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A b s t r a c t  

We investigate finite automata on infinite trees with the usual Muller 
criterion for the success of an infinite computation path, but  with the 
acceptance paradigm modified in that not all the computation paths need 
to be successful. Instead, it is required that the number of successfnl 
paths must belong to a specified set of cardinals F. We show that  Muller 
automata  with the acceptance constraint of the form "there are at least 7 
accepting paths" can be always simulated by tree automata with a weaker 
criterion for successful paths, namely B/ichi acceptance condition. We also 
show that this is the most general .class of constraints for which a simu- 
lation by Biichi automata is always possible. Next, we characterize the 
maximal class of constraints which can be simulated by elassieM Muller 
automata  (known to be more powerful than Biichi automata) . The con- 
dition requiered of the set F there, is that  the intersection with natural  
numbers forms a recognizable set. Finally, we exhibit a set of trees which 
is recognized by a classical Biichi automaton but fails to be recognized 
by any Muller automaton with a non trivial cardinality constraint (i.e., 
except for F = 0). 

1 I n t r o d u c t i o n  

The subjec t  of a u t o m a t a  on infinite objects  (words or trees) has a t t r ac t ed  the 

a t t en t ion  of compute r  scientists  from both  a pract ical  and  a theoret ical  po in t  of 
view. 

An  essay by [E.A.EMERSON(1990)] gives an  account  of how the ideas of 

Biichi, or iginal ly  conceived in context  of ma thema t i ca l  logic, have later  found 
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multiple applications in the reasoning about concurrent programs with ideally 
nonterminating behaviour, this including such issues as specification, mechanical 
synthesis and verification of such programs. 

From a theoretical viewpoint, the interesting feature is that  finite automata 
provide an essentially finite ("finite state") description of intrinsically infinite 
and often highly complicated objects, as e.g., strategies in infinite games. The 
subject is relevant to several topics, such as decidability of mathematical the- 
ories, expressiveness of logics, Borel and projective hierarchies of descriptive 
set theory, and determinancy of games (see [W. THOMAS(1990)] for a detailed 
survey). 

The use of automata for reasoning about programs is based on the fact 
that,  although the automata can accept highly undecidable sets of infinite ob- 
jects due to infinite computations, yet still the emptiness problem for them 
is elementarily decidable ([M.O. RABIN(1969) ], the actual complexity varies 
from polynomial to exponential time depending on the type of automata, c.f. 
[E.A. EMERSON AND C. JUTLA(1988)]). This fact has been used to show the 
elementary decidability of a variety of logics of programs. It is reported by 
[E.A.EMERSON(1990)] that  automata themselves have also been proposed as a 
specification language for concurrent programs. In this context, the questions 
about different aspects of the expressive (or, defining) power of automata are of 
interest. In the present paper, we consider the question what kind of counting 
conditions can be expressed by automata. 

The concept of "counting" is well known in computation theory. Generally 
speaking, it consists of a refinement of qualitative conditions like "there is a suc- 
cessful computation" or "each computation is successful" by giving a constraint 
on the number of successful computations as, e.g., "at least a half of possible 
computations is successful". 

Recall that  a classical concept of the acceptance of an infinite tree by a 
finite automaton is based on the notion of a successful path of computation. 
An automaton starts its computation at the root of an input tree and then 
simultaneously works down the paths of the tree, level by level. In a Biichi 
automaton, a computation path is successful simply if some accepting state is 
assumed infinitely often. Rabin automata, as well as Muller automata, have a 
more sophisticated acceptance condition that  can be viewed as a Boolean com- 
bination of Biichi conditions. For all these automata, t h e  acceptance paradigm 
is the same: a whole computation is successful if all its paths are successful. 

The idea of introducing counting constraints for automata on infinite trees 
was suggested by M.Nivat and has been first investigated by 
[D. BEAUQUIER, M. NIVAT AND D. NIWIt~SKI(1992)] for the case of Biichi au- 
tomata. The acceptance criterion is now altered in that  not all the computation 
paths need to be successful. Instead, it is required that  the number of successful 
paths must belong to a specified set of cardinals F. It is shown in that  paper 
that  Biichi automata with a constraint "there are at least ~/ accepting paths" 
can be simulated by ordinary Biichi automata while any other type of a con- 
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straint leads to a class of tree languages wich is incomparable with the class of 
Biichi recognizable sets of trees. 

In the present paper we investigate the question how the counting constraints 
alter the power of Muller automata on infinite trees. 1 

We strengthen a result mentioned above by showing that  any Muller automa- 
ton with a constraint "there are at least 7 accepting paths" can be simulated 
by an ordinary Biichi automaton. This fact is of interest since the emptiness 
problem is considerably easier for Biichi automata (polynomial time vs. NP- 
hard, c.f. [E.A. EMERSON AND C. JUTLA(1988)]), while they are weaker than 
Muller automata  in the expressive power. We complete this result to a full char- 
acterization, by showing that  a Muller automaton with a constraint specified 
by a set of cardinals F can be simulated by a Biichi automaton if and only if 
P is of the form {a : 7 < c~}. Next we characterize those contraints F which 
can be simulated by (classical) Muller automata.  The necessary and sufficient 
condition is that  the intersection of F with the set of natural numbers (i.e., fi- 
nite cardinals) should form a recognizable set. Finally, we address the question 
whether Muller automata with cardinality constraints are at least as powerful 
as classical Muller automata  and answer this question negatively. Actually, we 
exhibit a set of trees that  is recognized by a Biichi automaton but cannot be 
recognized by a Muller automaton with any counting constraint except for the 
trivial case F = 0 (i.e., "there are no accepting paths",  which amounts to the 
acceptance by a dual automaton).  

The remaining of the paper is organized as follows. In the introductory 
Section 2, we present some basic notions concerning trees and also prove two 
lemmas that  are crucial for further results. In Section 3, we introduce automata 
on trees, first classically and then with the counting constraints. We also point 
out the relationship with monadic logic. Sections 4 and 5 are devoted to  the 
characterizations of those counting constraints that  can be simulated by Biichi 
and Muller automata  respectively. Then, in Section 6, we exhibit a tree language 
that  cannot be accepted by a Muller automaton with any nontrivial cardinality 
constraint. In the last section, we discuss some possible extensions of our results 
and t ry  to place them in a more general context. 

The continuum hypothesis is assumed throughout the paper, so the numbers 
in consideration are only the natural numbers, a~ and the continuum (the car- 
dinals greater than continuum are not relevant here). This assumption can be 
shown inessential by an argument of the descriptive set theory, since the sets 
in consideration (i.e., the sets of accepting paths) are Borel and the continuum 
hypothesis is known to be generally valid for such sets. 

1We have  chosen Muller  a u t o m a t a  ra the r  t h a n  t~ubin a u t o m a t a ,  t h a t  are  m a y b e  more  
c o m m o n l y  used in t e m p o r a l  logic, only  for technica l  reasons.  Muller  a u t o m a t a  are known to  
be effectively equiva lent  to  Rab in  a u t o m a t a  in t h e  express ive  power ( a l though  t h e  la t te r  are  
in genera l  more  succinct )  and  t h e  ac tua l  cons t ruc t ion  preserves  not  only  t h e  accepted  se ts  b u t  
also t he  n u m b e r  of  successful  c o m p u t a t i o n  pa ths .  All our  resu l t s  (and proofs) could be easily 
adap t ed  to  t h e  case of  Rab in  a u t o m a t a .  
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2 Trees  

The set of natural  numbers 0, 1, ... is denoted by w and identified with the first 
infinite cardinal number.  We say tha t  a set X is countable if its cardinality, IX[, 
is less than or equal to w. The cardinality of the powerset of w, is denoted c 
(continuum). 

For a set X,  X* is the set of finite words over X,  including the empty  word A. 
The length of a word w is denoted by [w[, note that  [A[ = 0. The (proper) initial 
segment  relation is denoted -< (<).  The same symbols are occasionally used for 
the s tandard inequality relation on natural  numbers, but  confusion should not 
arise. The following relation will be also useful: 

u <1 v i f f  not  v -< u 

(4  is not an ordering). The concatenation of words u, w E X* is presented by 
uw,  this notat ion is also extended to sets of words L, K C X*, 

L K  = { u w  " u E L and w E K}.  

If  u = vw,  we occasionally write w = v - l u .  

A nonempty  subset T of X* closed under initial segments is called a tree. The 
elements of T are usually called nodes, the <-maximal  nodes are leaves and A is 
the root of T. If u E T, x E X and u x  E T then u x  is an immedia te  successor of 
u in T. An infinite sequence P = (w0 ,wi , . . . )  such that  w0 = ), and, for each m, 
w,~+l is an immediate  successor of Wm is called a path in T. We recall the cele- 
brated KSnig 's  L e m m a  (c.f., e.g., [K. KURATOWSKI AND A.MOSTOWSKI(1976)]). 

If  T C X* is an infinite tree and each w E T has only a finite number  
of immediate successors in T then T has an infinite path.  

If  S is an arbi t rary  set and T is a tree then a mapping t : T --+ S is called 
an S-valued tree or shortly an S-tree ; in this context T is the domain of t 
denoted by T = dora(t). We say "root of t",  "path in t" etc., referring to the 
corresponding objects in dora(t). 

If P = (w0, wl, . . . )  is a pa th  in t, let 

I n f ( t ,  P}  = {s E S :  t (Wm) = s for infinitely many  m} 

Observe tha t  if S is finite then I n f ( t ,  P )  is always nonempty  and there is some 
m0, such tha t  (Vm > m0) t (w,~) E [ n f ( t ,  P) .  

For an S-tree t : dora(t) -~ S and a node v E dora(t), the subtree of t induced 
by v is the S-tree denoted by t .v  and defined by 

�9 dom( t . v )  = {w : v w  E dora(t)}  

�9 t . v (w)  = t ( vw) ,  for w E dom( t .v ) .  
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Now suppose that A C dora(t) is an antichain with respect to _< (i.e. any 
two elements of A are incomparable) and let f be a function which associates 
an S-tree f ( w )  with each w E A. Then the substitution t[f] is the S-tree defined 
by 

�9 dom(t[f])  = {w E dora(t):  Vw' E A , w  <1 w '}  U U ~ c A W d o m ( f ( w ) ) ,  

i f  u = w v ,  w E A 
�9 + J / t / :  + / ( + /  o + r + ~  

In the case when A is finite, say A = {wl , . . . ,wk} ,  we shall often express f 
explicitly, writing for example t[wl : t l ,  . . . , w~ : tk]. 

We also introduce the concepts of l imit and iteration. Suppose t o , t l , . . .  
is a sequence of S-trees such that  dora(to) C_ dom( t l )  C_ ..., and, for each 
w E U~<~dom(t~) there is some re(w) such that  Vm _> m(w) ,  t in(w) = t,~(w)(w). 
Then we define the limit of the sequence t~, t = lira t,. by 

�9 dora(t) - U~<~, dorn(t~), 

�9 t (w)  = tm(w)(w),  for w E dora(t). 

Now let t be an S-tree and let v and w be nodes of t such that  v < w and 
t (v)  = t (w) .  Then we define the i teration o f t  along the interval [% w], in symbols 
t [v,w] as the limit of substitutions of t .v  into (subsequently created copies of) the 
node w. Formally, we define a sequence of trees t~ and the sequence of nodes 
of corresponding trees, w~, as follows. Let w = vu. We set 

�9 t o  = t ,  

* t ,~+t = t ~ [ w ~  : t .v ] ,  

�9 713~_j_ 1 ~- "WnU. 

Finally, 
t[v 'w] : d r  lira t~ 

In this context we shall call the path containing the chain w0, Wl, . . . ,  a trace 
of iteration. 

Since now on, for notational convenience, we shall focus on full binary trees 
over E, i.e. the E-trees with dora(t) = {1, 2}*. Thus, any node w E dora(t) has 
exactly two successors wl  and w2. The .extension of our results to n-ary trees 
(with n _> 2) or ranked trees (where the number of successors of a node depends 
on the actual label) would present no difficulty. 

We end this section by proving two useful lemmas about trees. The first one 
is a combinatorial observation that  some "triangle-like" pattern must occur in 
a sufficiently large finite part of a tree. It is convenient to consider here finite 
rather than infinite trees. Let {1, 2} -<'~ = {w E {1,2}* : lwl < n}. 
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L e m m a  2.1 L e t s  be a f in i te  alphabet and l e t K  k IS[2+1. L e t t  : {1, 2} -<K ~ S 
be a ( f ini te)  tree. Then  there exist  nodes u, v, w E {1, 2} <-K, such that  u < v,  

u < w,  w and v are incomparable, t (u)  = t (v )  = t ( w )  and moreover  {t(x) �9 u < 
x < v }  = { t ( x )  . u  < x < 

Proof. By induction on ISI. For ISI = 1, the claim is obvious. Suppose that  the 
lemma holds for alphabets  with cardinality less than  ISI and let t �9 {1, 2} <K ~ S 
be a tree with K > ISI 2 + 1. Let t(A) = q. Now consider two cases. 

(1) For each w with Iw[ = IS] + 1, there exists v > w with t ( v )  = q. In this 
case, by counting argument  we are already done. 

(2) There is some w with ]w] = ISI + 1, such tha t  Vv >_ w " t (v )  ~ q. 
Then the subtree t.v is of the form t . v  �9 {1,2} <K-ISl-1 --* S - {q} where 
K - [ S [ - I _ > ] S ]  2 + 1 - 1 S  I - I _ > ( I S [ - 1 )  2 + 1  ( f o r l S l > l ) .  Then the claim 
follows from the induction hypothesis. [] 

The second lemma of this section will be a core of the proof of our results 
concerning the cardinality c. Some preparat ion is needed. 

Let S be a f in i te  set and let t : {1, 2}* --+ S be a tree. Observe that ,  by simple 
counting argument,  1;here is a subset S ~ _C S such tha t  I n f ( t ,  P )  = S ~, for a 
continuum of paths in t. We shall complete this observation, by showing that  
the set of nodes assuming the states from S ~ contains some tree-like structure. 

We call a set of nodes D C {1, 2}* dense if D ~ 0 and 

(Vx c D3y ,  z E D ) x  < y & x < z & y and z are incomparable 

We state  the following. 

L e m m a  2.2 Let  S be a finite set  and let t : {1, 2}* --+ S be a tree. Le t  S ~ C S 

be a set  such that  I ~ t f ( t , P )  = S ' ,  f o r  a con t inuum of  paths in  t and let s E S ' .  
Then  there exists a dense set  D C {1, 2}* such that Vx  E D "  t ( x )  = s and 

(Vx.y E D ) x  < y =~ {t(w)" x _< w <_ y} = S '  

Proof. Call a node w s.t. t (w )  = s an s-node. Let I] be a set of paths P 
in t such tha t  I n f ( t ,  P )  = S ' .  Call a node w~ of a pa th  P = (w0 ,wl , . . . )  in 
II  t e rmina l  for P if V m  > i �9 t (Wm) E S ~. Call a node super terminal  if it is 
terminal for a continuum of paths in II. Clearly, each pa th  in I I  has a terminal 
s-node and, since there is only countably many  nodes while IIII = 2 ~, there 
exists a super terminal s-node x. 

We now show that ,  whenever x is a super terminal s-node, there also exist 
some super terminal s-nodes y, z > x such tha t  y and z are incomparable and 

s '  

Let H(x) _C H be the set of paths for which x is a terminal node. Let X 
be the set of s-nodes x '  > x such tha t  x t occurs in some pa th  in H(x) and 
{t(w) "x  <__ w < x'} = S' .  Notice tha t  any pa th  P in II(x)  contains some node 
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x '  in X (in fact, infinitely many),  and such a node is terminal for P .  So, if we 
write II(x,  z') for the set of those paths in II(x)  that  contain a node x', we have 
II(x)  = Ux,~x II(x,  x'), and, by the cardinality argument  there must  be some 
super terminal s-node in X,  y say. By applying the same argument  in turn  to 
y and then repeating it ad infinitum, we obtain the existence of infinitely many  
super terminal nodes in X.  In order to show tha t  there exists a super terminal 
node z E X, i n c o m p a r a b l e  with y, suppose for the contrary tha t  all super 
terminal nodes in X form a chain and so lie along a single infinite path.  Then, 
except for this path,  any pa th  in II(x)  belongs to some II(x,  x'), where x '  is 
not super terminal and therefore II(x, x ~) is countable. Thus, I I(x)  is countable 
(as a countable union of countable sets), a contradiction with the choice of x. 
Thus the existence of the desired y and z is proved and, by repeating the same 
argument for y and z etc., we eventually obtain a set D satisfying the condition 
of the lemma. [] 

3 Automata  with Cardinality Constraints 

We now fix a finite alphabet  E. Let T~ be the collection of all full binary E-trees, 
i.e. the trees of the form t : {1, 2}* -~ E. 

We recall the classical definition of an au tomaton  on infinite trees with Muller 
acceptance condition. 

A Muller automaton on E-trees (henceforth often called just  automaton)  is 
a tuple A = (Q, q0, Trans, Accept), where Q is a finite set of states, qo is an 
initial state, Trans C_ Q x ~ x Q x Q is a set of transitions and Accept C_ 2Q is 
a family of successful sets of states. 

A q-run of the au tomaton  A on a tree t is a Q-tree r : dora(t) -+ Q such that  
r(A) = q and for each node w e dora(t), (r(w),t(w), r(wl),r(w2)l e Trans. A 
q0-run is called just  a run. A path P = (we,w1,...) of a run r is accepting if 
Inf(r ,  P) E Accept. A run is accepting if all its paths are accepting. A tree t is 
accepted by an au tomaton  A if there exists an accepting run of ,4 on t. The set 
of trees accepted by ,4 is denoted L(A). 

The notion of a Biichi automaton on E-trees differs from tha t  of Muller 
au tomaton only in the acceptance condition that  is actually simpler and can 
be identified with a set of states F _C Q. A pa th  P of a run r is accepting if 
Inf (r ,  P) N F ~ O. Clearly, a Biichi au tomaton  can be presented as a Muller 
automaton,  but the converse is not true. Let E ~ {a, b} and let M be the set of 
trees t E T~ such that ,  any pa th  P in t has only a finite number  of occurrences 
of b (i.e. ln f ( t ,  P )  = {a}). I t  can be easily seen tha t  M can be accepted by a 
Muller automaton,  but  [M.O. RABIN(1970) ] showed that  

Proposition 3.1 There is no Biichi automaton that accepts M. 

Now let 7 be a cardinal number.  We say that  a run of an au tomaton  (of either 
type) is {~}-accepting if it has precisely ~/accepting paths.  More'generally, for a 



273 

set of cardinals F, a run will be called F-accepting if it is {7}-accepting for some 
7 E F. The corresponding sets of F-accepted trees will be denoted by Lr(A) .  
(Notice that  "w-accepting" and "{w}-accepting" mean two different things.) 
Finally, let F - M u l l e r z  denote the class of all subsets of Tz that  can be presented 
as L = Lr(A) ,  for some Muller automaton A. We also use the notation Muller~ 
and Biichi~ to denote the families of classically Muller recognizable (resp. Biichi 
recognizable) sets of trees. We often omit the subscript F if the alphabet is 
known from the eorLtext or if the choice of a particular (finite) alphabet is 
irrelevant for the re,mlt. Let us remark that  a run has at most c accepting 
paths. So, from now. we  o n l y  c o n s i d e r  c a r d i n a l s  less t h a n  o r  e q u a l  to  c. 

Examples .  A run is w-accepting if the number of accepting paths is finite; it 
is {a �9 a ___ w}-accepting or, equivalently, {co, c}-accepting if the number of ac- 
cepting paths is infin!Lte. Notice that  L{c} (A) is, in general, different from L ( A ) .  

The tree language L{0} (A) coincides with the set accepted by the automaton 
dual to A, i.e. the one that  differs from A only in that  its accepting condition 
is the complement of Accept  (w.r.t. 2Q). 

We now recall the basic facts concerning the monadic second-order theory 
of trees. 

Recall that  a (non-labelled) full binary tree can be considered as a logical 
structure of the form 

T = ({1, s l ,  <)  

where sl and s2 are the left and the right successor functions over {1, 2}* re- 
spectively, A is the empty word (that can be viewed as a root of the tree) and 
_< is the prefix relation. The formulas of monadic  second order logic over this 
structure use individual variables x0, Xl, .. �9 (ranging over nodes of the tree) and 
the set-variables X0, X1 , . . .  (ranging over sets of nodes). The atomic  formulas  

are t l  = t2, t l  _~ t2, and X i ( t ) ,  where the t 's are terms  built from the individual 
variables, the constant ~ and the functional symbols si, i = 1, 2. The other 
formulas are built as usual, using propositional connectives and quantifiers 3, V 
applied to both kinds of variables. 

The formulas of weak monadic second order logic have the same syntax but  
differ in the semantics: the set-variables which are quantified are assumed to 
range over finite sets of nodes. 

The (weak) monadic second order theory of the structure described above is 
usually abbreviated ( W ) S 2 S .  

In the following definition, it is convenient to have a distinguished set of 
variables, say Z0, Z1, . . .  that  are supposed to range over finite sets of nodes only. 
(The introduction of these variables does not increase the expressive power of 
the theory $ 2 S  since the property "X is finite" is expressible there). A formula 
of $ 2 S  is called a E ~ formula if it is of the form 

3 Y 1 . . .  3Y,~ ~(Yz  , . . . , Y,~, X1,  . . . , X n  ) 

where, in qo, all quantifiers (if any) are restricted to variables among Z0, Z;, . . . .  
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Now, if the alphabet  E can be embedded into {0, 1} k, for suitable k, a tree 
t C Ts  can be coded by a k-tuple of sets of nodes X I , . . . ,  Xk, such tha t  w E Xi 
iff the i- th component  of t(w) is 1. (Conversely, a k-tuple of sets of nodes 
represents a tree over the alphabet  {0, 1}k.) 

In this sense, a set of trees L C T~ can be identified with a set of k-tuples of 
sets of nodes and therefore can be defined by a formula of $2S, r  X~). 

We recall the classical characterizations due to [M.O. RABIN(1970) ]. 

T h e o r e m  3.2 A set of trees L C_ T2 is recognizable by a (ordinary) Muller 
automaton iff it can be defined by an $2S formula. 

A set of trees L C_ T~ is recognizable by a Biichi automaton iff it can be 
defined by a E~ $2S formula. 

4 Biichi  Def inable  Cons tra in t s  

In this section we examine the cardinality constraints of the form "there are 
at least 7 accepting paths".  We show tha t  Muller au tomata  with this kind of 
constraints can be always simulated by ordinary B/ichi automata .  We also show 
that  this is the only kind of cardinality constraint having such a property. 

T h e o r e m  4.1 Let ~/ be a cardinal number. Then 

{~ : ~ -> "r} - Muller C_ Bfichi 

Proof. Let us abbreviate {a"  a > "7} = [~/). 
Let ,4 = (Q, qo, Trans, Accept) be a Muller automaton.  Observe first that  

any run is [O)-accepting and so it is easy to construct a suitable Biichi au tomaton  
(just set in A, F = Q). 

For 7 > 0, it will be convenient to use the logical charcterization of Bfichi 
au tomata  mentioned in the previous section. In doing this, we use the s tandard 
method of coding a run of an automaton with m states by an m-tuple  of sets 
of nodes (see, e.g., [W. THOMAS(1990)]). If  7 is a finite cardinal (i.e. an 
integer), the construction of a suitable E~ formula is easy. For 7 = w, we 
use an observation tha t  the existence of • paths satisfying a given condition 
is equivalent to the existence of an infinite "comb" structure, i.e. an infinite 
antichain of nodes each of them lying on some path  satisfying the condition in 
question. Such a figure can be described by a E~ formula (a formal argument  
can be found in [D. BEAUQUIER, M. NIVAT AND D. NIwIr~sI4~(1992)]. The 
case of 7 = c is the most  interesting one. We use here 2.2 fl'om the introductory 
section. Then the existence of c paths can be reduced to the existence of some 
dense set of full nodes. [] 

One can ask whether the inclusions in the above theorem are proper. It  is 
indeed the case and we shall see an actually stronger result in Section 5. 

Another natural  question is whether the class of constraints F considered 
above is a maximal  one for the inclusion F - Muller C_ Biichi, or an apparent ly  
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weaker  result  F - Biichi C Biichi, holds. I t  tu rns  out  t h a t  it is indeed the  case, 
i.e., the  special  form of F considered in the  t heo rem above is necessary. 

Let  E = {a, b}. Consider  a Biichi a u t o m a t o n  defined as follows: ,4 = 
({q~, qb}, q~, {(q, s, q~, q~) : q �9 {q~, qb}, s �9 {a, b}}, (qb})- I t  is easy  to see t ha t  
the  accep ted  set L ( A )  consists of  all t rees in T~. such t h a t  any  p a t h  P of t con- 
ta ins  infinitely m a n y  b's (i.e. b �9 [ n f ( t ,  P ) ) .  Moreover,  a t ree is {7}-accepted  
by A if it has  exac t ly  7 pa th s  wi th  infinitely m a n y  b's. 

L e m m a  4.2  Let  F be a set  of  cardinals. Then  L r  (A) �9 Bfichi i f f  F = [7), for  
some cardinal number  % 

We need an auxi l iary  result  for the proof  of this l emma.  
Let  B = (Q, q0, ~rans, Accept) be a Bfichi au toma ton .  Suppose  r is a q-run 

of ~3 on a t ree t: A demonic  triangle for r is a triple of nodes (u, v, w) such t h a t  v 
and w are incomparab le  and bo th  greater  t h a n  u, r (u)  = r(v)  = r (w)  �9 Accept  2 
and there  are some u < wl  < v and  u < w2 < w such t h a t  t (w l )  = t(w2) = b. 

Now, for m > 1, we define a t ree h (m) similar  to t h a t  used in 
[M.O. RABIN(1977)  ]. The  tree h ('~) is b-labelled a t  nodes  A, 2 '~11, 2 ~ 12 ~ 2 1 , . . . ,  
2 ~112 n21 . . .  2 ~'~ 1 for all n l , . . . ,  nm > 0 and a- label led at  o ther  nodes.  The  fol- 
lowing l e m m a  is proved  in [D. BEAUQUIER, M. NIVAT AND D. NIWI~SKI(1992)] .  

L e m m a  4.3  I f  13 is a Biichi  au tomaton  with m states and r is an accepting 
q-run of  B on h (m), then there exists a demonic  triangle for  r. 

Proof  of  L e m m a  ~. 1 
We have to prow3 the "only if " par t .  Le t  us suppose  t h a t  there  are two 

cardinals  c~ and  /3 such t h a t  c~ E F, /~ ~ F, a < /3 < c. We c la im tha t  
L r ( A )  r Biichi. Suppose  t h a t  there  is a Bfichi a u t o m a t o n  B wi th  m s ta tes  
such t ha t  L r ( A )  = L(B) .  Fix some tree f in L r ( A )  and let h ('~) be  the  t ree 
defined above.  We combine  these two trees into a t ree t such t ha t  t(),) = a (for 
definiteness),  t.1 = f and  t.2 = h ('~). Clearly, t E LF(A) .  Let  r be  an accept ing 
run  of B on t. Apply ing  L e m m a  4.2 to  the  sub t ree  t.2, we obta in  a demonic  
t r iangle  of r,  say (u, v, w). 

We have three  ca~3es to  consider: /3 < ~, fl = w, ~ = c. 

. f 3 < w  

Then,  we can  suppose  wi thou t  loss of genera l i ty  t h a t  /3 = a + 1. Let  
t t = t [u,w] and r'  = r [u,w]. Since (u, v, w) is a demonic  tr iangle,  r ~ is an 
accept ing run  of B on t ~. On the  other  hand,  t ~ e L a + i ( A )  since we have 
c rea ted  in t ~ a new p a t h  which has  an infinite n u m b e r  ofb.  So, t ~ ~ L r ( A ) ,  
a cont rad ic t ion  with  the hypothesis .  

mRecall, that for a Biichi automaton, Accept is a set of states. 
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' and ' In the tree t / defined above, let us consider, for i > O, the nodes u i v i 
defined in the following way: 

, = ' = u ( u - l w )  i and v~ t t  i 

Let t"  be the limit of the sequence of trees t '[~;,v;], t '[~'i,v'il[u;,~;l, . . . ,  
t,[u;,~;l...[~',.;], . . . .  The tree t"  is still accepted by B, and t"  has exactly co 
paths with an infinite number of b's. Then, t"  r L r (A) ,  a contradiction. 

�9 , ~ z C  

We apply the following iteration construction to the triangle (u, v, w). Let 
v = uv' ,  w = uw' .  Replace in t the two subtrees t .v  and t .w  by t .u,  in the 
result replace the four subtrees induced by the nodes vv ' ,  vw ' ,  wv ' ,  w w '  
again by t .u  and so on infinitely many  times. The similar i teration is 
applied to the run r. Clearly the resulted tree is not in Lr  (Jr) since it has 
a continuum set of paths with an infinite number  of b's, and nevertheless 
it is in L(B) ,  a contradiction. [] 

Clearly, the above result holds for any alphabet  E '  D E. Then, we can state 
the following. 

Corollary 4.4 Let E have at least two elements  and let P be a set  of  cardinals. 
Then  F - Muller C Biichi iff F - Biichi C_ Bfiichi iff P { a  : a >__ 7} ,  for  some 

ordinal 7. 

5 M u l l e r  D e f i n a b l e  C o n s t r a i n t s  

In this section we consider the question: for what sets F, F - Muller C Muller . 
Call a set of integers A C_ co recognizable if it is recognizable by a finite 

au tomaton  when identifying the integers with strings over one letter alphabet  
(c.f.[D.PERRIN(1990) ]). 

T h e o r e m  5.1 Let the alphabet E have at least two elements.  Then  F - M u l l e r  C_ 
Muller i f f  F A co is recognizable, 

Pro@ "only if". Without  loss of generality, we can set E = {a, b}. Sup- 
pose F - Muller  C_ Muller.  We shall construct an au tomaton  A such tha t  the 
Muller recognizability of Lr  (A) will imply the recognizability of F fl co. Let 
,4 = (Q, qo, Trans, Accept), where 

�9 Q = {q,~t, qa,~la, qb,~b} 

�9 q o = q  

�9 T r a n s = { ( q , a , q , q ~ ) , ( q ~ , a , ~ , q a ) , ( ~ , a , ~ , ~ ) , ( q , b ,  qb, qb),(qb, b, qb, qb)} 

�9 Accept  = {{q~}} 
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The automaton ~4 is deterministic and so, for any tree t E T~, there exists at 

most one run on t. Notice that the automaton A admits a run on a tree t only 

in the case when either t(w) = a for all w, or, there exists an m0 > 0 such 
that, for all w E {i, 2}*, t(im~ = b and t(v) = a otherwise. In this latter 

case, t E Lr(~4) iff m0 E F. Indeed, the only accepting paths are of the form 
()~, 1, ii,..., I m, ]~2, im22, i~222,...), where m > 0 provided that t(1 ~) = a 

(and, consequently, all the nodes of the path are labelled by a), so the number 

of accepting paths corresponds to the number of integers less than m0. Let us 

denote a tree in the form considered above by tm 0. 
Now suppose that the set Lr(r is recognized by a Muller automaton ~. 

We shall construct a finite au tomaton  C running on finite words over a single 

letter alphabet.  
Let t~ be defined by (Vw E {1, 2}*)t(w) = a (the similar for tb). Without  

loss of generality we can assume tha t  the tree t~ is not in Lr  (otherwise, we 
could take the tree language L r (A)  - {t~} tha t  should be Muller recognizable 
as well). Let S be the set of states of B. For s E S, we shall use notat ion s ~ t 
to mean "there is a~ accepting s-run (i.e. a run star t ing from s) of B on t". 
We let the set of states of d be S and the initial s ta te  be the same as in B. 
A pair (s, s t) is a tr,~nsition of C (we omit  the single letter of the alphabet)  if 
there is a transit ion (s, a, s t, s") of B for some s" such tha t  s" ~ t~. Finally, 
s is an accepting s tate  of d, if s ~ tb. I t  is straightforward to see tha t  there 
is an accepting finite run of C on an integer k (considered as string over one 
letter alphabet)  iff there is an accepting run of B on a tree tk+l which in turn  
is equivalent to k + 1 E F. Then the set {k �9 k + 1 E F} is recognizable and 
clearly, this induces tha t  the set F itself is recognizable. 

This completes the proof of the implication "only if" of the theorem. 
We shall now prove the "if" implication. 

We have L r ( A )  := s  u s 
Since L[~)(A) and L~(A) are in Biiehi, Biiehi C Muller and the family Muller 

is closed under boolean operations, we have only to prove that  Lrn~,(,4) E 
Muller. 

Recall tha t  a recognizable set of integers can be always presented as a finite 
union of sets of the form {p + na : n E ~o}, for some p, a. 

Without  loss of generality, we can assume tha t  F itself is a set of integers in 
the above form. For notational simplicity, we let F = { p + 2 n  ] n E w}. Observe 
first tha t  a run r of ,4 on a tree t is {-/}-accepting for some integer "7 iff there is 
an antichain X consisting of ~/elements such that:  

1) for each successful pa th  P,  X n P ~ 
2) for each x E X,  there is a unique successful pa th  P such tha t  x E P .  
Now, in order to express the proper ty  tha t  a run is F accepting, it is enough 

to show tha t  a proper ty  "X is a finite antichain the cardinality of which belongs 
to F" is expressible by an $2S formula. This fact is well known but  we sketch the 
argument for the sake of completeness. Finiteness may  be expressed by saying 
that  there exists an antichain Y which majorizes X and each infinite pa th  
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intersects Y. Next, we have to say that  X is a disjoint union of, say, X1, X2 
such that  X1 has p elements and the cardinality of X2 is divisible by 2. The 
first is obvious (remember that  p is fixed). Now observe that  the lexicographical 
order -~ on X can be expressed by an $2S formula. Then, IX2[ is even iff either 
)(2 is empty or 

i) X~ is a disjoint union X(~ U X (1) 
ii) the minimal (w.r.t. -~) element of X2 exists and belongs to X (~ 
iii) the maximal element of X2 exists and belongs to XO) 
iv) for each z E X (~ (resp. X 0)) not equal to the maximal element of X2, 

its successor in X2 (w.r.t. -4) is in Xb)  (resp. X (~ 
Clearly the above clauses are expressible in the $2S. So the proof is done. [] 

6 Counterexample 

We start with the following observation: 

P r o p o s i t i o n  6.1 {0} - Muller = Muller 

Proof. For any of the inclusions, a suitable automaton can be obtained by 
complementing the family of accepting sets of states of the original automaton. 
[] 

We shall see that  for any F ~ {0}, the situation is different. Let E = {a, b} 
and let L be the set of trees in T~ such that  any path P of t contains infinitely 
many b's (i.e. b E I n f ( t ,  P)) .  We have already considered this language in 
Section 4, where we observed it is recognized by a Biichi automaton. On the 
other hand, we prove the following. 

T h e o r e m  6.2 For any set of cardinals F ~ {0} , L ~ F - Muller. 

Proof. 
Let us fix some rn > 1 and define a tree t by 

t (w) = { ab otherwise i f [ w [ = k ( m + 2 ) , k < w  

We first state the following. 

L e m m a  6.3 Let Jt be a Muller automaton with m states. Suppose that there 
exists a run of A on the tree t with ~ accepting paths, where c~ is a cardinal 
number greater than O. Then there exists a tree t ~ E T~ not in L and a run r ~ 
o f ,4  on t ~ which has also precisely a accepting paths. 

Suppose that  L = Lr (A), for some Muller automaton ,4, with m states. 
Let r be a ~/-accepting run of ,4 on the tree t (as defined above), ~/E F. If 

7 > 0, a contradiction follows immediately from the lemma above. 
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If ~ / =  0, choose 5 E F, 5 > 0 (remember F ~ {0}). We shall construct a 
tree t ~ not in L and a run r ~ of A on t p tha t  will have 5 accepting paths.  The 
argument splits into three cases, depending on whether  5 is finite, w, or c. 

Suppose first that  5 is finite. Choose k such tha t  2 k('~+2) > 5 and select 5 
different nodes of length k ( m  + 1), say v l , . . .  ,v~. Then, for each i = 1 , . . . 5 ,  
choose w~,w~' such tha t  vi < w; < w~', (Vu)w~ < u < w~' =~ t ( u )  = a and 
r(w~) = r(w~').  Observe that ,  for each i = 1 , . . . ,  5, the set Q~ =d/  {r(u) : w~ _< 
u <_ w~ p} is an accepting set of A, (otherwise we could apply an iteration along 
[w~,w~'] and obtain a run with 0 accepting pa th  on a tree which is not in L.) 

Then apply the iteration to all pairs [w~, w~]. The resulted run r [~ ,~ ' ]  ..... [~ ,~ ' ]  

has 5 successful paths, but  the {5}-accepted tree t [~ ,~ ' ]  ..... [~ ,~ ' ]  is clearly not 
in L. 

If  5 = w, the argument  is essentially the same, but  the corresponding selected 
nodes v0, vl, .. �9 cannot now, of course, be of the same length. Rather  we can 
choose, for example, vk = 2(k+l)(m+2)-ll ,  k = 0, 1 , . . . .  The rest of the argument  
is similar, we omit  the details. 

The case when 5 = c is slightly more difficult. (Notice tha t  a consideration 
of this case is necessary, since F can be just  {0, c}.) Let { be a tree defined as 
t above, but  with replacing m by m 2 + 1, and F be a run of ~4 on t having 
0 accepting paths.  By  applying Lemma  2.1 from the introductory section to 
the initial segment of this tree, we find tha t  there exists a "triangle" u, v, w, 
such tha t  [ul, Ivl, Iwl < m 2 + 1, u < v , u  < w , v and w are incomparable, 
t (u )  = t ( v )  = t ( w )  and {t(x) : u < x < v} = {t(x) : u < x < w}. Let us denote 
this last set by Q~. Now consider two cases. 

If  Q~ is a nonaccepting set of .A then we can apply iteration to, e.g., the 
segment [u, v]. The resulted run f[~,'] has still 0 accepting paths but  ~,~]  r L. 

If  Q~ is accepting, we apply the iteration construction to the triangle. (More 
precisely, let v = uv  ~, w = u w  ~. Replace in t the two subtrees t .v and [ .w  
by t.u. Then, in the result, replace the four subtrees induced by the nodes 
vv  ~, v w  ~, w v ~ w w  ~ again by [ .u and so on. The construction can be easily formal- 
ized similarly as it has been done for the iteration along a single segment in the 
introductory section; we omit the details. The similar iteration is applied to the 
run ~.) The resulted tree is not in L but  the resulted run clearly has c accepting 
paths. 

This completes the proof of the theorem. [] 

7 Conc lus ion  

From a broader perspective, where, as we have mentioned in the introduction, 
au tomata  on infinite trees can be viewed as a formalism for specification and ver- 
ification of program properties, au tomata  with counting constraints may  prove 
to be useful for expressing those properties tha t  explicitly refer to the cardi- 
nality. For example, we can express the fact tha t  the number  of computat ion 



280 

paths satisfying a fairness requierement is finite, or infinite, or continuum. Prom 
some point of view, the results of the paper may appear rather pessimistic: as 
pointed out by Theorems 4.1 and 6.1, the expressive power of these automata 
is rather limited. On the positive side, we belive that automata with counting 
constraints may be sometimes more convenient to use since they specify the 
property more directly and are in general more succint than the corresponding 
Muller or Bfichi automata. Yet still, in view of the characterizations provided 
by Corollary 4.1 and Theorem 5.1, for large classes of counting constraints, the 
new automata can be simulated by classical ones and, since the proofs of simu- 
lations are constructive, the standard techniques known for classical automata 
(as e.g., decision procedures for emptiness or containement) can apply. 
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