
The University of Manchester Research

Automata-based Pattern Mining from Imperfect Traces

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Reger, G., Barringer, H., & Rydeheard, D. (2015). Automata-based Pattern Mining from Imperfect Traces. In ACM
SIGSOFT Software Engineering Notes (pp. 1-8). Association for Computing Machinery.

Published in:
ACM SIGSOFT Software Engineering Notes

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:23. Aug. 2022

https://www.research.manchester.ac.uk/portal/en/publications/automatabased-pattern-mining-from-imperfect-traces(89262614-7bfc-4fcb-9e34-ee2484d812b0).html
/portal/giles.reger.html
https://www.research.manchester.ac.uk/portal/en/publications/automatabased-pattern-mining-from-imperfect-traces(89262614-7bfc-4fcb-9e34-ee2484d812b0).html

Automata-based Pattern Mining from Imperfect Traces

Giles Reger
University of Manchester
Oxford Road, M13 9PL

Manchester, UK
regerg@cs.man.ac.uk

Howard Barringer
University of Manchester
Oxford Road, M13 9PL

Manchester, UK
howard@cs.man.ac.uk

David Rydeheard
University of Manchester
Oxford Road, M13 9PL

Manchester, UK
david@cs.man.ac.uk

ABSTRACT
This paper considers automata-based pattern mining techniques for ex-
tracting specifications from runtime traces and suggests a novel extension
that allows these techniques to work with so-called imperfect traces i.e.
traces that do not exactly satisfy the intended specification of the system
that produced them. We show that by taking a so-called edit-distance
between an input trace and the language of a pattern we can extract speci-
fications from imperfect traces and identify the parts of an input trace that
do not satisfy the mined specification, thus aiding the identification and
location of errors in programs.

Keywords
Pattern Mining, Specification Mining

1. INTRODUCTION
Formal program specifications are useful for a number of activities but
they are often missing or incomplete. The field of specification mining
[17] aims to automatically construct formal program specifications from
program artifacts. In this work we consider techniques that operate on
program traces i.e. finite sequences of events that occur whilst a program
is running.

One such approach [19, 5, 6] uses a set of template patterns to detect
predefined behaviours and then combine these together to form a speci-
fication. Thse regular patterns are described via automata, which allows
for efficient checking. For example, consider the following pattern over
the metasymbols a and b - shaded states are accepting states.

1 2

a

b

We can apply this pattern to the following trace by considering six instan-
tiations, with each pair of symbols in the trace instantiating the pattern.

connect.open.close

We detect three patterns (1) [a 7→ connect, b 7→ open], (2) [a 7→
connect, b 7→ close] and (3) [a 7→ open, b 7→ close]. These can
then be “combined” to form a larger specification:

1 2 3
connect open

close

This general approach can be used with different patterns and methods of
pattern combination. However, it has a major drawback - imagine if we
had a trace with the above sequence repeated a thousand times followed
by the two events connect and open i.e. missing the final close. We
would fail to detect the two patterns involving close and therefore not

extract the above specification. The problem is that this approach assumes
perfect traces i.e. that the correct behaviour is contained within the given
traces. This assumption is not very realistic - we would like to be able to
deal with cases where there are small errors in traces. The notion is that
a programming pattern may hold for the majority of a program but the
program may contain one or two bugs.

One approach [5] to dealing with this issue is to reset a pattern being
checked to its initial state when an error occurs - but this technique would
not detect the required patterns in our above example . Instead we want
to be able to measure how closely a trace matches a pattern. This pa-
per presents an approach that extends the automta-based pattern mining
approach to imperfect traces by considering so-called edit distances be-
tween a trace and a pattern’s language.

Structure. Section 2 formally introduces the concept of pattern check-
ing and composition. Section. 3 discusses methods for dealing with the
imperfect traces problem and Sections 4, 5 and 6 present our proposed
solutions. Section. 7 presents two experiments and Section. 8 discusses
related work. Finally, we conclude in Section. 9.

2. PATTERN CHECKING
In this section, we introduce a pattern checking framework by first de-
scribing how patterns are extracted from traces, then considering how
this can be done efficiently and finally discussing how extracted patterns
are combined.

2.1 Checking patterns
In this account, a pattern is a regular language over symbols i.e. a set of
traces (finite sequences) of symbols. We consider patterns as automata:

DEFINITION 1 (PATTERN). A pattern p = 〈Q,Σ, δ, q0, F 〉 is an
automaton where Q is a finite set of states, Σ is a finite alphabet of sym-
bols, δ ∈ Q× Σ→ Q is a transition function, q0 ∈ Q is an initial state
and F ⊆ Q is a set of accepting states. The language of a pattern, L(p)

is the set of traces it accepts i.e. τ ∈ L(p) iff there exists a path q0
τ−→ q

and q ∈ F where→ is δ lifted to traces.

The process of checking a pattern against a trace considers all possible
combinations of symbols in the trace as replacements for the pattern’s
current symbols. To replace a pattern’s symbols we instantiate it.

DEFINITION 2 (INSTANTIATION). Given a pattern p and a map ϕ
from p.Σ to Σ′, the instantiated pattern ϕ(p) has alphabet Σ′ and is the
result of applying ϕ to every symbol in p.

The checking process then checks if each particular instantiation of the
pattern holds on the trace. We say an instantiated pattern holds on a trace

if the trace appears in the instantiated pattern’s language after we remove
irrelevant symbols. To remove irrelevant symbols we project the trace.

DEFINITION 3 (PROJECTION). The projection πΣ(τ) of trace τ over
alphabet Σ is defined as τ with all elements not in Σ removed.

Therefore, the detected instantiated patterns are given as follows.

DEFINITION 4 (EXTRACTED PATTERNS). Given a pattern p and trace
τ the extracted patterns detect(p, τ) are

{ϕ(p) | dom(ϕ) = p.Σ∧∀(a 7→ s) ∈ ϕ : s ∈ τ∧πϕ(p).Σ(τ) ∈ L(ϕ(p))}

2.2 Checking patterns efficiently
We discuss two approaches that allow us to check patterns efficiently.

2.2.1 Checking many instantiations
For each pattern we need to check all possible instantiations. Typically
we restrict this technique to patterns over 2 or 3 symbols. We can then
compute the extracted instantiated patterns for a pattern using a 2 or 3
dimensional grid of reached states - this approach was first used in [19].
For the introductory example the following matrix would represent the
states reached in the pattern after checking the trace.

a
connect open close

b
connect 2 - -
open 1 2 -
close 1 1 2

The restriction of patterns to 2 or 3 symbols is for efficiency reasons as
this approach is O(nm) given an alphabet of size n and pattern with m
symbols. A more efficient symbolic approach using binary discussion
diagrams is explored in [6].

2.2.2 Checking many patterns
If we want to check multiple patterns we would currently need to repeat
the above process multiple times i.e. for each pattern. However, given a
set of patterns with the same set of symbols we can construct a pattern
checker that checks all these patterns simultaneously by taking the union
of the patterns and labeling states with the patterns that are accepting at
that state. This approach was previously presented in [16].

DEFINITION 5 (PATTERN CHECKER). Given an alphabet of sym-
bols Σ and a set of patterns p1, . . . , pn over Σ let the pattern checker
for these patterns be C(p1, . . . , pn) = 〈Q,Σ,⇒,Γ〉 where

Q = p1.Q× . . .× pn.Q
⇒ (a, (q1, . . . , qn)) = (p1.δ(a, q1), . . . , pn.δ(a, qn))
Γ((q1, . . . , qn)) = {pi | qi ∈ pi.F}

The patterns detected by pattern checker C in trace τ are therefore

C(τ) = {p | q0
τ⇒ q ∧ p ∈ Γ(q)}

We can extend the notion of instantiation to pattern checkers and define
extracted patterns for a pattern checker as follows.

DEFINITION 6 (PATTERN CHECKER EXTRACTED PATTERNS). Given
a pattern checker C and trace τ the extracted patterns detect(C, τ) are

{p | ∃ϕ : dom(ϕ) = p.Σ∧∀(a 7→ s) ∈ ϕ : s ∈ τ∧p ∈ ϕ(C)(πϕ(p).Σ(τ))}

For example, if we call the pattern in the introductory example p1 and
call the following pattern p2

1 2

a

b

a

then the pattern checker for p1 and p2 would be

{p1, p2} {} {p2} {}
a

b
a

a
b

a

where states are labeled using the output function Γ.

2.3 Combining patterns.
The following is based on the technique introduced by Gabel and Su in
[5]. Once we have extracted a set of patterns we can combine them to-
gether using standard automata intersection. However, this operation is
only defined when two automata have the same alphabet. To give two
automata the same alphabet we can expand them by placing self-looping
transitions on each state for the missing symbols. For example, the three
detected patterns from the introductory example become:

1 2
connect

open

close close

1 2
connect

close

open open

1 2

open

close

connect connect

The intersection of these three patterns is the specification given in the
introduction. Formally, combination is defined as follows.

DEFINITION 7 (COMBINATION). Given a set of instantiated patterns
p1, . . . , pn with combined alphabet Σ, define their combination as

combine(p1, . . . , pn) = expandΣ\p1.Σ(p1) ∩ . . . ∩ expandΣ\pn.Σ(pn)

where ∩ is automata intersection and expandΣ′
is a function that adds

self-looping transitions to a pattern for symbols in Σ′.

We can either apply this combination operator or directly or use it to
define specific combination rules. To use combination directly we can
saturate the set by repeated application or extract a specification for each
alphabet of events in the trace by combining together patterns with the
same alphabet.However, this might be costly and not all extracted pat-
terns necessarily contain useful information. Therefore, an alternative
approach (which we do not consider further here) is to develop specific
combination rules for given patterns, as is done in [5]. For example, they
introduce a sequencing rule for the pattern in our introductory example,
which we will represent by the regular expression (ab)∗.

(aL1b) ∗ (bL2c) ∗ (ac)∗

(aL1bL2c)∗

We applied this by takingL1 = L2 = ∅. The use ofL1 andL2 allows for
repeated application of the rule. The closure of the set of extracted pat-
terns with respect to the set of combination rules can then be computed.

3. DEALING WITH IMPERFECT TRACES
The previous framework will only detect a pattern if it matches exactly
with an input trace. In this section we consider how it can be extended so
that patterns are extracted if they match almost all of the input trace.

3.1 What are imperfect traces?
To say that a trace is ‘imperfect’ we assume that there is an implicit speci-
fication that the program that produced the trace follows and there is some
bug in the program that deviates from this specification. The process of
specification mining is therefore to extract this implicit specification. Al-
ternatively, the program might be correct but the trace recording process
may be faulty - either way, identifying a specification and the trace im-
perfections can aid debugging efforts.

We could view these imperfections as uniform noise, however, in the case
of programming bugs, it is likely that these imperfections are introduced
by common mistakes such as forgetting to close a resource or check a
condition, or accidentally calling the wrong method. We can therefore
think of imperfections as small edits that involve the removal, addition or
substitution of events from a ‘perfect’ trace.

3.2 The restart approach
Previous approaches deal with imperfect traces by ‘restarting’ the pattern
and counting the number of such restarts. With small patterns such as
the simple alternation pattern this can be effective. Let us consider the
following common 3-symbol resource usage pattern.

1 2
a

c
b

Consider checking the following (imperfect) trace for the instantiation
[a 7→ open, b 7→ use, c 7→ close]. The checking would fail after
the fifth event as an open event is omitted. If we restart here then we
immediately fail again.

open.use.use.close.use.close.open.use.close

Instead, we would like to detect that the open event is missing and flag
this as a potential bug.

3.3 Edit distance
As an alternative to the restart approach we consider replacing our previ-
ous condition that a trace must exactly match a pattern with the require-
ment that the edit-distance between the trace and any trace in the language
of the pattern must be below some limit.

The edit-distance we consider uses the following “edit” operations: in-
serting a new symbol; deleting an existing symbol; substituting an exist-
ing symbol for a new symbol. The edit-distance between two traces is
then given by the (minimum) number of edits that transform one trace
into the other. This is sometimes called the Levenshtein distance [10].
Formally, this distance is given as follows.

DEFINITION 8 (LEVENSHTEIN DISTANCE). The Levenshtein distance
between traces τ1 and τ2 is distance(τ1, τ2), defined as

distance(τ1, ε) = |τ1|
distance(ε, τ2) = |τ2|

distance(aτ1, bτ2) = min

distance(τ1, bτ2) + 1
distance(aτ1, τ2) + 1
distance(τ1, τ2) + 1 if a 6= b
distance(τ1, τ2) if a = b

We define an updated notion of extracted patterns using this metric.

DEFINITION 9 (IMPERFECT EXTRACTED PATTERNS). Given a pat-
tern p, trace τ and integer γ > 0, which we call the tolerance, the imper-
fect extracted patterns imperfect_detect(p, τ, γ) are{

ϕ(p) | dom(ϕ) = p.Σ ∧ ∀(a 7→ s) ∈ ϕ : s ∈ τ∧
∃τ ′ ∈ L(ϕ(p)) : distance(τ ′, πϕ(p).Σ(τ)) < γ

}

We extend this definition for pattern checkers as we did before (Sec. 2.2.2).

3.4 Detecting bugs
So far our approach has been abstract, considering traces of symbols gen-
erated by a program. But our motivation has been to extract specifications
that allow us to detect potential bugs. To do so we need to be able to ac-
cess information about the part of a program that generates a trace - we
assume this is contained in a so-called program trace.

DEFINITION 10 (PROGRAM TRACE). A program trace is a finite
sequence of pairs of the form (code_point, event) where code_point
identifies the point in the program that generates the event.

It is easy to extend our previous constructions to work on these program
traces by ignoring the code point information. Our goal is to identify
points in the program trace that should be ‘edited’ for a mined specifi-
cation to hold. These edits will follow those described above i.e. the
removal of an event, addition of an event between two existing events or
replacement of one event with another. The solutions we describe in the
following two sections will produce so-called rewrites.

DEFINITION 11 (REWRITE). A rewrite ρ is a finite sequence of in-
dexes and rewrite operations that can be applied to a program trace to
produce an ‘edited’ version.

A rewrite can then be used to identify the code points that may contain
bugs, and suggest potential solutions i.e. edits.

4. EDITING ON FAILURE
We first consider an approach that does not use the true edit-distance, but
introduces a new ‘restart’ operation inspired by the metric. The idea is to
introduce edit operations only when a trace fails to match a pattern.

4.1 Failing edit-distance
We introduce an alternative formulation of the edit-distance that only ap-
plies edits when a trace ‘fails’. We say a pattern fails for a trace if no
extensions of the trace can satisfy the pattern. We define this metric as
follows.

For pattern p and trace τ let τ = good(τ).a.rest(τ) where good(τ) is
longest prefix of τ such that there exists a trace τ ′ such that good(τ).τ ′ ∈
L(p) but for all traces τ ′ we have good(τ).a.τ ′ /∈ L(p).

Let edit be a function on symbols that non-deterministically replaces the
symbol by the empty trace, a trace consisting of another symbol from the
trace followed by the original symbol or another symbol in the trace i.e.
it can pick one of the three edit operations discussed above.

An edited trace is defined recursively as

edited(τ) =
edited(good(τ).edit(a).rest(τ)) if τ /∈ L(τ)
τ otherwise

i.e. the repeated application of the edit function to the event causing
failure. As edit is non-deterministic the failing edit-distance is given as
the minimum number of times the edited function must be applied to a
trace. The failing-edit-distance is still an edit-distance, but not necessarily
minimal.

4.2 Computing the failing edit-distance
To compute the failing edit-distance we explore the non-deterministic
edit operations by maintaining a number of possible configurations of

Algorithm 1 Computing the failing edit-distance with tolerance γ for
pattern p = 〈Q,Σ, δ, q0, F 〉 and trace τ .
C ← {〈[], q0〉}
for i in 1 to |τ | do

a← τ(i)
C′← {}
for 〈ρ, q〉 in C do

q′← δ(q, a)
if failing(q′) then

if |ρ| < γ then
C′← C′ ∪ {〈(i,−).ρ, q〉}
C′← C′ ∪ {〈(i,+b).ρ, δ(a, δ(b, q))〉 | b ∈ Σ}
C′← C′ ∪ {〈(i,%b).ρ, δ(b, q)〉 | b ∈ Σ}

else
C′← C′ ∪ {〈ρ, q′〉}

C ← {〈ρ, q〉 ∈ C′ | ¬failing(q)}
return min({|ρ| | 〈ρ, q〉 ∈ C ∧ q ∈ F})

the instantiated pattern. A configuration is a pair consisting of a rewrite
(Def. 11) and state. We say that a trace reaches a configuration 〈ρ, q〉 for

pattern p iff q0
ρ(τ)−−−→ q where q0 and→ are the initial state and transition

relation of p.

Algorithm 1 gives an algorithm for computing the failing edit-distance
by computing the set of configurations reached by a trace. The algorithm
uses a tolerance γ to restrict the size of rewrites and therefore the algo-
rithm will only find the edit-distance if it is below this tolerance. The
algorithm uses a function failing that returns true if a final state is not
reachable from the given state.

The use of γ helps restrict the exponential blowup introduced by the non-
determinism of edit functions. Other optimisations that can reduce this
blowup include restricting the number of edits allowed in a row and com-
bining similar rewrites together.

4.3 Example of computing failing edit-distance
Let us take the resource usage pattern introduced in Sec. 3.2 and consider
the trace

open.open.use.close.use

for the instantiation [a 7→ open, b 7→ use, c 7→ close]. Checking this
pattern will fail on the second event as there is no a transition from the
second state. Two edit operations can be applied here - removal of the
second event or addition of a close event immediately before the second
open - this leads to two alternative configurations:

{〈[(1,−)], 2〉, 〈[(1,+close)], 2〉}

We continue checking and fail again on the fifth event, the final use. Here
there are also three edit operations that can be applied - removal of the
event, addition of a open event or substitution of the use event with an
open event. This leaves us with six final configurations: 〈[(1,−), (5,−)], 1〉, 〈[(1,−), (5,+open)], 2〉,

〈[(1,−), (5,%open)], 2〉, 〈[(1,+close), (5,−)], 1〉,
〈[(1,+close), (5,+open)], 2〉, 〈[(1,+close), (5,%open)], 2〉

Therefore, the instantiated pattern matches with failing edit-distance 2.

5. USING THE TRUE EDIT DISTANCE
We now consider an approach that uses the true edit distance between the
trace and language. We consider a technique that uses weighted transduc-
ers to compute the edit-distance between a trace and a finite automaton

[2]. The general idea is that we model the trace and pattern as weighted
transducers T and P and model the edit operations as a transducer X .
The composition T ◦X ◦ P will capture the different ways that the trace
can be rewritten to match the pattern and the minimal edit-distance is the
shortest path to an accepting state.

5.1 Weighted transducers
A weighted transducer has transitions labeled with an input symbol, out-
put symbol and weight - for this application we take weights as being 0
or 1. We allow ε input and output transitions that can be taken without
consuming or producing a symbol.

DEFINITION 12 (WEIGHTED TRANSDUCER). A weighted transducer
is a 5-tuple T = 〈Q,Σ,∆, δ, F 〉 where Q is a finite set of states, Σ is a
finite input alphabet of symbols, ∆ is a finite output alphabet of symbols,
δ ⊂ Q× (Σ∪{ε})× (∆∪{ε})×{0, 1}×Q is a finite set of transitions
and F ⊆ Q is a set of final states.

We translate traces into weighted transducers by creating a transition to
a new state per event, adding self-looping ε transitions and only making
the last state final. For example, the trace a.a.b.c.bwould become the fol-
lowing weighted transducer where transitions are written input/output :
weight . Note that we use a weight of 0 as there is no cost associated with
following the trace.

1 2 3 4 5 6
a/a : 0 a/a : 0 b/b : 0 c/c : 0 b/b : 0

ε/ε : 0 ε/ε : 0 ε/ε : 0 ε/ε : 0 ε/ε : 0 ε/ε : 0

Patterns are translated by keeping the structure and labeling transitions
with the same input and output symbols using a weight of 0, and adding
self-looping ε transitions

The edit transducer consists of a single state and looping transitions for
each of the edit operations it can perform - for an alphabet of {a, b, c} this
would be as follows. Note how ε is used to model deletions and additions
and all edit operations have a weight of 1.

1
a/a : 0, b/b : 0, c/c : 0,
a/ε : 1, b/ε : 1, c/ε : 1, ε/a : 1, ε/b : 1, ε/c : 1
a/b : 1, a/c : 1, b/a : 1, b/c : 1, c/a : 1, c/b : 1

5.2 Composition
The composition T ◦X of two transducers T andX considers all possible
sequencing between strings of T and strings X i.e. if a/b.a/c is a string
of T and b/d.c/a is a string ofX then a/d.a/a is a string of T ◦X . Here
we consider a three-way composition i.e. T ◦ X ◦ P . We compute as a
single operation for efficiency reasons - if we computed T ◦X and then
(T ◦X)◦P it is likely that (T ◦X) would contain many superfluous tran-
sitions. An approach for doing this is presented in [1] and Algorithm. 2
gives an algorithm for three-way composition.

5.3 An example of computing edit-distance
Let us take the same example we used for the failing edit-distance i.e. the
trace

open.open.use.close.use

and the resource usage pattern introduced in Sec. 3.2. For ease of presen-
tation we translate the trace using a for open, b for use and c for close.
This gives us the trace used as an example in Sec. 5.1 above. We therefore
already have our weighted transducer T . We then compute the weighted
transducer P for the resource usage pattern as follows.

Algorithm 2 Computing the three-way composition of transducers T , X
and P with the same input and output alphabets Σ and ∆.

Enqueue(S, (T.q0, X.q0, P.q0))
Q← {(T.q0, X.q0, P.q0)}
δ, F ← ∅
while ¬isEmpty(S) do

(q1, q2, q3)← Dequeue(S)
if (q1, q2, q3) ∈ T.F ×X.F × P.F then

F ← F ∪ {(q1, q2, q3)}
for (q1, i1, o1, w1, q

′
1) ∈ T.δ and (q3, i3, o3, w3, q

′
3) ∈ P.δ do

for (q2, i2, o2, w2, q
′
2) ∈ X.δ where i2 = o1 ∧ o2 = i3 do

if (q1, q2, q3) /∈ Q then
Q← Q ∪ {(q1, q2, q3)}
Enqueue(S, (q1, q2, q3))

δ← δ ∪ ((q1, q2, q3), i1, o3, w1 + w2 + w3, (q
′
1, q
′
2, q
′
3))

return 〈Q,Σ,∆, δ, F 〉

1 2

a/a : 0

c/c : 0

b/b : 0

ε/ε : 0 ε/ε : 0

We now compute T ◦ X ◦ P , using the edit transducer X presented in
Sec. 5.1 above. This gives us the weighted transducer in Figure 1. We
then use Djkistra’s shortest path algorithm to find a shortest path between
the initial state and an accepting trace. We indicate one such shortest path
with a dashed line, this corresponds to the string a/a.a/b.b/b.c/c.b/a
with a weight of 2. This gives two edits to our string - replacing the
second open event with a use event and the last use event with an open

event. Note that there are multiple paths with a weight of 2 here, and
therefore multiple ways we can rewrite our trace.

A shortest path through the composition will always be at least as long as
the trace and will give a rewrite by relating the projected trace back to the
original trace. If a pattern checker is used then, instead of computing the
shortest distance to an accepting state, for each pattern we compute the
shortest distance to an accepting state labeled with that pattern.

6. COMBINING IMPERFECT PATTERNS
The previous two sections presented two different techniques for extract-
ing ‘imperfect’ patterns from imperfect traces. Each pattern is given a
set of rewrites that tell us how to edit the input trace to make it match
the pattern. When combining patterns we now need to consider these
rewrites. In this section we present an approach for combining a set of
imperfect patterns that are compatible i.e. have a set of rewrites that do
not clash. We then discuss a saturation approach to producing a set of
pattern combinations.

6.1 The approach
We first define what we mean by imperfect pattern. If we took an im-
perfect pattern as a pair of a pattern and its shortest rewrite then when
combining two patterns we might find that these shortest rewrites are in-
compatible, but that if we had chosen, say, the second shortest rewrite we
would be able to combine the two patterns. Therefore, we consider all
rewrites up to a certain size for a pattern.

An imperfect pattern is a pair 〈p,R〉 where p is a pattern and R is a set of
rewrites. In the case of the failing edit-distance approach R is given by
the reached configurations. In the case of true edit-distance approachR is

1 4

23

56

78

910

1112

a/a : 0a/ε : 1

ε/a : 1

a/c
: 1

ε/c : 1

a/b : 1, a/ε : 1

ε/b : 1

a/a : 0a/ε : 1

ε/a : 1

a/c
: 1

ε/c : 1

a/b : 1, a/ε : 1

ε/b : 1

b/b : 0, b/ε : 1

ε/c : 1

ε/b : 1

b/c
: 1b/a : 1b/ε : 1

ε/a : 1

c/ε : 1, c/b : 1c/c
: 0

ε/c : 1
ε/b : 1

c/a : 1c/ε : 1

ε/a : 1

b/b : 0, b/ε : 1

ε/c : 1
ε/b : 1

b/c
: 1b/a : 1b/ε : 1

ε/a : 1

ε/b : 1
ε/c : 1

ε/a : 1

Figure 1: An example of the composition T ◦X ◦ P

given by the language of the composition - therefore it is in theory infinite,
but in practice we use a breadth-first search to select the k-shortest paths.

A set of imperfect patterns {. . . 〈pi, Ri〉 . . .} is compatible if there exists
a set of rewrites {. . . ρi . . . | ρi ∈ Ri} such that every pair of rewrites
is compatible. Two rewrites are compatible if they do not attempt to
make different rewrites at the same point in a trace. The edit-distance
of 〈pn, Rn〉 ∩ . . . ∩ 〈pn, Rn〉 is |ρ1 ∪ . . . ∪ ρn| i.e. the number of ed-
its when all rewrites are combined. Therefore, given a set of compatible
patterns we want to find the set of rewrites that minimizes this distance.

However, rewrites only contain information about the parts of the trace
they update. If one rewrite updates an element in the trace and the other
rewrite does not then this should also appear as an incompatibility. We
therefore incorporate this information when computing compatibility.

6.2 Computing compatibility
We compute the compatibility between two sets of rewrites R1 and R2

by taking the the setR1∪R2 and repeatedly splitting it based on conflicts
between rewrites and then checking that there is a set of rewrites with a
rewrite in R1 and R2. An algorithm for computing compatibility is given
in Algorithm 3. This can be extended to a set of sets of rewrites.

The algorithm will return "incompatible" if the two sets of rewrites are
incompatible and the smallest number of edits that makes them compati-
ble otherwise. Let min be the function that returns this minimum distance
and is undefined otherwise.

6.3 Saturating the set of patterns
Given a set of imperfect patterns P0 extracted from a trace we compute
the i-the saturation of P0 as follows, recalling that min(R1, R2) is only
defined if R1 and R2 are compatible.

Pi+1 = {〈p1 ∩ p2,min(R1, R2)〉 | 〈p1, R1〉〈p2, R2〉 ∈ Pi}

In general, |Pi| = 1
2
|Pi−1|(|Pi−1| − 1). However, it is highly likely that

many combinations in Pi1 are empty (i.e. accept no traces) and therefore

Algorithm 3 Computing the minimum compatibility between sets of
rewritesR1 andR2 from imperfect patterns extracted from trace τ where
Ri is related to a pattern with alphabet Σi.
G← {R1 ∪R2}
for i from 1 to |τ | do

G′← ∅
for g ∈ G do

D← {ρ | ρ(i) is defined }
M ← [e 7→ {ρ ∈ D | ρ(i) = e}]
M ←M ∪ [τ(i) 7→ {ρ ∈ g\D | τ(i) ∈ Σi ∧ ρ ∈ Ri]
if D = ∅ then G′ ← G′ ∪ g
else G′ ← G′ ∪ {(g\D) ∪ d | (e 7→ d) ∈M}

G← G′

Gokay ← {g ∈ G | ∃ρ1 ∈ R1, ρ2 ∈ R2 : ρ1, ρ2 ∈ g}
if Gokay = ∅ then return "incompatible"
else return min({|

⋃
g| | g ∈ Gokay})

send (" s e r v e r A " , new S t r i n g [] { " s t a r t " , " 45 " }) ;
send (" s e r v e r B " , n u l l) ;
send (" s e r v e r C " , new S t r i n g [] { " end " , " 23 " }) ;

void send (S t r i n g a d d r e s s , S t r i n g [] l i n e s) {
C o n n e c t i o n C = c o n n e c t (a d d r e s s) ;
S t ream S = C . open () ;
t r y {

f o r (S t r i n g l i n e : l i n e s) S . send (l i n e) ;
}
catch (N u l l P o i n t e r E x c e p t i o n e) {

send (" empty ") ;
C . c l o s e () ;

}
C . c l o s e () ;

}

Figure 2: A hypothetical piece of Java code.

can be removed. Even though many patterns can be removed, the satura-
tion can grow exponentially. Let P∞ be the fixed-point of Pi i.e. the set
Pi such that Pi+1 = Pi. We can either compute P∞ or place an upper
bound on the number of saturations we want to perform.

Once we have generated a set of patterns we can rank them by two prop-
erties - firstly, the size of alphabet, and secondly the edit-distance. We are
interested in patterns with large alphabets and small edit-distance.

7. EXPERIMENTS
In this section we explore our new technique by first applying it to a hy-
pothetical code snippet and then carrying out an experiment to evaluate
accuracy where we attempt to recreate a known specification from imper-
fect traces.

7.1 Application to example code
Consider the Java code in Figure 2. This gives a hypothetical method for
sending an array of lines to an address by first connecting to that address,
opening a stream, sending the lines and then closing the stream. This
example contains a bug - in the case where a null array of lines is given
the connection is closed twice.

Let us assume we execute the above code, which calls the method three

times with different inputs, recording the occurrences of the connect,
open, send and close events. The resulting trace would be as follows.

connect.open.send.send.close.connect.open.send.close.close.
connect.open.send.send.close.

We now consider mining this trace with two patterns - the alternating
pattern given in the introduction and the resource usage pattern given in
Section 3.2. We take the alternating pattern first.

The following table gives the failing and true edit-distances (failing/true)
for the above trace and the different instantiations of the alternating pat-
tern - a ‘-’ represents that no distance should be given (we do not consider
the case where a = b) and an ‘x’ represents that no distance is returned.
The instantiation [a 7→ open, b 7→ connect] does not have a failing
edit-distance as it finishes in a non-final state that can be extended to a
final state - this is one drawback of the failing edit-distance approach.
For [a 7→ close, b 7→ connect] and [a 7→ close, b 7→ open] there
is a shorter true edit-distance as this approach is allowed to make edits
without failure - here this involves removing the last event to bring the
pattern into an accepting state. Note that all other distances are the same,
this shows that in failing edit-distance can be a good approximation of
true edit-distance.

a
connect open send close

b

connect - x/2 3/3 4/3
open 0/0 - 3 4/3
send 2/2 2/2 - 4/3
close 1/1 1/1 3/3 -

For one case, [a 7→ connect, b 7→ open] there is a distance of 0 - this is
because this instantiated pattern matches the trace exactly. If we consider
the two cases where there is an edit-distance of 1 and look at the rewrite
generated we see that all of these produce the same rewrite - the removal
of the ninth event (the second close).

Combining the three instantiated patterns with an edit distance of 0 or 1
we get the following pattern.

1 2 3
connect open

close

Now let us consider the resource usage pattern. The following table gives
the failing and true edit distances as before - with each entry in the ta-
ble representing the c dimension using a 4-tuple. Here, again, computed
distances are the same but the true edit-distance approach generates some
distances where the failing edit-distance approach does not.

a
connect open send close

b

connect (-,-,-,-) (-,-,5/5,4/4) (-,3/3,-,5/5) (-,2/2,4/4,-)
open (-,-,2/2,1/1) (-,-,-,-) (5,-,-,5) (5/5,-,4/4,-)
send (-,4/4,-,1/1) (1/1,-,-,1/1) (-,-,-,-) (x/6,x/6,-,-)
close (-,4/4,5/5,-) (1/1,-,5/5,-) (3/3,3/3,-,-) (-,-,-,-)

There are five instantiations with an edit-distance of 1, but they represent
different rewritings of the trace. One set removes only the ninth event (as
before) and one set removes the only first connect event, therefore they
are incompatible. When combined these give the two following patterns
respectively.

1 2 3
connect open

send

close

1 2
open

send,close

connect

The rewrite for first pattern is compatible with the rewrite for pattern
extracted using the alternation pattern and we can combine these patterns
to form a final specification, which is the same as the one on the left
above, but with only the initial state accepting.

7.2 An accuracy experiment
In the following we attempt to evaluate the accuracy of our approach
by generating traces from the following specification for the Lucene tool
described in [5].

1 2

34

document.Document. < init >
document.Field < init >
(String, String, Store, Index)

document.Field < int >
(String, Reader)

index.IndexWriter.addDocument(Document)

We generate imperfect traces by first generating perfect traces and then
randomly editing events according to some noise level (probability). We
then pass these traces to our techniques and test the resulting patterns for
accuracy using a set of perfect traces generated from the specification.

Table 1 gives the results - for each approach it reports the average ac-
curacy of all produced patterns, the minimum edit required to produce
a pattern with maximum accuracy, the time (in milliseconds) taken for
checking and then saturation, the extracted patterns and the size of the 3-
saturated set. Experiments were carried out with a range of trace lengths
and noise levels and we record the min, mean and max edits made at each
noise level.

Every experiment produces at least one pattern with perfect accuracy. Al-
though the average accuracy is low, this is over a very large saturated set,
containing many (over 50%) patterns with zero accuracy. As expected,
with zero noise we detect a pattern with total accuracy that requires no
edits. As expected, as the level of noise (and therefore level of errors)
increases accuracy decreases.

Interestingly, for trace length of 100 and noise level of 0.05, giving an
average of 6 errors, we achieve 0.57% average accuracy. This is due to a
small saturated set being produced. Methods for pruning this set should
be explored.

We can see that the saturated sets are very large and the majority of time
is spent computing this set. Future work should look at methods for re-
ducing this by using a more guided approach.

8. RELATED WORK
We consider alternative techniques that mine specifications from runtime
traces. A recent survey paper [17] gives a good overview of the field.
Here we focus on how techniques deal with imperfect traces, in particular
we are interested in automata-based pattern mining approaches.

Ammons et al. [3] developed an early approach that used a probabilistic
finite automata learner from the field of grammar inference. This tech-
niques requires us to know the alphabet of the inferred specification be-
forehand. Imperfect traces require human experts to check violations of
the inferred specification in a coring phase. Lo et al. [13] extend this
approach - one extension that is relevant to mining with imperfect traces
is the introduction of a stage that attempts to filter out erroneous traces
before learning. In contrast we attempt to use this information to extract
a specification and identify the error.

Techniques that use frequent-itemset mining (i.e. [12, 18]) and closed
frequent sequential pattern mining (i.e. [14]) rely on computing support
and confidence values where support reflects the level of imperfection.
Mined specifications can then be checked against the original program to
detect bugs.

The automata-based pattern-mining technique was first used by Engler et
al. [4]. They focus on the alternating pattern (ab)∗ and to deal with im-
perfect traces they count the number of times that a and b appear together
in order and the number of times a appears without b and compute the
likelihood that a and b form a specification. Goues and Weimer [8] ex-
tend this approach by considering techniques for pruning false positives
by examining the source code.

Yang et al. [19] introduced a template-based technique focusing on ex-
tracting specifications from imperfect traces. They use the alternating pat-
tern and deal with imperfect traces by partitioning a trace into sequences
of one event followed by another, i.e. a+b+, performing mining on each
subtrace and then counting the number of subtraces the pattern holds for.
This is similar to restarting the pattern on failure but allows for a larger
range of failures. They also introduce a chaining heuristic for combining
their alternating patterns.

Gabel and Su. [6, 5] extend this approach by introducing a symbolic
method for specification mining using binary decision diagrams (BDDs)
and the Javert tool that uses two patterns (ab)∗ and (ab∗)∗ and compo-
sition rules based on the notion of automata combination to extract large
patterns. They deal with imperfect traces by restarting a pattern at the
initial state on failure. In [7] they extend this approach to infer and en-
force temporal properties at runtime over a finite window, thus detecting
potential bugs at runtime.

Li et al. [11] extend this approach to mine specifications with timing
bounds and more complex pattern composition rules, but cannot handle
imperfect traces. Instead their focus is on mining specifications from
perfect traces and using these to detect bugs in imperfect ones.

Finally, recent techniques [16, 9, 15] have considered so-called paramet-
ric where traces contain data i.e. open(123).open(456).close(123).
close(456). Whilst some approaches use ad-hoc approaches to deal
with context, these approaches focus on slicing the trace based on this
data and extracting traces from the resulting data-free traces. The work
in [9] extends the approach taken by [3] and therefore use the same cor-
ing technique to deal with imperfect traces and [15] uses the notions of
support and confidence from data mining.

9. CONCLUSION
In this paper we have introduced a new approach for mining specifica-
tions from imperfect traces. Two techniques are introduced that use the
notion of edit-distance to compute the number of changes that would have
to be made to a trace for a pattern to hold. We then formalise when it is
safe to combine two imperfect patterns and the process is explored by first
applying it to a small code snippet to demonstrate how it works and then
attempting to measure the accuracy of the approach using traces gener-
ated from a known specification.

Trace Noise (min,mean,max) Failing Perfect
length level edits Accuracy Edit Time Extracted P3 Accuracy Edits Time Extracted P3

10 0.0 (0,0,0) 0.10 0 (318,9181) 36 2779 0.14 0 (171,364) 36 706
10 0.01 (1,1,2) 0.18 1 (94,21908) 34 2349 0.16 3 (69,29) 36 22
10 0.05 (1,1,1) 0.13 2 (77,20113) 36 2890 0.00 1 (55,18) 36 12
10 0.1 (1,2,4) 0.24 3 (78,30180) 36 2673 0.00 1 (53,24) 36 16

100 0.0 (0,0,0) 0.05 0 (138,4606) 18 333 0.07 0 (491,549) 36 705
100 0.01 (1,1,2) 0.25 0 (130,26967) 18 333 0.20 0 (419,339) 36 116
100 0.05 (4,6,8) 0.57 6 (273,31782) 14 53 0.0 - (428,132) 36 0
100 0.1 (6,10,16) 0.0 - (325,1584) 11 0 0.0 51 (427,75) 36 2

Table 1: Results from accuracy experiment

This technique not only produces specifications, but also a description of
how a program should be updated to make the specification hold. This
would be useful in bug detection and location but a case study is required
to establish applicability.

Further work is required to improve the efficiency and applicability of
the approach. This should involve the combination of this approach with
an existing technique, for example the symbolic mining technique of [6],
and the composition rules of [5] and [11]. We also plan on combining this
approach with the author’s pattern-mining approach taken in [16], which
targets a specific alphabet of events to extract a parametric specification.
This approach uses so-called open automata that means that all extracted
patterns can be sound combined to form a specification. Therefore, we
would be able to use pattern combination directly, rather than introducing
pattern composition rules.

10. REFERENCES
[1] C. Allauzen and M. Mohri. 3-way composition of weighted

finite-state transducers. In Proceedings of the 13th international
conference on Implementation and Applications of Automata,
CIAA ’08, pages 262–273, Berlin, Heidelberg, 2008.
Springer-Verlag.

[2] C. Allauzen and M. Mohri. Linear-space computation of the
edit-distance between a string and a finite automaton. CoRR,
abs/0904.4686, 2009.

[3] G. Ammons, R. Bodík, and J. R. Larus. Mining specifications.
SIGPLAN Not., 37(1):4–16, Jan. 2002.

[4] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: a general approach to inferring errors in systems
code. SIGOPS Oper. Syst. Rev., 35(5):57–72, Oct. 2001.

[5] M. Gabel and Z. Su. Javert: fully automatic mining of general
temporal properties from dynamic traces. In Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of
software engineering, SIGSOFT ’08/FSE-16, pages 339–349, New
York, NY, USA, 2008. ACM.

[6] M. Gabel and Z. Su. Symbolic mining of temporal specifications.
In ICSE ’08: Proceedings of the 30th international conference on
Software engineering, pages 51–60, New York, NY, USA, 2008.
ACM.

[7] M. Gabel and Z. Su. Online inference and enforcement of temporal
properties. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, pages
15–24, New York, NY, USA, 2010. ACM.

[8] C. Goues and W. Weimer. Specification mining with few false
positives. In Proceedings of the 15th International Conference on
Tools and Algorithms for the Construction and Analysis of
Systems: Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2009,, TACAS ’09, pages
292–306, Berlin, Heidelberg, 2009. Springer-Verlag.

[9] C. Lee, F. Chen, and G. Roşu. Mining parametric specifications. In
Proceeding of the 33rd International Conference on Software

Engineering (ICSE’11), pages 591–600. ACM, 2011.
[10] V. Levenshtein. Binary Codes Capable of Correcting Deletions,

Insertions and Reversals. Soviet Physics Doklady, 10:707, 1966.
[11] W. Li, A. Forin, and S. A. Seshia. Scalable specification mining for

verification and diagnosis. In DAC ’10: Proceedings of the 47th
Design Automation Conference, pages 755–760, New York, NY,
USA, 2010. ACM.

[12] Z. Li and Y. Zhou. Pr-miner: automatically extracting implicit
programming rules and detecting violations in large software code.
SIGSOFT Softw. Eng. Notes, 30(5):306–315, Sept. 2005.

[13] D. Lo and S.-C. Khoo. Smartic: towards building an accurate,
robust and scalable specification miner. In Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of
software engineering, SIGSOFT ’06/FSE-14, pages 265–275, New
York, NY, USA, 2006. ACM.

[14] D. Lo, S.-C. Khoo, and C. Liu. Mining temporal rules for software
maintenance. J. Softw. Maint. Evol., 20(4):227–247, July 2008.

[15] D. Lo, G. Ramalingam, V. P. Ranganath, and K. Vaswani. Mining
quantified temporal rules: Formalism, algorithms, and evaluation.
Sci. Comput. Program., 77(6):743–759, 2012.

[16] G. Reger, H. Barringer, and D. Rydeheard. A pattern-based
approach to parametric specification mining. In Proceedings of the
28th IEEE/ACM International Conference on Automated Software
Engineering, November 2013. To appear.

[17] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and
T. Ratchford. Automated api property inference techniques. IEEE
Transactions on Software Engineering, 39(5):613–637, 2013.

[18] A. Wasylkowski and A. Zeller. Mining temporal specifications
from object usage. Automated Software Engg., 18(3-4):263–292,
Dec. 2011.

[19] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta:
mining temporal api rules from imperfect traces. In ICSE ’06:
Proceedings of the 28th international conference on Software
engineering, pages 282–291, New York, NY, USA, 2006. ACM.

