confident:
13 if timed_out:
14 duration *= 2
15 reward *= 2
16 timed_out = false
17

18 if tasks.where(state == RUNNING).size == 0:
19 most_votes = answers.group_by(answer).max
20 required = 0
21 while min_votes(choices , most_votes + required)
22 > most_votes + required:
23 required += 1
24

25 if required == 0:
26 confident = true
27 else
28 can_afford = floor ((budget - cost) / reward)
29 if can_afford < required:
30 throw OVER_BUDGET
31 ideal = floor(value_of_time / wage)
32 to_run = max(required , min(can_afford , ideal))
33 cost += to_run * reward
34 tasks.appendAll(spawn_tasks(to_run))
35

36 else:
37 num_timed_out = tasks.where(state == TIMEOUT).size
38 if num_timed_out > 0:
39 timed_out = true
40 cost -= num_timed_out * reward
41 foreach t in tasks.where(state == ANSWERED):
42 answers.append(t.answer)
43 save_answer(t.answer)
44 return answers.group_by(answer). argmax

Figure 3. Pseudo-code for AUTOMAN’s scheduling loop,

which handles posting and re-posting jobs, budgeting, and

quality control; Section 5.2 includes a derivation of the

formulas for the quality control thresholds.

time a task goes unanswered. k must be chosen carefully to

ensure the following two properties:

1. The reward for a task should quickly reach a worker’s

minimum acceptable compensation (Rmin), e.g., in a

logarithmic number of steps.

2. The reward should not grow so quickly that it would give

workers an incentive to wait for a larger reward, rather

than work immediately.

Workers do not know the probability that a task will re-

main unanswered until the next round. If the worker assumes

even odds that a task will survive the round, a growth rate of

k = 2 is optimal: it will reach Rmin faster than any lower

value of k, and workers never have an incentive to wait. Sec-

tion 4.4 presents a detailed analysis. Lines 13-16 in Figure 3

increase the reward and duration for tasks that have timed

out.

In AUTOMAN, reward and time are specified in terms

of the worker’s wage ($7.25/hour for all the experiments

in this paper). Doubling both reward and time ensures that

AUTOMAN will never exceed the minimum time and reward

by more than a factor of two.

The doubling strategy may appear to run the risk that

a worker will “game” the computation into paying a large

sum of money for an otherwise simple task. However, once

the wage reaches an acceptable level for some proportion

of the worker marketplace, those workers will accept the

task. Forcing AUTOMAN to continue doubling to a very high

wage would require collusion between workers on a scale

that we believe is infeasible, especially when the underlying

crowdsourcing system provides strong guarantees that worker

identities are independent.

4.2 Scheduling the Right Number of Tasks

AUTOMAN’s default strategy for spawning tasks is optimistic:

it creates the smallest number of tasks required to reach

the desired confidence level if the results are unanimous.

Line 19 in Figure 3 determines the number of votes for the

most popular answer so far. Lines 20-23 iteratively compute

the minimum number of additional votes required to reach

confidence. If no additional votes are required, confidence

has been reached and AUTOMAN can return the most popular

answer (line 44).

Using the current reward, AUTOMAN computes the maxi-

mum number of tasks that can be posted with the remaining

budget (line 28). If the budget is insufficient, AUTOMAN will

terminate the computation, leaving all tasks in an unverified

state (lines 29-30). The computation can be resumed with

an increased budget or abandoned. Mechanical Turk will au-

tomatically pay all workers if responses are not accepted or

rejected after 30 days.

4.3 Trading Off Latency and Money

AUTOMAN also allows programmers to provide a time-value

for the computation, which tells AUTOMAN to post more

than the minimum number of tasks. AUTOMAN always

schedules at least the minimum number of tasks required

to achieve confidence in every round. If the programmer’s

time is worth more than the total cost of the minimum number

of tasks,

⌊

time value

min wage

⌋

tasks will be scheduled instead (lines

31-32). Once AUTOMAN receives enough answers to reach

the specified confidence, it cancels any outstanding tasks.

In the worst case, all posted tasks will be answered before

AUTOMAN can cancel them, which will cost no more than

time value · task timeout.

This strategy runs the risk of paying substantially more for

a computation, but can yield dramatic reductions in latency.

We re-ran the example program given in Figure 1 with a time-

value set to $50, 7× larger than the current U.S. minimum

wage. In two separate runs, the computation completed in 68

and 168 seconds; we also ran the first computation with the

default time-value (minimum wage), and those computations

took between 1 and 3 hours to complete.

4.4 Derivation of Optimal Reward Growth Rate

When workers encounter a task with a posted reward of R,

they may choose to accept the task, or wait for the reward

to grow. Let pa be the probability that the task will still be

available after one round of waiting. We make the assumption

that, if the task is still available after i− 1 rounds, then the

probability that the task is available in the ith round is at most

pa. Hence, if the player’s strategy is to wait i rounds and then

complete the task,

E [reward] ≤ piak
iR ,

since with probability at most pia the reward will be kiR and

otherwise the task will no longer be available.

Note that the expected reward is maximized with i = 0 if

k ≤ 1/pa. Therefore, k = 1/pa is the highest value of k that

does not incentivize waiting and will reach Rmin faster than

any lower value of k. Workers cannot know the true value of

pa. In the absence of any information, 1/2 will be used as an

estimator for pa and this leads to AUTOMAN’s default value

of k = 2.

However, it is possible to estimate pa. Every time a

worker accepts or waits for a task, we can treat this as

an independent Bernoulli trial with the parameter pa. The

maximum likelihood estimator for pa equals

p̃a = argmax
x∈[0,1]

xt(1− x)n−t

where t is the number of times a task has been accepted

amongst the n times it has been offered so far. Solving this

gives p̃a = t/n.

The difficulty of accurately estimating pa using ad hoc

quality control is a strong argument for automatic budgeting.

Implementing this estimation is a planned future enhance-

ment for AUTOMAN.

5. Quality Control Algorithm

AUTOMAN’s quality control algorithm is based on collecting

enough consensus for a given question to rule out the possi-

bility, with a desired level of confidence, that the results are

due to random chance. Section 5.3 justifies this approach.

Initially, AUTOMAN spawns enough tasks to meet the de-

sired confidence level if all workers who complete the tasks

agree on the same answer. Figure 5 depicts the initial confi-

dence level function. Computing this value is straightforward:

if k is the number of choices, and n is the number of tasks,

the confidence level reached is 1 − k(1/k)n. AUTOMAN

computes the lowest value of n where the desired confidence

level is reached.

Question Variants. For ordinary multiple choice questions

where only one choice is possible (“radio-button” questions),

k is exactly the number of possible answers. However, hu-

mans are capable of answering a richer variety of question

types. Each of these additional question types requires its

own probability analysis.

Checkbox Questions. For multiple choice questions with c
choices and any or all may be chosen (“checkbox” questions),

k is much larger: k = 2c.

For these questions, k is so high that a very small number

of workers are required to reject the null hypothesis (ran-

dom choice). However, it is reasonably likely that two lazy

workers will simply select no answers, and AUTOMAN will

erroneously accept that answer is correct.

To compensate for this possibility, AUTOMAN treats

checkbox questions specially. The AUTOMAN programmer

must specify not only the question text, but also an inverted

question. For instance, if the question is “Select which of

these are true”, the inverted question should read, “Select

which of these are NOT true.” AUTOMAN then ensures that

half of the HITs are spawned with the positive question, and

half with the inverted question. This strategy makes it less

likely that lazy workers will inadvertently agree.

Restricted Free-Text Questions Entering a small amount of

text into a text input is essentially equivalent to a sequence

of radio-button questions, where the possible radio-button

options are the valid range of textual inputs for the given

question. This form of input is cumbersome for human

workers. By providing a small text field with a pattern

representing valid inputs, AUTOMAN satisfies its requirement

for analysis while making data entry easier.

The input specification in AUTOMAN resembles COBOL’s

picture clauses. For example, a telephone number recognition

application would use the pattern 09999999999. A matches

an alphabetic character, B matches an optional alphabetic

character, X matches an alphanumeric character, Y matches

an optional alphanumeric character, 9 matches a numeric

character, and 0 matches an optional numeric character. All

other characters only match themselves (e.g., “-” matches

“-”). This particular pattern will match a string with nine or

ten numeric characters.

Assuming a uniform probability for each possibility, cal-

culating the number of matching 7-character numeric strings

is straightforward: k = 107. Again, k is often very large, so

a small number of HITs suffice to achieve high confidence in

the result.

As with checkbox questions, AUTOMAN must treat free-

text questions specially to cope with “lazy” workers. Here a

lazy worker might simply hit the “Submit” button, submitting

the empty string and biasing the answer. To avoid this

problem, AUTOMAN only accepts the empty string if it is

explicitly allowed as a legal input. In this case, AUTOMAN

requires that workers enter a special value, N/A.

We are currently investigating the use of a subset of regular

expressions as input specifications. Regular expressions are

far more powerful than COBOL picture clauses, but also more

(a) A radio-button question.

k = c.

(b) A checkbox question. k = 2
c.

(c) A free-text question. k =
∏

l

i=0
pi where l is the length of the pattern

and pi is the number of distinct characters matched by the picture clause at

position i.

Figure 4. Question types handled by AUTOMAN.

difficult to analyze. The number of matching strings must be

bounded, otherwise the probability calculation is not possible.

This limitation rules out the use of the *, +, and {x,} (where

x is an integer) operators in patterns. Alternation must also

be handled carefully as the pattern a?a?b matches only three

strings, b, ab, and aab. A naı̈ve counting implementation

would count ab twice.

5.1 Overview of the Quality Control Algorithm

In order to return results within the user-defined confidence

interval, AUTOMAN iteratively calculates two threshold

functions that tell it whether it has enough confidence to

terminate, and if not, how many additional workers it must

recruit. Formally, the quality control algorithm depends on

two functions, t and ℓ, and associated parameters α, β, and

p∗. The t(n, α) and ℓ(p∗, β) functions are defined such that:

• t(m,α) is the threshold number of agreeing votes. If the

workers vote randomly (i.e., each answer is chosen with

equal probability), then the probability that an answer

meets the threshold of t(n, α) when n votes are cast is

at most α. α will be determined based on the confidence

parameter chosen by the programmer (α = 1 - confidence).

• ℓ(p∗, β) is the minimum number of additional workers to

recruit for the next step. If there is a “popular” option such

that the probability a worker chooses it is p and p > p∗

(and all other options are equally likely), then if AUTO-

MAN receives votes from n ≥ ℓ(p∗, β) workers some

answer will meet the threshold t(n, α) with probability at

least 1− β.

We will derive expressions for t and ℓ in Section 5.2. The

algorithm proceeds as follows:

1. Set n = min{m : t(m,α) 6= ∞}

0	

0.2	

0.4	

0.6	

0.8	

1	

2	 3	 4	 5	 6	

C
o

n
fi

d
e

n
c

e
 L

e
v

e
l!

Number of Tasks!

Confidence Level  

(Unanimous Agreement)!

2	 Choices	

3	 Choices	

4	 Choices	

5	 Choices	

6	 Choices	
0	

0.2	

0.4	

0.6	

0.8	

1	

2	 3	 4	 5	 6	

F
r
a
c
%
o
n
	 o
f	
T
a
s
k
s
	

Choices!

Fraction of Tasks That Must Agree

(95% Confidence)!

5	 Tasks	 10	 Tasks	

15	 Tasks	 20	 Tasks	

25	 Tasks	

Figure 5. The confidence level reached with unanimous agreement (left) and fraction of tasks (workers) that must agree to

reach 95% confidence. As the the number of choices increases, the number of tasks required to reach confidence quickly drops.

Similarly, the fraction of tasks that must agree drops as choices and tasks are added.

2. Ask n workers to vote on the answer of a question given

k options.

3. If there are options that have more than t(n, α) votes,

return the most frequent option of all of the options that

are above the threshold.

4. If n < ℓ(p∗, β), double n and repeat from step 2.

Figure 5 uses the value of t to compute the normalized

fraction of tasks that need to agree in order to reach α = 0.05
(a confidence level of 95%). As the number of tasks and the

number of choices increase, the fraction of the number of

tasks needed for agreement decreases. For example, with 25

tasks and a question with 4 choices, only 48% (12 of 25)

need to agree in order to achieve 95% confidence. In other

words, as the number of workers increases, AUTOMAN needs

an ever smaller fraction of those workers to agree, speeding

convergence to a correct answer.

5.2 Derivation of ℓ(p∗, β) and t(n, α)

Given parameters n ∈ N0 and 0 ≤ p1, p2, . . . , pk ≤ 1

with
∑k

i=1 pi = 1, Z = (Z1, . . . , Zk) is a multinomial

distribution with parameters (n, p1, p2, . . . , pk) if for any

z1, z2, . . . ∈ N0 with
∑k

i=1 zi = n

Pr [∀i : Zi = zi] =
n!

z1!z2! . . . zk!
pz11 . . . pzkk

For example, if n voters are given k options and each voter

(independently) picks option i with probability pi then Zi

will correspond to the number of votes received by the ith
option.

To compute the probability of a multinomial distribution,

we follow the approach outlined by DasGupta [7].

Lemma 5.1. For 0 ≤ ai ≤ bi ≤ n and i ∈ [k],

Pr [∀i : Zi ∈ [ai, bi]] = n! · coeffλ,n

k
∏

i=1

bi
∑

j=ai

(piλ)
j

j!
,

where coeffλ,n(f(λ)) is the coefficient of λn in the polyno-

mial f .

Proof. Let N ∈ Poi(λ) be a random variable distributed

according to the Poisson distribution with parameter λ. Then

let ZN = (ZN
1 , . . . , ZN

k) is a multinomial distribution with

parameters (N, p1, p2, . . . , pk). Note that Z = Zn. It is

known (e.g., [12, pp. 216]) that

Pr
[

∀i : ZN
i ∈ [ai, bi]

]

=

k
∏

i=1

Pr
[

ZN
i ∈ [ai, bi]

]

=

k
∏

i=1

bi
∑

j=ai

(piλ)
je−piλ

j!

= e−λ

k
∏

i=1

bi
∑

j=ai

(piλ)
j

j!
.

But

Pr
[

∀i : ZN
i ∈ [ai, bi]

]

=
∞
∑

m=0

Pr [N = m] · Pr [∀i : Zm
i ∈ [ai, bi]]

=

∞
∑

m=0

λme−λ

m!
· Pr [∀i : Zm

i ∈ [ai, bi]]

and hence

∞
∑

m=0

λm

m!
· Pr [∀i : Zm

i ∈ [ai, bi]] =
k
∏

i=1

bi
∑

j=ai

(piλ)
j

j!
.

The result follows by equating the coefficients of λn.

Let X and Y be multinomial distributions with parame-

ters (n, 1/k, . . . , 1/k) and (n, p, q, . . . , q) where q = (1 −
p)/(k − 1) respectively. The following corollary follows im-

mediately from Lemma 5.1.

Corollary 5.1.

Pr
[

max
i

Xi < t
]

= E1(n, t)

Pr

[

max
i≥2

Yi < t ≤ Y1

]

= E2(p, n, t)

where

E1(n, t) =
n!

kn
· coeffλ,n

t−1
∑

j=0

λj/j!

k

and

E2(p, n, t) = n! · coeffλ,n

t−1
∑

j=0

(qλ)j

j!

k−1

·

∞
∑

j=t

(pλ)j

j!
.

Note that E1(n, n) = 1− 1/kn−1 and define

t(n, α) :=

{

min{t : E1(n, t) ≥ δ} if E1(n, n) ≥ δ

∞ if E1(n, n) < δ
.

where δ = 1 − α. This ensures that when n voters each

randomly chose an option, the probability that an option

meets or exceeds the threshold t(n, α) is at most α.

Next we define

ℓ(p∗, β) := min{n : E2(p
∗, n, t(n, α)) ≥ 1− β} .

If the voters have a bias of at least p∗ towards a certain

popular option, and all other options are equally weighted,

then by requiring ℓ(p∗, β) voters, AUTOMAN ensures that

the number of votes cast for the popular option crosses the

threshold (and all other options are below threshold) with

probability at least 1− β.

5.3 Quality Control Discussion

For AUTOMAN’s quality control algorithm to work, two

assumptions must hold:

• Workers are independent.

• Random choice is the worst-case behavior for workers;

that is, they will not deliberately pick the wrong answer.

Workers may break the assumption of independence in

three ways: (1) a single worker may masquerade as multiple

workers; (2) a worker may perform multiple tasks; and (3)

workers may collude when working on a task.

Scenario 1: Sybil Attack. The first scenario, where one real

user creates multiple electronic identities, is known in the

security literature as a “Sybil attack” [9]. The practicality of

a Sybil attack depends directly on how easy it is to generate

multiple identities.

Carrying out a Sybil attack on our default backend, Me-

chanical Turk, would be extremely burdensome. Since Me-

chanical Turk provides a payment mechanism for workers,

Amazon requires that workers provide uniquely identifying

financial information, typically a credit card or bank account.

These credentials are difficult, although not impossible, to

forge.

Scenario 2: One Worker, Multiple Tasks. AUTOMAN

avoids the second case (one worker performing multiple

tasks) via a workaround of Mechanical Turk’s existing mech-

anisms. Mechanical Turk provides a mechanism to ensure

worker uniqueness for a given HIT (i.e., a HIT with mul-

tiple assignments), but it lacks the functionality to ensure

worker uniqueness across multiple HITs. For example, when

AUTOMAN decides to respawn a task, it must be certain that

workers who participated in previous instantiations of that

task are excluded from future instantiations.

Our workaround for this shortcoming is to use Mechani-

cal Turk’s “qualification” feature in an inverse sense. Once

a worker completes a HIT that is a part of a larger compu-

tation, AUTOMAN grants that worker special qualification

(effectively, a “disqualification”) that precludes them from

participating in future tasks of the same kind. Our system

ensures that workers are not able to request reauthorization.

Scenario 3: Worker Collusion. While it would be possible

to attempt to lower the risk of worker collusion by ensuring

that they are geographically separate (e.g., by filtering work-

ers using IP geolocation), AUTOMAN currently does not take

any particular action to prevent worker collusion. Prevent-

ing this scenario is essentially impossible. Nothing prevents

workers from colluding via external channels (e-mail, phone,

word-of-mouth) to thwart the assumption of independence.

Instead, the system should be designed to make the effort of

thwarting defenses undesirable given the payout.

By spawning large numbers of tasks, AUTOMAN makes

it difficult for any single group to monopolize them. In

Mechanical Turk, no one worker has a global view of the

system, thus the state of AUTOMAN’s scheduler is unknown

to the worker. Without this information, workers cannot game

the system. The prevalent behavior is that people try to do as

little work as possible to get compensated: previous studies

of Mechanical Turk indicate random-answer spammers are

the primary threat. [28].

5.3.1 Random as Worst Case

AUTOMAN’s quality control function is based on excluding

the possibility of random choices by workers; that is, workers

who minimize their effort or make errors. It is possible that

workers could instead act maliciously and deliberately choose

incorrect answers. Participants in crowdsourcing systems

have both short-term and long-term economic incentives to

not deliberately choose incorrect answers, and thus random

choice is a reasonable worst-case scenario.

First, a correct response to a given task yields an immedi-

ate monetary reward. If a worker has any information about

what the correct answer is, it is against their own short-term

economic self-interest to deliberately avoid it. In fact, as

long as there is a substantial bias towards the correct answer,

AUTOMAN’s algorithm will eventually accept it.

Second, while a participant might out of malice choose

to forego the immediate economic reward, there are long-

term implications for deliberately choosing incorrect answers.

Crowdsourcing systems like Mechanical Turk maintain an

overall ratio of accepted answers to total answers submitted,

and many requesters place high qualification bars on these

ratios (typically around 90%). Incorrect answers thus have a

lasting negative impact on workers, who, as mentioned earlier,

cannot easily discard their identity and adopt a new one.

Anecdotal evidence from our experience supports these

assumptions. Mechanical Turk workers have contacted us

when AUTOMAN rejects their answers (AUTOMAN provides

the correct answer in its rejection notice). Many workers

sent us e-mails justifying their answers or apologizing for

having misunderstood the question, requesting approval to

maintain their overall ratio of correct to incorrect responses.

We typically approved payment for workers who justified

their incorrect answers, but Mechanical Turk does not allow

us to accept already-rejected HITs.

6. System Architecture and Implementation

In order to cleanly separate the concerns of delivering reli-

able data to the end-user, interfacing with an arbitrary crowd-

sourcing system, and specifying validation strategies in a

crowdsourcing system-agnostic manner, AUTOMAN is im-

plemented in tiers.

6.1 Domain-specific language

The programmer’s interface to AUTOMAN is a set of function

calls, implemented as an embedded domain-specific language

for the Scala programming language. The choice of Scala

as a host language was motivated primarily by the desire

to have access to a rich set of language features while

maintaining compatibility with existing code. Scala is fully

interoperable with existing Java code; the crowdsourcing

system compatibility layer heavily utilizes this feature to

communicate with Amazon’s Mechanical Turk system. Scala

also provides access to powerful functional language features

that simplify the task of implementing a complicated system.

These function calls act as syntactic sugar, strengthening the

illusion that crowdsourcing tasks really are just a kind of

function call with an extra error tolerance parameter. Scala

was explicitly designed to host domain-specific languages [5].

It has been used to implement a variety of sublanguages,

from a declarative syntax for probabilistic models to a BASIC

interpreter [13, 23].

When using the AUTOMAN DSL, programmers first create

an AutoMan instance, specifying a backend adapter, which

indicates the crowdsourcing system that should be used

(e.g., Mechanical Turk) and how it should be configured

(e.g., user credentials, etc.). Next, the Question function is

declared with the desired statistical confidence level and

any other crowdsourcing backend-specific task parameters as

required. When programmers call their Question function

with some input data, the AUTOMAN scheduler launches the

task asynchronously, allowing the main program to continue

while the slower human computation runs in the background.

Since our aim was to make task specification simple, and

to automate as many functions as possible, our Mechanical

Turk compatibility layer provides sane defaults for many of

the parameters. Additionally, we delegate control of task time-

outs and rewards to AUTOMAN, which will automatically

adjust them to incentivize workers. Maximizing automation

allows for concise task specification for the common cases.

When our defaults are not appropriate for a particular pro-

gram, the programmer may override them.

6.2 Abstract Questions and Concrete Questions

The main purpose of the DSL is to help programmers

construct Question objects, which represent the system’s

promise to return a scalar Answer to the end-user. In re-

ality, many concrete instantiations of this question, which

we call ConcreteQuestions, may be created in the pro-

cess of computing a single Question. The details of in-

teracting with third-party crowdsourcing backends is han-

dled by the AutomanAdapter layer, which describes how

ConcreteQuestions are marshalled.

AUTOMAN controls scheduling of all ConcreteQuestions

in the target crowdsourcing system. After programmers have

defined a Question, they can then call the resulting object

as if it were a standard programming language function. In

other words, they provide input as arguments to the function,

and receive output as a return value from the function, which

can be fed as input to other tasks as desired.

From this point on, AUTOMAN handles communication

with the crowdsourcing backend, task scheduling, quality

control, and returning a result back to the programmer un-

der budget and in a timely manner. Question threads are

implemented using Scala Futures. After calling a Question,

program control returns to the calling function, and execu-

tion of the human function proceeds in the background, in

parallel.

The outputted Future[Answer] object is available to use

immediately, and may be passed as input to other Question

function calls. If the Future[Answer]’s value is read, it will

block until the runtime completes computation and propa-

gates values into those objects. Any number of Questions

may run concurrently, subject only to the limitations of the

underlying backend.

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

0! 0.2! 0.4! 0.6! 0.8! 1!

A
c

c
u

ra
c

y
!

Confidence!

AUTOMAN Accuracy vs. Confidence!

Trace!

33%!

50%!

75%!

1!

2!

4!

8!

16!

0! 0.2! 0.4! 0.6! 0.8! 1!

R
e

s
p

o
n

s
e

s
 R

e
q

u
ir

e
d
!

Confidence!

Responses Required for Confidence!

Trace! 33%!

50%! 75%!

Figure 6. 10000 random sequences of worker responses to a five-option radio button question were used to simulate

AUTOMAN’s quality control algorithm at each confidence value. The trace lines use real worker responses to the “Which one

does not belong?” application described in Section 7.1, while the 33%, 50%, and 75% lines were generated from synthetic traces

where 33%, 50%, and 75% of workers chose the correct response, respectively. These graphs show that AUTOMAN is able to

maintain the accuracy of final answers even when individual workers have low accuracy. Increasing confidence and decreasing

worker accuracy both lead to exponential growth in the number of responses required to select a final result.

6.3 Memoization of Results

AUTOMAN’s automatic memoization stores Answer data

in a lightweight Apache Derby database. Implementors of

third party AutomanAdapters must provide a mapping be-

tween their concrete Answer representation and AUTOMAN’s

canonical form for Answer data.

If a program halts abnormally, when that program is

resumed, AUTOMAN first checks the memoization database

for answers matching the program’s Question signature

before attempting to schedule more tasks. If a programmer

changes the Question before restarting the program, this

signature will no longer match, and AUTOMAN will treat

the Question as if it had never been asked. Any future

use of a memoized function amortizes the initial cost of

the function by reusing the stored value, and as long as

the programmer preserves the memo database, reuse of

memoized functions works across program invocations, even

for different programs.

It is incumbent on the user to ensure that they define side-

effect-free AUTOMAN functions. Scala does not currently

provide a keyword to enforce functional purity.

6.4 Validation strategies

The manner in which jobs are scheduled and errors handled

depends on the chosen ValidationStrategy. If a strategy

is not specified, AUTOMAN automatically uses the validation

routines in the DefaultStrategy, which performs the form

of statistical error handling we outlined in earlier sections.

However, in the event that more sophisticated error handling

is required, the programmer may either extend or completely

replace our base error-handling strategy by implementing the

ValidationStrategy interface.

6.5 Third-party implementors

Implementors who wish to adapt the AUTOMAN runtime for

additional crowdsourcing backends need only implement the

AutomanAdapter and ConcreteQuestion interfaces. Pro-

grams for one crowdsourcing backend thus can be ported to a

new system by including the appropriate AutomanAdapter

library and specifying the proprietary system’s configuration

details.

7. Evaluation

We implemented three sample applications using AUTOMAN:

a semantic image-classification task using checkboxes, an

image-counting task using radio buttons, and an optical

character recognition (OCR) pipeline. These applications

were chosen to be representative of the kinds of problems

which remain difficult even for state-of-the-art algorithms.

7.1 Which one does not belong?

Our first sample application asks users to identify which

object does not belong in a collection of items (Figure 1). This

kind of task requires both image- and semantic-classification

capability, and is a component in clustering and automated

construction of ontologies. Because tuning of AUTOMAN’s

parameters is largely unnecessary, relatively little code is

required to implement this functionality (about 20 lines).

We gathered 93 responses from workers during our sam-

pling runs. Runtimes for this program were on the order of

minutes, but there is substantial variation in runtime given

1 import com.amazonaws.services.s3.AmazonS3Client
2 import java.awt.image.BufferedImage
3 import java.io.File
4 import edu.umass.cs.automan.adapters.MTurk._
5

6 object HowManyThings {
7 def main(args: Array[String]) {
8 val a = MTurkAdapter { mt =>
9 mt.access_key_id = "XXXX"

10 mt.secret_access_key = "XXXX"
11 mt.sandbox_mode = true
12 }
13

14 def how_many(url:String)=a.RadioButtonQuestion{q=>
15 q.text="How many "+args (0)+" are in this image?"
16 q.image_url = url
17 q.options = List(
18 a.Option(’zero , "None"),
19 a.Option(’one , "One"),
20 a.Option(’more , "More than one")
21)
22 }
23

24 // Search for a bunch of images
25 val urls = get_urls(args (0))
26

27 // download each image
28 val images = urls.map(download_image(_))
29

30 // resize each image
31 val scaled = images.map(resize(_))
32

33 // store each image in S3
34 val s3client = init_s3 ()
35 val s3_urls = scaled.map{ i =>
36 store_in_s3(i, s3client)
37 }
38

39 // ask humans for answers
40 val answers_urls = s3_urls.map { url =>
41 (how_many(getTinyURL(url.toString)) -> url)
42 }
43

44 // print answers
45 answers_urls.foreach { case(a,url) =>
46 println ("url: " + url +
47 ", answer: " + a(). value)
48 }
49 }
50 }

Figure 7. An application that counts the number of searched-

for objects in the image. Amazon S3, Google, TinyURL, and

image-manipulation helper functions have been omitted.

the time of the day. Demographic studies of Mechanical Turk

have shown that the majority of workers on Mechanical Turk

are located in the United States and in India [16]. These find-

ings largely agree with our experience, as we found that this

program (and variants) took upward of several hours during

the late evening hours in the United States.

Results from this application were used to test AUTO-

MAN’s quality control algorithm at different confidence lev-

els. AUTOMAN ensures that each worker’s response to this

application is independent of all other responses. Because

responses are independent, we can shuffle the order of re-

sponses and re-run AUTOMAN to approximate many different

runs of the same application with the same worker accuracy.

Figure 6 shows the average accuracy of AUTOMAN’s final

answer at each confidence level, and the average number of

responses required before AUTOMAN was confident in the

final answer. Figure 6 also includes results for three sets of

synthetic responses. Synthetic traces are generated by return-

ing a correct answer with probability equal to the specified

worker accuracy (33%, 50%, and 75%). Incorrect answers

are uniformly distributed over the four remaining choices.

These results show that AUTOMAN’s quality control is

highly pessimistic. Even with extremely low worker accuracy,

AUTOMAN is able to maintain high accuracy of final results.

Real worker responses are typically quite accurate (over 80%

in this case), and AUTOMAN rarely needs to exceed the first

two rounds of three questions to reach a very high confidence.

7.2 How many items are in this picture?

Counting the number of items in an image also remains

difficult for state-of-the-art machine learning algorithms.

Machine-learning algorithms must integrate a variety of

feature detection and contextual reasoning algorithms in order

to achieve a fraction of the accuracy of human classifiers [26].

Moreover, vision algorithms that work well for all objects

remain elusive.

This kind of task is trivial in AUTOMAN. We set up an

image processing pipeline using the code in Figure 7. This

application takes a search string as input, downloads images

using Google Image Search, resizes the images, uploads the

images to Amazon S3, ambiguates the URLs using TinyURL,

and then posts the question “How many $items are in this

image?”

We ran this task 8 times, spawning 71 question instances,

and employing 861 workers, at the same time of the day

(10 a.m. EST). AUTOMAN ensured that for each of the 71

questions asked, a worker was not able to participate more

than once. We found that the mean runtime was 8 minutes,

20 seconds and that the median runtime was 2 minutes, 35

seconds. Overall, the typical task latency was surprisingly

short.

The mean is skewed upward by the presence of one long-

running task which asked “How many spoiled apples are

in this image?”. The difference of opinion caused by the

ambiguity of the word “spoiled” caused worker answers

to be nearly evenly distributed between two answers. This

ambiguity forced AUTOMAN to collect a large number

of responses to be able to meet the desired confidence

level. AUTOMAN handled this unexpected behavior correctly,

running until statistical confidence was reached.

7.3 Automatic number plate recognition (ANPR)

Our last application is a reimplementation of a common—and

controversial—image recognition algorithm for automatic

number plate recognition (ANPR). ANPR is widely deployed

using distributed networks of traffic cameras. Academic

literature on the subject suggests that state-of-the-art systems

can achieve accuracy near 90% under ideal conditions [11].

False positives can have dramatic negative consequences in

unsupervised ANPR systems as tickets are issued to motorists

1 import collection.mutable
2 import com.amazonaws.services.s3.AmazonS3Client
3 import edu.umass.cs.automan.adapters.MTurk._
4

5 object Anpr extends App {
6 val opts = optparse(args)
7

8 val a = MTurkAdapter {
9 mt =>

10 mt.access_key_id = opts(’key)
11 mt.secret_access_key = opts(’secret)
12 mt.sandbox_mode = false
13 }
14

15 def plate_text(url:String)=a.FreeTextQuestion {q=>
16 q.budget = 5.00
17 q.text = "What are the characters printed on " +
18 "this license plate? NO DASHES , DOTS" +
19 " OR SPACES! If the plate is " +
20 "unreadable , enter: NA"
21 q.image_url = url
22 q.allow_empty_pattern = true
23 q.pattern = "XXXXXYYY"
24 }
25

26 // store each image in S3
27 val filehandles = get_fh(opts(’directory))
28 val s3client: AmazonS3Client = init_s3 ()
29 val s3_urls = filehandles.map { fh =>
30 store_in_s3(fh , s3client)
31 }
32

33 // get plate texts for the good ones
34 val plate_texts = s3_urls.par.map { url =>
35 plate_text(url)(). value
36 }
37

38 // print out results
39 plate_texts.foreach { text => println(text) }
40 }

Figure 8. A number-plate recognition program. Amazon S3,

command-line option parsing, and other helper functions have

been omitted for clarity.

automatically. A natural consequence of this fact is the

need for human supervision to audit results and limit false

positives.

Figure 8 shows an ANPR application written in AUTO-

MAN. We evaluated this application using the MediaLab

LPR database[3]. The benchmark was run twice on 72 of the

“extremely difficult” images, for a total of 144 license plate

identifications. Overall accuracy was 91.6% for this subset.

Each task cost an average of 12.08 cents, with a median la-

tency of just under 2 minutes per image. AUTOMAN runs

all identification tasks in parallel: one complete run took just

under three hours, while the other took less than one hour.

These translate to throughputs of 24 and 69 plates/hr. While

the AUTOMAN application is slower than computer vision

approaches, it could be used for only the most difficult images

to increase accuracy at low cost.

Automatic number plate recognition is a long-studied prob-

lem: a recent survey has 49 citations spanning 21 years [11].

Using AUTOMAN to engage humans to perform this task re-

quired only a few hours of programming time and AutoMan’s

(a) Visual representation of the license-plate-recognition workflow. 1)

Images are read from disk. 2) Images are uploaded to Amazon S3. 3) HITs

are posted to MTurk by AUTOMAN. 4) Workers complete the posted HITs.

5) Responses are gathered by AUTOMAN. 6) AUTOMAN chooses the correct

answers, repeating steps 3-5 as necessary, and prints them to the screen.

(b) A sample HIT on Mechanical Turk for OCR. In all of our trial runs,

AUTOMAN correctly identified this hard-to-read plate.

Figure 9. An AUTOMAN program for automatic number

plate recognition.

quality control ensures that it delivers results that match or

exceed the state-of-the-art on even the most difficult cases.

8. Related Work

Example Uses of Crowdsourcing. The computational

power of many software applications is significantly en-

hanced with human supervision at critical steps. The innate

ability of humans to quickly and correctly provide answers to

otherwise intractable problems has resulted in a great deal of

interest in hybrid human-computer applications. We describe

a representative sample of such applications below. Note

Feature AUTOMAN TurkIt [21] CrowdFlower [25] Jabberwocky [1] Turkomatic [19] CrowdDB [14]

Quality Control Guarantee X

High Performance X

Automatic Budgeting X

Automatic Time Optimization X

Automatic Task Accept/Reject X

General Purpose X X X X X

Memoizes Results X X

Interfaces with Existing Code XJava XJavascript XRuby XSQL

Type-Safe X

Platform Agnostic X n/a X

Table 1. A comparison between AUTOMAN and other crowdsourcing-based systems.

that these do not rely on general-purpose crowdsourcing

platforms built on open labor markets, but simply involve

humans in computations.

Galaxy Zoo uses humans as image classifiers to determine

the direction of the spin of distant galaxies [20]. Participants,

who have little training, provide image classifications (called

“votes”) which are weighted by their accuracy relative to other

participants.

reCAPTCHA repurposes the popular CAPTCHA web-

based “human Turing test” to classify images of text from

scanned books where traditional optical-character recognition

algorithms have failed [29]. Since deploying the software,

reCAPTCHA has recognized millions of words with an

estimated average accuracy exceeding 99%.

CrowdSearch relies on human judgment to improve the

accuracy of web-based mobile phone image search, in near

real-time [30]. Human workers are recruited iteratively and

in batches, according to arrival-rate estimates and a majority-

voting scheme.

FoldIt! presents difficult protein-folding problems as an

online video game. Participants collaborate with state-of-the-

art protein-folding models to search the state space of protein

configurations faster than unsupervised algorithms [6].

Programming the Crowd. While there has been substantial

ad hoc use of crowdsourcing platforms, especially Amazon’s

Mechanical Turk, there has been little effort to manage

workers programatically. Amazon’s Mechanical Turk exposes

a low-level API limited to allowing jobs to be submitted,

tracked, and checked.

TurKit is a scripting system designed to make it easier to

manage Mechanical Turk tasks [21]. TurKit Script extends

JavaScript with a templating feature for common Mechanical

Turk tasks, and adds checkpointing to avoid re-submitting

Mechanical Turk tasks if a script fails. CrowdForge is a web

tool that wraps a MapReduce-like abstraction on Mechani-

cal Turk tasks [8, 18]. Programmers decompose tasks into

partition tasks, map tasks, and reduce tasks. CrowdForge

automatically handles distributing tasks to multiple users and

collecting the results. Unlike AUTOMAN, neither TurKit nor

CrowdForge automatically manage scheduling, pricing, or

quality control; in addition, TurkIt’s embedding in JavaScript

also limits its usefulness for compute-intensive tasks.

CrowdDB models crowdsourcing as an extension to re-

lational databases, providing annotations to traditional SQL

queries that trigger the SQL runtime to crowdsource database

cleansing tasks [14]. The SQL runtime is crowdsourcing-

aware, so that the SQL’s query planner can minimize opera-

tions that would otherwise be very expensive. Unlike AUTO-

MAN, CrowdDB is not a general platform for computing, and

relies on majority voting as its sole quality control mecha-

nism.

Turkomatic aims to crowdsource an entire computation,

including the “programming” of the task [19]. Tasks are pro-

vided to the system in plain English, and the Turkomatic

runtime proceeds in two steps: a map step and a reduce step.

In the map step, workers provide an execution plan, which is

then carried out in the reduce step. Like AUTOMAN, Turko-

matic can be used to construct arbitrarily complex compu-

tations. However, Turkomatic does not handle budgeting or

quality control, and also cannot be integrated with a conven-

tional programming language.

Jabberwocky provides a human-computation stack on top

of a MapReduce-like parallel programming framework called

ManReduce [1]. A Ruby DSL called Dog eases program-

mer interaction with a resource-management layer called

Dormouse, which does the actual scheduling of tasks on

ManReduce. Jabberwocky uses a fixed, optional quality con-

trol scheme based on majority voting and a fixed pricing

scheme.

Quality Control. CrowdFlower is a closed-source web ser-

vice that targets commercial crowdsourcing platforms [25].

To enhance quality, CrowdFlower uses a “gold-seeding” ap-

proach to identify likely erroneous workers, sprinkling ques-

tions with known answers into the question pipeline. Crowd-

Flower incorporates methods to programmatically generate

this data via “fuzzing” as the system processes real work, in

an effort to ease the gold-generation burden on the requester.

Recognizing new types of errors remains a manual process.

Like other work in this area, this approach focuses on estab-

lishing trust in the quality of a particular worker [17]. Rather

than trust that one can extrapolate quality of work on a new

task from a worker’s past performance, AUTOMAN addresses

work quality directly.

Shepherd provides interactive feedback between task re-

questers and task workers in an effort to increase quality; the

idea is to train workers to do a particular job well [10]. This

approach requires ongoing interaction between requesters

and workers, while AUTOMAN requires none.

Soylent introduces the find-fix-verify pattern of quality

control for written documents. The idea is to crowdsource

three distinct phases: finding errors, fixing errors, and verify-

ing the fixes [4]. Soylent can handle open-ended questions,

which AUTOMAN currently does not support. However, un-

like AUTOMAN, Soylent’s approach does not provide any

quantitative guarantees about the quality of the output.

9. Future Work

We plan to build on the existing AUTOMAN prototype in the

following directions:

Broader question classes. The current AUTOMAN system

supports radio-button, checkbox, and restricted free-text

questions. We plan to extend AUTOMAN to support questions

with unrestricted free-text answers, i.e., open-ended questions.

The validation strategy will add an intermediate step that

depends on workers to rank answers, and then perform quality

control on the rankings.

Additional automatic tuning. Currently, AUTOMAN can-

not distinguish between the scenario where there is a low

arrival rate of workers because we do not offer a compelling

incentive and the scenario where workers are simply not avail-

able due to the time of day. In the latter case, we do not want

to increment incentives, because doing so will have no effect.

We plan to investigate methods to adjust this behavior in a

future version.

Visualization tools. While AUTOMAN hides the manage-

ment details of human-based computation beneath an abstrac-

tion layer, it can be useful for debugging to peel back this

layer to see how tasks are progressing. AUTOMAN currently

provides a simple logging mechanism, but as the number of

jobs becomes large, navigating logs quickly becomes onerous.

Building on the fact that the AUTOMAN runtime system al-

ready acts as a server, we plan to extend it with a web service

that will allow AUTOMAN programmers to view the jobs

in the system. We are initially planning to include visualiza-

tions of the execution graph (including summaries) and allow

searching for jobs matching certain criteria.

Event simulator. Debugging AUTOMAN applications cur-

rently requires running one’s program with the sandbox mode

flag set, which will post jobs to Mechanical Turk’s sandbox

website for developers. While this is handy for previewing

a task, it is less than ideal to drive the behavior of the entire

program, since the number of independent workers required

to participate in a computation can be substantial. Other

crowdsourcing backends may also lack this sandbox feature.

We plan to build both an event simulator that can generate

worker responses drawn from arbitrary distributions, and an

application trace replayer, which can simulate the backend

using real data.

10. Conclusion

Humans can perform many tasks with ease that remain diffi-

cult or impossible for computers. This paper presents AUTO-

MAN, the first crowdprogramming system. Crowdprogram-

ming integrates human-based and digital computation. By

automatically managing quality control, scheduling, and bud-

geting, AUTOMAN allows programmers to easily harness

human-based computation for their applications.

AUTOMAN is available for download at http://www.

automan-lang.org.

Acknowledgments

This material is based upon work supported by the National

Science Foundation under Grant No. CCF-1144520 and

DARPA Award N10AP2026. The fourth author is supported

by the National Science Foundation under Grant No. CCF-

0953754. The authors gratefully acknowledge Mark Corner

for his support for this work and initially prompting us

to explore the area of crowdsourcing. We also thank the

anonymous reviewers for their helpful comments.

References

[1] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar. The Jab-

berwocky Programming Environment for Structured Social

Computing. In Proceedings of the 24th Annual ACM Sym-

posium on User Interface Software and Technology, UIST

’11, pages 53–64, New York, NY, USA, 2011. ACM. ISBN

978-1-4503-0716-1. URL http://doi.acm.org/10.1145/

2047196.2047203.

[2] Amazon. Mechanical Turk. http://www.mturk.com, June

2011.

[3] C. N. Anagnostopoulos. MediaLab LPR Database.

[4] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S.

Ackerman, D. R. Karger, D. Crowell, and K. Panovich.

Soylent: A Word Processor with a Crowd Inside. In

K. Perlin, M. Czerwinski, and R. Miller, editors, UIST,

pages 313–322. ACM, 2010. ISBN 978-1-4503-0271-

5. URL http://dblp.uni-trier.de/db/conf/uist/

uist2010.html#BernsteinLMHAKCP10.

[5] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth, P. Han-

rahan, M. Odersky, and K. Olukotun. Language Virtualization

for Heterogeneous Parallel Computing. In Onward!, 2010.

[6] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen,

A. Leaver-Fay, D. Baker, Z. Popovi, and F. Players. Predicting

protein structures with a multiplayer online game. Nature,

466(7307):756–760, 2010. URL http://www.nature.com/

doifinder/10.1038/nature09304.

http://www.automan-lang.org
http://www.automan-lang.org
http://doi.acm.org/10.1145/2047196.2047203
http://doi.acm.org/10.1145/2047196.2047203
http://www.mturk.com
http://dblp.uni-trier.de/db/conf/uist/uist2010.html#BernsteinLMHAKCP10
http://dblp.uni-trier.de/db/conf/uist/uist2010.html#BernsteinLMHAKCP10
http://www.nature.com/doifinder/10.1038/nature09304
http://www.nature.com/doifinder/10.1038/nature09304

[7] A. DasGupta. Probability for Statistics and Machine Learning:

Fundamentals and Advanced Topics. Springer, 1st edition,

2011.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In OSDI, pages 137–150, 2004.

[9] J. R. Douceur. The Sybil Attack. In Revised Papers from

the First International Workshop on Peer-to-Peer Systems,

IPTPS ’01, pages 251–260, London, UK, 2002. Springer-

Verlag. ISBN 3-540-44179-4. URL http://dl.acm.org/

citation.cfm?id=646334.687813.

[10] S. Dow, A. Kulkarni, B. Bunge, T. Nguyen, S. Klemmer,

and B. Hartmann. Shepherding the Crowd: Managing and

Providing Feedback to Crowd Workers. In Proceedings of

the 2011 Annual Conference Extended Abstracts on Human

Factors in Computing Systems, CHI EA ’11, pages 1669–1674,

New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0268-5.

URL http://doi.acm.org/10.1145/1979742.1979826.

[11] S. Due, M. Ibrahim, M. Shehata, and W. Badawy. Automatic

License Plate Recognition (ALPR): A State of the Art Re-

view. IEEE Transactions on Circuits and Systems for Video

Technology, PP, 2012.

[12] W. Feller. An Introduction to Probability Theory and Applica-

tions, volume 1. John Wiley & Sons Publishers, 3rd edition,

1968.

[13] M. Fogus. BAYSICK—a DSL for Scala implementing a subset

of BASIC. https://github.com/fogus/baysick, March

2009.

[14] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin.

CrowdDB: Answering Queries with Crowdsourcing. In T. K.

Sellis, R. J. Miller, A. Kementsietsidis, and Y. Velegrakis,

editors, SIGMOD Conference, pages 61–72. ACM, 2011. ISBN

978-1-4503-0661-4.

[15] J. Howe. The Rise of Crowdsourcing. Wired Magazine, 14(6):

176–178, 2006. ISSN 1059-1028.

[16] P. G. Ipeirotis. Demographics of Mechanical Turk. Technical

Report Working Paper CeDER-10-01, NYU Center for Digital

Economy Research, 2010.

[17] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management

on Amazon Mechanical Turk. In Proceedings of the ACM

SIGKDD Workshop on Human Computation, HCOMP ’10,

pages 64–67, New York, NY, USA, 2010. ACM. ISBN

978-1-4503-0222-7. doi: http://doi.acm.org/10.1145/1837885.

1837906. URL http://doi.acm.org/10.1145/1837885.

1837906.

[18] A. Kittur, B. Smus, and R. E. Kraut. CrowdForge: Crowdsourc-

ing Complex Work. Technical Report CMU-HCII-11-100,

Human-Computer Interaction Institute, School of Computer

Science, Carnegie Mellon University, February 2011.

[19] A. P. Kulkarni, M. Can, and B. Hartmann. Turkomatic:

Automatic Recursive Task and Workflow Design for. Me-

chanical Turk. In Proceedings of the 2011 Annual Con-

ference Extended Abstracts on Human Factors in Comput-

ing Systems, CHI EA ’11, pages 2053–2058, New York,

NY, USA, 2011. ACM. ISBN 978-1-4503-0268-5. URL

http://doi.acm.org/10.1145/1979742.1979865.

[20] K. Land, A. Slosar, C. Lintott, D. Andreescu, S. Bamford,

P. Murray, R. Nichol, M. J. Raddick, K. Schawinski, A. Szalay,

D. Thomas, and J. Vandenberg. Galaxy Zoo: the large-scale

spin statistics of spiral galaxies in the Sloan Digital Sky Survey.

Monthly Notices of the Royal Astronomical Society, 388:1686–

1692, Aug. 2008. doi: 10.1111/j.1365-2966.2008.13490.x.

[21] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. TurKit:

Human Computation Algorithms on Mechanical Turk. In UIST,

pages 57–66, 2010.

[22] M. Marge, S. Banerjee, and A. Rudnicky. Using the Amazon

Mechanical Turk for Transcription of Spoken Language. In

The 2010 IEEE International Conference on Acoustics Speech

and Signal Processing (ICASSP), pages 5270–5273, Mar. 2010.

doi: 10.1109/ICASSP.2010.5494979.

[23] A. McCallum, K. Schultz, and S. Singh. FACTORIE: Proba-

bilistic Programming via Imperatively Defined Factor Graphs.

In Neural Information Processing Systems (NIPS), 2009.

[24] M. Odersky and M. Zenger. Scalable Component Abstractions.

In Proceedings of the 20th annual ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA ’05, pages 41–57, New York, NY, USA,

2005. ACM. ISBN 1-59593-031-0. URL http://doi.acm.

org/10.1145/1094811.1094815.

[25] D. Oleson, V. Hester, A. Sorokin, G. Laughlin, J. Le, and

L. Biewald. Programmatic Gold: Targeted and Scalable Quality

Assurance in Crowdsourcing. In HCOMP ’11: Proceedings of

the Third AAAI Human Computation Workshop. Association

for the Advancement of Artificial Intelligence, 2011.

[26] D. Parikh and L. Zitnick. Human-Debugging of Machines. In

Second Workshop on Computational Social Science and the

Wisdom of Crowds, NIPS ’11, 2011. URL http://www.cs.

umass.edu/%7Ewallach/workshops/nips2011css/.

[27] D. Shahaf and E. Amir. Towards a theory of AI completeness.

In Commonsense 2007: 8th International Symposium on Logi-

cal Formalizations of Commonsense Reasoning. Association

for the Advancement of Artificial Intelligence, 2007.

[28] D. Tamir, P. Kanth, and P. Ipeirotis. Mechan-

ical Turk: Now with 40.92% spam. http:

//www.behind-the-enemy-lines.com/2010/12/

mechanical-turk-now-with-4092-spam.html, De-

cember 2010.

[29] L. von Ahn, B. Maurer, C. Mcmillen, D. Abraham, and

M. Blum. reCAPTCHA: Human-Based Character Recogni-

tion via Web Security Measures. Science, 321(5895):1465–

1468, August 2008. URL http://dx.doi.org/10.1126/

science.1160379.

[30] T. Yan, V. Kumar, and D. Ganesan. CrowdSearch: Exploiting

Crowds for Accurate Real-Time Image Search on Mobile

Phones. In Proceedings of the 8th International Conference

on Mobile Systems, Applications, and Services, MobiSys ’10,

pages 77–90, New York, NY, USA, 2010. ACM. ISBN

978-1-60558-985-5. URL http://doi.acm.org/10.1145/

1814433.1814443.

http://dl.acm.org/citation.cfm?id=646334.687813
http://dl.acm.org/citation.cfm?id=646334.687813
http://doi.acm.org/10.1145/1979742.1979826
https://github.com/fogus/baysick
http://doi.acm.org/10.1145/1837885.1837906
http://doi.acm.org/10.1145/1837885.1837906
http://doi.acm.org/10.1145/1979742.1979865
http://doi.acm.org/10.1145/1094811.1094815
http://doi.acm.org/10.1145/1094811.1094815
http://www.cs.umass.edu/%7Ewallach/workshops/nips2011css/
http://www.cs.umass.edu/%7Ewallach/workshops/nips2011css/
http://www.behind-the-enemy-lines.com/2010/12/mechanical-turk-now-with-4092-spam.html
http://www.behind-the-enemy-lines.com/2010/12/mechanical-turk-now-with-4092-spam.html
http://www.behind-the-enemy-lines.com/2010/12/mechanical-turk-now-with-4092-spam.html
http://dx.doi.org/10.1126/science.1160379
http://dx.doi.org/10.1126/science.1160379
http://doi.acm.org/10.1145/1814433.1814443
http://doi.acm.org/10.1145/1814433.1814443

	Introduction
	Background: Crowdsourcing Platforms
	Overview
	Using AutoMan
	AutoMan Execution

	Scheduling Algorithm
	Calculating Timeout and Reward
	Scheduling the Right Number of Tasks
	Trading Off Latency and Money
	Derivation of Optimal Reward Growth Rate

	Quality Control Algorithm
	Overview of the Quality Control Algorithm
	Derivation of (p*,) and t(n,)
	Quality Control Discussion
	Random as Worst Case

	System Architecture and Implementation
	Domain-specific language
	Abstract Questions and Concrete Questions
	Memoization of Results
	Validation strategies
	Third-party implementors

	Evaluation
	Which one does not belong?
	How many items are in this picture?
	Automatic number plate recognition (ANPR)

	Related Work
	Future Work
	Conclusion

