
 Open access Book Chapter DOI:10.1007/978-3-540-77505-8_7

Automata-based confidentiality monitoring — Source link

Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, David A. Schmidt

Institutions: Kansas State University

Published on: 06 Dec 2006

Topics: Language-based security, Security policy and Information flow (information theory)

Related papers:

 Language-based information-flow security

 A sound type system for secure flow analysis

 Dynamic vs. Static Flow-Sensitive Security Analysis

 Security Policies and Security Models

 Certification of programs for secure information flow

Share this paper:

View more about this paper here: https://typeset.io/papers/automata-based-confidentiality-monitoring-
52rpne33d6

https://typeset.io/
https://www.doi.org/10.1007/978-3-540-77505-8_7
https://typeset.io/papers/automata-based-confidentiality-monitoring-52rpne33d6
https://typeset.io/authors/gurvan-le-guernic-3x1qoqua5i
https://typeset.io/authors/anindya-banerjee-3vngvx4r3o
https://typeset.io/authors/thomas-jensen-4h9g8edc9t
https://typeset.io/authors/david-a-schmidt-3isrmgu7gs
https://typeset.io/institutions/kansas-state-university-szaupr8s
https://typeset.io/topics/language-based-security-1875lvyy
https://typeset.io/topics/security-policy-3kp39jrn
https://typeset.io/topics/information-flow-information-theory-3ho9jrwy
https://typeset.io/papers/language-based-information-flow-security-34hjiqf6qq
https://typeset.io/papers/a-sound-type-system-for-secure-flow-analysis-4293n47csm
https://typeset.io/papers/dynamic-vs-static-flow-sensitive-security-analysis-55c0i2l7vw
https://typeset.io/papers/security-policies-and-security-models-4y90r3286n
https://typeset.io/papers/certification-of-programs-for-secure-information-flow-3kbmz311vw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/automata-based-confidentiality-monitoring-52rpne33d6
https://twitter.com/intent/tweet?text=Automata-based%20confidentiality%20monitoring&url=https://typeset.io/papers/automata-based-confidentiality-monitoring-52rpne33d6
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/automata-based-confidentiality-monitoring-52rpne33d6
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/automata-based-confidentiality-monitoring-52rpne33d6
https://typeset.io/papers/automata-based-confidentiality-monitoring-52rpne33d6

Automata-based Confidentiality Monitoring ⋆

Gurvan Le Guernic1,2, Anindya Banerjee2,
Thomas Jensen1, and David A. Schmidt2

1 IRISA - Campus universitaire de Beaulieu, 35042 Rennes - France
{Gurvan.Le_Guernic, jensen}@irisa.fr

2 Kansas State University - Manhattan, KS 66506 - USA
{ab,schmidt}@cis.ksu.edu

Abstract Non-interference is typically used as a baseline security pol-
icy to formalize confidentiality of secret information manipulated by a
program. In contrast to static checking of non-interference, this paper
considers dynamic, automaton-based, monitoring of information flow for
a single execution of a sequential program. The monitoring mechanism is
based on a combination of dynamic and static analyses. During program
execution, abstractions of program events are sent to the automaton,
which uses the abstractions to track information flows and to control the
execution by forbidding or editing dangerous actions. The mechanism
proposed is proved to be sound, to preserve executions of well-typed
programs (in the security type system of Volpano, Smith and Irvine),
and to preserve some safe executions of ill-typed programs.

1 Introduction

With the intensification of communication in information systems, interest in
security has increased. This paper deals with the problem of confidentiality, more
precisely with non-interference in sequential programs. This notion has first been
introduced by Goguen and Meseguer [1] as the absence of strong dependency [2].

A sequential program, P, is said to be non-interfering if the values of its
public (or low) outputs do not depend on the values of its secret (or high)
inputs. Formally, non-interference of P is expressed as follows: given any two
initial input states σ1 and σ2 that are indistinguishable with respect to low
inputs, the executions of P started in states σ1 and σ2 are low-indistinguishable;
i.e. there is no observable difference in the public outputs. In the simplest form of
the low-indistinguishable definition, public outputs include only the final values
of low variables. In a more general setting, the definition may additionally involve
intentional aspects such as power consumption, computation times, etc.

Static analyses for non-interference have been studied extensively and are well
surveyed by Sabelfeld and Myers [3]. The novelty of the approach developed in
this paper lies in:

⋆ Banerjee and Le Guernic were partially supported by NSF grants CNS-0627748,
CNS-0209205, CCF-0296182 and ITR-0326577. Schmidt was partially supported by
NSF grants ITR-0326577 and ITR-0086154. Le Guernic was also partially supported
by the PoTestAT project (ACI Sécurité).

1. its ability to give a judgment for a single execution alone and not only for
all the executions of a program as a whole,

2. the monitoring mechanism used to ensure the confidentiality of secret data.

The bulk of previous research [4–11] associates the notion of non-interference
to a program and develops static analyses that accept a program only if all its
executions ensure the confidentiality of secrets. In contrast, this paper presents a
dynamic analysis that uses the results of a static analysis: the dynamic analysis
accepts or rejects a single execution of a program without necessarily doing the
same for all other executions. The monitoring mechanism introduced guarantees
confidentiality of secret data: either the monitor deduces that the current exe-
cution is non-interfering or it alters the behavior of the execution to obtain a
non-interfering execution. The feasibility of this approach is shown by Hamlen
et al. [12] who prove that any policy that can be statically asserted is enforceable
using monitors which have access to the program’s source.

There are three main benefits to using a monitoring mechanism rather than
a static analysis. First, the security levels of inputs and outputs may be different
from one execution to another; and a monitoring mechanism lets the security
levels vary before each execution while still enforcing non-interference. For ex-
ample, consider the effect of monitoring the Unix command more that takes as
input a file divided into blocks and displays the blocks sequentially while waiting
for the user to press a key between each block. A monitor for more would display
a block only if the security level of the block is lower than the security level of
the user; otherwise a default security message will be displayed. The monitor
behavior depends on the particular file given as input, not on all possible in-
puts. This feature makes the monitoring mechanism a “lazy” polyvariant static
analysis. A second benefit of monitors is their ability to safely use a program
which has not been proved to respect a given property — maybe because one
of its executions does not respect it; the monitor can run the safe executions
— i.e. non-interferent executions — of an unsafe program. Finally, a monitoring
mechanism follows the precise control flow of a program and thus calculation
of control dependences (as might be performed in static analyses) can be more
accurate. Section 5 contains an example showing how the work presented in this
paper benefits from this improved accuracy.

A distinguishing feature of this dynamic analysis, compared to other pro-
gram monitors, lies in the property overseen. Monitoring information flow is
more complicated than, e.g., monitoring divisions by zero, since it must take
into account not only the current state of the program but also the execution
paths not taken during execution. For example, executions of the following pro-
grams (a) if h then x :=1 else skip and (b) if h then skip else skip in
an initial state where h is false are equivalent concerning executed commands.
In contrast, (b) is obviously a non-interfering program, while (a) is not. The
execution of (a), with a low-equivalent initial state where h is true and x is 0,
does not give the same final value for the low output x.

This paper presents the semantics of a confidentiality monitoring mechanism
which is proved to be sound. This mechanism is useful, for example, for the exe-

cution of programs downloaded from untrusted sources. Based on the semantics
presented here, the monitoring mechanism can be implemented as a program
transformation or as a virtual machine. To the best of our knowledge, this work
is the first that presents a non-interference monitoring mechanism supported by
formal proofs of soundness. Because of its dynamic nature, the mechanism is
more expressive than the non-interference type system of Volpano et al. [11].
The next section defines terminology and introduces the scope of the work. Sec-
tion 3 defines the monitoring semantics, which is automata-based. The properties
of monitored executions and a comparison with type systems are contained in
Sect. 4. Section 5 discusses related work and concludes. Proofs of theorems in
this paper can be found in the companion technical report [13].

2 Language and Non-interference Monitoring Principles

The work presented aims at monitoring executions in order to enforce non-
interference. The novelty and difficulty of this objective, compared to standard
works on monitoring, lies in the monitoring mechanism. Monitors which see exe-
cutions as a sequence of executed actions, like standard execution monitors [14],
are not sufficient to enforce non-interference. This particular point is supported
by works of McLean and Schneider. McLean [15] proved that information flow
policies equivalent to non-interference are not properties; and Schneider [14] con-
cluded that execution monitors are limited to the enforcement of properties. An
information theoretic viewpoint why this is the case is given by Ashby:

“the information carried by a particular message depends on the set it
comes from. The information conveyed is not an intrinsic property of the
individual message.” [16, § 7/5 page 124].

In order to enforce strong constraints on the information flow (like non-inter-
ference), the monitoring mechanism must be aware of the commands that are
not evaluated by a given execution [17, Sect. 4.2.2]. This is part of the approach
taken in the work presented in this paper. Conceptually, the monitor has a partial
access to the target program’s source code.

The notion of non-interference is intrinsically linked to the notion of infor-
mation flow. This paper distinguishes three types of information flows: direct
flows from the right part to the left part (or target) of assignments, explicit
indirect flows from the context of execution to targets of executed assignments
and implicit indirect flows from the context of execution to targets of un-executed
assignments. The context of execution of a command is the set of entities that
influence whether this command is executed or not.

The language: syntax and semantics. We study a simple imperative sequential
language with loops and outputs. The work proposed in this paper can be ex-
tended to more complex languages. The main requirement is to have a precise

knowledge of the control flow. The grammar of the studied language follows:

A ::= x := e | skip | output e

B ::= if e then S else S end | while e do S done

S ::= S ; S | B | A

The only constraints put on expressions (e) are that their evaluation must be de-
terministic and without side effects. Statements (S) are either sequences (S ; S),
conditionals and while loops (B), or atomic actions (A). The output statement,
“output e”, is a generic statement used to represent any kind of public (or low)
output, e.g., the action of printing the value of expression e on the terminal, pro-
ducing a sound, or laying out a new window on the desktop. Only public outputs
(i.e. outputs that are visible by standard users) are coded with the output state-
ment; secret outputs are simply ignored. For example, sending a message m on
a public network is represented by “output m,” but sending an encrypted mes-
sage n on a public network is abstracted by “output c”, where c is a constant
which emphasizes the fact that the content of an encrypted message cannot be
revealed. Finally, sending a message on a private network, to which standard
users do not have access, does not appear in the code of the programs studied.

Non-terminating executions leaks information through timing channels; such
channels are not in the scope of this work. Consequently, the paper focuses on
terminating executions, which allows the use of big-step operational semantics
(also called natural semantics [18]). The standard semantics of the language

(Fig. 2) is described using evaluation rules, written σ ⊢ S
o
=⇒ σ′. This reads as

follows: statement S executed in state σ yields state σ′ and output sequence o.
Let D be the semantic domain of values, and X the domain of variables. The
definition of program states (X → D) is extended to expressions, so that σ(e) is
the value of the expression e in state σ. An output sequence is a word in D

⋆.

σ ⊢ x := e
ǫ
=⇒ σ[x 7→ σ(e)] σ ⊢ output e

σ(e)
===⇒ σ σ ⊢ skip

ǫ
=⇒ σ

σ ⊢ S1
o1==⇒ σ′ σ′ ⊢ S2

o2==⇒ σ′′

σ ⊢ S1 ; S2
o1 o2====⇒ σ′′

σ(e) = v σ ⊢ Sv

o
=⇒ σ′

σ ⊢ if e then Strue else Sfalse end
o
=⇒ σ′

σ(e) = true

σ ⊢ S ; while e do S done
o
=⇒ σ′

σ ⊢ while e do S done
o
=⇒ σ′

σ(e) = false

σ ⊢ while e do S done
ǫ
=⇒ σ

Figure 1. Semantics outputting the values of low-outputs

The monitoring principles. Non-interference formalizes that there is no infor-
mation flow from secret (or high) inputs to public (or low) outputs. For any
program P, let S(P) ⊆ X be the set of variables whose initial values are the

secret inputs. The only public output is the output sequence resulting from the
execution. Contrary to the majority of works on non-interference, the values of
the variables in the program state are never directly accessible (even at the end
of the execution). Consequently, the values of the variables in the program state
are never considered public outputs. We made this choice in order to be more
flexible with regard to what is considered as publicly accessible. All, and only,
the values which are visible to low users must be displayed using an output state-
ment at the position inside the program where they are visible. If the desired
behavior is that low users have access to the values of low variables at the end
of the execution, those values must be output at the end of the program.

The main monitoring mechanism principle is based on information transmis-
sion notions of classical information theory [16]. Cohen states it as follows:

“information can be transmitted from a to b over execution of H [(a se-
quence of actions)] if, by suitably varying the initial value of a (exploring
the variety in a), the resulting value in b after H’s execution will also
vary (showing that the variety is conveyed to b).” [2, Sect. 3].

Hence, for preventing information flows from secret inputs to public outputs,
the monitoring mechanism must ensure that variety — which can be seen as
the property of variability or mutability — of the initial values of the variables
in the set S(P) is not conveyed to the output sequence. This means that the
monitoring mechanism, which works on a single execution, must ensure that
even if the initial values of the variables belonging to S(P) were different, the
output sequence would be identical.

The monitoring automaton has two jobs. The first is to track “variety,” that
is, to track entities (program variables, program counter, . . .) having different
values when the initial values of variables in S(P) are different. Its second job
is to prevent conveying of variety to the output sequence, that is, to ensure
that the output sequence would be identical for any execution having the same
public inputs (the initial values of the variables not in S(P)). To complete the
first job, the states of the monitoring automaton are pairs. The first element of
this pair is a set of variables. At any step of the computation, it contains all the
variables that have “variety” (i.e., have a different value if the initial values of
the variables belonging to S(P) are different). The second element of the pair is a
word in {⊤,⊥}⋆. This word tracks “variety” in the context of the execution (the
value of the program counter). The second job (avoiding transfer of variety to
the output sequence) is accomplished by authorizing, denying, or editing output
statements depending on the current state of the monitoring automaton.

3 Definition of the Monitoring Mechanism

The monitoring mechanism is divided into two main elements. The first is an au-
tomaton similar to edit automata [19]. Inputs to the automaton are abstractions
of the actions accomplished during an execution. The automaton tracks informa-
tion flow and authorizes, forbids or edits the actions of the monitored execution

to enforce non-interference. The second element of the monitoring mechanism is
a semantics of monitored executions that merges together the behavior of the
monitoring automaton and that of the standard output semantics in Fig. 2.

3.1 The Automaton

The automaton’s transition function is independent of the monitored program,
but the initial automaton’s state is not. The automaton enforcing non-interference
is the tuple A(P) = (Q,Φ, Ψ, δ, q0) where: Q is a set of states (Q = 2X×{⊤,⊥}⋆),
Φ is the input alphabet, Ψ is the output alphabet, δ is a transition function
(Q× Φ) −→ (Ψ ×Q), and q0 ∈ Q is the start state (q0 = (S(P), ǫ)).

An automaton state is a pair (V,w). V ⊆ X contains all the variables whose
current value may have been influenced by the initial values of the variables in
S(P); w, which belongs to {⊤,⊥}⋆, can be seen as a stack that tracks variety in
the context of the execution. In our approach, the context consists of only the
program counter’s value. If ⊤ occurs in w, then the statement executed belongs
to a conditional whose test may have been influenced by the initial values of S(P).
Hence the statement may not have been executed for a different choice of initial
values of S(P). The input alphabet of the automaton (Φ) consists of abstractions
of events that occur during an execution. It is defined below. The output alphabet
(Ψ) is composed of the following: ACK, OK, NO, and atomic actions of the
language. An atomic action is the answer of the monitoring automaton whenever
an action other than the current one has to be executed.

Figure 2 specifies the transition function of the automaton. A transition is

written (q, φ)
ψ
−→ q′. It reads as follows: in the state q, on reception of the input φ,

the automaton moves to state q′ and outputs ψ. Let V(e) be the set of variables
occurring in e and modified(S) be the set of all variables whose value may be
modified by an execution of S.

Figure 2 shows that the automaton forbids (NO) or edits (output θ) only
executions of output statements. For other inputs, it merely tracks, in the set V ,
the variables that may contain secret information (have variety), and it tracks,
in w, the variety of the branching conditions.

Inputs “branch e” are generated at exit point of conditionals. On reception of
such inputs in state (V,w), the automaton checks if the value of the branching
condition (e) might be influenced by the initial values of S(P): only if some
variable occurring in e belongs to V . If this is the case then the automaton
pushes ⊤ at the end of w; otherwise it pushes ⊥. In either case, the automaton
acknowledges the reception of the input by outputting ACK.

Whenever execution exits a branch — which is a member of a conditional
c — the input “exit” is sent to the automaton. The last letter of w is then
removed. As any such input matches a previous input “branch e” — generated
by the same conditional c — which adds a letter to the end of w, the effect of
“exit” is to restore the context to its state before the conditional was processed.

Inputs “not S” are generated at exit point of conditionals. It means that,
due to the value of a previous branching condition, statement S has not been

modified(x := e) = {x}
modified(output e) = modified(skip) = ∅
modified(S1 ; S2) = modified(S1) ∪ modified(S2)
modified(if e then S1 else S2 end) = modified(S1) ∪ modified(S2)
modified(while e do S done) = modified(S)

((V, w), branch e)
ACK
−−−→ (V, w⊤) iff V(e) ∩ V 6= ∅

((V, w), branch e)
ACK
−−−→ (V, w⊥) iff V(e) ∩ V = ∅

((V, wa), exit)
ACK
−−−→ (V, w)

((V, w), not S)
ACK
−−−→ (V ∪ modified(S), w) iff w 6∈ {⊥}⋆

((V, w), not S)
ACK
−−−→ (V, w) iff w ∈ {⊥}⋆

((V, w), skip)
OK
−−→ (V, w)

((V, w), x := e)
OK
−−→ (V ∪ {x}, w) iff w 6∈ {⊥}⋆ or V(e) ∩ V 6= ∅

((V, w), x := e)
OK
−−→ (V \ {x}, w) iff w ∈ {⊥}⋆ and V(e) ∩ V = ∅

((V, w), output e)
OK
−−→ (V, w) iff w ∈ {⊥}⋆ and V(e) ∩ V = ∅

((V, w), output e)
output θ

−−−−−−→ (V, w) iff w ∈ {⊥}⋆ and V(e) ∩ V 6= ∅

((V, w), output e)
NO
−−→ (V, w) iff w 6∈ {⊥}⋆

Figure 2. Transition function of monitoring automata

executed. This detects implicit indirect flows. On input “not S” in state (V,w),
the automaton verifies whether S may have been executed with differing values
for S(P). This is the case if the context of execution carries variety (i.e. if w
does not belong to {⊥}⋆). Let (V ′, w′) be the new state of the automaton. If the
context carries variety then V ′ is the union of V with the set of variables whose
values may be modified by an execution of S. Otherwise, nothing is done.

Atomic actions (assignment, skip or output) are sent to the automaton for
validation before their execution. The atomic action skip is considered safe be-
cause the non-interference definition considered in this work is not time sensitive.
Hence the automaton always authorizes its execution by outputting OK.

When executing an assignment (x := e), two types of flows are created. The
first is a direct flow from e to x. The second flow is an explicit indirect flow from
the context of execution to x. For example, the execution of the assignment in
“if b then x := y else skip end” creates such a flow from b to x. Both forms of
flows are always created when an assignment is executed. What is important is
to check if secret information is carried by one of the flows (i.e., if variety in S(P)
is conveyed by one of the flows). Hence, on input x := e, the automaton checks
if the value of the origin of one of those two flows is influenced by the initial
values of S(P). For instance, if b is true in “if b then x := y else skip end”,
y is the origin of a direct flow to x and b is the origin of an explicit indirect
flow to x. The origin of the explicit indirect flow is influenced by S(P) only if w
contains ⊤, meaning that the condition of a previous (but still active) conditional

was potentially influenced by the initial values of S(P). The origin of the direct
flow is influenced by S(P) only if V(e) and V are not disjoint. If the value of
e is influenced by the initial values of S(P) then at least one of the variables
appearing in e has been influenced by S(P). Such variables are members of V .
Let (V ′, w′) be the new automaton state after the transition. If the origin of
either the direct flow or the explicit indirect flow is influenced by the initial
values of S(P), then x (the variable modified) is added to V : V ′ = V ∪ {x}. On
the other hand, if none of the origins are influenced by the initial values of S(P),
then x receives a new value which is not influenced by S(P). In that case, V ′

equals V \ {x}. This makes the mechanism flow-sensitive.

The rules for the automata input, “output e,” prevent bad flows through
two different channels. The first one is the actual content of what is output. In
a public context, (w ∈ {⊥}⋆), if the program tries to output a secret (i.e., the
intersection of V and the variables in e is not empty), then the value of the
output is replaced by a default value. This value can be a message informing
the user that, for security reasons, the output has been denied. To do so, the
automaton outputs a new output statement to execute in place of the current
one. The second channel is the behavior of the program itself. This channel
exists because, depending on the path followed, some outputs may or may not be
executed. Hence, if the automaton detects that this output may not be executed
with different values for S(P) (the context carries variety) then any output must
be forbidden; and the automaton outputs NO.

3.2 The Semantics

The semantics merging the standard output semantics in Fig. 2 with the moni-
toring automaton is given in Fig. 3. The semantics is described using evaluation
rules written: (q, σ) S

o
=⇒ (q′, σ′) . This reads: statement S executed in au-

tomaton state q and program state σ yields automaton state q′, program state
σ′, and output sequence o. There are three rules for atomic actions: skip, x := e

and output e. There is one rule for each possible automaton answer to the ac-
tion executed. Either the automaton authorizes the execution (OK), denies the
execution (NO), or replaces the action by another one. The rules use the stan-
dard semantics (Fig. 2) when an action must be executed. In the case where the
execution is denied, the evaluation omits the current action (as if the action was
”skip”). For the case where, on reception of input A, the monitoring automaton
returns A′, the monitoring semantics executes A′ instead of A. Note from Fig. 2,
that A′ can only be the action that outputs the default value (output θ).

For conditionals, the evaluation begins by sending to the automaton the input
“branch e” where e is the test of the conditional. Then, the branch designated
by e is executed (in the case of a while statement whose test is false, the
branch executed is “skip”). The execution follows by sending the automaton
input “not S” where S is the branch not executed (in case of a while statement
whose test is true, what happens is equivalent to sending the automaton input
“not skip”). Finally, the input “exit” is sent to the automaton and the execution

proceeds as usual. In the case of a while statement with a condition equals to
true, the execution proceeds by executing the while statement once again.

(q, A)
OK
−−−→ q′

σ ⊢ A
o
=⇒ σ′

(q, σ) A
o
=⇒ (q′, σ′)

(q, A)
A

′

−−→ q′

σ ⊢ A′
o
=⇒ σ′

(q, σ) A
o
=⇒ (q′, σ′)

(q, A)
NO
−−−→ q

(q, σ) A
ǫ
=⇒ (q, σ)

(q, σ) S1
o1==⇒ (q1, σ1)

(q1, σ1) S2
o2==⇒ (q2, σ2)

(q, σ) S1 ; S2
o1 o2====⇒ (q2, σ2)

σ(e) = v (q, branch e)
ACK
−−−−→ q1

(q1, σ) Sv

o
=⇒ (q2, σ1)

(q2, not S¬v)
ACK
−−−−→ q3 (q3, exit)

ACK
−−−−→ q4

(q, σ) if e then Strue else Sfalse end
o
=⇒ (q4, σ1)

σ(e) = true (q, branch e)
ACK
−−−−→ q1

(q1, σ) S
ol==⇒ (q2, σ1)

(q2, exit)
ACK
−−−−→ q3

(q3, σ1) while e do S done
ow==⇒ (q4, σ2)

(q, σ) while e do S done
ol ow
====⇒ (q4, σ2)

σ(e) = false (q, branch e)
ACK
−−−−→ q1

(q1, not S)
ACK
−−−−→ q2 (q2, exit)

ACK
−−−−→ q3

(q, σ) while e do S done
ǫ
=⇒ (q3, σ)

Figure 3. Semantics of monitored executions

3.3 Example of monitored execution

Table 1 is an example of monitored execution. The monitored program is given
in column “Program P”. Its inputs are h and l. The execution monitored is the
one for which h equals true and l equals 22. S(P), the set of secret inputs of P, is
{h}. So the initial state of the automaton is ({h}, ǫ). Column “input” contains the
inputs which are sent to the automaton, “output” contains the output sent back
to the semantics, and “new state” shows the new internal state of the automaton
after the transition. Finally, the last column shows the actions which are really
fulfilled by the monitored execution.

In this example, there are only two alterations of the execution (on lines 5
and 8). The first occurs when the program attempts to output a value influenced
by S(P) – output y. At this point of the execution, the value contained in y has
been influenced by the initial values of the variables belonging to S(P). This
is known because y belongs to the first element of the automaton state before
execution of line 5. Consequently, the automaton disallows the output of this
value. However, the fact of outputting something in itself is safe because the
context of execution (the program counter) has not been influenced by S(P) (the
second element of the automaton state belongs to {⊥}⋆). Hence, the automaton
replaces the current action by an output action whose value is a default one
(therefore not influenced by S(P)). This value lets the user know that an output
action has been denied for security reasons.

On line 8, the program tries to output something while the current context of
execution has been influenced by S(P). Hence, if the output occurs, the sequence

Program Automaton: Actions
P input output new state executed

1 x := l + 3; x := l + 3 OK ({h} , ǫ) x := l + 3

2 if (x > 10) then branch x > 10 ACK ({h} , ⊥)
3 y :=h; y :=h OK ({h,y} , ⊥) y :=h

4 output x; output x OK ({h,y} , ⊥) output x

5 output y; output y output θ ({h,y} , ⊥) output θ

6 if (h) then branch h ACK ({h,y} , ⊥⊤)
7 z :=0; z :=0 OK ({h,y,z} , ⊥⊤) z :=0

8 output x output x NO ({h,y,z} , ⊥⊤)
9 else x :=1 not x := 1 ACK ({h,y,z,x} , ⊥⊤)

10 end exit ACK ({h,y,z,x} , ⊥)
11 else skip not skip ACK ({h,y,z,x} , ⊥)
12 end exit ACK ({h,y,z,x} , ǫ)

Table 1. Example of the automaton evolution during an execution.

generated by the execution is influenced by some secret values. Therefore the
automaton denies any output; it does not even give another action to execute in
place of the current one. The semantics does as if the action was “skip”.

4 Properties of the Monitoring Mechanism

A first theorem states soundness: any monitored execution is a non-interfering
execution. A second one states “pseudo-completeness”: the monitor does not alter
observable behavior of a non-trivial set of non-interfering executions. Complete
proofs of these theorems can be found in the companion technical report [13].

Soundness. The soundness property is based on the notion of non-interference
between the secret inputs and the output sequence of an execution. An execution
is considered safe — knowing that the program’s source is public — if and only
if it does not convey the variety in its secret inputs to the sequence output, that
is, if the secret inputs have no influence on the execution’s outputs.

For all programs P, with set of secret inputs S(P), and value store σ, let [[P]]σ
be the output sequence obtained via the monitored execution of P in the initial
state ((S(P), ǫ), σ). This definition is formally stated as follows:

[[P]]σ = o if and only if ∃ q′, σ′ : ((S(P), ǫ), σ) P
o
=⇒ (q′, σ′)

The following theorem states that every monitored execution is safe, i.e.

it is non-interfering. Let
X
= be an equivalence relation between value stores. Let

σ1
X
= σ2 assert that σ1 and σ2 are indistinguishable forX, i.e., σ1 and σ2 associate

the same value to every variable in X. Let Xc be the complement of set X in X.

Theorem 1 (Soundness: monitored executions are non-interfering). For
all programs P, whose set of secret inputs is S(P), and value stores σ1 and σ2,

σ1
S(P)c

= σ2 ⇒ [[P]]σ1 = [[P]]σ2

Proof (sketch). The proof — which can be found in [13] — goes by induction
on the derivation tree of [[P]]σ1. It relies on the fact that, after any “step” in the
evaluation of [[P]]σ1 and “equivalent step” in the evaluation of [[P]]σ2, the automa-
ton states of both executions are equal and the value stores are indistinguishable
for the complement of the first element of the automaton states.

Pseudo-completeness. Thus any terminating monitored execution is non-interfe-
ring. However, to achieve this goal, the monitor sometimes modifies the output
sequence of the execution. The sequence of outputs resulting from the execution
of program P with initial state σ might differ according to the semantics used,
the standard one (Fig. 2) or the monitoring semantics (Fig. 3). The sequel gives
a lower bound on the set of non-interfering executions on which the monitoring
mechanism has no impact. It shows that the mechanism proposed in this paper
preserves the output sequence of any execution of a program which is well-typed
under a security type system similar to the one of Volpano et al. [11].

Figure 4 shows the security type system. It is the same one as that of Volpano
et al. [11] except for a small modification of the typing environment and the
addition of a rule for output statements (which are not in the language of [11]).
The typing environment, γ, prescribes types for identifiers and is extended to
handle expressions. γ(e) is the type of the expression e in the typing environment
γ. The lattice of types used has only two elements and is defined using the
reflexive relation ≤ (L ≤ H). L is the type for public data and H the type for
secrets. A program P is well-typed if it can be typed under a typing environment
γ in which every secret input is typed secret (i.e. ∀x ∈ S(P), γ(x) = H).

γ(e) = τ ′ τ ′ ≤ τ

γ ⊢ e : τ

γ(x) = τ ′ γ ⊢ e : τ ′ τ ≤ τ ′

γ ⊢ x := e : τ cmd
τ ≤ H

γ ⊢ skip : τ cmd

γ ⊢ e : L

γ ⊢ output e : L cmd
γ ⊢ S1 : τ cmd γ ⊢ S2 : τ cmd

γ ⊢ S1 ; S2 : τ cmd

γ ⊢ e : τ ′ γ ⊢ S1 : τ ′ cmd
γ ⊢ S2 : τ ′ cmd τ ≤ τ ′

γ ⊢ if e then S1 else S2 end : τ cmd

γ ⊢ e : τ ′ γ ⊢ S : τ ′ cmd τ ≤ τ ′

γ ⊢ while e do S done : τ cmd

Figure 4. The type system used for comparison

The problem of non-interference is neither dynamically nor statically de-
cidable. Consequently, the monitoring mechanism proposed in this paper is not
complete or transparent. However, Theorem 2 states that the monitoring mecha-
nism does not alter executions of well-typed programs. To show that the inclusion
is strict, consider the following program: x :=h; x :=0; output x. h is the
only secret input. Every execution is non-interfering. But as the type system is
flow insensitive, this program is ill-typed. However, the monitoring mechanism
does not interfere with the outputs of this program while still guaranteeing that
any monitored execution is non-interfering.

Theorem 2 (Monitoring preserves type-safe programs).
For all programs P with secret inputs S(P), typing environments γ with variables
belonging to S(P) typed secret, types τ , and value stores σ and σ′,

γ ⊢ P : τ cmd

σ ⊢ P
o
=⇒ σ′

}

⇒ [[P]]σ = o

Proof (sketch). The proof goes by induction on the derivation tree of the un-
monitored evaluation of P. It relies on the fact that the unmonitored evaluation
of any well-typed command is matched by an equivalent monitored evaluation.

5 Conclusion

This paper addresses the security problem of confidentiality from the point of
view of non-interference. It presents a monitoring mechanism enforcing non-
interference of any execution. This monitoring mechanism is based on a seman-
tics that communicates with a security automaton. During the execution, the
semantics generates automaton inputs abstracting the events occurring. The au-
tomaton tracks the flows of information between the secret inputs and the current
value of the program’s variables. It also validates the execution of atomic actions
(mainly outputs) to ensure confidentiality of the secret inputs.

Because the monitoring mechanism enforces non-interference, it significantly
differs from standard monitors [14,20]. Usually, monitors are only aware of state-
ments which are really executed. With the mechanism proposed, when exiting
a conditional, the branch which has not been executed is analyzed. This takes
into account implicit indirect flows between the test of a conditional and those
variables whose values would be modified by the execution of the branch which
is not executed. As noticed — but not elaborated on — by Vachharajani et
al. [17, Sect. 4.2.2], this feature is required in order to enforce non-interference.

Section 4 shows that any monitored execution is non-interfering. Thus a user
having access to the low outputs of a monitored execution is unable to deduce
anything about the values of the secret inputs. In addition, the monitoring mech-
anism is proved not to alter executions of a program which is well-typed under
a type system similar to the one of Volpano, Smith and Irvine [11].

Future work, which is under way, addresses the extension of the monitoring
mechanism to a concurrent setting that includes a synchronization command.
The goal is to achieve more precision than a type system equivalent to, e.g., the
concurrent one due to Smith and Volpano [21].

Related work. Reference monitors is a widely studied area [22, 23]. The use of
automata to monitor “good behaviors” led Schneider to formalize reference moni-
tors as truncation automata that enforce safety properties [14]; and develop, with
Erlingsson, a monitoring tool called SASI [24]. Among other works on the sub-
ject, Hamlen et al. worked on an extension to the .NET Common Intermediate
Language called Mobile [25]. Their extension supports a type system that certi-
fies in-lined reference monitors. In a successful attempt to increase the power of

monitors, Ligatti et al. [19] introduced monitors, based on edit automata, able to
modify the sequence of actions executed and to enforce infinite renewal proper-
ties [26]. Such properties include every safety property, some liveness properties
and some properties that are neither. Because such monitors are limited to the
enforcement of trace properties, it is not immediately obvious that they can
handle non-interference (which is not a trace property).

The vast majority of research on non-interference concerns static analyses and
involves type systems [3, 27]. Some “real size” languages together with security
type system have been developed (for example, JFlow/JIF [5] and FlowCaml [6]).

Information flow monitoring is not as popular as static analyses for informa-
tion flow, but there has been interesting research. For example, RIFLE [17] is
a complete runtime information flow security system; which however lacks for-
mal analysis and proofs. The majority of those works, including RIFLE, does
not take into consideration flows created by un-executed commands. It has been
shown [28] that this feature can be used to gain information about secrets in some
cases. The only exception known by the authors – in the domain of information
flow monitoring – is the work by Masri et al. [29] which presents a dynamic in-
formation flow analysis for structured or unstructured languages. However, their
work does not study deeply the dynamic correction of “bad” flows and lacks for-
mal statements and proofs of the correctness of the correction mechanism. The
solution proposed is to stop the execution as soon as a potential flow from a
secret data to a public sink is detected. In some cases, this can create a new
covert channel revealing secret information — see, e.g., [28].

Benefits of monitoring compared to static analyses. Monitoring an execution has
a cost. So, what are the main benefits of non-interference monitoring compared to
static analyses? The first concerns the possibility that a monitoring mechanism
can be used to change the security policy for each execution. In the majority of
cases, running a static analysis before every execution would be more costly than
using a monitor. The second reason is that non-interference is a rather strong
property. Many programs are rejected by static analyses of non-interference. In
such cases it is still possible to use a monitoring mechanism with the possibil-
ity that some executions will be altered by the monitoring mechanism. However
behavior alteration is an intrinsic feature of any monitoring mechanism. Mon-
itoring non-interference ensures confidentiality while still allowing testing with
regard to other specifications using unmonitored executions as perfect oracle —
at least as perfect as the original program.

There are two main reasons why it is interesting to use a non-interference
monitor on a program rejected by a static analysis. The first one lies in the
granularity of the non-interference property. Static analyses have to take into
consideration all possible executions of the program analyzed. This implies that if
a single execution is unsafe then the program (thus all its executions) is rejected.
Whereas, even if some executions of a program are unsafe, a monitor still allows
this program to be used. The unsafe executions, which are not useful, are altered
to respect the desired property while the safe executions are still usable.

The second one is that a monitoring mechanism may be more precise than
static analyses because during execution the monitoring mechanism gets some
accurate information about the “path behavior” of the program. As an example,
let us consider the following program where h is the only secret input and l the
only other input (a public one).

i f (t e s t 1 (l)) then tmp := h e l se skip end;
i f (t e s t 2 (l)) then x := tmp e l se skip end;
output x

Without information on test1 and test2 (and often, even with), a static analysis
would conclude that this program is unsafe because the secret input information
could be carried to x through tmp and then to the output. However, if test1 and
test2 are such that no value of l makes both predicates true, then any execution
of the program is perfectly safe. In that case, the monitoring mechanism would
allow any execution of this program. The reason is that, l being a public input,
only executions following the same path as the current execution are taken care
of by the monitoring mechanism. So, for such configurations where the branching
conditions are not influenced by the secret inputs, a monitoring mechanism is at
least as precise as any static analysis — and often more precise.

Acknowledgments. The authors are grateful to the reviewers for their remarks;
and to Jay Ligatti, David Naumann and Andrei Sabelfeld for insightful and helpful
comments on an earlier version of this paper.

References

1. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: Proc. Symp.
Security and Privacy. (1982) 11–20

2. Cohen, E.S.: Information Transmission in Computational Systems. ACM SIGOPS
Operating Systems Review 11(5) (1977) 133–139

3. Sabelfeld, A., Myers, A.C.: Language-Based Information-Flow Security. IEEE J.
Selected Areas in Communications 21(1) (January 2003) 5–19

4. Banerjee, A., Naumann, D.A.: Stack-based Access Control and Secure Information
Flow. Journal of Functional Programming 15(2) (2005) 131–177

5. Myers, A.C.: JFlow: Practical Mostly-Static Information Flow Control. In: Proc.
ACM Symp. Principles of Programming Languages. (1999) 228–241

6. Pottier, F., Simonet, V.: Information flow inference for ML. ACM Trans. on
Programming Languages and Systems 25(1) (2003) 117–158

7. Abadi, M., Banerjee, A., Heintze, N., Riecke, J.G.: A Core calculus of Dependency.
In: Proc. ACM Symp. Principles of Programming Languages. (1999) 147–160

8. Barthe, G., Serpette, B.: Partial evaluation and non-interference for object calculi.
In: Proc. FLOPS. Volume 1722 of LNCS., Springer-Verlag (November 1999) 53–67

9. Sabelfeld, A., Sands, D.: A Per Model of Secure Information Flow in Sequential
Programs. Higher Order and Symbolic Computation 14(1) (March 2001) 59–91

10. Mizuno, M., Schmidt, D.: A Security Flow Control Algorithm and Its Denotational
Semantics Correctness Proof. J. Formal Aspects of Comp. 4(6A) (1992) 727–754

11. Volpano, D., Smith, G., Irvine, C.: A Sound Type System for Secure Flow Analysis.
J. Computer Security 4(3) (1996) 167–187

12. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforce-
ment mechanisms. ACM Trans. Program. Lang. Syst. 28(1) (2006) 175–205

13. Le Guernic, G., Banerjee, A., Schmidt, D.: Automaton-based Non-interference
Monitoring. Technical Report 2006-1, Kansas State University, Manhattan, KS,
USA (April 2006) http://www.cis.ksu.edu/~schmidt/techreport/2006.list.html.

14. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1)
(2000) 30–50

15. McLean, J.: A General Theory of Composition for Trace Sets Closed Under Selec-
tive Interleaving Functions. In: Proc. Symp. Security and Privacy. (1994) 79–93

16. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, London (1956)
ISBN 0416683002.

17. Vachharajani, N., Bridges, M.J., Chang, J., Rangan, R., Ottoni, G., Blome, J.A.,
Reis, G.A., Vachharajani, M., August, D.I.: RIFLE: An Architectural Framework
for User-Centric Information-Flow Security. In: Proc. Symp. Microarchitecture.
(2004)

18. Kahn, G.: Natural Semantics. In: Proc. Symp. on Theoretical Aspects of Computer
Science. Volume 247 of LNCS., Springer-Verlag (1987) 22–39

19. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Sec 4(1-2) (2005) 2–16

20. Viswanathan, M.: Foundations for the Run-time Analysis of Software Systems.
PhD thesis, University of Pennsylvania (December 2000)

21. Smith, G., Volpano, D.: Secure Information Flow in a Multi-threaded Impera-
tive Language. In: Proc. ACM Symp. on Principles of Programming Languages.
(January 1998) 355–364

22. Schneider, F.B., Morrisett, G., Harper, R.: A Language-Based Approach to Se-
curity. In: Informatics—10 Years Back, 10 Years Ahead. Volume 2000 of Lecture
Notes in Computer Science. Springer-Verlag (2000) 86–101

23. Erlingsson, Ú.: The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Department of Computer Science, Cornell University (2003)

24. Erlingsson, Ú., Schneider, F.B.: SASI Enforcement of Security Policies: A Retro-
spective. In: Proc. New Security Paradigms Workshop, ACM Press (1999) 87–95

25. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Certified In-lined Reference Moni-
toring on .NET. In: ACM Workshop on Programming Languages and Analysis for
Security. (2006)

26. Ligatti, J., Bauer, L., Walker, D.: Enforcing Non-safety Security Policies with
Program Monitors. In: ESORICS. (2005) 355–373

27. Pottier, F., Conchon, S.: Information flow inference for free. In: Proc. ACM
International Conf. on Functional Programming. (2000) 46–57

28. Le Guernic, G., Jensen, T.: Monitoring Information Flow. In Sabelfeld, A., ed.:
Proceedings of the Workshop on Foundations of Computer Security, DePaul Uni-
versity (June 2005) 19–30

29. Masri, W., Podgurski, A., Leon, D.: Detecting and Debugging Insecure Information
Flows. In: Symp. on Software Reliability Engineering. (2004) 198–209

