
Automata-based presentations of infinite

structures

Vince Bárány1and Erich Grädel2and Sasha Rubin3

1 Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
vbarany@logic.rwth-aachen.de

2 Mathematical Foundations of Computer Science
RWTH Aachen, D-52056 Aachen, Germany
graedel@logic.rwth-aachen.de

3 Department of Mathematics and Applied Mathematics
University of Cape Town, Private Bag, Rondebosch 7701, South Africa
srubin@math.cornell.edu

1

Automata-based presentations of infinite
structures

Vince Bárány
1
and Erich Grädel

2
and Sasha Rubin

3

1.1 Finite presentations of infinite structures

The model theory of finite structures is intimately connected to various

fields in computer science, including complexity theory, databases, and

verification. In particular, there is a close relationship between complex-

ity classes and the expressive power of logical languages, as witnessed

by the fundamental theorems of descriptive complexity theory, such as

Fagin’s Theorem and the Immerman-Vardi Theorem (see [78, Chapter

3] for a survey).

However, for many applications, the strict limitation to finite struc-

tures has turned out to be too restrictive, and there have been consider-

able efforts to extend the relevant logical and algorithmic methodologies

from finite structures to suitable classes of infinite ones. In particular

this is the case for databases and verification where infinite structures

are of crucial importance [130]. Algorithmic model theory aims to extend

in a systematic fashion the approach and methods of finite model the-

ory, and its interactions with computer science, from finite structures to

finitely-presentable infinite ones.

There are many possibilities to present infinite structures in a finite

manner. A classical approach in model theory concerns the class of com-

putable structures ; these are countable structures, on the domain of nat-

1 Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom
vbarany@logic.rwth-aachen.de

2 Mathematical Foundations of Computer Science
RWTH Aachen, D-52056 Aachen, Germany
graedel@logic.rwth-aachen.de

3 Department of Mathematics and Applied Mathematics
University of Cape Town, Private Bag, Rondebosch 7701, South Africa
srubin@math.cornell.edu

4 Automata-based presentations of infinite structures

ural numbers, say, with a finite collection of computable functions and

relations. Such structures can be finitely presented by a collection of algo-

rithms, and they have been intensively studied in model theory since the

1960s. However, from the point of view of algorithmic model theory the

class of computable structures is problematic. Indeed, one of the central

issues in algorithmic model theory is the effective evaluation of logical

formulae, from a suitable logic such as first-order logic (FO), monadic

second-order logic (MSO), or a fixed point logic like LFP or the modal

µ-calculus. But on computable structures, only the quantifier-free for-

mulae generally admit effective evaluation, and already the existential

fragment of first-order logic is undecidable, for instance on the com-

putable structure (N,+, ·).

This leads us to the central requirement that for a suitable logic L

(depending on the intended application) the model-checking problem

for the class C of finitely presented structures should be algorithmically

solvable. At the very least, this means that the L-theory of individual

structures in C should be decidable. But for most applications somewhat

more is required:

Effective semantics: There should be an algorithm that, given a finite

presentation of a structure A ∈ C and a formula ψ(x̄) ∈ L, ex-

pands the given presentation to include the relation ψA defined

by ψ on A.

This also implies that the class C should be closed under some basic

operations (such as logical interpretations). Thus we should be careful

to restrict the model of computation. Typically, this means using some

model of finite automata or a very restricted form of rewriting.

In general, the finite means for presenting infinite structures may in-

volve different approaches: logical interpretations; finite axiomatisations;

rewriting of terms, trees, or graphs; equational specifications; the use of

synchronous or asynchronous automata, etc. The various possibilities

can be classified along the following lines:

Internal: a set of finite or infinite words or trees/terms is used to repre-

sent the domain of (an isomorphic copy of) the structure. Finite

automata/rewriting-rules compute the domain and atomic rela-

tions (eg. prefix-recognisable graphs, automatic structures).

Algebraic: a structure is represented as the least solution of a finite

set of recursive equations in an appropriately chosen algebra of

finite and countable structures (eg. VR-equational structures).

1.1 Finite presentations of infinite structures 5

Logical: structures are described by interpreting them, using a finite

collection of formulae, in a fixed structure (eg. tree-interpretable

structures). A different approach consists in (recursively) ax-

iomatising the isomorphism class of the structure to be repre-

sented.

Transformational: structures are defined by sequences of prescribed

transformations, such as graph-unraveling, or Muchnik’s itera-

tions, applied to certain fixed initial structures (which are al-

ready known to have a decidable theory). Transformations can

also be transductions, logical interpretations, etc. [23]

The last two approaches overlap somewhat. Also, the algebraic approach

can be viewed generatively : convert the equational system into an ap-

propriate deterministic grammar generating the solution of the original

equations [44]. The grammar is thus the finite presentation of the graph.

One may also say that internal presentations and generating grammars

provide descriptions of the local structure from which the whole arises, as

opposed to descriptions based on global symmetries typical of algebraic

specifications.

Prerequisites and notation

We assume rudimentary knowledge of finite automata on finite and

infinite words and trees, their languages and their correspondence to

monadic second-order logic (MSO) [133, 79]. Undefined notions from

logic and algebra (congruence on structures, definability, isomorphism)

can be found in any standard textbook. We mainly consider the follow-

ing logics L: first-order (FO), monadic second order (MSO), and weak

monadic second-order (wMSO) which has the same syntax as MSO, but

the intended interpretation of the set variables is that they range over

finite subsets of the domain of the structure under consideration.

We mention the following to fix notation: infinite words are called

ω-words and infinite trees are called ω-trees (to distinguish them from

finite ones); relations computable by automata will be called regular;

the domain of a structure B is usually written B and its relations are

written RB. An MSO-formula φ(X1, · · · , Xj , x1, · · · , xk) interpreted in

B defines the set φB := {(B1, · · · , Bj , b1, · · · , bk) | Bi ⊂ B, bi ∈ B,B |=

φ(B1, · · · , Bj , b1, · · · , bk)}. A wMSO-formula is similar except that the

Bi range over finite subsets of B. The full binary tree T2 is defined as

the structure

({0, 1}∗, suc0, suc1)

6 Automata-based presentations of infinite structures

where the successor relation suci consists of all pairs (x, xi). Tree au-

tomata operate on Σ-labelled trees T : {0, 1}∗ → Σ. Such a tree is iden-

tified with the structure
(

{0, 1}∗, suc0, suc1, {T
−1(σ)}σ∈Σ

)

.

Rabin proved the decidability of the MSO-theory of T2 and the following

fundamental correspondence between MSO and tree automata (see [132]

for an overview):

For every monadic second-order formula ϕ(X) in the signature of T2 there is
a tree automaton A (and vice versa) such that

L(A) = {TX | T2 |= ϕ(X)} (1.1)

where TX denotes the tree with labels for each Xi.

Similar definitions and results hold for r-ary trees, in which case the

domain is [r]∗ where [r] := {0, · · · , r − 1}, and finite trees.

In section 1.2.2 and elsewhere we do not distinguish between a term

and its natural representation as a tree. Thus we may speak of infinite

terms. We consider countable, vertex- and edge-labelled graphs possibly

having distinguished vertices (called sources), and no parallel edges of

the same label. A graph is deterministic if each of its vertices is the

source of at most one edge of each edge label.

Interpretations

Interpretations allow one to define an isomorphic copy of one structure

in another. Fix a logic L. A d-dimensional L-interpretation I of struc-

ture B = (B; (RB
i)i) in structure A, denoted B ≤I

L A, consists of the

following L-formulas in the signature of A,

- a domain formula ∆(x),

- a relation formula ΦRi
(x1, · · · , xri) for each relation symbol Ri, and

- an equality formula ǫ(x1, x2),

where each ΦA

Ri
is a relation on ∆A, each of the tuples xi, x contain the

same number of variables, d, and ǫA is a congruence on the structure

(∆A, (ΦA

Ri
)i), so that B is isomorphic to

(∆A, (ΦA

Ri
)i) / ǫ

A .

If L is FO then the free x are FO and we speak of a FO interpretation.

If L is MSO (wMSO) but the free variables are FO, then we speak of a

(weak) monadic second-order interpretation.

1.1 Finite presentations of infinite structures 7

We associate with I a transformation of formulas ψ 7→ ψI . For illus-

tration we define it in the first-order case: the variable xi is replaced

by the d-tuple yi, (ψ ∨ φ)
I by ψI ∨ φI , (¬ψ)I by ¬ψI , (∃xiψ)

I by

∃yi∆(yi) ∧ ψ
I , and (xi = xj)

I is replaced by ǫ(yi, yj). Thus one can

translate L formulas from the signature of B into the signature of A.

Proposition 1.1.1 If B ≤I
L A, say the isomorphism is f , then for

every formula ψ(x1, · · · , xk) in the signature of B and all k-tuples b of

elements of B it holds that

B |= ψ(b1, · · · , bk) ⇐⇒ A |= ψI(f(b1), · · · , f(bk))

In particular, if A has decidable L-theory, then so does B.

Set interpretations

When L is MSO (wMSO) and the free variables are MSO (wMSO) the

interpretation is called a (finite) set interpretation. In this last case, we

use the notation B ≤I
set A or B ≤I

fset A. We will only consider (finite)

set interpretations of dimension 1.

If finiteness of sets is MSO-definable in some structure A (as for linear

orders or for finitely branching trees) then every structure B having a

finite-set interpretation in A can also be set interpreted in A.

Example 1.1.2 An interpretation (N,+) ≤I
fset (N, 0, suc) based on

the binary representation is given by I = (ϕ(X), ϕ+(X,Y, Z), ϕ=(X,Y))

with ϕ(X) always true, ϕ= the identity, and ϕ+(X,Y, Z) is

∃C ∀n [(Zn↔ Xn⊕ Y n⊕ Cn) ∧ (C(sucn)↔ µ(Xn, Y n,Cn)) ∧ ¬C0]

where C stands for carry, ⊕ is exclusive or, and µ(x0, x1, x2) is the

majority function, in this case definable as
∨

i 6=j xi ∧ xj .

To every (finite) subset interpretation I we associate, as usual, a trans-

formation of formulas ψ 7→ ψI , in this case mapping first-order formulas

to (weak) monadic second-order formulas.

Proposition 1.1.3 Let B ≤I
(f)set A be a (finite) subset interpretation

with isomorphism f . Then to every first-order formula ψ(x1, · · · , xk)

in the signature of B one can effectively associate a (weak) monadic

second-order formula ψI(X1, · · · , Xk) in the signature of A such that

for all k-tuples b of elements of B it holds that

B |= ψ(b1, · · · , bk) ⇐⇒ A |= ψI(f(b1), · · · , f(bk)) .

8 Automata-based presentations of infinite structures

Consequently, if the (weak) monadic-second order theory of A is decid-

able then so is the first-order theory of B.

For more on subset interpretations we refer to [23].

1.2 A hierarchy of finitely presentable structures

This section provides an overview of some of the prominent classes of

graphs and their various finite presentations.

These developments are the product of over two decades of research in

diverse fields. We begin our exposition with the seminal work of Muller

and Schupp on context-free graphs, we mention prefix-recognisable struc-

tures, survey hyperedge-replacement and vertex-replacement grammars

and their corresponding algebraic frameworks leading up to equational

graphs in algebras with asynchronous or synchronous product operation.

These latter structures are better known in the literature by their auto-

matic presentations, and constitute the topic of the rest of this survey.

As a unifying approach we discuss how graphs belonging to individual

classes can be characterised as least fixed-point solutions of finite sys-

tems of equations in a corresponding algebra of graphs. We illustrate on

examples how to go from graph grammars through equational presenta-

tions and interpretations to internal presentations and vice versa.

We briefly summarise key results on Caucal’s pushdown hierarchy

and more recent developments on simply-typed recursion schemes and

collapsible pushdown automata.

Figure 1.1 provides a summary of some of the graph classes discussed

in this section together with the boundaries of decidability for relevant

logics. Rational graphs and automatic graphs featured on this diagram

are described in detail in Section 1.3.

1.2.1 From context-free graphs to prefix-recognisable

structures

Context-free graphs were introduced in the seminal papers [110, 111, 112]

of Muller and Schupp. There are several equivalent definitions. The ob-

jects of study are countable directed edge-labelled, finitely branching

graphs. An end is a maximal connected4 component of the induced sub-

graph obtained by removing, for some n, the n-neighbourhood of a fixed

4 connectedness is taken with respect to the underlying undirected graph.

1.2 A hierarchy of finitely presentable structures 9

R

PDS

HR

PR = VR

= T−AutStrVRS

S−AutStr

GSO
FO[]MSO

GTRS

RGTRS = VRA
Rational

FO ML

Figure 1.1 Relationship of graph classes and logical decidability
boundaries.

vertex v0. A vertex of an end is on the boundary if it is connected to a

vertex in the removed neighbourhood. Two ends are end-isomorphic if

there is a graph isomorphism (preserving labels as well) between them

that is also a bijection of their boundaries. A graph is context-free if it is

connected and has only finitely many ends up to end-isomorphism. This

notion is independent of the v0 chosen.

A graph is context-free if and only if it is isomorphic to the connected

component of the configuration graph of a pushdown automaton (with-

out ǫ-transitions) induced by the set of configurations that are reachable

from the initial configuration [112].

A context-free group is a finitely generated group G such that, for

some set S of semigroup generators of G, the set of words w ∈ S∗

representing the identity element of G forms a context-free language.

This is independent of the choice of S. Moreover, a group is context-

free if and only if its Cayley graph for some (and hence all) sets S of

semigroup generators is a context-free graph. Finally, a finitely generated

group is context-free if and only if it is virtually free, that is, if it has a

free subgroup of finite index [111].5

5 Originally [111] proved this under the assumption of accessibility, a notion
related to group decompositions introduced by Wall who conjectured that all

10 Automata-based presentations of infinite structures

Muller and Schupp have further shown that context-free graphs have

a decidable MSO-theory. Indeed, every context-free graph can be MSO-

interpreted in the full binary tree.

Example 1.2.1 Consider the group G given by the finite presentation

〈 a, b, c | ab, cc, acac, bcbc 〉. The Cayley graph Γ(G,S) ofG with respect

to the set of semigroup generators S = {a, b, c} is depicted below.

a
''
•

b

gg

c

��

a
((
•

b

hh

c

��

a
((
1

b

hh

c

��

a
((
•

b

hh

c

��

a
((
•

b

hh

c

��

a
''

...
b

gg

...

b
''
•

b
((

OO

a

gg •
b

((

OO

a

hh •
b

((

OO

a

hh •
b

((

OO

a

hh •
b

''

OO

a

hh
a

gg

Notice that Γ(G,S) has two ends, for any n-neighbourhood of the

identity with n > 1. These are

a
''
•

b

gg

c

��

a
((
•

b

hh

c

��

and •

c

��

a
((
•

b

hh

c

��

a
''

...
b

gg

...

b
''
•

b
((

OO

a

gg •
b

((

OO

a

hh •
a

hh •
b

((
•

OO

b
((

a

hh •

OO

b
''

a

hh
a

gg

A word w ∈ {a, b, c}∗ represents the identity of G if, and only if, w

has an even number of c’s and the number of a’s equals the number of

b’s. We present a pushdown automaton A which recognises this set of

words and, moreover, has a configuration graph that is isomorphic to

Γ(G,S). The states of A are Q = {1, c} with q0 = 1 as the initial state,

the stack alphabet is Γ = {a, b}, the input alphabet is {a, b, c} and A

has the following transitions:

internal: 1 θ
c
→ c θ

internal: c θ
c
→ 1 θ

push: q σθ
σ
→ q σσθ for q = 1, c and σ = a, b

push: q⊥
σ
→ q σ⊥ for q = 1, c and σ = a, b

pop: q σθ
σ
→ q θ for q = 1, c and {σ, σ̄} = {a, b}

finitely generated groups would have this property. Muller and Schupp
conjectured every context-free group to be accessible, but it was not until
Dunwoody [64] proved that all finitely presentable groups are accessible that this
auxiliary condition could be dropped from the characterisation of [111].
Unfortunately, many sources forget to note this fact. Later Dunwoody also gave
a counterexample refuting Wall’s conjecture.

1.2 A hierarchy of finitely presentable structures 11

Here θ is the stack content written with its top element on the left and

always ending in the special symbol ⊥ marking the bottom of the stack.

In every deterministic edge-labelled connected graph and for any or-

dering of the edge labels one obtains a spanning tree by taking the

shortest path with the lexicographically least labeling leading to each

node from a fixed source. Take such a spanning tree T for the exam-

ple graph Γ(G,S) with root 1G. Observe that T is regular, having only

finitely many subtrees (ends) up to isomorphism. The ordering a < b < c

induces the spanning tree depicted below. The Cayley graph Γ(G,S) is

MSO-interpretable in this regular spanning tree by defining the missing

edges using the relators from the presentation of the group.

•
b

gg

c

��

•
b

hh

c

��

1
b

hh

c

��

a
((
•

c

��

a
((
•

c

��

a
''

......

• • • • •

In particular Γ(G,S) is MSO-interpretable in the full binary tree, and

hence has decidable MSO.

A mild generalisation of pushdown transitions, prefix-rewriting rules,

take the form uz 7→ vz where u and v are fixed words and z is a vari-

able ranging over words. As in the previous example, pushdown transi-

tions are naturally perceived as prefix-rewriting rules affecting the state

and the top stack symbols. Conversely, Caucal [40] has shown that con-

nected components of configuration graphs of prefix-rewriting systems

given by finitely many prefix-rewriting rules are effectively isomorphic

to connected components of pushdown graphs. Later, Caucal introduced

prefix-recognisable graphs as a generalisation of context-free graphs and

showed that these are MSO-interpretable in the full binary tree and

hence have a decidable MSO-theory [42].

Definition 1.2.2 (Prefix-recognisable relations) Let Σ be a finite al-

phabet. The set PR(Σ) of prefix-recognisable relations over Σ∗ is the

smallest set of relations such that

- every regular language L ⊆ Σ∗ is a prefix-recognisable unary relation;

- if R,S ∈ PR (arities r and s) and L is regular then L · (R × S) =

{(uv1, . . . , uvr, uw1, . . . , uws) | u ∈ L, v ∈ R,w ∈ S} ∈ PR;

- if R ∈ PR of arity m > 1 and {i1, . . . , im} = {1, . . . ,m},

then R(i) = {(ui1 , . . . , uim) | (u1, . . . , um) ∈ R} ∈ PR;

- if R,S ∈ PR are of the same arity, then R ∪ S ∈ PR.

12 Automata-based presentations of infinite structures

Example 1.2.3 Consider the lexicographic ordering <lex on an or-

dered alphabet Σ. It is prefix-recognisable being the union of

Σ∗ · ({ε} × Σ+) and Σ∗ · (aΣ∗ × bΣ∗) for all a < b ∈ Σ .

Following [22] we say that a structure A = (A, {Ri}i) is prefix-recogniz-

able if A is a regular set of words over some finite alphabet Σ and each of

the relations Ri is in PR(Σ). Prefix-recognisable structures can be char-

acterized in terms of interpretations. On the basis of tree automata, it is

relatively straightforward to show that the prefix-recognisable structures

coincide with the structures that are MSO-interpretable in the binary

tree T2 [97, 42, 22]. This result has been strengthened by Colcombet [51]

to first-order interpretability in the expanded structure (T2,≺) (note

that the prefix relation ≺ is MSO-definable but not FO definable in T2).

Colcombet proved that MSO-interpretations and FO-interpretations in

(T2,≺) have the same power, which gives a new characterisation of

prefix-recognisable structures. We summarize these results as follows.

Theorem 1.2.4 For every structure A, the following are equivalent.

(1) A is isomorphic to a prefix-recognisable structure;

(2) A is MSO-interpretable in the full binary tree T2;

(3) A is FO-interpretable in (T2,≺).

In particular, every prefix-recognisable structure has a decidable MSO-

theory.

Below we discuss further characterisations of prefix-recognisable struc-

tures in terms of vertex-replacement grammars, or as least solutions of

VR-equational systems.

1.2.2 Graph grammars and graph algebras

In this section we consider vertex- and edge-labelled graphs. In for-

mal language theory grammars generate sets of finite words. Similarly,

context-free graph grammars produce sets of finite graphs - start from an

initial nonterminal and rewrite nonterminal vertices and edges according

to the derivation rules. Just as for languages, the set of valid derivation

trees, or parse trees, forms a regular set of trees labelled by derivation

rules of the graph grammar. Conversely, consider a collection Θ of graph

operations — such as disjoint union, recolourings, etc. — as primitives.

Every closed Θ-term t evaluates to a finite graph [[t]], and similarly every

1.2 A hierarchy of finitely presentable structures 13

Θ-term t(x) evaluates to a finite graph [[t(x)]] with non-terminal (hyper)-

edges and/or vertices. Formally, evaluation is the unique homomorphism

from the initial algebra of Θ-terms to the Θ-algebra of finite graphs with

non-terminals. Each regular tree language L of closed terms thus repre-

sents a family of finite graphs {[[t]] | t ∈ L}. For a concise treatment of

graph grammars and finite graphs we refer to the surveys [69, 59] and

the book [53].

Our focus here is on individual countable graphs generated by deter-

ministic grammars via ‘complete rewriting’. A suitable framework for

formalising complete rewriting, in the context of term rewriting, is con-

vergence in complete partial orders (cpo’s). Since no classical order- or

metric-theoretic notion of limit seems to exist for graphs, we use the

more general categorical notion of colimit [11]. We outline this frame-

work in which an infinite term (over the graph operations Θ) yields a

countable graph; details may be found in [55, 11, 53].

In the category G of graphs and their homomorphisms every diagram

of the form

G0
f0
−→ G1

f1
−→ G2

f2
−→ · · ·

fn−1
−→ Gn

fn
−→ Gn+1

fn+1
−→ · · ·

has a colimit G, i.e. a kind of least common extension G of the Gns

with homomorphisms gn : Gn → G such that gn = gn+1fn for all n.6

We assume that the graph operations in Θ determine endofunctors of G

that are cocontinuous i.e. colimit preserving.

On the other side, take the cpo of finite and infinite terms over the

signature Θ ∪ {⊥}, with the empty term ⊥ and the extension ordering

s ⊑ t. We may turn it into a category TΘ with each relation s ⊑ t

inducing a unique arrow s → t. Moreover, in this category, colimits

(of diagrams as above) exist and an infinite term t is the colimit of

approximations t0 → t1 → · · · (think that ti is the restriction of t to

the first i levels). The evaluation mapping [[·]] has a unique cocontinuous

extension, also denoted [[·]], mapping infinite terms to colimits of graphs.

This completes the basic description. Now consider a grammar G

whose derivation rules 〈Xi 7→ ti(X)〉 can be expressed by Θ-terms. These

terms determine cocontinuous endofunctors in the category of terms TΘ.

By the Knaster-Tarski theorem the functors have a least fixed-point

G, which by Kleene’s Theorem is attained as the colimit of the chain

6 There are examples of ascending chains G0

f0
→G1

f1
→· · · and G0

g0
→G1

g1
→· · · with

identical graphs but different embeddings yielding different colimits, whence
there is no apparent canonical way of defining a limit knowing only that each Gn

is embeddable into Gn+1.

14 Automata-based presentations of infinite structures

〈γn(∅)〉n with the natural homomorphisms. The graph generated by the

grammar from the corresponding non-terminal Xi is defined to be the

component Gi of the colimit G.

Equivalently, given the system of equations EG = 〈Xi = ti(X)〉 one

can construct a syntactic (uninterpreted) solution of EG by ‘unraveling’

these equations from the initial non-terminal X0 of the grammar. This

results in a possibly infinite regular term tG , which is precisely the least

fixed-point solution for X0 in TΘ. By cocontinuity of the evaluation

mapping [[tG]] is isomorphic to the least fixed-point solution of EG in G,

that is to the graph generated by G.

In what follows we focus on different sets of graph operations Θ

(namely, HR, VR and some extensions). It has been observed that for

suitable choices of operations, most notably avoiding products, the eval-

uation mapping can be realised as a monadic second-order interpretation

or transduction [11, 60]. Consequently every interpretation [[t]] ≤I
MSO t

naturally translates to an internal presentation of [[t]] using tree au-

tomata. Moreover, for a regular term t the MSO-theory of [[t]] is decidable

by Rabin’s Theorem.

Finally we mention that all this smoothly extends to solutions of in-

finite sets of equations [33]. Although unraveling might not result in a

regular solution term, as long as it has a decidable MSO-theory so does

the solution graph.

Equational graphs and hyperedge-replacement grammars

Hyperedge-replacement (HR) grammars are a very natural generalisa-

tion of context-free grammars from formal language theory. Every HR-

grammar defines a ‘language’ of finite graphs just as context-free gram-

mars define languages of finite words. The class of graph languages

defined by HR-grammars possesses many structural properties akin to

those well-known for context-free languages. The interested reader is

referred to the monograph [80].

An HR-grammar is given as a finite collection of rules that allow the

replacement of any hyperedge of a hypergraph bearing a non-terminal

label by the right hand side of a matching rule, which is a given finite

hypergraph with a number of distinguished vertices equal to the arity

of the hyperedge to be replaced. A copy of the right-hand side of a

matching rule is then glued to the original hypergraph precisely at these

distinguished vertices and corresponding end vertices of the hyperedge

being replaced. Derivation begins with a distinguished non-terminal.

As outlined at the start of section 1.2.2, each deterministic HR-grammar

1.2 A hierarchy of finitely presentable structures 15

determines a unique countable graph constructed from the initial graph

by complete rewriting in the course of which every non-terminal hyper-

edge is eventually replaced by the right-hand side of the unique matching

rule. A countable graph is HR-equational, or simply equational, if it is

generated by a deterministic HR grammar [55]. The class of equational

graphs will be denoted by HR. Equational graphs constitute a proper

extension of the class of context-free graphs [41].

Proposition 1.2.5 A connected graph is context-free if, and only if,

it is equational and of finite degree.

Example 1.2.6 To generate the context-free graph of Example 1.2.1

with a deterministic HR grammar we take as our initial graph the 1-

neighbourhood of the root node (labelled with 1 above) and attach to

it non-terminal hyperedges labelled with X and with Y , respectively,

whose vertices enumerate the boundaries of either ends. Similarly, the

1-neighbourhood of the boundary of each end, that is the vertices of the

corresponding non-terminal hyperedge, constitutes the right-hand side of

the matching rule. Again, non-terminal hyperedges are attached to mark

the new boundary. The initial graph and the rule for the non-terminal

X obtained this way are pictured below.

•
a

((

Y ((

2
?

K

1
b

hh

c

��

a
((
•

b

hh

Xvv

�
�

s
•

OO
1•

X =⇒

ww

	
}

r
2•

1•

c

��

a
((
•

b

ii

X

vv

�
�

s
2•

b
((•

OO

a

ii

Notice how the linearity of the generated graph is reflected in the

linearity of the replacement rules each having only a single non-terminal

hyperedge on the right. In the next example a non-linear rule is used to

generate a tree, which is not context-free.

Example 1.2.7 The complete bipartite graph K1,ω and the full ω-

branching tree Tω (in the signature of graphs) are not context-free, but

can be generated by the following rules from the initial graph •
X
99K•.

•1

K1,ω
=⇒

•1 •

•0

X

II

)
� �

•0
X

GG

s
�

�
•1

Tω=⇒

•1 X 66U _ i •

•0

X

II

)
� �

•0

OO

X 66U _ i •

The HR-algebra of finite and countable graphs corresponding to hyper-

edge-replacement grammars is a many-sorted algebra defined as follows.

16 Automata-based presentations of infinite structures

For each n there is a separate sort Gn of graphs with n sources. These are

distinguished vertices, though not necessarily distinct, named v1, . . . , vn.

There are constants of each sort Gn: these are hypergraphs having at

most one hyperedge, exactly n vertices, each vertex a distinct source.

The HR-algebra is built on the following operations: disjoint union ⊕,

renaming of sources renamec 7→c′ , and fusion of sources fuse≈ according

to an equivalence ≈ on source names. By convention ⊕ is understood

to automatically shift the source names of its second argument by the

maximum of the source names used in the first to avoid naming conflict.

Also fuse assigns the least source name of a class to each fused node

while dropping the others.

It is intuitively clear how a hyperedge-replacement step can be ex-

pressed using disjoint union with the right-hand side of the rule followed

by a fusion and renaming of sources. Formally, one transforms an HR-

grammar G into a system of finitely many equations Xi = ti(X) where

variables play the role of non-terminals of the grammar and the terms ti
are chosen such that, when variables are interpreted as individual hyper-

edges, [[ti(X)]] is the right hand side of the matching rule for a hyperedge

labelled Xi.

Example 1.2.8 The equation corresponding to the single rule of the

HR grammar of Example 1.2.7 generating Tω is

X = rename0 7→0,1 7→1(fuse{0,2},{1,4}(
0
• →

1
• ⊕X ⊕X)) .

Note that the source names of the first and second occurrences of X are

shifted by 2 and by 4, respectively, while forming their disjoint union.

Thus, after fusion we obtain precisely the right hand side of the HR-rule

generating Tω, however, with additional source names. The renaming

operation in this term has the effect of forgetting the source names 2

and above. So the least solution of this equation is indeed Tω with its

root labelled 0 and one of its children with 1.

The generating power of HR-grammars is limited by the fact that

edges can only be ‘created’ via fusion of sources (after having taken the

disjoint union of two graphs). Because there are only a fixed number of

source names available in a finite HR-equational system there is a bound

on the size of complete bipartite subgraphs Kn,n that can be created

[12], cf. Theorem 1.2.12. The infinite bipartite graph Kω,ω is thus an

example of a prefix-recognisable graph which is not HR-equational.

It is a key observation that in case of HR-terms the evaluation mapping

1.2 A hierarchy of finitely presentable structures 17

t 7→ [[t]] is expressible as an MSO-interpretation. In fact, since edges can-

not be created by any of the HR operations, the vertex-edge-adjacency

graph of [[t]] is MSO-interpretable in the tree representation of t, whether

t is finite or infinite.

Theorem 1.2.9 For a countable graph G the following are equivalent.

(1) G is generated by a deterministic HR grammar;

(2) G is HR-equational, i.e. the evaluation of a regular HR-term, i.e. the

least solution of a finite system of HR-equations;

(3) The two-sorted incidence graph Ĝ of G is monadic second-order

interpretable in the full binary tree, i.e. Ĝ ≤MSO T2.

For a detailed presentation of these and other algebraic frameworks

and their connections to the generative approach based on graph gram-

mars we advise consulting [55, 12, 21]. In [54] Courcelle considered an

extension of monadic second-order logic, denoted CMSO2, in which one

can quantify over sets of edges as well as over sets of vertices and, addi-

tionally, make use of modulo counting quantifiers. Notice that the last

item of the previous theorem implies that the CMSO2-theory of equa-

tional graphs is interpretable in S2S and is thus decidable. Further, Cour-

celle proved that CMSO2 is able to axiomatise each and every equational

graph up to isomorphism.

Theorem 1.2.10 Each HR-equational graph is axiomatisable in CMSO2.

Consequently the isomorphism problem of equational graphs is decidable.

Sénizergues considered HR-equational graphs of finite out-degree and

proved that they are, up to isomorphism, identical with the ε-closures

of configuration graphs of normalised7 pushdown automata restricted

to the set of reachable configurations. Further, he proved that bisimula-

tion equivalence of HR-equational graphs of finite out-degree is decidable

[128]. This last result is an improvement on the decidability of bisim-

ulation equivalence for deterministic context-free processes, which is a

consequence of the celebrated result of Sénizergues establishing decid-

ability of the DPDA language equivalence problem.

7 Here a PDA is said to be normalised, if in addition to being in a familiar
normal-form its ε-transitions may not push anything on the stack. Hence the
finiteness bound on the out-degree of configurations. For precise definitions see
[128].

18 Automata-based presentations of infinite structures

Vertex-replacement grammars

Vertex replacement systems are a finite collection of graph rewriting

rules that allow one to substitute given finite graphs in place of single

vertices while keeping all the connections. This form of graph rewrit-

ing emerged as the most robust and manageable from among a host

of different notions within a very general framework [55, 69, 59, 58].

The corresponding VR-algebra of graphs is built on the following opera-

tions: constant graphs of a single c-coloured vertex
a
•, disjoint union ⊕,

recolouring of vertices recolc 7→c′ and introduction of a-coloured edges

edge
c

a
→d

from every c-coloured vertex to every d-coloured vertex.

The evaluation of VR-terms, whether finite or infinite, is realisable as

a monadic second-order interpretation. More precisely, as VR-equational

graphs are interpretations of regular terms obtained by unfolding a finite

system of VR equations, they can be MSO-interpreted in a regular tree,

hence also in the full binary tree T2, and thus are prefix-recognisable.

These and other characterisations, together with our previous discussion

of prefix-recognisable structures are summarised in the next theorem.

Theorem 1.2.11 For a countable graph G the following are equivalent.

(1) G is isomorphic to a prefix-recognisable structure;

(2) G is generated by a deterministic VR grammar;

(3) G is VR-equational, i.e. the evaluation of a regular VR-term, i.e. the

least solution of a finite system of equations of the form Xi = ti(X)

with finite VR-terms ti(X);

(4) G ≤MSO T2;

(5) G = h−1(T2)|C , i.e. the vertices of G are obtained by restricting the

nodes of T2 to a regular set C, and its edges are obtained by taking

the inverse of a rational substitution h to T2;

(6) G is isomorphic to the ǫ-closure of the configuration graph of a push-

down automaton.

Further, the HR-equational graphs can be characterised as the class

of VR-equational graphs of finite tree width [11].

Theorem 1.2.12 VR-equational graphs of finite tree width are HR-

equational.

Example 1.2.13 The complete bipartite graph Kω,ω is a prominent

example of a VR-equational graph that is not HR-equational. A VR gram-

mar and the corresponding system of VR equations generating Kω,ω are

1.2 A hierarchy of finitely presentable structures 19

given below.

X
• ⇒

A
•←→

A
•

A
• ⇒ •

A
•

X = edgea↔b(A ⊕ recola 7→b(A))

A =
a
• ⊕A

The expressive power of this formalism (for describing families of finite

graphs) is not increased by extending the VR operations by graph trans-

formations that are definable using quantifier-free formulas (of which

recolc 7→c′ and edge
c

a
→d

are particular examples), nor by the fusion op-

erations fusec identifying all nodes bearing a certain colour c [60]. Care

has to be taken when defining countable graphs as evaluations of infi-

nite terms, for it is unclear how to deal with infinite terms built with

non-monotonic operations. Nonetheless, infinite terms built with oper-

ations definable by positive quantifier-free formulas can be evaluated

unambiguously [11].

In this setting Theorem 1.2.11 can be generalised to infinite systems

of equations (whose unfoldings are typically non-regular terms) using

infinite deterministic automata [33], leading us to the following families

of transition graphs.

1.2.3 Higher-order data structures

Tree-constructible graphs and Caucal’s pushdown hierarchy

Courcelle introduced MSO-compatible transductions in the investigation

of structures with decidable monadic theories. Let C and C′ be classes

of structures on signatures σ and σ′, respectively. Following [57] we say

that a functional transduction T : C → C′ is MSO-compatible if there

is an algorithm mapping each monadic formula ϕ of signature σ′ to a

monadic formula ϕT in the signature σ such that

A |= ϕT ⇐⇒ T (A) |= ϕ .

MSO-interpretations are the most natural examples of MSO-compatible

transductions. Slightly more generally, the MSO-definable transductions

of Courcelle are MSO-compatible. Recall that these are given by a k-

copying operation (for some k) followed by an MSO-interpretation and

in particular the resulting structure may have k times the cardinality of

the original one.

The more difficult result that the unfolding operation, mapping graphs

(G, v) to trees T(G,v), is also MSO-compatible appeared in [61] (see also

[57] for an exposition and a treatment of the simpler case of deterministic

20 Automata-based presentations of infinite structures

graphs). We note that this result also follows from Muchnik’s Theorem

[126, 138, 17] and that it generalises Rabin’s theorem.

A rich class of graphs, each with decidable monadic theory, can now

be constructed. Caucal [43] proposed the hierarchies of graphs and trees

obtained by alternately applying unfoldings and MSO-interpretations

starting with finite graphs:

Definition 1.2.14

Graphs0 = {finite edge- and vertex-labelled graphs}

Treesn+1 = {TG,v | (G, v) ∈ Graphsn}

Graphsn+1 = {I(T) | T ∈ Treesn+1, I is an MSO interpretation}

By the results above, we have

Theorem 1.2.15 For every n ∈ N every graph G from Graphsn has a

decidable MSO-theory.

Fratani [72, 73] provided an alternative proof of the above theorem,

among a host of other results on higher-order pushdown graphs, using a

different kind of MSO-compatible operation. Indeed, she established that

if a homomorphism of words maps the branches of a tree T to those of

T ′ surjectively while also preserving the node-labeling then definability

and decidability results for MSO over T ′ can be transferred to T .

The Caucal hierarchy is very robust. Various weakenings and strength-

enings of the definition yield exactly the same classes [37]. In fact, in

place of MSO-interpretations, Caucal originally used inverse rational

mappings in the style of item (5) of Theorem 1.2.11. Recently Colcom-

bet [51] proved that every graph of Graphsn+1 can in fact be obtained

via a first-order interpretation in some tree belonging to Treesn+1. The

next theorem provides internal presentations of graphs of each level as

a generalisation of Theorem 1.2.11 item (6) thereby justifying the name

pushdown hierarchy.

Theorem 1.2.16 ([37]) For every n a graph G is in Graphsn if, and

only if, it is isomorphic to the ǫ-closure of the configuration graph of a

higher-order pushdown automaton at level n.

The strictness of the hierarchy was also shown in [37]. The level-zero

graphs are the finite graphs, trees at level one are the regular trees,

and as we have seen in Theorem 1.2.11 the level-one graphs are the

prefix-recognisable ones. The deterministic level-two trees are known as

1.2 A hierarchy of finitely presentable structures 21

algebraic trees. From the second level onwards we have no clear struc-

tural understanding of the kind of graphs that inhabit the individual

levels. We recommend [134] for an exposition.

Term-trees defined by recursion schemes

Caucal also gave a kind of algebraic characterisation of term-trees at

level n as fixed points of safe higher-order recursion schemes.

Theorem 1.2.17 ([43]) For every n, the class of term-trees Treesn

coincides with that of term-trees generated by safe higher-order recursion

schemes of level at most n.

The notion of higher-order schemes is a classical one [62, 56]. Safety

is a technical restriction (implicit in [62]) ensuring that no renaming

of variables (α-conversion) is needed during the generative substitutive

reduction (β-reduction) process constructing the solution-term [1, 117].

Safe schemes are intimately related to the pushdown hierarchy. This

connection is well explained in [1] showing that while on the one hand

order-n schemes can define the behaviour and hence (the unfolding of)

the configuration graphs of level-n deterministic pushdown automata, on

the other hand, deterministic pushdown automata of level n can evaluate

safe order-n schemes. Safety is hereto essential.

In order to evaluate arbitrary schemes [81] introduced higher-order

collapsible pushdown automata (CPDA), a kind of generalisation of panic

automata [92], and gave in essence the following characterisation in the

spirit of Theorem 1.2.16.

Theorem 1.2.18 The term-trees defined by order-n recursion schemes

are up to isomorphism identical with the unfoldings of ǫ-closures of con-

figuration graphs of level-n collapsible higher-order pushdown automata.

As shown in [117, 81], it is not necessary to assume safety for estab-

lishing decidability of the MSO-theories of term-trees that are solutions

of higher-order schemes.

Theorem 1.2.19 The MSO-theory of a term-tree defined by an arbi-

trary higher-order recursion scheme is decidable.

Consequently, configuration graphs of higher-order collapsible push-

down automata can be model-checked against modal µ-calculus formu-

las. However, there is a second-order CPDA whose configuration graph

interprets the infinite grid and whose MSO-theory is thus undecidable

22 Automata-based presentations of infinite structures

[81]. This shows that higher-order CPDA configuration graphs constitute

a proper extension of Caucal’s pushdown hierarchy.

1.2.4 Introducing products

There is a connection between the internal presentations of graphs seen

so far and the graph operations used in the corresponding equational

framework. Pushdown stacks are naturally represented as strings. The

set of strings over some alphabet can in turn be modelled as an algebra

of terms built with unary functions, one for each letter of the alphabet.

Strings thus correspond to terms and letters to unary functions. In func-

tional programming terminology the abstract data type of, say, binary

strings has the recursive type definition

T = ⊥ ⊕ 0(T) ⊕ 1(T) (1.2)

Here the letters 0 and 1 are seen as type constructors and the empty

string ⊥ is a constant type constructor. The set of finite strings is the

least fixed-point solution of this equation.

Automata operating on terms of type T can be viewed as functions

mapping terms to states. Moreover these functions are defined accord-

ing to structural recursion. Analogously, recursion schemes (fix-point

equations) in an algebra of graph operations transform automata-based

internal presentations of a graph into equational specifications. We can

use the recursion scheme associated to the type definition (1.2) to define

any PR-graph by a VR equation extending the type definition. For in-

stance, the graph of the lexicographic order from Example 1.2.3 satisfies

the following equation

L = edge0→1,ε→0,ε→1(•
ε ⊕ recol0,1,ε 7→0(L)⊕ recol0,1,ε 7→1(L)).

We briefly explain how to go from automata presenting a PR-graph to

a VR-equation. For a language V ⊂ {0, 1}∗ recognised by an automaton

with transition table ∆ ⊂ Q × Σ × Q and final states F the following

VR-equation colours each word w ∈ {0, 1}∗ by those states q such that

the automaton starting from q accepts w. (N.B. in accordance with (1.2)

the simulation proceeds right-to-left.)

X = •F ⊕ recol{q′ 7→q:∆(q,0,q′)}(X)⊕ recol{q′ 7→q:∆(q,1,q′)}(X)

In general, every PR-graph
⋃

i Ui · (Vi×Wi) is the recolouring of a graph

satisfying a VR-equation of the form

X = ϑ(ϑε(•)⊕ ϑ0(X)⊕ ϑ1(X)) . (1.3)

1.2 A hierarchy of finitely presentable structures 23

Here, the states of the automata recognising Vi or Wi are encoded as

vertex colours (just as above) and ϑε colours • by the final states of the

Vi’s and Wi’s. Edge colours are used to represent states of automata for

each Ui. For every v ∈ Vi and w ∈Wi, and z accepted by the automaton

for Ui from state q there is a q-coloured edge (zv, zw). To this end, ϑ0
and ϑ1 recolour the vertices and edges, and ϑ adds an edge between all

x ∈ Vi and y ∈Wi coloured by the final states of Ui.

In passing we mention that higher-order stacks can also be repre-

sented as strings: either as well-bracketed sequences of stack symbols, or

as strings of stack operations yielding the particular stack configuration.

The former comes at the cost of losing regularity of the domain and has

no apparent algebraic counterpart. The latter gives rise to a unary alge-

bra of higher-order stacks that is not, except for level 1 pushdown stacks,

freely generated by the stack operations. Thus there is no unique term

representing a general stack. The work of Fratani, Carayol and others

[72, 73, 33, 32] has shown that both of these deficiencies can be turned

into features.

We now turn to graphs internally presented by finite trees. A type

definition for {0, 1}-labelled binary branching trees is

T = ⊥ ⊕ 0(T ⊗ T) ⊕ 1(T ⊗ T) (1.4)

where ⊗ denotes direct product. Later we will compare this with an-

other type definition (1.6). Colcombet observed that this schema can

be used to define graphs with internal presentations involving tree au-

tomata operating on finite trees. He proposed extensions of the VR-

algebraic framework by the asynchronous product ⊗A [48] and by the

synchronous product ⊗S [50, 49] which we shall denote here by VRA and

VRS, respectively.

Definition 1.2.20 (Synchronous and asynchronous product) The prod-

ucts are defined for vertex and edge-coloured graphs G and H as follows.

In the synchronous product there is a d-coloured edge from (g, h) to

(g′, h′) if, and only if, both (g, g′) and (h, h′) are connected by a d-edge

in G and H, respectively. The edge relation Ed of the asynchronous prod-

uct G⊗AH is defined as the union of {((g, h), (g′, h)) | EG
d (g, g

′), h ∈ H}

and {((g, h), (g, h′)) | EH
d (h, h′), g ∈ G}. The definition of vertex colours

requires a little care. In both cases a vertex (g, h) of the product has

colour δ(c, c′) whenever g has colour c and h has colour c′. Here the

function δ : C2 → C is a parameter of the product operation. However,

24 Automata-based presentations of infinite structures

it is really only relevant that δ acts as a pairing function on some suf-

ficiently large subsets of the colours. For instance, Colcombet identifies

C with {0, 1, . . . , N − 1} and defines δ as addition modulo N [48].

As before, VRA-equational and VRS-equational graphs are defined as

least fixed-point solutions of a finite system of equations in the respec-

tive algebra. Both product operations are cocontinuous with respect to

graph embeddings. Therefore the evaluation mapping of both VRA and

VRS terms uniquely extends from finite terms to infinite terms. Hence,

just as for HR- and VR-equational graphs, the solution of a system of

VRA or VRS equations is the evaluation of the regular term obtained by

unraveling the system of equations.

Example 1.2.21 The infinite two-dimensional grid (N×N, Up, Right)

is easily constructed as the asynchronous product of the VR-equational,

even context-free, graphs (N, Up) and (N, Right):

G = ⊗A(Nu, Nr)

Nu = edge
a

Up
→b

(

a
• ⊕ recola 7→b,b 7→c(Nu)

)

Nr = edge
a
Right
→ b

(

a
• ⊕ recola 7→b,b 7→c(Nr)

)

The unfolding of this system of equations is, schematically, an infinite

term consisting of two periodic branches joined at the root. Elements

of the grid G, by definition of asynchronous product, are represented as

pairs of nodes of this term-tree with one node on either branch, corre-

sponding to the respective co-ordinates. The example of the grid, whose

MSO theory is undecidable, shows that the evaluation mapping of VRA

terms (also of VRS terms) can not be realised by an MSO-interpretation.

For any VRA or VRS-term t, vertices of [[t]] can be identified with

maximal subsets of nodes of t belonging to sub-terms joined by a product

operator. It is thus easily expressible in MSO whether a set X of nodes

(finite or infinite8) is actually well-formed in this sense, i.e. whether it

represents an element of [[t]].

VR with asynchronous product and ground term rewriting

Ground term rewrite systems (GTRSs) are a natural generalisation of

prefix-rewriting to trees. They are term rewrite systems given by rewrit-

8 In least fixed-point semantics only finite sets are considered, whereas in greatest
fixed-point semantics both finite and infinite sets can represent elements of the
solution, provided that there is an infinite nesting of product operators in t.

1.2 A hierarchy of finitely presentable structures 25

ing rules in which no variables occur. Tree automata are a special case

of GTRSs (see [52]).

Example 1.2.22 The rewrite rule a → f(a) confined to terms of the

form d(fn(a), fm(a)) is a GTRS whose configuration graph is isomorphic

to the infinite square grid.

We have noted that prefix-recognisable graphs are identical to ε-

closures of pushdown graphs. This correspondence is achieved by gen-

eralising the simple prefix-rewriting rules of pushdown systems of the

form v → w where v and w are strings to replacement rules V →W for

given regular languages V,W . The latter rule allows one to rewrite any

prefix v ∈ V of a given string by any word from W . Regular Ground

Term Rewrite Systems (RGTRS) generalise GTRS in the exact same

manner: simple ground rewrite rules s → t with ground terms s, t are

replaced by ‘rule schemes’ S → T with regular sets of terms on both left

and right-hand side.

Löding [99, 100] and Colcombet [48] studied transition graphs of GTRSs

and RGTRSs from a model-checking point of view. In Löding’s work ver-

tices of the transition graph are those terms reachable from an initial

term, whereas Colcombet considers all terms of a given type as vertices.

The VR-equations defining PR graphs (1.3) easily generalise to VRA-

equations defining graphs of RGTRSs using the recursion scheme (1.4):

X = ϑ(ϑε(•)⊕ ϑ0(X ⊗A X)⊕ ϑ1(X ⊗A X)) (1.5)

For each rule Si → Ti of the RGTRS we simulate (frontier to root)

tree automata recognising Si and Ti. Vertices of X represent terms, so

we call these vertex-terms. A vertex-term is coloured by those states q

occurring at the root of the term after being processed by the automata.

The simulation is initialised as follows: ϑε labels • by initial states, and

ϑ adds edges between all vertex-terms coloured by accepting states of

automata for Si and Ti. Updates occur in ϑjs according to the transition

rules, similarly to (1.3). To this end assume that two vertex-terms v′, v′′

are coloured by states q′ and q′′ respectively. After taking the product

the paired vertex-term j(v′, v′′) is initialised with colour (q′, q′′) (cf. Def.

1.2.20). This pair is then recoloured to q by ϑj whenever (q, j, q′, q′′) is

a transition.

Notice how naturally the asynchronous product captures closure of

RGTR rewriting under contexts: if there was an edge between v and v′

then there is an edge between j(v, v′′) and j(v′, v′′), and, symmetrically,

26 Automata-based presentations of infinite structures

between j(v′′, v) and j(v′′, v′). One obtains along these lines the following

generalisations of Theorem 1.2.11 (cf. examples 1.2.22 and 1.2.21).

Theorem 1.2.23 (Colcombet [48])

(i) A countable graph is VRA-equational if, and only if, it is (after removal

of certain colours) isomorphic to an RGTRS graph9.

(ii) Each VRA-equational graph is finite-subset interpretable in a regular

term-tree, hence also in the full binary tree.

Theorem 1.2.12 also extends to VRA-equational graphs [48, 100].

Theorem 1.2.24 VRA-equational graphs of finite tree-width are HR-

equational.

An immediate consequence of Theorem 1.2.23 is that the FO-theory of

every VRA-equational structure is decidable via interpretation in S2S. In

fact, for any VRA-equational graph G = (V, {Ea}a) the subset interpre-

tation, hence also first-order decidability, extends to G with additional

reachability predicates RC = { (v, w) | w can be reached from v using

edges of colours from C } for arbitrary subsets C of edge colours [48].

Theorem 1.2.25 VRA-equational graphs have a decidable first-order

theory with reachability.

This result cannot be improved much further. Examples of [139] show

that ‘regular reachability’, i.e. the problem whether there exists a path

in a given VRA-equational graph between two given nodes and such that

the labeling of the path belongs to a given regular language over the set

of colours, is undecidable. In [100] Löding identified a maximal fragment

of CTL that is decidable on every GTRS graph (with vertices restricted

to terms reachable from an initial one) that can express, besides reach-

ability, recurring reachability.

VR with synchronous product and tree-automatic structures

We have remarked that in the subset interpretation of VRA terms the

subsets are used in a special form. Indeed, in the evaluating interpre-

tation they merely serve the purpose of outlining the shape of a finite

term. General finite-subset interpretations are more powerful and are

capable of expressing the evaluation of VRS terms. In fact, these two

formalism are equally expressive.

9 Here RGTRS graphs are taken in the sense of [48] as being restricted to the set
of terms of a given type.

1.2 A hierarchy of finitely presentable structures 27

This is best explained by tree-automatic presentations. These are in-

ternal presentations of VRS-structures which will be formally introduced

in the next section. For now it suffices to use the characterisation (The-

orem 1.3.18) that tree-automatic graphs are those that are wMSO-

interpretable in a regular tree (reflected in the equivalence of (1) and

(2) below).

Theorem 1.2.26 (Colcombet [50])

For every countable graph G the following are equivalent

(1) G is isomorphic to a tree-automatic graph.

(2) G is interpretable in a regular tree (wlog. the full binary tree) via a

finite-subset interpretation.

(3) G is the restriction of a VRS-equational vertex-labelled graph G′ to

its set of vertices of a given colour;

We have noted that the evaluation mapping of VRS-terms can be

naturally defined as a finite subset interpretation - this justifies (3) →

(2). Continuing our discussion of translations from automata-based in-

ternal presentations into equational specifications using graph products

we illustrate the remaining translation (2) → (3) from finite-tree auto-

matic to VRS-equational presentations on graphs as we did for PR and

RGTRS. That is, we build the terms of the presentation from the bottom

up while also simulating the automata constituting the tree-automatic

presentation by VRS-operations.

Start with a graph (V,E) that is definable via finite-subset interpre-

tation in the full binary tree. By the fundamental correspondence that

wMSO-definable relations in a regular tree are exactly those that are

recognised by tree automata operating on finite trees, we see that V

may be taken to be a regular set of finite Σ-labelled binary trees, and E

is recognised by an automaton A accepting pairs of such trees.

The tree automaton A has transition rules (here we read them from

left-to-right, i.e in top-down fashion, but that is a matter of choice and

the simulation will actually proceed from bottom up) of the form

r : (q, 〈a, b〉, q0, q1) with a, b ∈ {0, 1,✷}

where the symbol ✷ is necessary for padding either components of a

pair of trees so that they have the same shape. It indicates the fact that

no node is defined in the current position, i.e. that the automaton finds

itself below a leaf of the respective tree (while still reading the other).

28 Automata-based presentations of infinite structures

We may assume that the transition rules enforce a proper usage of the

padding symbols.

We introduce edge relations Eq and Er for each state q and each rule

r of the automaton. The simulation of transitions of the synchronous

automaton on pairs of labelled trees necessitates a more sophisticated

recursion scheme associated to the following type definition of {0, 1}-

labelled binary branching trees.

T = ⊥ ⊕ ({0, 1} ⊗ T ⊗ T) (1.6)

There is a natural identification of terms of this type and of those of

the more natural type definition (1.4). As far as unary predicates are

concerned the current type definition does not provide any advantage.

However, compared with (1.4) the current type definition has a more

powerful associated recursion scheme allowing for defining non-trivial

binary relations between terms with different root labels. This will allow

us to specify tree-automatic graphs via VRS-equations of the following

form analogous to (1.6)

X = ϑ
(

•⊥ ⊕ (ϑ0 ⊗S ϑ1(X)⊗S ϑ2(X))
)

(1.7)

Here too, as in (1.3) and in (1.5) the ϑ’s are VR-expressions facilitating

the simulation of the automaton. The expression ϑ0 specifies the graph

with vertex set {0, 1} and having an r-labelled edge from a to b for

each rule r such that r = (·, 〈a, b〉, ·, ·) and with VR operations (here

equivalently expressed as positive quantifier-free definable operations)

responsible for updating the edge relations to simulate the transitions of

A. This is done in two phases.

- First, in preparation, state-labelled edges are used to ‘enable’ com-

patible rule-labelled edges in either copy of the graph: for each rule

r = (·, 〈·, ·〉, q1, q2) and i ∈ {1, 2} the expression ϑi adds an Er-edge

from x to y for every Eqi -edge from x to y in the graph.

- Then, after the synchronous product of rule-labelled edges has been

taken, edges labelled by rules are renamed to their resulting states: ϑ

adds for each state q an Eq-edge from x to y for every Er-edge from

x to y such that r = (q, 〈·, ·〉, ·, ·). In addition, ϑ deals with the case

when either x or y is the singleton tree ⊥. For this we may assume

that all necessary information is coded in vertex labels implemented

as reflexive edges and maintained along with the rest of the edge labels

as explained here.

Finally, to obtain the graph G′ as required in item (3) of Theorem 1.2.26

1.3 Automatic Structures 29

we also use vertex colours to keep track of the states of the tree automa-

ton recognising V . The generalisation of this construction to arbitrary

relational structures is straightforward.

1.3 Automatic Structures

1.3.1 Fundamentals

This section concerns structures with internal presentations consisting of

automata operating synchronously on their inputs. The starting point of

this investigation is the robust nature of finite automata. In particular,

synchronous automata are effectively closed under certain operations

that can be viewed in logical terms, i.e. Boolean operations, projection,

cylindrification and permutation of arguments. Thus a structure whose

domain and atomic operations are computable by such automata has

decidable first-order theory (Definition 1.3.2 and Theorem 1.3.4).

Example 1.3.1 (i) The domain and relations of the following structure

are regular.

SΣ = (Σ∗, {suca}a∈Σ,≺prefix, el)

where Σ∗ is the set of finite words over alphabet Σ, the binary relation

suca is the successor relation (x, xa) for x ∈ Σ∗, the binary relation

≺prefix is the prefix relation and the binary relation el is the equal-

length relation.

(ii) The following structure can be coded (eg. in base k least significant

digit first) so that the domain and atomic operations are regular.

Nk = (N,+, |k)

where + is the usual addition on natural numbers and x |k y holds

precisely when x is a power of k and x divides y.

Actually the link between synchronous automata and logic goes both

ways. It was first expressed in terms of weak monadic second-order logic:

a set of tuples (A1, · · · , An) of finite sets of natural numbers is weak

monadic second-order definable in (N, S) if and only if the correspond-

ing n-ary relation of characteristic strings (a subset of ({0, 1}∗)n) is

synchronous rational. This was proved by [27] and [68], and is implicit

in [135].

A first-order characterisation was provided by [65]: a relation R ⊂

(Σ∗)n is synchronous rational if and only if R is first-order definable

30 Automata-based presentations of infinite structures

in SΣ for |Σ| ≥ 2. Similarly, the Büchi-Bruyère Theorem states that

a relation R ⊂ Nn (coded in base k ≥ 2 least significant digit first) is

synchronous rational if and only if it is first-order definable in Nk (proofs

of which can be found in [104] and [137]).

These results were generalised to full MSO on the line (N, S) and weak

MSO and full MSO on the tree ({0, 1}∗, suc0, suc1) and form the basis

of the logical characterisation of automatic structures (Section 1.3.4).

However, we start with the more common internal definition.

Recall that the four basic types of automata operate on finite or infi-

nite words or trees. So, let ✷ be one of word, ω-word, tree, ω-tree.

We consider a structure B = (B, {Ri}) comprising relations Ri over

the domain dom(B) = B. Thus constants and operations are implicitly

replaced by their graphs.

Definition 1.3.2 (Automatic presentation) A ✷-automatic presenta-

tion of B consists of a tuple d = (A,A≈, {Ai}) of finite synchronous

✷-automata and a naming function f : L(A)→ B such that

- Each L(Ai) is a relation on the set L(A).

- L(A≈) is a congruence relation on the structure (L(A), {L(Ai)}i).

- The quotient structure is isomorphic to B via f .

Moreover, the quotient structure is called an automatic copy of B. We

say that the presentation is injective whenever f is, in which case A≈

can be omitted.

Definition 1.3.3 (Automatic structure10) A structureB is✷-automatic

if it has an ✷-automatic presentation. If B is ✷-automatic for some

✷ then B is simply called automatic. The classes of automatic struc-

tures are respectively denoted by S-AutStr, ωS-AutStr, T-AutStr and

ωT-AutStr.

The following theorem motivates the study of automatic structures

and so may be called the Fundamental Theorem of automatic struc-

tures/presentations.

Theorem 1.3.4 (Definability) There is an algorithm that given a ✷-

automatic presentation (d, f) of a structure A and a FO-formula ϕ(x)

in the signature of A defining a k-ary relation R over A, effectively

constructs a synchronous ✷-automaton recognising f−1(R).

Immediate corollaries are

10 Some authors write automatically presentable.

1.3 Automatic Structures 31

(i) Decidability: The FO-theory of every automatic structure is decidable.

(ii) Interpretations: The class of ✷-automatic structures is closed under

FO-interpretations.

We point out that the Fundamental Theorem implies that every rela-

tion first-order definable from ✷-regular relations is itself ✷-regular.

Remark 1.3.5 One may allow finitely many parameters ϕ(a, x) under

the following conditions. For finite-word and finite-tree presentations any

parameters can be used. However, for ω-tree (and ω-word) presentations

a parameter a can be used if f−1(a) contains a regular ω-tree (ultimately

periodic ω-word).

Consequently ✷-automatic structures (on a given signature) are closed

with respect to operations such as disjoint union, ordered sum and direct

product – each a special case of generalised products treated in [20,

23]. However AutStr and ωS-AutStr are not closed under weak direct-

power. For instance, (N,+) is in S-AutStr but its weak direct-power is

isomorphic to (N,×), which is not in S-AutStr (see [20]). On the other

hand, it is straightforward to see that T-AutStr and ωT-AutStr are

closed under weak direct-power.

1.3.2 Examples

Obviously every finite structure is automatic. Here are a some examples

of structures with automatic presentations.

Example 1.3.6 (Ordinals) (i) (ω,<) ∈ S-AutStr: The simplest auto-

matic copy is the unary one: (0∗, {(0k, 0l) | k < l}).

(ii) Every ordinal below ωω is in S-AutStr: An automatic copy of ωk is

((0∗1)k, <lex) where <lex denotes the lexicographic order11 which is

clearly regular. In this presentation the naming function is

0nk−11 . . . 0n01 7→ nk−1ω
k−1 + . . .+ n1ω

1 + n0 .

(iii) Every ordinal below ωωω

is in T-AutStr: recall that the ordinal ωα

has a representation as the set of functions f : α → ω with f equal

to 0 in all but finitely many places. These functions are ordered as

follows: f < g if the largest β with f(β) 6= g(β) has that f(β) < g(β).

Then for fixed k, a function f : ωk → ω is coded by the tree Tf with

11 Given an ordering on the symbols of the alphabet a word u is lexicographically
smaller than w if either u is a proper prefix of w or if in the first position where
u and w differ there is a smaller symbol in u than in w.

32 Automata-based presentations of infinite structures

domain a finite subset of 0∗1∗2∗ · · · k∗ so that for every β, expressed

in Cantor-normal-form as ωk−1c0 + ωk−2c1 · · · + ω0ck−1, 0 ≤ ci < ω,

we have Tf (0
c01c1 · · · (k − 1)ck−1kf(β)) = 1.

Example 1.3.7 (Orderings) (i) (Q, <) ∈ S-AutStr: The countable lin-

ear order ({0, 1}∗1, <lex) is dense without endpoints.

(ii) (R, <) ∈ ωS-AutStr.

Example 1.3.8 (Groups) (i) Every finitely-generated group with an

Abelian group of finite index is in S-AutStr. And these are the only

finitely generated word-automatic groups [116].

(ii) The direct sum of countably many copies of Z/mZ is in S-AutStr.

(iii) The subgroup Z[1/k] of rationals of the form {zk−i | z ∈ Z, i ∈ N} for

fixed k ∈ N is in S-AutStr.

(iv) The Prüfer p-group Z(p∞) = Z[1/p]/Z (prime p) is in S-AutStr [114].

(v) Real addition (R,+) is in ωS-AutStr.

However, the additive group of the rationals (Q,+) is not automatic

[136]. In fact, Tsankov shows that no torsion free Abelian group that is

p-divisible for infinitely many primes p is automatic.

Example 1.3.9 (Arithmetics) (i) (N,+) is in S-AutStr: For every nat-

ural k > 1, the base k least-significant-digit-first presentation of natu-

rals (with or without leading zeros) constitutes a naming function of an

automatic presentation. A finite automaton can perform the school-

book addition method while keeping track of the carry in its state.

Such a presentation is injective when leading zeros are suppressed.

(ii) (N, ·) is in T-AutStr: The presentation is based on the unique fac-

torisation of every natural number n into prime powers 2n23n3 · · · pnp .

Each nk is written, say in binary notation, on a single branch of a

tree with domain 0∗1∗. Multiplication is reduced to the addition of

corresponding exponents. This construction can naturally be gener-

alised to give tree-automatic presentations of weak direct powers of

word-automatic structures [20, 25].

Example 1.3.10 (Equivalence relations) The following have finite-

word automatic presentations.

(i) There is one class of size n for every n ∈ N.

(ii) There are d(n) classes of size n ∈ N where d(n) is the number of

divisors of n. (This is the direct product of the previous equivalence

relation with itself).

1.3 Automatic Structures 33

Example 1.3.11 (Free algebras) (i) The free algebra with n unary op-

erations and at most ω many constants is in S-AutStr.

(ii) The free monoid generated by a single constant is in S-AutStr. How-

ever, no non-unary free or even free-associative algebra on two or more

constants is in S-AutStr.

(iii) The free algebra generated by countably many constants and any finite

number of operations is in T-AutStr.12 For instance suppose there is

one binary operation F . The domain of the presentation consists of all

{F, c,⊥}-labelled binary trees. The operation (representing F) takes

trees S and T as input and returns the tree with domain the prefix-

closure of (dom(S) ∪ dom(T)){0, 1} and taking the following values:

the root position is labelled F ; position α0 is labelled by the label

of S at position α; position α1 by the label of T at position α (if

either of these latter positions does not exist, the label is ⊥). It is

not known whether finitely generated (non-unary) term algebras are

in T-AutStr.

Example 1.3.12 (Boolean Algebras) The signature we work in con-

sists of the symbols for boolean operations ∩,∪, ·c and constants ⊥,⊤.

(i) Every finite power of the algebra of finite and co-finite subsets of N is

in S-AutStr.

(ii) The countable atomless Boolean algebra is in T-AutStr: It is isomor-

phic to the algebra of sets consisting of the clopen sets in Cantor space.

Each clopen set has a natural representation as a finite tree.

(iii) The algebra of all subsets of N is in ωS-AutStr.

(iv) The algebra of all subsets of N factored by the congruence of having

finite symmetric difference is in ωS-AutStr. It is unknown whether

this structure can be injectively presented in ωS-AutStr.

(v) The interval algebra of the real interval [0, 1) is in ωT-AutStr.

(vi) The algebra of all subsets of {0, 1}∗ with a distinguished set F con-

sisting of those X ⊂ {0, 1}∗ such that for every path π ∈ {0, 1}ω only

finitely many prefixes of π are in X.

Example 1.3.13 (Graphs) (i) The infinite upright grid is in S-AutStr:

Here the structure is (N × N, Up, Right) with the functions Right :

(n,m) 7→ (n+ 1,m) and Up : (n,m) 7→ (n,m+ 1). It can be automat-

ically presented on the domain a∗b∗ with relations

R =

(

a

a

)∗(
b

a

)(

b

b

)∗(
✷

b

)

12 Communicated by Damian Niwinski.

34 Automata-based presentations of infinite structures

and U defined by a similar regular expression.

(ii) The transition graphs of pushdown automata are in S-AutStr:13 Given

a pushdown automaton A with states Q, stack alphabet Γ, input al-

phabet Σ and transition relation ∆ we can construct an automatic

presentation of the transition graph of its configurations as follows.

We take QΓ∗ to be the domain of the presentation in which qγ rep-

resents the configuration of state q and stack γ ∈ Γ∗. For each a ∈ Σ

there is an a-transition from qγ to q′γ′ if, and only if, γ = zα, γ′ = wα

and (q, z, q′, w) ∈ ∆ for some z ∈ Γ and w ∈ Γ∗. Since ∆ is finite, this

relation is obviously regular for each a. Notice that in these presenta-

tions the transition relations are not only regular but in fact defined

by prefix-rewriting rules (cf. Section 1.2.1 on context-free graphs).

(iii) The transition graphs of Turing machines are in S-AutStr [87]. We can

give an automatic presentation of each TMM similar to those of push-

down automata. Configurations are encoded as strings αqβ ∈ Γ∗QΓ∗

where α and β are the tape contents to the left, respectively, to the

right of the head of M, and q is the current state. Observe that,

as opposed to presentations of pushdown graphs, the state is now

positioned not at the left of the string but at the location of the

head. Consequently, rewriting is not confined to prefixes, but rather

occurs around the state symbol: transitions are of the form αuqwβ 7→

αu′q′w′β for adequate u,w, u′, w′ and q, q′ as determined by the tran-

sition function ofM. The fact that TM graphs are presentable using

infix rewriting has the profound consequence that reachability ques-

tions in infix-rewriting systems are generally undecidable, as opposed

to graphs of prefix-rewriting systems, whose monadic second-order

theory is decidable (cf. Theorem 1.2.4).

Example 1.3.14 (Automata-theoretic structures) The following struc-

tures turn out to be universal for their respective classes (see Theo-

rem 1.3.17).

(i) Let

SΣ = (Σ∗, {suca}a∈Σ,≺prefix, el)

and

SωΣ = (Σ≤ω, {suca}a∈Σ,≺prefix, el)

13 For visibly pushdown automata the same representation of configurations also
allows for the trace equivalence relation to be recognised by a finite automaton.
In [10] this presentation was utilised to obtain a decidability result.

1.3 Automatic Structures 35

be the structures defined on finite, respectively on finite and ω-words,

comprising the successor relations suca = {(w,wa) | w ∈ Σ∗}; the

prefix relation u ≺prefix w (where u is finite and w is finite or infinite);

and the equal-length relation: u elw if, and only if, |u| = |w|. Clearly

SΣ ∈ S-AutStr and SωΣ ∈ ωS-AutStr. Note that if Σ is unary, then

SΣ reduces to (N,+1, <,=).

(ii) The structure TΣ ∈ T-AutStr has domain consisting of all finite binary

Σ-labelled trees and has operations

(�ext,≡dom, (suc
d
a)d∈{l,r},a∈Σ, (ǫa)a∈Σ)

where T �ext S if dom(T) ⊂ dom(S) and S(α) = T (α) for α ∈

dom(T); T ≡dom S if dom(T) = dom(S); sucda(T) = S if S is formed

from T by extending its leaves in direction d and labeling each new

such node by a; and ǫa is the tree with a single node labelled a.

Similarly the structure T ω
Σ ∈ ωT-AutStr has domain consisting of

all finite and infinite trees and operations

(�ext,≡dom, (suc
d
a)d∈{l,r},a∈Σ, (ǫa)a∈Σ).

that are restricted to finite trees, except that T �ext S is defined as

above but allows S to be an infinite tree.

1.3.3 Injectivity

Recall that an automatic presentation is injective if the naming function

is injective. The problem of injectivity is this:

Does every ✷-automatic structure have an injective ✷-automatic presentation?

An injective presentation has the advantage that it is easier to express

certain cardinality-properties of sets of elements (Theorem 1.4.6). We

consider the four cases.

Finite words

From a finite-word automatic presentation of A one defines an injective

presentation of A by restricting to a regular set D of unique represen-

tatives. These can be chosen using a regular well-ordering of the set

of all finite words. For instance, define D ⊂ L(A) to be the length-

lexicographically least words from each L(A≈) equivalence class.

36 Automata-based presentations of infinite structures

Finite trees

Except in the finite word case, there is no regular well ordering of the

set of all finite trees [39]. However one can still convert a finite-tree au-

tomatic presentation into an injective one [47]. The idea is to associate

with each tree t a new tree t̂ of the following form: the domain is the

intersection of the prefix-closures of the domains of all trees that are

L(A≈)-equivalent to t; a node is labelled σ if t had label σ in that po-

sition; a leaf x is additionally labelled by those states q from which the

automaton A≈ accepts the pair consisting of the subtree of t rooted

at x and the tree with empty domain.14 Using transitivity and symme-

try of L(A≈), if t̂ = ŝ then t is L(A≈)-equivalent to s. Moreover each

equivalence class is associated with finitely many new trees, and so a

representative may be chosen using any fixed regular linear ordering of

the set of all finite trees.

ω-words

There is a structure in ωS-AutStr that does not have an injective ω-word

automatic presentation [82]. The proof actually shows that the structure

has no injective presentation in which the domain and atomic relations

are Borel.

However, every countable structure in ωS-AutStr does have an in-

jective ω-word automatic presentation [85] (and consequently is also in

S-AutStr). This follows from the more general result that every ω-word

regular equivalence relation with countable index has a regular set of

representatives [85].

ω-trees

It has not yet been settled whether injective presentations suffice, even

for the countable structures.

1.3.4 Alternative characterisations

Automatic structures were defined internally. We now present equivalent

characterisations: logical (FO and MSO) and equational.

First-order characterisations

In order to capture regularity in the binary representation of N using

first-order logic Büchi suggested the expansion (N,+, {2n | n ∈ N}) of

14 The construction given in [47] is slightly more general and allows one to
effectively factor finite-subset interpretations in any tree.

1.3 Automatic Structures 37

Presburger arithmetic, which is, however, insufficient (see [26]). Boffa

and Bruyére considered expressively complete expansions of (N,+) by

relations of the form x |k y (defined to hold precisely when x is a power

of k and x divides y).

Theorem 1.3.15 (Büchi-Bruyére, cf. [26]) A relation R ⊆ Nr is regu-

lar in the least-significant-digit-first base k presentation of N if, and only

if, R is first-order definable in the structure Nk = (N,+, |k).

Closer to automata, the structures SΣ on words (see example 1.3.14)

allow one to define every regular relation on alphabet Σ.

Theorem 1.3.16 ([65]) Let Σ be a finite, non-unary alphabet. A rela-

tion over Σ∗ is regular if, and only if, it is first-order definable in SΣ.

The proofs of these theorems are by now standard. From left to write

one writes a formula φA(x) that expresses the existence of a success-

ful run in automaton A on input x. For the other direction the atomic

operations of the structures are regular forms the base case for struc-

tural induction on the formula. Both theorems transfer to automatic

structures by replacing definability with interpretability [24, 25].

Theorem 1.3.17 (First-order characterisation of S-AutStr) The fol-

lowing conditions are equivalent.

- A ∈ S-AutStr.

- A is first-order interpretable in SΣ (for some/all Σ with |Σ| ≥ 2).

- A is first-order interpretable in Nk (for some/all k ≥ 2).

These structures have been called universal or complete (with respect

to FO-interpretations) for the class of finite-word automatic structures.

There are similar universal structures for the other classes of automatic

structures. These are the structures SωΣ , TΣ and T ω
Σ from Example 1.3.14

[20, 14].

Finite set interpretations

The four notions of automatic presentation have straightforward refor-

mulations in terms of subset interpretations either in the line ∆1 =

(N, suc) or in the tree ∆2 = ({0, 1}∗, suc0, suc1).

Theorem 1.3.18 (Automatic presentations as subset interpretations)

There are effective transformations establishing the following equiva-

lences.

38 Automata-based presentations of infinite structures

(i) A ∈ S-AutStr if, and only if, A ≤fset ∆1

(ii) A ∈ ωS-AutStr if, and only if, A ≤set ∆1

(iii) A ∈ T-AutStr if, and only if, A ≤fset ∆2

(iv) A ∈ ωT-AutStr if, and only if, A ≤set ∆2

Equivalently, one may formulate universality with respect to FO inter-

pretations. Following [47] we define the (finite) subset envelope P(f)(A)

of a structure A by adjoining to A its (finite) subsets as new elements

ordered by set inclusion.

Definition 1.3.19 Given A = (A, {Ri}) write P (A) for the set of all

subsets of A. The subset envelope P(A) is the structure with domain

P (A) and relations R′
i := {({a1}, . . . , {an}) | (a1, . . . , an) ∈ Ri} and the

subset relation ⊆ defined on P (A). The finite-subset envelope Pf (A) is

the substructure of P(A) whose domain is the set of finite subsets of A.

It is immediate that

B ≤(f)set A ⇐⇒ B ≤FO P(f)(A)

In particular, this yields natural universal structures, with respect to

FO-interpretations, for each of the four classes of automatic structures.

Corollary 1.3.20 (i) Pf (∆1) is universal for S-AutStr.

(ii) P(∆1) is universal for ωS-AutStr.

(iii) Pf (∆2) is universal for T-AutStr.

(iv) P(∆2) is universal for ωT-AutStr.

VRS-Equational structures

Recall that the VRS-algebra of graphs extends the VR-algebra with the

synchronous product operation and that VRS-equational systems define

exactly the finite-tree automatic graphs (see Section 1.2.4 and Theorem

1.2.26).

A finite VRS-equational system whose unfolding is a linear VRS-term

specifies a structure in S-AutStr. This happens if in the defining equa-

tions one of the arguments of each occurrence of ⊕ and of ⊗S is a finite

graph (and so these act like unary operations). Conversely, for word-

automatic presentations Equation (1.7) reduces to the following form:

X = ϑ
(

•⊥ ⊕ (ϑ0 ⊗ ϑ1(X))
)

(1.8)

This scheme matches the following type definition obtained by restricting

(1.6) to words:

T = ⊥ ⊕ ({0, 1} ⊗ T) (1.9)

1.3 Automatic Structures 39

This recursive definition of the set of words has the same advantage over

(1.2) as (1.6) has over (1.4) when it comes to defining binary relations

over words via structural induction, e.g. via finite automata. Over words

we have the following special case of Theorem 1.2.26.

Theorem 1.3.21 (Colcombet [50])

For every countable structure A the following are equivalent

(1) A is isomorphic to a word-automatic graph.

(2) A is the restriction of some B to its elements of a certain colour,

where B can be specified by a VR-equation Z = π(X), where π simply

forgets some of the structure of X, together with a VRS-equation for

X of the form (1.8);

(3) A is finite-subset interpretable in (N, suc).

The equivalence of the first and the third item is a direct consequence

of the classical correspondence of automata on words and monadic second-

order logic of one successor and was already stated in Theorem 1.3.18.

Nonetheless, this can also be inferred from the fact that the solution term

obtained by unfolding (1.8) is (essentially) a periodic linear VRS-term

that evaluates, via a finite-subset interpretation, to the word-automatic

structure specified by equation (1.8).

More generally, let VRS− denote the extension of VR with unary op-

erations X 7→ G0 ⊗S X where G0 is any finite graph. Moreover let us

call a chain interpretation a subset interpretation in a tree where each of

the subsets representing an element is linearly ordered by the ancestor

relation of the tree. It is not hard to see that solutions of finite systems

of VRS−-equations are finite-chain interpretable in a regular tree and

that these in turn are word automatic [50].

1.3.5 Rational graphs

If we allow the more general asynchronous automata in the definition

of an automatic presentation of a graph we get the notion of a rational

graph. Thus vertices are labelled with finite words of a rational language

over some finite alphabet Σ, and the edge relations are required to be

rational subsets of Σ∗ × Σ∗.

With no aim for completeness we list below some results on ratio-

nal graphs (asynchronous) in comparison with automatic graphs (syn-

chronous). For a comprehensive treatment the reader is referred to [105].

40 Automata-based presentations of infinite structures

The class of rational graphs strictly includes that of finite-word au-

tomatic graphs. In their seminal paper [87] Khoussainov and Nerode

also introduced asynchronous automatic structures. As an example they

gave an asynchronous automatic presentation of ωω, which is not in

S-AutStr (see Theorem 1.4.12). Asynchronous automatic presentations

of Cayley-graphs of finitely generated groups have also been considered

as generalisations of ‘automatic groups’ [31].

The price of increasing expressiveness is a loss of tractability: in gen-

eral, rational graphs do not have a decidable first-order theory. This ren-

ders rational graphs useless for representing data, let alone programs.

However, in the context of formal language theory rational graphs seem

to fill a gap. Considering rational graphs as infinite automata, i.e. as

acceptors of languages, Morvan and Stirling have shown that they trace

exactly the context-sensitive languages [108, 107] (see also [34] for a

simplified approach). Rispal and others [123, 107, 34] have subsequently

observed that this holds true for automatic graphs as well.

Although first-order queries on rational graphs are in general intractable

there are some interesting decidable subclasses.

Morvan observed that by a result of Eilenberg and Schützenberger,

graphs defined by rational relations over a commutative monoid have

a decidable first-order theory. In particular, over the unary alphabet

the monoid structure is isomorphic to (N,+) whence the unary rational

graphs are those first-order definable in (N,+) [105]. Similarly, rational

graphs over (N,+)d are those having a d-dimensional first-order inter-

pretation in (N,+).

Carayol and Morvan showed that on rational graphs that also happen

to be trees (this is an undecidable property) first-order logic is decidable

[36, 106]. The decision method is based on locality of FO as formulated

by Gaifman and uses a compositional technique. The authors also exhibit

a rational graph that is a finitely branching tree but is not finite-word

automatic.

1.3.6 Generalisations

Automata with oracles

Consider an expansion ∆O
i of ∆i := ([i]∗, suc0, · · · , suci−1) by a unary

predicate O ⊂ [i]∗. Every MSO formula (with free MSO variables) of

the expanded structure corresponds to a tree automaton with oracle O.

An automaton with oracle is one that, while in position u ∈ [i]∗, can

decide on its next state using the additional information of whether or

1.3 Automatic Structures 41

not u ∈ O. Thus for automata working on infinite words/trees the oracle

O is simply read as part of the input. In the case of automata working

on finite words/trees, the entire oracle is scanned, and so the acceptance

condition should be taken appropriately (eg. Muller/Rabin).

Call a set O decidable if MSO(∆O
i) is decidable, and weakly decid-

able if wMSO(∆O
i) is decidable. Early work on decidable oracles used

the contraction method to show that certain oracles on the line, such as

{n! | n ∈ N}, are decidable [67]. This was extended to the profinitely ul-

timately periodic words [38], which it turns out capture all the decidable

unary predicates on the line [119, 120]. Nonetheless, it is still of inter-

est to produce explicit examples of decidable oracles, see for instance

[38, 74, 75, 7].

Definition 1.3.22 If in the definition of automatic presentation (1.3.2)

we replace ✷-automata with ✷-automata with oracle O, we get a notion

of ✷-automatic presentation with oracle O. A structure is called auto-

matic with oracle if it has a ✷-automatic presentation with some oracle.

Example 1.3.23 The group of rationals (Q,+) has recently been

shown to have no word-automatic presentation [136]. However it is finite-

word automatic with oracle #2#3#4 · · · . This is based on the idea, in-

dependently found by Frank Stephan and Joe Miller and reported in

[114], that there is a presentation of ([0, 1) ∩ Q,+) by finite words in

which + is regular, but the domain is not: every rational in [0, 1) can be

expressed as
∑n

i=2
ai

i! for a unique sequence of natural numbers ai satis-

fying 0 ≤ ai < i. The presentation codes this rational as #a2#a3#a4 · · ·

where ai is written in decimal notation (and hence has length less than

the length of i written in decimal notation). Addition is performed with

the least significant digit first, based on the fact that

ai + bi + c

i!
=

1

(i− 1)!
+
ai + bi + c− i

i!

where c ∈ {0, 1} is the carry in.

We immediately have that a structure is (finite-)word/tree automatic

with oracle O if and only if it is (finite) set interpretable in ∆O
1 /∆

O
2 .

Hence we have the following generalisation of the Fundamental Theorem

and its corollaries (1.3.4).

Theorem 1.3.24 (i) Definability: Say (d, f) is a ✷-automatic presen-

tation with oracle O of a structure A and ϕ(x) is a FO-formula in the

42 Automata-based presentations of infinite structures

signature of A defining a k-ary relation R over A. Then the relation

f−1(R) is recognised by an ✷-automaton with oracle O.

(ii) Interpretations: The class of ✷-automatic structures with oracle O is

closed under FO-interpretations.

(iii) Decidability: The previous statements can be made effective under the

following conditions.

1 For ✷ ∈ {word, tree} we require that wMSO(∆O
i) be decidable.

2 For ✷ ∈ {ω-word, ω-tree} we require that MSO(∆O
i) be decidable.

In particular, under these conditions, every A that is ✷-automatic with

oracle O has decidable FO-theory.

Of course ∆O
i can be viewed as a coloured tree. As in Corollary 1.3.20

we have universal structures with respect to FO-definability. For instance

P(∆O
2) is universal for ωT-AutStr with oracle O. The following result

concerns finite-set interpretations in arbitrary trees.

Theorem 1.3.25 ([47]) To every finite set interpretation I one can

effectively associate a wMSO interpretation J such that for every tree t

and structure A if Pf (A) ∼= I(t) then A ∼= J (t).

This can be used to show that certain structures, such as the random

graph, are not finite-tree automatic in the presence of any oracle [47].

1.3.7 Subclasses

In this section we restrict the complexity of the regular domains in au-

tomatic presentations to yield some of the more robust subclasses of

S-AutStr and T-AutStr.

Polynomial domain

The most natural restriction is to consider presentations where the words

and trees take labels from a unary alphabet |Σ| = 1. Word-automatic

presentations over a unary alphabet were introduced and studied by

Blumensath [20] and Rubin [89, 124].

The density of a language L ⊂ Σ∗ is the function n 7→ |L ∩ Σn|.

Definition 1.3.26 A structure is unary automatic if it has an injective

word-automatic presentation in which the domain consists of words from

a unary alphabet. A structure is p-automatic if it has an injective word-

automatic presentation in which the domain has polynomial density. Let

1-AutStr and P-AutStr denote these respective classes of structures.

1.3 Automatic Structures 43

Regular sets of polynomial density were characterised by Szilard et al.

[131] as being a finite union of the form

D =
⋃

i<N

ui,1v
∗
i,1ui,2 . . . ui,ni

v∗i,ni
ui,ni+1 (1.10)

where the degree of the polynomial of the density function is equal to the

maximum of the ni’s. In [6] it was demonstrated that every finite-word-

automatic presentation over a domain as in (1.10) can be transformed

into an equivalent one (cf. Section 1.4.4) over a domain that is a regular

subset of

a∗1a
∗
2 . . . a

∗
n

where n is equal to the maximum of the ni’s. In particular, word-

automatic presentations over a domain of linear density are unary au-

tomatic. This transformation yields a kind of normal-form of word-

automatic presentations over a polynomially growing domain.

Theorem 1.3.27 ([6]) A structure A has an automatic presentation

over a domain of density O(nd) if, and only if, it has a d-dimensional

interpretation in M := (N, <, {≡(modm)}m>1) if, and only if, it is finite-

subset interpretable in ∆1 := (N, suc) with subsets of size at most d.

Corollary 1.3.28 ([113],[20]) A structure A is unary automatic if,

and only if, it is first-order definable in M if, and only if, it is MSO-

interpretable in ∆1.

Unary automatic structures form a very restricted subclass of VR-

equational structures and have a decidable MSO-theory. Using pumping

arguments one can show that Presburger arithmetic (N,+) has no p-

automatic presentation [20, 121]. On the other hand, the infinite grid is

p-automatic but not unary automatic. Thus we have

1-AutStr (P-AutStr (S-AutStr .

The expansion of M with the successor function suc and a constant

for 0 admits quantifier elimination. Hence, every p-automatic structure

can be interpreted in (N, 0, suc, <, {≡(modm)}m>1) using quantifier-free

formulas.

Every p-automatic structure inherits the Pspace upper-bound on the

complexity of its first-order theory from M. This is as low as possi-

ble since FO model-checking is Pspace-hard for any structure with

at least two elements. Adding even the simplest form of iteration to

44 Automata-based presentations of infinite structures

FO leads to undecidability. For every k-counter machine it is straight-

forward to construct a p-automatic presentation of its configuration

graph where each configuration (q, n1, . . . , nk) is represented by the

word qcn1
1 · · · c

nk

k . It follows that the first-order theory with reachability

FO[R] of a p-automatic structure is undecidable in general. In compari-

son, while unary automatic structures have a decidable MSO-theory, the

FO(DTC) theory of (N, succ) interprets full first-order arithmetic and is

therefore highly undecidable [20].

Observe, that graphs having rational presentation over a finitely gen-

erated commutative monoid (cf. Section 1.3.5) can be seen as analogues

of p-automatic graphs. Indeed, every monoid element is represented by

some word gr11 g
r2
2 . . . grnn over the generators.

Finite-rank tree-automatic presentations

The analogue of p-automatic to tree-automatic structures is restricting

to presentations involving trees of bounded rank. Intuitively the rank of

a tree corresponds to its branching degree (which can be measured in

terms of the Cantor-Bendixson rank).

Recall a Σ-labelled n-ary tree T is a function from a prefix-closed

subset of [n]∗ to Σ. We say that T has rank k if its domain has polynomial

density of degree at most k.

A finite-tree automatic presentation is called of rank k if for some

regular languageD of polynomial density of degree at most k the domain

of every tree in the presentation is a subset of D. Collectively we speak of

bounded-rank tree-automatic presentations. The class of structures with

rank k presentations is denoted k-T-AutStr.

Example 1.3.29 The ordinal ωωk

has a rank k + 1 tree-automatic

presentation.

Let Tk denote the structure corresponding to the unlabelled k-ary tree

with domain 0∗1∗ · · · (k−1)∗. Note that Tk is wMSO-interpretable in the

ordinal ωk (in the signature of order), and vice-versa.

Proposition 1.3.30 The following are equivalent.

- A is in k-T-AutStr,

- A is finite-set interpretable in Tk (or equivalently in the ordinal ωk),

- A is the solution of a finite system of VRS-equations whose unfolding

is a term-tree of rank k.

1.3 Automatic Structures 45

The hierarchy is strict:

S-AutStr = 1-T-AutStr (2-T-AutStr (· · · (T-AutStr.

Indeed, if k+1-T-AutStr = k-T-AutStr for some k then the finite-

subset envelope Pf (ω
k+1) would be finite-set interpretable in ωk. But

by Theorem 1.3.25 then ωk+1 is wMSO interpretable in ωk, which is

known not to be possible [98, Lemma 4.5].15

1.3.8 Comparison of classes

Since words are special cases of trees, and finite ones special cases of in-

finite ones, one immediately sees the inclusions indicated by the arrows

in the figure. All the arrows except for the dotted one are known to be

strict inclusions. We now discuss the separating examples as well as the

double lines indicating equality of the classes when restricted to count-

able structures. Since ωS-AutStr and ωT-AutStr contain uncountable

structures while S-AutStr and T-AutStr do not, we split our discussion

along these lines.

ωS-AutStr //

countable

ωT-AutStr

injωS-AutStr

countable

OO

injωT-AutStr

countable

OO

S-AutStr

inj

OO

// T-AutStr

inj

OO

Figure 1.2 Relationship of classes of automatic structures

Countable structures

The structure (N,×) separates T-AutStr from S-AutStr (see [20], or

[88] for an alternative proof).

Every injective ωS-AutStr presentation of a countable structure can

be effectively transformed into a S-AutStr presentation. This is because

a countable ω-regular set X ⊆ {0, 1}ω only contains ultimately peri-

odic words, and moreover there is a bound on the size of the periods

15 We thank Lukasz Kaiser for discussions on the notions of this section and Alex
Rabinovich for providing the latter reference.

46 Automata-based presentations of infinite structures

(which can be computed from an automaton for X). Similar facts hold

for countable regular sets of infinite trees [115].

The next theorem generalises this in the word case:

Theorem 1.3.31 ([85]) (i) The countable structures in ωS-AutStr are

precisely those in S-AutStr.

(ii) Given a (not necessarily injective) automatic presentation of some

A ∈ ωS-AutStr it is decidable whether A is countable or not, and if it

is, an automatic presentation of A over finite words can be constructed.

On the other hand, we do not know whether every countable structure

in ωT-AutStr is in T-AutStr.

Uncountable structures

The only known non-trivial methods dealing with uncountable structures

appear in [82]:

(i) The algebra (P({0, 1}∗),∩,∪, ·c,F) from example 1.3.12(6) is an un-

countable structure separating ωT-AutStr from ωS-AutStr.

(ii) Recall Example 1.3.12(4) consisting of the algebra of subsets of N (call

it A) quotiented by having finite symmetric difference (call it ≈). Con-

struct a variant structure as the disjoint union of A and A/≈, with

a unary predicate U identifying the elements of A and a binary rela-

tion R relating a ∈ A to its representative in A/≈. This uncountable

structure separates ωS-AutStr from injωS-AutStr.

1.4 More on word-automatic presentations

1.4.1 Beyond first-order logic

The Fundamental Theorem can be strengthened to include order-invariant

definable formulas as well as certain additional quantifiers.

Generalised quantifiers

We briefly recall the definition of generalised quantifiers as introduced

by Lindström.

Definition 1.4.1 Fix a finite signature τ = (Ri)i≤k, where Ri has

associated arity ri. A quantifier Q is a class of τ -structures closed under

isomorphism. Let σ be another signature. Given σ-formulas Ψi(xi, z)

1.4 More on word-automatic presentations 47

with |xi| = ri (i ≤ k), the syntax Qx1, · · · , xn(Ψ1, · · · ,Ψk) has the

following meaning on a σ-structure A:

(A, a) |= Qx1, · · · , xk(Ψ1, · · · ,Ψk) iff (A; ΨA
1 (·, a), · · · ,Ψ

A
k (·, a)) ∈ Q,

where ΨA(·, a) is the relation defined in A by Ψ with parameters a. The

arity of a quantifier is the maximum of the ris. A quantifier is n-ary if

its arity is at most n.

The extension of first-order logic by a collectionQ of generalised quan-

tifiers will be denoted FO[Q].

Examples 1.4.2 (i) The unary quantifier {(A;X) | ∅ 6= X ⊂ A} is

‘there exists’.

(ii) The unary quantifier ‘there exists infinitely many’, written ∃∞, is the

class of structures (A;X) where X is an infinite subset of A.

(iii) The unary modulo quantifier ‘there are k modulo m many’ (here 0 ≤

k < m), written ∃(k,m), is the class of structures (A;X) where X

contains k modulo m many elements. Write ∃mod for the collection of

modulo quantifiers.

(iv) The unary Härtig quantifier is the class of structures (A;P,Q) where

P,Q ⊂ A and |P | = |Q|.

(v) Every set C ⊂ (N ∪ {∞})n induces the unary cardinality quantifier

QC = {(A;P1, · · · , Pn) | (|P1|, · · · , |Pn|) ∈ C}. In fact, a given unary

quantifier over signature (Ri)i≤k is identical to some cardinality quan-

tifier with n = 2k.

(vi) The binary reachability quantifier is the class of structures of the form

(A;E, {cs}, {cf}) where E ⊂ A
2, cs, cf ∈ A, and there is a path in the

directed graph (A;E) from cs to cf .

(vii) The k-ary Ramsey quantifier ∃k-ram is the class of structures (A;E),

E ⊂ Ak, for which there is an infinite X ⊂ A such that for all pairwise

distinct x1, · · · , xk ∈ X, E(x1, · · · , xk).

The following general definition will allow us to compare the expressive

strength of quantifiers.

Definition 1.4.3 Let Q be a quantifier, Q a collection of quantifiers,

and τ the signature of Q. Say that Q is definable in Q if there is a

sentence θ over the signature τ in the logic FO[Q] with Q = {A | A |= θ}.

For instance, a structure (A;X) satisfies ∃(0,2)z X(z) ∨ ∃(1,2)z X(z)

if and only if X is finite. Hence ∃∞ is definable in {∃(0,2), ∃(1,2)}.

Of course the generalised quantifiers that interest us most are the

ones, like ∀ and ∃, that preserve regularity.

48 Automata-based presentations of infinite structures

Definition 1.4.4 Fix class C as one of S-AutStr, T-AutStr, ωS-AutStr,

or T-AutStr. Let Q be a quantifier with signature τ = (Ri)i≤k, where

Ri has associated arity ri. Say that quantifier Q preserves regularity for

the class C if for every n ∈ N, and every automatic presentation µ of a

structure A ∈ C, every formula

Qx1, · · · , xk(Ψ
A
1 (x1, z), · · · ,Ψ

A
k (xk, z))

defines a relation R in A with µ−1(R) regular (here z = (z1, · · · , zn) and

the Ψi are first-order A-formulas).

Say that Q preserves regularity effectively if an automaton for µ−1(R)

can effectively be constructed from the automata of the presentation and

the formulas Ψi.

Since not every structure is injectively presentable, we may restrict

this definition to the class C of injectively presentable structures from

ωS-AutStr (or ωT-AutStr). For this, replace ‘automatic presentation’

with ‘injective automatic presentation’ in the above definition.

Example 1.4.5 The reachability quantifier is not regularity preserving

(for any of the classes). For otherwise, by Example 1.3.13, the set of

starting configurations that drive a given Turing Machine to a halting

state would be regular, and hence computable.

The first steps have been taken in exploring those quantifiers that

preserve regularity.

Theorem 1.4.6 Let C be any of the following classes of structures

inj-ωT-AutStr, ωS-AutStr, T-AutStr, S-AutStr.

(i) The following unary quantifiers preserve regularity effectively for C:

∃∞, ∃mod, ∃≤ℵ0 , ∃>ℵ0 [20, 90, 94, 85, 9].

(ii) Every unary quantifier that preserves regularity for the class S-AutStr

is already definable from ∃mod, ∃∞ [125].

The second item also implies that every unary quantifier that pre-

serves regularity for the class inj-ωS-AutStr is already definable from

∃mod, ∃∞, ∃≤ℵ0 , ∃>ℵ0 . This is because for an ω-regular relation R(x, z)

the cardinality of the set R(−, c) (for any fixed parameter c) is finite,

countable or has size continuum [94].

Theorem 1.4.7 (see [125]) Each k-ary Ramsey quantifier preserves

regularity effectively for the class S-AutStr.

1.4 More on word-automatic presentations 49

Kuske and Lohrey observed that the proof of this theorem can be

generalised to quantifiers of the form ‘there exists an infinite set X sat-

isfying θ’, where θ is a property of sets closed under taking subsets. They

use this to show that certain problems, while Σ1
1-complete for recursive

graphs, are decidable on automatic graphs [96].

Order-invariance

Definition 1.4.8 Fix a signature τ and a new symbol ≤. A formula

φ(x) in the signature τ ∪ {≤} is called order invariant on a τ -structure

A if for all tuples a from A and all linear orders ≤1 and ≤2 on A, we

have that (A,≤1) |= φ(a) if and only if (A,≤2) |= φ(a). The relation

defined by the order invariant φ in A is the set of tuples a from A such

that (A,≤) |= φ(a) for some (and hence all) linear orders ≤ on A.

The Fundamental Theorem can be extended on injective presentations

to include order-invariant formulas in those cases where there is a reg-

ular linear ordering of the set f−1(A). On finite-words, finite-trees and

ω-words there are regular linear orderings. However, we do not know

if there is a regular linear ordering on the set of all ω-trees. On the

other hand, certain separating examples from finite model theory are

adaptable to the automatic world.

Proposition 1.4.9 ([5]) There exists a structure B ∈ S-AutStr and

an order-invariant definable relation S∗ in B that is not definable in B

using any extension of FO with only unary quantifiers.

1.4.2 Complexity of some problems

First-order theories

By Theorem 1.3.4 query-evaluation and model-checking for first-order

formulas are effective on automatic structures. However, the complexity

of these problems is in general non-elementary, i.e. it exceeds any fixed

number of iterations of the exponential function. For instance the first-

order theories of the universal structures Nk and S[k] (k ≥ 2) have non-

elementary complexity [77] (cf. also the remark after Example 1.4.39).

There are various sensible ways of measuring model-checking complex-

ity. First, one may fix a formula and ask how the complexity depends

on the input structure. This measure is called structure complexity. On

the other hand, expression complexity is defined relative to a fixed struc-

ture in terms of the length of the formula. Finally, one can look at the

combined complexity where both parts may vary.

50 Automata-based presentations of infinite structures

Structure-Complexitya Expression-Complexity

Model-Checking
Σ0 Logspace-complete Alogtime-complete

Σ0 + func Nlogspace in quadratic time
16

and Ptime-complete

Σ1 Ptime
17

Pspace-complete
(ExpTime-c. for T-AutStr)

Σ2 Pspace-complete
17

ExpSpace-complete
(2ExpTime-c. for T-AutStr)

Query-Evaluation
Σ0 Logspace Pspace
Σ1 Pspace Expspace

Figure 1.3 Complexity of fragments of FO on automatic structures
a Structure complexity is measured in terms of the size of the largest deterministic

automaton in the input presentation.

In [25] Blumensath and Grädel studied the expression and structure

complexity of model-checking and query evaluation for quantifier-free

and existential first-order formulas both in a relational signature and al-

lowing terms in quantifier-free formulas. Their results are complemented

by those of Kuske and Lohrey [95] on the expression complexity of Σ1

(existential) and Σ2 formulas of a relational signature over arbitrary

word- and tree-automatic structures. Figure 1.3 provides a summary.

On certain subclasses of automatic structures there is better complex-

ity. In section 1.3.7 above we have mentioned that the first-order theory

of each structure allowing a word-automatic presentation of polynomial

density is decidable in Pspace. Kuske and Lohrey [101, 95] studied auto-

matic structures whose Gaifman graphs are of bounded degree. Relying on

locality of first-order logic they have identified the expression complex-

ity of FO model checking on word-automatic and tree-automatic struc-

tures of bounded degree to be 2ExpSpace-complete and 3ExpTime-

complete, respectively. The combined complexity remains 2ExpSpace

for word-automatic presentations and is in 4ExpTime for tree-automatic

presentations. For finer results we refer to [95].

16 This is a generalisation of the quadratic solution of the word problem in
automatic groups [31] (see Section 1.4.5).

17 Model checking with a fixed Σ1 formula reduces to a membership or
non-emptiness test for an NFA. For fixed Π2 formulas the problem is
polynomially equivalent to the universality problem of NFAs, and thus
Pspace-complete. (We thank Anthony To for pointing out the error in [25].)

1.4 More on word-automatic presentations 51

Beyond first-order

A fundamental problem in verification is deciding reachability : whether

there is a path between specified source and target nodes. Since the

configuration space of an arbitrary Turing machine is finite-word auto-

matic, the halting problem can be reduced to the reachability problem

on the configuration graph of a universal Turing-machine. Similar reduc-

tions show the undecidability, over (finite-word) automatic structures,

of connectivity, isomorphism, bisimulation and hamiltonicity [25, 96].

On the other hand there are natural classes of automatic structures for

which these problems become decidable (see Figure 1.1). For instance,

VRA-equational graphs have a decidable FO-theory with reachability

and are finite-tree automatic. Reachability and connectivity in locally-

finite unary-automatic graphs are in fact decidable in Ptime. Bisimula-

tion equivalence of HR-equational graphs of finite out-degree is decidable

[128] (see section 1.2.2).

Finally we mention some cases where full MSO is decidable. Prefix

recognisable structures (which include the unary automatic structures)

are finite-word automatic. A structure of the form (N, <,C1, · · · , Ck) is

called a colouring of the line. Every known finite-word automatic colour-

ing of the line, and this includes every morphic sequence, has decidable

MSO-theory (cf. Theorem 1.4.38 and see [7]). Furthermore, every word-

automatic equivalence relation has a decidable MSO-theory. This follows

from the above and the observation (Proposition 1.4.40) that if there are

only finitely many infinite classes then the equivalence relation is FO-

definable in some word-automatic colouring of the line [7].

Isomorphism problem

A measure of the complexity of a class of structures is the isomorphism

problem, namely the problem of deciding, given two ✷-automatic pre-

sentations d and d′, whether or not the structures they present are iso-

morphic.

The characterisations of the finite-word automatic Boolean algebras

and ordinals [88, 63] imply that the isomorphism problem for each of

these classes is decidable. Also, as noted, the isomorphism problem for

equational graphs is decidable 1.2.10.

Configuration spaces of Turing machines are locally finite and the com-

plexity of the isomorphism problem for locally-finite directed graphs in

S-AutStr is Π0
3-complete [124]. However, by massaging the configuration

spaces we get that the isomorphism problem for automatic graphs is as

hard as possible: Σ1
1-complete. This is done by reducing the isomorphism

52 Automata-based presentations of infinite structures

problem for computable structures, known to be Σ1
1-complete, to that

of automatic structures.

Theorem 1.4.10 ([124]) The complexity of the isomorphism problem

for each of the following classes of S-AutStr structures is Σ1
1-complete:

(i) undirected graphs, (ii) directed graphs, (iii) successor trees, and (iv)

lattices of height 4.

Problem 1.4.11 What is the exact complexity of the isomorphism prob-

lem for the following classes: 18

(i) Automatic equivalence structures (easily seen to be Π0
1).

(ii) Automatic linear orders.

Traces

Infinite edge-labelled graphs, when viewed as infinite automata, can ac-

cept non-regular languages. Naturally, context-free graphs accept pre-

cisely the context-free languages. Though prefix-recognisable graphs form

a structurally much richer class they have the same language accepting

power as context-free graphs (cf. Theorem 1.2.11 items (1) and (6)).

Graphs in the Caucal hierarchy have the same accepting power as higher-

order pushdown automata (see Theorem 1.2.16) tracing languages on

the corresponding levels of the OI-hierarchy of [62]. The traces of GTRS-

graphs form a language class in between the context-free and context-

sensitive classes of the Chomsky hierarchy [99]. Rational graphs accept

precisely the context-sensitive languages [108]. All context-sensitive lan-

guages can in fact be accepted by word-automatic graphs [123], cf. also

[35] for a more accessible proof and finer analysis. Meyer proved that

the traces of tree-automatic graphs are those languages recognisable in

Etime, i.e. in 2O(n) time [103].

1.4.3 Non-automaticity via pumping and counting

It is usually quite simple to show that a structure has an automatic

presentation (if indeed it does have one!). On the other hand, there are

only a handful of elementary techniques for showing that a structure

has no automatic presentation. Most rely on the pumping lemma of

automata theory.

18 While this work has been in print, Kuske, Liu and Lohrey have greatly
contributed to settling these and related questions. We refer to their forthcoming
paper.

1.4 More on word-automatic presentations 53

Sometimes we can provide a full characterisation of classes of auto-

matic structures. The first non-trivial characterisation was for the word-

automatic ordinals (in the signature of order).

Theorem 1.4.12 (Delhommé [63])

(i) An ordinal α is in S-AutStr if, and only if, α < ωω.

(ii) An ordinal α is in T-AutStr if, and only if, α < ωωω

.

A relation R is (n + m) locally finite if for every (x1, . . . , xn) there

are only finitely many (y1, . . . , ym) such that R(x, y) holds. Obviously,

every functional relation f(x) = y is locally finite. Other examples of

locally finite relations are equal-length el, length comparison |y| < |x|,

and the prefix relation y ≺prefix x. Note that local finiteness depends on

the partitioning of the variables, e.g. x ≺prefix y is not locally finite.

A simple pumping argument gives the following important tool.

Proposition 1.4.13 (Elgot and Mezei [66]) Let R ⊆ (Σ∗)n+m be a

regular and locally finite relation. Then there is a constant k such that

for all x, y satisfying R, maxj |yj | ≤ maxi|xi|+ k. In particular, if f is

a regular function then there is a constant k such that for every x in its

domain we have |f(x)| ≤ maxi|xi|+ k.

Growth of generations

Consider a structure A with functions F = {f1, . . . , fs} and a sequence

E = {e0, e1, e2, . . .} of elements of A. The generations of E with respect

to F are defined recursively as follows.

G0
F (E) = {e0}

Gn+1
F (E) = Gn

F (E)
⋃

{en+1}
⋃

{f(a) | f ∈ F , ai ∈ G
n
F (E) for each i ≤ |a|}

We are interested in how fast |Gn
F (E)| grows as a function of n.

Example 1.4.14 (i) Free semigroup on m generators: here F = {·}

and E = {e1, · · · , em}. Form ≥ 2, sinceGm
F (E) ⊃ E, the setGm+n

F (E)

includes all strings over E of length at most 2n; thus the cardinality

of Gm+n
F (E) is at least a double exponential in n.

(ii) If p : D × D → D is injective then for F = {p} and E = {e1, e2}

(distinct elements of D) |Gn
F (E)| is at least a double exponential.

We now iterate Proposition 1.4.13.

54 Automata-based presentations of infinite structures

Proposition 1.4.15 ([87],[20, 25]) Let A ∈ S-AutStr and consider an

injective presentation d with naming function f . Let F be a finite set

of functions FO-definable in A and E = {e0, e1, . . .} a definable set of

elements ordered according to length in d, i.e. |f−1(e0)| ≤ |f
−1(e1)| ≤

· · · . Then there is a constant k such that for every n and for every

a ∈ Gn
F |f

−1(a)| ≤ kn. In particular, |Gn
F | = 2O(n).

In other words, the number of elements that can be generated us-

ing functions is at most a single exponential in the number of itera-

tions. Continuing the previous examples, neither the free semigroup nor

any bijection f : D × D → D (also called a pairing function) is word-

automatic. It is trickier to apply the proposition to show that Skolem

arithmetic (N,×) is not word-automatic (see [20, 25]). It is nevertheless

tree-automatic, cf. Example 1.3.9.

The application of propositions 1.4.13 and 1.4.15 has been pushed to

their limits:

Proposition 1.4.16 (i) If a group (G, ·) is word-automatic then every

finitely generated subgroup is virtually Abelian (has an Abelian sub-

group of finite index). In particular, a finitely generated group is in

S-AutStr if, and only if, it is virtually Abelian [116, 114].

(ii) A Boolean Algebra (in the signature (∪,∩, ·c,⊥,⊤)) is in S-AutStr if,

and only if, it is a finite power of the Boolean Algebra of finite or co-

finite subsets of N [88]. In particular, the countable atomless Boolean

Algebra is not in S-AutStr.

(iii) There is no infinite integral domain in S-AutStr [88].

(iv) No word-automatic structure (D,R) has a subset N ⊂ D such that

(N,R) is isomorphic to (N, ·), cf. [114].

The proof of the first item starts with the observation that every

finitely-generated group G ∈ S-AutStr has polynomial density - that is,

for every finite set A = {a1, . . . , ak} the function

γ(n) = |{
∏

i<n

cσi

i | ∀i < n : ci ∈ A, σi ∈ {1,−1}}|

is bounded by a polynomial (this exploits associativity of the group

operation). The rest of the proof uses powerful theorems of Gromov and

Ershov (see [114] for a survey of word-automatic groups).

Number of definable subsets

Various countable random structures, such as the random graph, do

not have word- or tree-automatic presentations [88, 63]. The approach

1.4 More on word-automatic presentations 55

to proving these facts has a model-theoretic flavour: for a purported

automatic presentation, it involves counting the number of definable

subsets of elements represented by words of bounded length.

Consider the usual definition of a set defined by ϕ with parameter b

that remains fixed:

ϕ(−, b)A = {a ∈ A | A |= ϕ(a, b)} .

A finite set X ⊂ A is fully shattered by ϕ if the cardinality of the family

{ϕ(−, b)A ∩X | b ∈ A}

is as large as possible, namely 2|X|. For instance, Benedikt et al. [16]

observe that in S[2] each of the sets {0, 00, . . . , 0n} can be fully shattered

by the formula ϕ(x, b) = ∃z(suc1z ≺prefix b ∧ el(z, x)).

By contrast, in every automatic presentation with naming function f

and domain D ⊆ Σ∗, the image under f of each D≤n := D ∩ Σ≤n can

only be linearly shattered by definable families.

Proposition 1.4.17 ([88, 63]) In every automatic presentation of a

structure A with naming function f and for every formula ϕ :

|{ϕ(−, b)A ∩ f(D≤n) | b ∈ A}| = O(|f(D≤n)|) .

As an application recall that the random graph is characterised by

the property that for every partition of a finite set X of vertices into

sets U and V , there is a vertex b connected to all elements of U and

to no element of V . In other words, every finite set X of vertices is

fully shattered by the edge relation as the parameter b is varied. So by

Proposition 1.4.17 the random graph has no word-automatic presenta-

tion. Similar reasoning yields the following.

Proposition 1.4.18 ([88, 63]) The following are not in S-AutStr: the

random graph, the random partial order, the random Kn-free graph.

Using Theorem 1.3.25 one can established non-automaticity of the

random graph in a far more general sense.

Theorem 1.4.19 ([47]) Neither the random graph nor the the free

monoid on two generators is finite-tree automatic with any oracle.

In fact neither is ω-word automatic with any oracle, as witnessed by

the following theorem which follows from the proof of Theorem 1.3.31.

Theorem 1.4.20 If a countable structure is ω-word automatic with

oracle, then it is also finite-word automatic with (the same) oracle.

56 Automata-based presentations of infinite structures

1.4.4 Comparing presentations

When we think of an automatic structure we frequently have a particular

automatic presentation in mind. Some structures have canonical presen-

tations. For instance, (a∗, <len) is arguably the canonical presentation of

(N, <) and ({0, 1}∗, suc0, suc1,≺prefix, el) is the canonical presentation

of itself. Some well-known structures have natural presentations, none

of which can be indisputably called canonical. The base k ∈ N (k > 1)

presentations of (N,+) can be considered equally natural; but then what

about the Fibonacci numeration system? The field of regular numeration

systems, though using a somewhat different terminology, investigates au-

tomatic presentations of (N,+) and ω-word automatic presentations of

(R,+). Finally, there are pathological presentations that are used to pin

down the relationship between definability in a structure and regularity

in its presentations [90].

How are we to compare different automatic presentations of the same

structure? What are the crucial aspects of a presentation that distinguish

it from others?

Canonical representations of context-free graphs were investigated by

Sénizergues. In [127] a p-structure for a graph G is a PDA A (having no

ǫ-transitions) together with an isomorphism between the configuration

graph of A and G. Furthermore, a p-structure for G is P-canonical if

the distance in G between a vertex v and the root is equal to the stack

height of the configuration representing v (cf. [112]’s notion of a canonical

automaton for a context-free graph; and [41, 44]). For a fixed graph G

Sénizergues considers two p-structures equivalent if there is a rational

isomorphism between them, and shows that every equivalence class of

p-structures contains a P-canonical one [127].

An example from the theory of numeration systems is provided by the

celebrated result of Cobham and Semenov. Recall that naturals p and

q are called multiplicatively independent if they have no common power

(ie. pk 6= ql for all k, l ≥ 1) and multiplicatively dependent otherwise.

Theorem 1.4.21 (Cobham-Semenov 19, cf. [26, 19, 109])

The following dichotomy holds for p, q ≥ 2.

(i) If p and q are multiplicatively dependent then a relation R ⊆ Nr is

regular when coded in base p iff it is regular when coded in base q.

(ii) If p and q are multiplicatively independent then a relation R ⊆ Nr

is regular in both base p and base q iff R is FO-definable in (N,+).

19 Cobham proved it for sets; Semenov later extended it to arbitrary relations.

1.4 More on word-automatic presentations 57

The meaning of (i) is that, for instance, bases 2l and 2k are expressively

equivalent. There is a very simple coding translating numerals between

these bases, which bijectively maps blocks of k digits in the first system

to blocks of l digits in the second system. Every pair of multiplicatively

dependent numeration systems are linked by similar translations.

According to (ii) the base 2k presentation is as different as it can be

from, say, the base 3 presentation. This point is further stressed by the

following result of Bés based on the work of Michaux and Villemaire.

Theorem 1.4.22 ([18]) Let p and q be multiplicatively independent,

and R ⊆ Nr regular when coded in base q, but not first-order definable

in (N,+). Then the first-order theory of (N,+, |p, R) is undecidable.

On a similar note we introduce the following general notions.

Definition 1.4.23 (Subsumption and equivalence)

Consider two ✷-automatic presentations of some structure A with nam-

ing functions f and g, respectively. We say that f subsumes g (g 4 f)

if for every relation R over the domain of A, if g−1(R) is ✷-regular then

f−1(R) is ✷-regular. If both f 4 g and g 4 f then we say that the two

presentations are equivalent and write f ∼ g. Moreover, we say that a

✷-automatic presentation of A is prime if it is subsumed by all other

✷-automatic presentations of A.

word-automatic presentations

The definition of equivalence of automatic presentations is modelled on

case (i) of Theorem 1.4.21. In [5] it has been shown that two finite-word

automatic presentations are equivalent if and only if the transduction

translating names of elements from one presentation to the other is com-

putable by a semi-synchronous transducer : a two-tape finite automaton

processing its first tape in blocks of k letters and its second tape in

blocks of l letters for some fixed positive k and l. (Note that, except in

trivial cases, k/l is uniquely determined [5].)

Theorem 1.4.24 ([5]) Two finite-word automatic presentations of

some A ∈ S-AutStr with naming functions fi : Di → A, i ∈ {1, 2},

are equivalent if, and only if, the transduction T = {(x, y) ∈ D1 ×D2 |

f1(x) = f2(y)} translating names of elements from one presentation to

the other is semi-synchronous rational.

Corollary 1.4.25 Let f1 and f2 be naming functions of equivalent

automatic presentations of A. Then there is a constant C such that

58 Automata-based presentations of infinite structures

for every n-ary relation R over dom(A) and for every automaton A1

recognising f−1
1 (R) there is an automaton A2 of size |A2| ≤ Cn · |A1|

recognising f−1
2 (R), and vice versa.

Let U be one of the universal finite-word automatic structures SΣ (for

|Σ| > 1), Pf (∆1), or (N,+, |k) (for k > 1). Using semi-synchronous

translations one can establish the following.

Theorem 1.4.26 ([5, 6]) The universal structure U has only a single

word-automatic presentation up to equivalence.

The assertion of the theorem can be reformulated as follows.

Corollary 1.4.27 For a relation R, the expansion (U, R) is in S-AutStr

if, and only if, R is FO-definable in U.

The prime presentation of a structure, if one exists, is unique up to

equivalence, hence may as well be called canonical. The unary presen-

tation of (N, <) is a prime word-automatic presentation. It is, however,

not a prime presentation of (N, suc), which allows, for every m > 1 a

word-automatic presentation in which divisibility by m is not regular

[90]. It can be inferred that (N, suc) has no prime presentation.

Recall Theorem 1.3.27 stating that each word-automatic presenta-

tion, of structure A, over a domain of polynomial density of degree d

directly corresponds to a d-dimensional interpretation of A in the struc-

ture M = (N, <, {≡(modm)}m>1), and hence also in (N,+). So every

p-automatic structure has infinitely many pairwise incomparable word-

automatic presentations ‘inherited’ from (N,+), namely, based on dif-

ferent numeration systems.

In fact, M allows a non-trivial 2-dimensional interpretation in itself.

Simply consider the lexicographic ordering of all pairs (n1, n2) such that

n1 ≥ n2 as an interpretation of (N, <) and observe that moduli of po-

sitions within the lexicographic ordering of tuples can be expressed in

terms of moduli of their components. Thus, by composing interpreta-

tions, every p-automatic presentation of M is properly subsumed by

other p-automatic presentations with domains of asymptotically greater

polynomial densities. This carries over to all p-automatic structures.

In contrast, from results of [5, 8] it follows that g 4 f implies g ∼ f

for any two word-automatic presentations of a given structure, provided

that either both f and g have domains of exponential density, or both

have a domain of polynomial density of the same degree.

Therefore, the height of the partial order of word-automatic presen-

1.4 More on word-automatic presentations 59

tations of A under subsumption and modulo equivalence is ω if A is

p-automatic and 1 if A is not p-automatic. It is not known whether the

width of the subsumption order modulo equivalence is always one or

infinite for word-automatic structures that are not p-automatic.

tree-automatic presentations

Colcombet and Löding [47] investigated the power of finite-subset in-

terpretations applied to arbitrary trees. In our terminology these are

tree-automatic presentations with arbitrary oracles.

In the tree-automatic model the analogue of Theorem 1.4.26 does not

hold. A tree-automatic presentation of Pf (∆2) incomparable with the

natural one can be forged simply by ‘folding each tree in half about the

vertical axis’, i.e. taking the mirror image of the subtree below the right

child of the root and smoothly combing it together with the untouched

left half, e.g. as in Example 1.3.11(3). Despite this, the fact concerning

primality of the natural presentation of the universal structure holds in

an even stronger sense.

Proposition 1.4.28 ([47, Lemma 5.6]) The natural tree-automatic

presentation with oracle O and with the identity naming function of the

finite-subset envelope Pf (TO) of the oracle tree TO is a prime presenta-

tion with respect to tree-automatic presentations with arbitrary oracle.

In particular, ‘the’ word-automatic presentation of Pf (∆1) and the

natural tree-automatic presentation of Pf (∆2) are both prime even among

tree-automatic presentations with arbitrary oracles. This is complemented

by the following result of [47].

Theorem 1.4.29 All tree-automatic presentations of Pf (∆1) are equiv-

alent.

Therefore, the same holds true for all of the universal structures from

Theorem 1.4.26.

1.4.5 Other notions of automaticity

Specific automatic presentations have been employed in other mathe-

matical fields: computational group theory [31], symbolic dynamics [13],

numeration systems (of integers or reals) [76], and infinite sequences

represented in natural numeration systems [2, 26, 4]. In this section we

survey natural presentations of certain structures that have mostly been

considered independently of the general theory of automatic structures.

60 Automata-based presentations of infinite structures

Automatic groups

Thurston (1986) motivated by work of Cannon on hyperbolic groups

introduced the notion of automatic groups. A finitely generated group

G is automatic in this sense if for some set of semigroup generators S

and associated canonical homomorphism f : S∗ → G

(i) there is a regular language W ⊂ S∗ so that f restricted to W is

surjective,

(ii) for every s a generator from S or the group identity, the following

binary relation over W is regular:

{(u, v) | f(u) = f(v)s}.

This is in fact an algebraic notion: it does not depend on the particular

choice of generators. From the automata presenting the group one can

extract a finite presentation of the group, and a quadratic-time algorithm

deciding the word problem.

Proposition 1.4.30 (k-fellow traveler property) A group G with semi-

group generators S = {s1, . . . , sr} is automatic if, and only if, there ex-

ists a regular set W ⊆ S∗ and k ∈ N such that f |W is surjective and W

satisfies the k-fellow traveler property:

∀u, v ∈W with d(u, v) ≤ 1 ∀i ≤ max{|u|, |v|} : d(u1 . . . ui, v1 . . . vi) ≤ k

where d(u, v) denotes the length of the shortest path between u and v in

the Cayley graph of G with generators S.

k
1

Figure 1.4 k-fellow traveler property.

Virtually Abelian groups and Gromov’s word hyperbolic groups con-

stitute important examples of automatic groups in this sense. Major

results of this programme are presented in [31] (see also the introduc-

tions by Farb [71] and by Choffrut [46]).

More recently, this notion has been extended to semigroups [29, 30,

84, 28] and monoids [83, 129, 102].

1.4 More on word-automatic presentations 61

Let us compare the following three notions: (i) groups whose mul-

tiplication function admits a word-automatic presentation, (ii) finitely

generated automatic groups, and (iii) finitely generated groups with a

Cayley graph admitting a word-automatic presentation. It is known [116]

that a finitely generated group allows a word-automatic presentation of

type (i) iff it is virtually Abelian. All virtually Abelian finitely generated

groups are automatic in the sense of this subsection. Hence (i) implies

(ii) for finitely generated groups. Furthermore, by definition, the Cay-

ley graph of every automatic group has a word-automatic presentation.

Hence (ii) implies (iii), but the converse fails. As Sénizergues has pointed

out the Heisenberg group is not automatic even though its Cayley graph

has an automatic presentation. For further reading we recommend the

survey by Nies [114].

Generalised numeration systems

The theory of generalised numeration systems [76] is concerned with

representations of N and R in various bases and using different (possibly

negative) digits. In general, the basis U0 < U1 < U2 < . . . of the system

does not have to be the sequence of powers of a natural. One considers

bases satisfying appropriate linear recursions, or alternatively powers of

a base β which is the greatest root of a polynomial of a certain type.

The study of generalised numeration systems goes back to Rényi who in

1957 introduced β-expansions.

Without going into the particulars of this very rich field we point

out that a number may have more than one representation in a given

numeration system. Thus from a practical perspective one is interested

in normalised numerals obtained via the greedy algorithm. Normalised

numerals are ordered according to <llex (length and then lexicographi-

cally, most significant digit first). A regular set of (normalised) numerals

N ⊆ [d]∗ over the set of digits 0, . . . , d− 1 is simply an automatic copy

of (N, <) of the form (N,<llex).

A fundamental question in this context asks under which circum-

stances addition can be computed by a synchronous finite automaton.

When this is the case one speaks of a regular numeration system. On

this matter we refer to [76] and the references therein.

Example 1.4.31 The Fibonacci numeration system is a prominent

example of a regular numeration system. It has the Fibonacci num-

bers 1, 2, 3, 5, 8, . . . as its basis, and the binary digit set. The normalised

numerals delivered by the greedy algorithm are ε, 1, 10, 100, 101, 1000,

62 Automata-based presentations of infinite structures

1001, 1010, 10000, 10001, . . . in the length-lexicographic ordering. They

are the binary strings avoiding 11 as a factor since greedy normalisation

prefers 100 to 11. Naturally, 10n represents the nth Fibonacci number.

More generally we ask how can one classify the word-automatic pre-

sentations of (N,+)? Or those of (N, <)? Below we survey known classes

of automatic presentations of expansions of (N, <) by unary predicates,

i.e. infinite sequences.

Automatic sequences

The theory of automatic sequences [2] studies ω-words representable

in more-or-less standard numeration systems. Presentations of primary

concern are those of base k ∈ N, or of base −k, and possibly involving

negative digits.

Definition 1.4.32 A sequence s : N → Σ is k-automatic if for every

a ∈ Σ the set Na of numerals in the standard base k numeration system

representing all positions n such that s(n) = a constitutes a regular

language.

These k-automatic sequences have been characterised in both alge-

braic and logical terms. In order to formulate another characterisation

some notions are required. A morphism ϕ : Γ∗ → Σ∗ is said to be k-

uniform if |ϕ(a)| = k for each a ∈ Γ. Codings are 1-uniform morphisms.

A morphism ϕ : Γ∗ → Γ∗ is prolongable on some a ∈ Γ if a is the first

symbol of ϕ(a). In this case the sequence (ϕn(a))n∈N converges to either

a finite or infinite word, which is a fixed point of ϕ, denoted ϕω(a).

Theorem 1.4.33 ([26, 2]) For any sequence s : N → Σ the following

are equivalent:

(1) s is k-automatic;

(2) the k-kernel of s: {(snkm+r)n | r,m ∈ N, r < km} is finite;

(3) the sets s−1(a) are FO-definable in (N,+, |k) for each a ∈ Σ;

(4) s = σ(τω(a)) for some k-uniform morphism τ on some Γ∗ and a

coding σ : Γ→ Σ;

(5) (assuming k is a prime and Σ ⊆ {0, . . . , k − 1}): the formal power

series S(x) =
∑

n snx
n ∈ Fk[[x]] is algebraic over Fk[x].

For example, consider the morphism τ : 0 7→ 01, 1 7→ 10. Its fixed point

τω(0) is the Thue-Morse sequence t = 01101001100101101001 This

is a truly remarkable sequence bearing a number of characterisations and

combinatorial properties [3]. For instance, its nth digit is 1 if, and only

1.4 More on word-automatic presentations 63

if, the binary numeral of n contains an odd number of 1’s. The 2-kernel

of t is {t, t}, where t is obtained from t by flipping every bit.

Morphic words

One obtains a definition of morphic words by relaxing characterisa-

tion (4) of the above theorem. Morphic words thus constitute a gen-

eralisation of automatic sequences. They and their relatives have been

extensively studied in the context of formal language theory, Linden-

mayer systems and combinatorics on words.

Definition 1.4.34 Morphic words are those of the form σ(τω(a)) for

arbitrary homomorphism τ prolongable on a and arbitrary homomor-

phism σ : Γ∗ → Σ∗ extended to ω-words in the obvious way.

Example 1.4.35 Consider τ : a 7→ ab, b 7→ ccb, c 7→ c and σ : a, b 7→

1, c 7→ 0 both homomorphically extended to {a, b, c}∗. The fixed point

of τ starting with a is the word abccbccccbc6b . . ., and its image under σ,

11001041061081 . . ., is the characteristic sequence of the set of squares.

In general, for every strictly positive N-rational sequence (sk) the char-

acteristic sequence of the set {
∑n

k=0 sk | n ∈ N} is morphic [38]. This

result also follows from Proposition 1.4.37.

While k-automatic sequences allow automatic presentations over the

set of standard base k numerals, the above example suggests that mor-

phic words may need generalised numeration systems. Indeed, every mor-

phic word is automatically presentable in the following sense.

Consider a finite ordered alphabet Γ = {a1 < a2 < . . . < ar}. In the

induced length-lexicographic order, denoted <llex, words over Γ are or-

dered according to their length first, while words of the same length are

ordered lexicographically. Thus (D,<llex) provides an automatic presen-

tation of (N, <) for every infinite regular language D over Γ. Base k as

well as so called generalised numeration systems are special cases of this

scheme. The following notion thus generalises Definition 1.4.32.

Definition 1.4.36 We say that an ω-word w : N→ Σ is length-lexico-

graphically presentable if there is an automatic presentation (D,<llex) of

(N, <) with naming function f : D → N such that the sets f−1(w−1(a))

are regular for each a ∈ Σ.

It is not hard to see that an ω-word is length-lexicographically pre-

sentable if and only if it is morphic. There is a perfectly natural corre-

spondence between the morphisms generating a word and the automaton

64 Automata-based presentations of infinite structures

recognising the set of ‘numerals’, which, when length-lexicographically

ordered, give an automatic presentation of the morphic word.

Proposition 1.4.37 ([122]) An ω-word w is length-lexicographically

presentable if, and only if, w is morphic.

We illustrate the transformation from one formalism to the other on

the characteristic sequence of squares from Example 1.4.35. Recall that

it is generated by the following morphism τ and final substitution σ

τ : a 7→ ab b 7→ ccb c 7→ c

σ : a 7→ 1 b 7→ 1 c 7→ 0

The idea is to interpret symbols {a, b, c, 0, 1} as states. Without loss

of generality, the alphabets of the ranges of σ and τ are disjoint. The

alphabet Γ of the automatic presentation consists of digits ranging from

0 to |τ | + |σ| − 1, where |τ | is the maximum of |τ(x)| with x ∈ {a, b, c}

and |σ| is defined similarly. Letters of the alphabet, ordered as usual, are

used to index positions within the right-hand side of a τ -rule, or, when

larger, positions inside the right-hand side of a substitution via σ.

// a

0

�� 1 //

3

��

b

2

�� 0,1 //

3
����

��
��

�
c

0

��

3

��
1 0

The domain D of the presentation is recognised by the above automa-

ton with both 1 and 0 as final states. With only 1 as a terminal state,

the automaton recognises the numerals representing a square relative to

the length-lexicographic enumeration of D. Starting with a deterministic

automaton this transformation can be reversed producing a morphism τ

representing the transition function linearised according to the ordering

on the alphabet and with σ identified by the terminal states.

The MSO-theory of the structure (N, <, (w−1(a))a) for morphic w

is decidable [38]. Moreover, the class of morphic words is closed under

MSO-definable recolourings, i.e. under deterministic generalised sequen-

tial mappings [118]. These results are generalised by the following one,

which can be seen as an extension of the Fundamental Theorem 1.3.4.

Theorem 1.4.38 ([7]) Let d = (D,<llex, P) be a length-lexicographic

presentation of a morphic word w and let ϕ(x) be an MSO[<,P]-formula

1.4 More on word-automatic presentations 65

having only first-order variables free. Then there is an automaton A,

computable from d and ϕ and such that (d,A) is a word-automatic pre-

sentation of w expanded by the relation defined by ϕ.

Caucal has shown that morphic sequences can be constructed as graphs

on the second level of the pushdown hierarchy (cf. Definition 1.2.14) [43].

However, there are automatically presentable ω-words on higher levels

as well.

Higher-order morphic words

Higher-order morphic words were introduced in [4, 7]. Morphic words

of order k can be defined either in the style of Definition 1.4.34 based

on a notion of ‘morphisms of order-k stacks’ or similar rules, or as in

Definition 1.4.36 as those having an automatic presentation using the ‘k-

fold nested length-lexicographic order’ induced by an ordered alphabet.

Theorem 1.4.38 extends to these automatic presentations of higher-order

morphic words. The classes of order k morphic words form an infinite

hierarchy, and are constructible on the 2k-th level of the pushdown hi-

erarchy [7].

Example 1.4.39 As an example we mention the Champernowne word

(cf. Example 1.3.23) obtained by concatenating decimal numerals in

their usual order:

C = 1234567891011121314 . . .

It is on the second level of this hierarchy (and on the fourth level of

the pushdown hierarchy). Consider the level 2 morphism ∆ given by the

following intuitive production rules

Sx → SxAτ1(x) . . . Aτ9(x)

Ax → Aτ0(x)Aτ1(x) . . . Aτ9(x)

where each τi is a (level 1) morphism of words in the usual sense mapping

each digit d ∈ {0, . . . , 9} to d and # to i#. Applying ∆ repeatedly to

the initial level 2 stack S# yields the following converging sequence

S# → S#A1#A2# . . . A9#

→ S#A1#A2# . . . A9#A10# . . . A19# · · · · · ·A90# . . . A99#

→ · · ·

Hence C can be specified as C = σ(∆ω(S#)) with the morphism σ

erasing all #’s while preserving the other (level 1) symbols.

To give a word-automatic presentation we take the domain D to be

66 Automata-based presentations of infinite structures

comprised of all words of the form d1m1d2m2 . . . dsms with d1d2 . . . ds
a conventional decimal numeral and m1m2 . . .ms = oixos−i−1 a marker

indexing the ith digit of this numeral. Elements of the domain are or-

dered using the length-lexicographic ordering in a nested fashion: com-

paring numerals (i.e. odd positions) first, and then according to the

position of the marker x.

The Champernowne word contains every finite word over {0, 1, . . . , 9}

as a factor. The satisfiability problem of first-order logic on finite words,

known to be non-elementary [79], is thus expressible in the FO the-

ory of the Champernowne word, which is therefore also non-elementary.

For the same reason the Champernowne word is not morphic. Every

morphic word is MSO-definable in the Champernowne word, and every

word-automatic equivalence structure having only finitely many infinite

equivalence classes is interpretable in a second-order morphic word [7].

Proposition 1.4.40 Consider A = (A,E) with E an equivalence re-

lation having, for each n > 0, f(n) ∈ N many equivalence classes of

size n, and no infinite classes. Then A ∈ S-AutStr if, and only if,

there is a second-order morphic word w = 0m010m110m21 . . . such that

f(n) = |{i | mi = n}|.

It remains open whether the decidability and definability results for

MSO hold for all word-automatic infinite sequences. We are intrigued

whether the isomorphism problem of automatic ω-words, or more broadly

for automatic scattered linear orders, is decidable. Already for morphic

words this is a notorious long-standing open problem.

1.5 Automatic Model Theory

We may reformulate the original problem — we seek a class of finitely-

presentable structures C that has an interesting model theory and lies

somewhere between the finite structures (finite model theory) and all

structures (classical model theory).

The richest and oldest class consists of the computable structures —

these are structures whose domain and atomic relations are computable

by Turing machines [70]. In computable model theory, a common theme

is to take classical results from mathematics and model theory and to

see to what extent they can be made effective. Here are two illustrative

observations:

1.5 Automatic Model Theory 67

(i) A computable (consistent) first-order theory has a computable model.

Indeed, Henkin’s construction can be seen as an algorithm computing

the domain and atomic relations.

(ii) Every two computable presentations of the rational ordering (Q, <)

are computably isomorphic. Again, the standard back-and-forth argu-

ment can be seen as an algorithm building the isomorphism.

The program of feasible mathematics in the 1980’s included the devel-

opment of polynomial-time model theory [45]. However, every relational

computable structure is isomorphic (in fact computably isomorphic) to

a polynomial-time structure. Automatic structures can be seen as a fur-

ther restriction of this class, and in fact this is the motivation in [87]. In

this section we discuss some aspects of the model theory of automatic

structures, a subject still in its infancy.

We split our discussion along two lines: model theory of the class

S-AutStr, and model theory of the particular universal structure S[2]
(cf. Theorem 1.3.17).

1.5.1 Model theory restricted to the class of

word-automatic structures

Blumensath shows that, as expected, certain notions of model theory

fail when restricted to the class of automatic structures.

Proposition 1.5.1 (i) It is undecidable whether an FO-formula has a

word-automatic model.

(ii) The following properties fail on the class of word automatic structures:

compactness, Beth, Interpolation, and Los-Tarski.

The proofs are based on the observation that there is a FO formula

which has automatic models of every finite cardinality but no infinite

automatic models.

Löwenheim-Skolem

An automatic version of the Downward Löwenheim-Skolem Theorem

would say that every uncountable ω-automatic structure has a countable

elementary substructure that is also ω-automatic. Unfortunately this is

false since there is a first-order theory with an ω-automatic model but no

countable ω-automatic model. Indeed, consider the first-order theory of

atomless Boolean Algebras. Kuske and Lohrey [94] have observed that it

68 Automata-based presentations of infinite structures

has an uncountable ω-automatic model (namely the algebra from Exam-

ple 1.3.12.4). However, Khoussainov et al. [88] show that the countable

atomless Boolean algebra is not automatic and so, by Theorem 1.4.20,

not ω-automatic either.

Here is the closest we can get to an automatic Downward Löwenheim-

Skolem Theorem for ω-automatic structures.

Proposition 1.5.2 ([85]) Let (D,≈, {Ri}i≤ω) be an omega-automatic

presentation of A and let Aup be its restriction to the ultimately periodic

words of D. Then Aup is a countable elementary substructure of A.

Proof Relying on the Tarski-Vaught criterion for elementary substruc-

tures we only need to show that for all first-order formulas ϕ(x, y) and

elements b of Aup

A |= ∃yϕ(b, y) ⇒ Aup |= ∃yϕ(b, y) .

By Theorem 1.3.4 ϕ(x, y) defines an omega-regular relation and, simi-

larly, since the parameters b are all ultimately periodic the set defined by

ϕ(b, y) is omega-regular. Therefore, if it is non-empty, then it also con-

tains an ultimately periodic word, which is precisely what we needed. ✁

An identical proposition, also independently noted by Khoussainov

and Nies, holds for A ∈ ωT-AutStr with regular trees in place of ulti-

mately periodic words.

Consider the natural, say, binary ω-automatic presentation of (R,+).

Its restriction to the set of elements represented by ultimately periodic

ω-words is isomorphic to the additive group of the rationals (Q,+).

Tsankov [136] has shown that there is no automatic divisible torsion-free

Abelian group (DTAG). Hence the theory of DTAGs is another example

of a first-order theory having an uncountable ω-automatic model but no

countable (ω-)automatic models.

Automatic theorems

Kőnig’s Lemma

Kőnig’s Lemma says that an infinite finitely-branching tree has an in-

finite path. We split our discussion of automatic analogues along two

lines, depending on whether the signature is that of partial order (T,�)

or successor (T, S).

Theorem 1.5.3 ([91]) If T = (T,�) is an automatic copy of an infi-

nite finitely-branching tree, then T has a regular infinite path. That is,

there exists a regular set P ⊆ T where P is an infinite path of T .

1.5 Automatic Model Theory 69

Proof Define a set P as those elements x such that ∃∞w[x ≺ w] and

for which every y ≺ x satisfies that

∀z, z′ ∈ S(y)[z � x⇒ z ≤llex z
′].

Then P is the length-lexicographically least infinite path of T (in the

ordering induced by the finite strings presenting the tree). ✁

However, using the 2-Ramsey quantifier we can do more.

Theorem 1.5.4 ([91]) If T = (T,�) is an automatic copy of a tree

with countably many infinite paths, then every infinite path is regular.

Proof Denote by E(T) ⊆ T the set of elements of a tree T that are

on infinite paths. It is definable in T using the 2-Ramsey quantifier, so

Theorem 1.4.7 gives that E(T) is regular. Then every isolated path of T

is regular, since it is definable as {x ∈ E(T) | p � x} ∪ {x ∈ E(T) | x ≺

p}, for suitable p ∈ E(T). Replace T by its derivative d(T), which is

also automatically presentable. Since the CB-rank of T is finite [91] and

dCB(T)(T) is the empty tree, every infinite path is defined in this way. ✁

However, automatic successor trees behave more like computable trees:

Theorem 1.5.5 ([96]) The problem of deciding, given automata pre-

senting a successor tree (T, S), whether or not it has an infinite path, is

Σ1
1-complete.

The proof consists of a reduction from the problem of whether a non-

deterministic Turing machine visits a designated state infinitely often.

We compare with the computable case.20 Fix the computable presen-

tation of the full binary tree as consisting of the finite binary sequences

with the immediate successor relation (so in fact the prefix relation is

also computable). To stress this presentation, we refer to the tree as 2ω.

Similarly fix a natural computable presentation ωω of the ω-branching

tree. A computable subtree of either of these trees is a computable prefix-

closed subset.

(i) There is an infinite computable subtree of 2ω with no computable

infinite path.

(ii) There is a computable subtree of ωω with exactly one infinite path,

and this path is not computable.

(iii) The set of indices of computable subtrees of the binary tree 2ω with

at least one infinite path is Π0
2-complete.

20 Thanks to Frank Stephan for discussions concerning this case.

70 Automata-based presentations of infinite structures

(iv) The set of indices of computable subtrees of ωω with at least one

infinite path Σ1
1-complete.

Cantor’s Theorems

One of Cantor’s theorems says that every countable linear ordering em-

beds in the rational ordering Q. The standard proof is easily seen to be

effective given a computable presentation of (Q, <).

There are potentially a variety of automatic versions. The following

proposition is the best known.

Proposition 1.5.6 [93] Every automatic copyM of a linear order can

be embedded into some automatic copy of Q by a function f :M → Q

with the following properties:

(i) The function f is continuous with respect to the order topology.

(ii) The graph of f is regular.

It is not known whether there is a single automatic copy of Q that

embeds, in the sense above, all automatic copies of all automatically

presentable linear ordersM.

Cantor also proved that Q is homogeneous: For every two tuples x1 <

· · · < xm and y1 < · · · < ym there is an automorphism f : Q → Q

with f(xi) = yi for i ≤ m. Again there might be a number of automatic

variations. Call an automatic copy of Q automatically homogeneous if for

every two tuples there is an automorphism as above that is also regular.

Proposition 1.5.7 [93] There is an automatic copy of Q that is au-

tomatically homogeneous. There is an automatic copy of Q that is not

automatically homogeneous.

Scott ranks

Every countable structure A has a sentence of the infinitary logic Lω1,ω

(it allows, in addition to FO, countable disjuncts but still only finitely

many free variables) that characterises A up to isomorphism. The Scott

rank of A is the minimal quantifier rank amongst all such sentences.

Theorem 1.5.8 ([86]) For every computable ordinal there is an auto-

matic structure of Scott Rank at least α.

The idea is to massage the configuration space of Turing machines

presenting a computable structure (having Scott Rank α) to get an au-

tomatic structure of similar rank.

1.5 Automatic Model Theory 71

1.5.2 On the universal word-automatic structure

We conclude by highlighting some model-theoretic properties of the uni-

versal structure S[2].

(i) S[2] has infinite VC-dimension [15]. That is, there is a formula φ(x, z)

that defines a family of sets of the form φ(−, z)S[2] as one varies the

parameter z, and this family fully shatters arbitrarily large finite sets.

(ii) S[2] admits quantifier elimination (QE) in the expansion of all defin-

able unary predicates and binary functions. In fact, no expansion with

definable unary functions (and arbitrary predicates) admits QE [15].

Blumensath [20, p. 67] raised the question of whether there are non-

standard models of the theory of the universal structure S[2] in S-AutStr.

Here we sketch an argument resting on Theorem 1.4.26 that shows that

there are no word-automatic non-standard models. This result was ob-

tained in discussions with Bakhadyr Khoussainov.

Theorem 1.5.9 S[2] is the only word-automatic model of its theory.

Proof Assume, for a contradiction, an automatic presentation of a non-

standard elementary extension of S[2]. By ‘component’ we mean a max-

imal set of elements connected by successor relations. Every elementary

extension of S[2] consists of the standard component isomorphic to S[2]
(containing the root), and any number of non-standard components,

that are, as unlabelled graphs, all isomorphic to one-another. The non-

standard components are distinguished by the infinite sequences of 0-1

successors ascending towards the root.

(0) The set of representatives of elements of each component is regular.

Indeed, the equivalence relation of belonging to the same component

is FO + ∃∞-definable in the model (by saying that there is a common

ancestor having finite distance from both elements), hence regular in the

representation.

(1) There is a non-standard element below every standard node.

This follows from the fact that the formula

∀x, x′, y : el(x, x′) ∧ x ≺ y → ∃y′ : el(y, y′) ∧ x′ ≺ y′

being true in S[2] must also hold in every non-standard model.

72 Automata-based presentations of infinite structures

Combining observation (0) and Theorem 1.4.26 we may assume that

the presentation restricted to the standard component is the natural one

having the identity as naming function. The binary ω-sequence naturally

associated with an infinite branch of the standard component provides a

representation of the set of nodes along that branch consistent with the

assumed presentation of the model. Denote by Π the set of paths with

a non-standard element below them.

(2) The set Π is ω-regular.

Indeed, a Büchi-automaton is built to guess a finite word represent-

ing a non-standard element and to check, using the automata of the

assumed presentation, that it is a descendant of all finite prefixes of the

input path. Given that our model is countable, hence so is Π, we have

the following consequence of claim (2).

(3) Every path in Π is ultimately periodic with a period of bounded length.

To close the circle, consider for each n ∈ N the sentence

∀x∃y |y| > |x| ∧ 0n1 �prefix y ∧ (∀z ≺prefix y)[end1(z)→ z0n1 �prefix y]

where end1(z) is shorthand for saying that the last letter of z is 1. This

sentence expresses that for every length |x| there is a longer word y with

as many initial prefixes in (0n1)∗ as possible. In particular this sentence

holds for non-standard elements x. Consequently,

(4) for every n ∈ N there is an infinite branch of the standard component

with label (0n1)ω and having non-standard elements below it.

This contradicts observation (3). ✁

Therefore, by Theorem 1.4.20, there are no countable ω-word auto-

matic non-standard models either. Furthermore, using Theorem 1.4.29

in place of Theorem 1.4.26 in the argument shows there are no non-

standard finite-tree automatic models of S[2]. To prove that there are no

uncountable ω-word automatic non-standard models of S[2] one tight-

ens (4) and exploits that all automatic presentations of non-standard

components are equivalent.

References

[1] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction
at level 2 for string languages. In FoSSaCS, pages 490–504, 2005.

[2] J.-P. Allouche and J. Shallit. Automatic Sequences, Theory, Applica-
tions, Generalizations. Cambridge University Press, 2003.

[3] J.-P. Allouche and J. O. Shallit. The Ubiquitous Prouhet-Thue-Morse
Sequence. In C. Ding, T. Helleseth, and H. Niederreiter, editors, Se-
quences and Their Applications: Proceedings of SETA ’98, pages 1–16.
Springer-Verlag, 1999.

[4] V. Bárány. A hierarchy of automatic ω-words having a decidable MSO
theory. Journées Montoises ’06, Rennes, 2006.

[5] V. Bárány. Invariants of automatic presentations and semi-synchronous
transductions. In STACS ’06, volume 3884 of LNCS, pages 289–300,
2006.

[6] V. Bárány. Automatic Presentations of Infinite Structures. Phd thesis,
RWTH Aachen University, 2007.

[7] V. Bárány. A hierarchy of automatic ω-words having a decidable MSO
theory. R.A.I.R.O. Theoretical Informatics and Applications, 42:417–
450, 2008.

[8] V. Bárány. Semi-synchronous transductions. Acta Informatica,
46(1):29–42, 2009.

[9] V. Bárány, L. Kaiser, and A. Rabinovich. Eliminating cardinality quan-
tifiers from MLO. Manuscript, 2007.

[10] V. Bárány, Ch. Löding, and O. Serre. Regularity problems for visibly
pushdown languages. In STACS ’06, volume 3884 of LNCS, pages 420–
431, 2006.

[11] K. Barthelmann. On equational simple graphs. Tech. Rep. 9, Universität
Mainz, Institute für Informatik, 1997.

[12] K. Barthelmann. When can an equational simple graph be generated
by hyperedge replacement? In MFCS, pages 543–552, 1998.

[13] M.-P. Béal and D. Perrin. Symbolic Dynamics and Finite Automata. In
A. Salomaa and G. Rosenberg, editors, Handbook of Formal Languages,
Vol. 2, pages 463–503. Springer Verlag, 1997.

74 References

[14] M. Benedikt and L. Libkin. Tree extension algebras: logics, automata,
and query languages. In Proceedings of the 17th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS), pages 203–212, 2002.

[15] M. Benedikt, L. Libkin, Th. Schwentick, and L. Segoufin. A model-
theoretic approach to regular string relations. In Joseph Halpern, editor,
LICS 2001, pages 431–440. IEEE Computer Society, June 2001.

[16] M. Benedikt, L. Libkin, Th. Schwentick, and L. Segoufin. Definable re-
lations and first-order query languages over strings. J. ACM, 50(5):694–
751, 2003.

[17] D. Berwanger and A. Blumensath. The monadic theory of tree-like
structures. In E. Grädel, W. Thomas, and T. Wilke, editors, Automata,
Logics, and Infinite Games, number 2500 in LNCS, chapter 16, pages
285–301. Springer Verlag, 2002.

[18] A. Bès. Undecidable extensions of Büchi arithmetic and Cobham-
Semënov theorem. Journal of Symbolic Logic, 62(4):1280–1296, 1997.

[19] A. Bés. An Extension of the Cobham-Semënov Theorem. J. of Symb.
Logic, 65(1):201–211, 2000.

[20] A. Blumensath. Automatic Structures. Diploma thesis, RWTH-Aachen,
1999.

[21] A. Blumensath. Prefix-Recognisable Graphs and Monadic Second-Order
Logic. Technical report AIB-2001-06, RWTH Aachen, 2001.

[22] A. Blumensath. Axiomatising Tree-interpretable Structures. In STACS,
volume 2285 of LNCS, pages 596–607. Springer-Verlag, 2002.

[23] A. Blumensath, Th. Colcombet, and Ch. Löding. Logical theories and
compatible operations. In J. Flum, E. Grädel, and T. Wilke, edi-
tors, Logic and Automata: History and Perspectives, Texts in Logic and
Games, pages 73–106. Amsterdam University Press, 2007.

[24] A. Blumensath and E. Grädel. Automatic structures. In LICS 2000,
pages 51–62. IEEE Computer Society, 2000.

[25] A. Blumensath and E. Grädel. Finite presentations of infinite structures:
Automata and interpretations. Theory of Comp. Sys., 37:641 – 674,
2004.

[26] V. Bruyère, G. Hansel, Ch. Michaux, and R. Villemaire. Logic and p-
recognizable sets of integers. Bull. Belg. Math. Soc., 1:191 – 238, 1994.

[27] J. R. Büchi. Weak second-order arithmetic and finite automata. Zeit.
Math. Logih Grund. Math., 6:66–92, 1960.

[28] A. J. Cain, E. F. Robertson, and N. Ruskuc. Subsemigroups of groups:
presentations, malcev presentations, and automatic structures. Journal
of Group Theory, 9(3):397–426, 2006.

[29] C. M. Campbell, E. F. Robertson, N. Ruskuc, and R. M. Thomas. Au-
tomatic semigroups. Theor. Comput. Sci., 250(1-2):365–391, (2001).

[30] C. M. Campbell, E. F. Robertson, N. Ruskuc, and R. M. Thomas. Auto-
matic completely-simple semigroups. Acta Math. Hungar., 96:201–215,
2002.

[31] J.W. Cannon, D.B.A. Epstein, D.F. Holt, S.V.F. Levy, M.S. Paterson,
and W.P. Thurston. Word processing in groups. Jones and Barlett Publ.,
Boston, MA, 1992.

References 75

[32] A. Carayol. Regular sets of higher-order pushdown stacks. In Proceed-
ings of Mathematical Foundations of Computer Science (MFCS 2005),
volume 3618 of LNCS, pages 168–179, 2005.

[33] A. Carayol and Th. Colcombet. On equivalent representations of infinite
structures. In ICALP, volume 2719 of LNCS, pages 599–610. Springer,
2003.

[34] A. Carayol and A. Meyer. Linearly bounded infinite graphs. In MFCS,
volume 3618 of Lecture Notes in Computer Science, pages 180–191.
Springer, 2005.

[35] A. Carayol and A. Meyer. Context-Sensitive Languages, Rational
Graphs and Determinism. Logical Methods in Computer Science, 2(2),
2006.

[36] A. Carayol and C. Morvan. On rational trees. In Z. Ésik, editor, CSL 06,
volume 4207 of LNCS, pages 225–239, 2006.

[37] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs
in terms of logic and higher-order pushdown automata. In FSTTCS,
volume 2914 of LNCS, pages 112–123. Springer, 2003.

[38] O. Carton and W. Thomas. The monadic theory of morphic infinite
words and generalizations. Information and Computation, 176(1):51–
65, 2002.

[39] A. Caryol and Ch. Löding. MSO on the Infinite Binary Tree: Choice
and Order. In CSL, volume 4646 of LNCS, pages 161–176, 2007.

[40] D. Caucal. Monadic theory of term rewritings. In LICS, pages 266–273.
IEEE Computer Society, 1992.

[41] D. Caucal. On the regular structure of prefix rewriting. Theor. Comput.
Sci., 106(1):61–86, 1992.

[42] D. Caucal. On infinite transition graphs having a decidable monadic
theory. In ICALP’96, volume 1099 of LNCS, pages 194–205, 1996.

[43] D. Caucal. On infinite terms having a decidable monadic theory. In
MFCS, pages 165–176, 2002.

[44] D. Caucal. Deterministic graph grammars. In J. Flum, E. Grädel, and
T. Wilke, editors, Logic and Automata: History and Perspectives, Texts
in Logic and Games, pages 169–250. Amsterdam University Press, 2007.

[45] D. Cenzer and J.B. Remmel. Complexity-theoretic model theory and
algebra. In Handbook of Recursive Mathematics, Vol. 1, volume 138 of
Studies in Logic and the Foundations of Mathematics, pages 381–513.
North-Holland, Amsterdam, 1998.

[46] Ch. Choffrut. A short introduction to automatic group theory, 2002.
[47] T. Colcombet and C. Löding. Transforming structures by set interpre-

tations. Logical Methods in Computer Science, 3(2), 2007.
[48] Th. Colcombet. On families of graphs having a decidable first order

theory with reachability. In ICALP, volume 2380 of LNCS, pages 98–
109. Springer, 2002.

[49] Th. Colcombet. Equational presentations of tree-automatic structures.
In Workshop on Automata, Structures and Logic, Auckland, NZ, 2004.

[50] Th. Colcombet. Propriétés et représentation de structures infinies.
Thèse de doctorat, Université Rennes I, 2004.

76 References

[51] Th. Colcombet. A combinatorial theorem for trees. In ICALP, volume
4596 of LNCS, pages 901–912. Springer, 2007.

[52] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree Automata Techniques and Applica-
tions. In preparation, draft available online at http://www.grappa.univ-
lille3.fr/tata/.

[53] B. Courcelle. Graph algebras and monadic second-order logic. Cambridge
University Press, in writing...

[54] B. Courcelle. The definability of equational graphs in monadic second-
order logic. In ICALP, volume 372 of LNCS, pages 207–221. Springer,
1989.

[55] B. Courcelle. Graph rewriting: An algebraic and logic approach. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Vol-
ume B: Formal Models and Sematics, pages 193–242. Elsevier and MIT
Press, 1990.

[56] B. Courcelle. Recursive applicative program schemes. In J. v.d. Leeuwen,
editor, Handbook of Theoretical Computer Science, Vol. B, pages 459–
492. Elsevier and MIT Press, 1990.

[57] B. Courcelle. The monadic second-order logic of graphs ix: Machines
and their behaviours. Theoretical Computer Science, 151(1):125–162,
1995.

[58] B. Courcelle. Finite model theory, universal algebra and graph gram-
mars. In LFCS ’97, Proceedings of the 4th International Symposium on
Logical Foundations of Computer Science, pages 53–55, London, UK,
1997. Springer-Verlag.

[59] B. Courcelle. The Expression of Graph Properties and Graph Trans-
formations in Monadic Second-Order Logic. In G. Rozenberg, editor,
Handbook of graph grammars and computing by graph transformations,
vol. 1: Foundations, pages 313–400. World Scientific, New-Jersey, Lon-
don, 1997.

[60] B. Courcelle and J. A. Makowsky. Fusion in Relational Structures and
the Verification of Monadic Second-Order Properties. Mathematical
Structures in Computer Science, 12(2):203–235, 2002.

[61] B. Courcelle and I. Walukiewicz. Monadic second-order logic, graph
coverings and unfoldings of transition systems. Annals of Pure and
Applied Logic, 92:35–62, 1998.

[62] W. Damm. The IO- and OI hierarchies. Theoretical Computer Science,
20(2):95–208, 1982.

[63] C. Delhommé. Automaticité des ordinaux et des graphes homogènes.
Comptes Rendus Mathematique, 339(1):5–10, 2004.

[64] M.J. Dunwoody. The accessibility of finitely presented groups. Inven-
tiones Mathematicae, 81(3):449–457, 1985.

[65] S. Eilenberg, C.C. Elgot, and J.C. Shepherdson. Sets recognised by
n–tape automata. Journal of Algebra, 13(4):447–464, 1969.

[66] C. C. Elgot and J. E. Mezei. On relations defined by generalized finite
automata. IBM J. Research and Development, 9:47 – 68, 1965.

References 77

[67] C. C. Elgot and M. O. Rabin. Decidability and undecidability of exten-
sions of second (first) order theory of (generalized) successor. Journal
of Symbolic Logic, 31(2):169–181, 1966.

[68] C.C. Elgot. Decision problems of finite automata design and related
arithmetics. Trans. Amer. Math. Soc., 98:21–51, 1961.

[69] J. Engelfriet. Context-free graph grammars. In Handbook of formal
languages, vol. III, pages 125–213. Springer-Verlag New York, Inc., New
York, NY, USA, 1997.

[70] Y.L. Ershov, S.S. Goncharov, A. Nerode, and J.B. Remmel, editors.
Handbook of Recursive Mathematics, Vol. 1, volume 138 of Studies in
Logic and the Foundations of Mathematics. North-Holland, Amsterdam,
1998.

[71] B. Farb. Automatic Groups: A Guided Tour. L’Enseignment Math.,
38:291–313, 1992.

[72] S. Fratani. Automates à Piles de Piles ... de Piles. Thèse de doctorat,
Université Bordeaux 1, 2005.

[73] S. Fratani. Regular sets over tree structures. Rapport Interne 1358-05,
LaBRI, Université Paris 7, 2005.

[74] S. Fratani. The theory of successor extended by severals predicates.
Journées Montoises ’06, Rennes, 2006.

[75] S. Fratani and G. Sénizergues. Iterated pushdown automata and se-
quences of rational numbers. Ann. Pure Appl. Logic, 141(3):363–411,
2006.

[76] Ch. Frougny. Numeration systems. In M. Lothaire, editor, Algebraic
Combinatorics on Words. Cambridge University Press, 2002.

[77] E. Grädel. Simple interpretations among complicated theories. Infor-
mation Processing Letters, 35:235–238, 1990.

[78] E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Vardi,
Y. Venema, and S. Weinstein. Finite Model Theory and Its Applications.
Springer-Verlag, 2007.

[79] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and
Infinite Games, volume 2500 of LNCS. Springer-Verlag, 2002.

[80] A. Habel. Hyperedge Replacement: Grammars and Languages, volume
643 of Lecture Notes in Computer Science. Springer, 1992.

[81] M. Hague, A.S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible
pushdown automata and recursion schemes. In LICS’08. IEEE Com-
puter Society, 2008.

[82] G. Hjorth, B. Khoussainov, A. Montalbán, and A. Nies. From automatic
structures to Borel structures. In 23rd Symposium on Logic in Computer
Science (LICS), 2008.

[83] M. Hoffmann, D. Kuske, F. Otto, and R. M. Thomas. Some relatives of
automatic and hyperbolic groups, 2002.

[84] M. Hoffmann and R. M. Thomas. Notions of automaticity in semigroups.
Semigroup Forum, 66:337–367., (2003).

[85] L. Kaiser, S. Rubin, and V. Bárány. Cardinality and counting quantifiers
on ω-automatic structures. In STACS ’08, volume 08001 of Dagstuhl
Seminar Proceedings, pages 385–396. Internationales Begegnungs- und

78 References

Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany,
2008.

[86] B. Khoussainov and M. Minnes. Model theoretic complexity of auto-
matic structures. Annals of Pure and Applied Logic, To appear, 2008.

[87] B. Khoussainov and A. Nerode. Automatic presentations of structures.
In LCC ’94, volume 960 of LNCS, pages 367–392. Springer-Verlag, 1995.

[88] B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic struc-
tures: Richness and limitations. In LICS’04, pages 44–53, 2004.

[89] B. Khoussainov and S. Rubin. Graphs with automatic presentations over
a unary alphabet. Journal of Automata, Languages and Combinatorics,
6(4):467–480, 2001.

[90] B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity
in automatic structures. In STACS ’04, volume 2996 of LNCS, pages
440–451, 2004.

[91] B. Khoussainov, S. Rubin, and F. Stephan. Automatic linear orders and
trees. ACM Transactions on Computational Logic, 6(4):675–700, 2005.

[92] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees
are easy. In FoSSaCS’02, volume 2303 of LNCS, pages 205–222, 2002.

[93] D. Kuske. Is cantor’s theorem automatic? In LPAR, volume 2850 of
LNCS, pages 332–345. Springer, 2003.

[94] D. Kuske and M. Lohrey. First-order and counting theories of ω-
automatic structures. In FoSSaCS, pages 322–336, 2006.

[95] D. Kuske and M. Lohrey. Automatic structures of bounded degree re-
visited. arXiv:0810.4998, 2008.

[96] D. Kuske and M. Lohrey. Hamiltonicity of automatic graphs. In FIP
TCS 2008, 2008.

[97] H. Lauchli and Ch. Savioz. Monadic Second Order Definable Relations
on the Binary Tree. J. of Symbolic Logic, 52(1):219–226, 1987.

[98] S. Lifsches and S. Shelah. Uniformization and skolem functions in the
class of trees. Journal of Symbolic Logic, 63:103–127, 1998.

[99] Ch. Löding. Infinite Graphs Generated by Tree Rewriting. Doctoral
thesis, RWTH Aachen, 2003.

[100] Christof Löding. Reachability problems on regular ground tree rewriting
graphs. Theor. Comp. Sys., 39(2):347–383, 2006.

[101] M. Lohrey. Automatic structures of bounded degree. In LPAR, volume
2850 of LNCS, pages 346–360. Springer, 2003.

[102] M. Lohrey. Decidability and complexity in automatic monoids. In De-
velopments in Language Theory, pages 308–320, 2004.

[103] A. Meyer. Traces of term-automatic graphs. R.A.I.R.O. Theoretical
Informatics and Applications, 42, 2008.

[104] C. Michaux and F. Point. Les ensembles k-reconnaissables sont
définissables dans 〈N,+, Vk〉. C. R. Acad. Sci. Paris Sér. I Math.,
303(19):939–942, 1986.

[105] Ch. Morvan. Les graphes rationnels. Thèse de doctorat, Université de
Rennes 1, Novembre 2001.

[106] Ch. Morvan. Classes of rational graphs. Journées Montoises ’06, Rennes,
2006.

References 79

[107] Ch. Morvan and Ch. Rispal. Families of automata characterizing
context-sensitive languages. Acta Informatica, 41(4-5):293–314, 2005.

[108] Ch. Morvan and C. Stirling. Rational graphs trace context-sensitive
languages. In A. Pultr and J. Sgall, editors, MFCS 01, volume 2136 of
LNCS, pages 548–559, 2001.

[109] A. A. Muchnik. The definable criterion for definability in Presburger
arithmetic and its applications. Theor. Comput. Sci., 290(3):1433–1444,
2003.

[110] D. E. Muller and P. E. Schupp. Context-free languages, groups, the
theory of ends, second-order logic, tiling problems, cellular automata,
and vector addition systems. Bull. Amer. Math. Soc., 4(3):331–334,
1981.

[111] D. E. Muller and P. E. Schupp. Groups, the theory of ends, and context-
free languages. J. Comput. Syst. Sci., 26(3):295–310, 1983.

[112] D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata,
and second-order logic. Theor. Comput. Sci., 37:51–75, 1985.

[113] A. A. Nabebin. Expressibility in a restricted second-order arithmetic.
Siberian Mathematical Journal, 18(4):588–593, 1977.

[114] A. Nies. Describing groups. Bulletin of Symbolic Logic, 13(3):305–339,
2007.

[115] D. Niwiński. On the cardinality of sets of infinite trees recognizable by
finite automata. In Proceedings of the 16th International Symposium on
Mathematical Foundations of Computer Science, MFCS’91, volume 520,
pages 367–376. Springer, 1991.

[116] G. P. Oliver and R. M. Thomas. Finitely generated groups with au-
tomatic presentations. In STACS 2005, volume 3404 of LNCS, pages
693–704. Springer, 2005.

[117] C.-H. L. Ong. On model-checking trees generated by higher-order re-
cursion schemes. In LICS, pages 81–90. IEEE Computer Society, 2006.

[118] J.-J. Pansiot. On various classes of infinite words obtained by iterated
mappings. In Automata on Infinite Words, pages 188–197, 1984.

[119] A. Rabinovich. On decidability of monadic logic of order over the nat-
urals extended by monadic predicates. Unpublished note, 2005.

[120] A. Rabinovich and W. Thomas. Decidable theories of the ordering of
natural numbers with unary predicates. Submitted, 2006.

[121] M. Rigo. Numeration systems on a regular language: Arithmetic oper-
ations, recognizability and formal power series. Theoretical Computer
Science, 269:469, 2001.

[122] M. Rigo and A. Maes. More on generalized automatic sequences. J. of
Automata, Languages and Combinatorics, 7(3):351–376, 2002.

[123] Ch. Rispal. The synchronized graphs trace the context-sensistive lan-
guages. Electronic Notes in Theor. Comp. Sci., 68(6), 2002.

[124] S. Rubin. Automatic Structures. Phd thesis, University of Auckland,
NZ, 2004.

[125] S. Rubin. Automata presenting structures: A survey of the finite-string
case. Bulletin of Symbolic Logic, 14(2):169–209, 2008.

80 References

[126] A. L. Semenov. Decidability of monadic theories. In Mathematical Foun-
dations of Computer Science, Prague, 1984, volume 176 of LNCS, page
162?175. Springer, Berlin, 1984.

[127] G. Sénizergues. Semi-groups acting on context-free graphs. In
ICALP ’96: Proceedings of the 23rd International Colloquium on Au-
tomata, Languages and Programming, pages 206–218, London, UK,
1996. Springer-Verlag.

[128] G. Sénizergues. The bisimulation problem for equational graphs of finite
out-degree. SIAM J. Comput., 34(5):1025–1106, 2005.

[129] P. V. Silva and B. Steinberg. A geometric characterization of automatic
monoids. The Quarterly Journal of Mathematics, 55:333–356, 2004.

[130] J. Su and S. Grumbach. Finitely representable databases (extended ab-
stract. In In Proc. 13th ACM Symp. on Principles of Database Systems,
1994.

[131] A. Szilard, Sh. Yu, K. Zhang, and J. Shallit. Characterizing regular
languages with polynomial densities. In MFCS, pages 494–503, 1992.

[132] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B: Formal Models
and Sematics, pages 133–192. Elsevier and MIT Press, 1990.

[133] W. Thomas. Languages, automata, and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume III, pages
389–455. Springer, New York, 1997.

[134] W. Thomas. Constructing Infinite Graphs with a Decidable MSO-
Theory. In MFCS, volume 2747 of LNCS, pages 113–124, 2003.

[135] B.A. Trahtenbrot. Finite automata and the logic of one-place predicates.
Russian. Siberian Mathematical Journal, 3:103–131, 1962. English trans-
lation: American Mathematical Society Translations, Series 2, 59 (1966),
23-55.

[136] T. Tsankov. The additive group of the rationals is not automatic.
manuscript, 2009.

[137] R. Villemaire. The theory of 〈N,+, Vk, Vl〉 is undecidable. Theoretical
Computer Science, 106:337–349, 1992.

[138] I. Walukiewicz. Monadic second-order logic on tree-like structures. The-
oretical Computer Science, 275:311–346, 2002.

[139] S. Wöhrle and W. Thomas. Model checking synchronized products of
infinite transition systems. In LICS ’04, pages 2–11, Washington, DC,
USA, 2004. IEEE Computer Society.

	Automata-based presentations of infinite structures
	Finite presentations of infinite structures
	A hierarchy of finitely presentable structures
	From context-free graphs to prefix-recognisable structures
	Graph grammars and graph algebras
	Higher-order data structures
	Introducing products

	Automatic Structures
	Fundamentals
	Examples
	Injectivity
	Alternative characterisations
	Rational graphs
	Generalisations
	Subclasses
	Comparison of classes

	More on word-automatic presentations
	Beyond first-order logic
	Complexity of some problems
	Non-automaticity via pumping and counting
	Comparing presentations
	Other notions of automaticity

	Automatic Model Theory
	Model theory restricted to the class of word-automatic structures
	On the universal word-automatic structure

