
Automata Tutor v3

Loris D’Antoni1, Martin Helfrich2,
Jan Kretinsky2, Emanuel Ramneantu2,

and Maximilian Weininger2(B)

1 University of Wisconsin, Madison, USA
loris@cs.wisc.edu

2 Technical University of Munich, Munich, Germany
{martin.helfrich,jan.kretinsky,emanuel.ramneantu,maxi.weininger}@tum.de

Abstract. Computer science class enrollments have rapidly risen in the
past decade. With current class sizes, standard approaches to grading
and providing personalized feedback are no longer possible and new tech-
niques become both feasible and necessary. In this paper, we present the
third version of Automata Tutor, a tool for helping teachers and students
in large courses on automata and formal languages. The second version
of Automata Tutor supported automatic grading and feedback for finite-
automata constructions and has already been used by thousands of users
in dozens of countries. This new version of Automata Tutor supports
automated grading and feedback generation for a greatly extended vari-
ety of new problems, including problems that ask students to create reg-
ular expressions, context-free grammars, pushdown automata and Tur-
ing machines corresponding to a given description, and problems about
converting between equivalent models - e.g., from regular expressions to
nondeterministic finite automata. Moreover, for several problems, this
new version also enables teachers and students to automatically gener-
ate new problem instances. We also present the results of a survey run
on a class of 950 students, which shows very positive results about the
usability and usefulness of the tool.

Keywords: Theory of computation · Automata theory · Personalized
education · Automata tutor · Automated grading

1 Introduction

Computer science (CS) class enrollments have been rapidly rising, e.g., CS enroll-
ment roughly triples per decade at Berkeley and Stanford [12] or TU Munich.

We thank Emil Ratko-Dehnert from ProLehre TUM for the professional help with the
student survey; Tobias Nipkow and his team for allowing us to conduct the user sur-
vey in his class; Christian Backs, Vadim Goryainov, Sebastian Mair and Jan Wagener
for the exercises they added as part of their Bachelor’s theses; Julia Eisentraut and
Salomon Sickert-Zehnter for their help in developing this project; the TUM fund
“Verbesserung der Lehrmittelsituation” and the CAV community for caring about good
teaching. Loris D’Antoni was supported, in part, by NSF under grants CNS-1763871,
CCF-1750965, CCF-1744614, and CCF-1704117; and by the UW-Madison OVRGE
with funding from WARF.

c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 3–14, 2020.
https://doi.org/10.1007/978-3-030-53291-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-53291-8_1


4 L. D’Antoni et al.

Both online and offline courses and degrees are being created to educate students
and professionals in computer science and these courses may soon have thou-
sands of students attending a lecture, or tens of thousands following a Massive
Online Open Course (MOOC). At these scales, standard approaches to grading
and providing personalized feedback are no longer possible and new techniques
become both feasible and necessary. Current approaches for handling this grow-
ing student volume include reducing the complexity of assignments or relying on
imprecise feedback and grading mechanisms. Simpler assessment mechanisms,
e.g., multiple-choice questions, are easier to grade automatically but lack real-
ism [8]. Designing better techniques for automated grading and feedback gener-
ation is therefore a necessity.

Recent advances in formal methods, including program synthesis and verifi-
cation, can help teachers and students in verifiably correct ways that statistical
or rule-based techniques cannot. For example, formal methods have been used
to identify student errors and provide feedback for problems related to intro-
ductory Python programming assignments [17] geometry [9,11], algebra [16],
logic [2], and automata [3,6]. In particular, for this last topic, the tool Automata
Tutor v2 [7] has already been used by more than 9,000 students at more than
30 universities in North America, South America, Europe, and Asia.

In this paper, we present Automata Tutor v3, an online1 tool that extends
Automata Tutor v2 and uses techniques from program synthesis and deci-
sion procedures to improve the quality and effectiveness of teaching courses on
automata and formal languages. Besides being part of the standard CS cur-
riculum, the concepts taught in these courses are rich in structure and applica-
tions, e.g., in control theory, text editors, lexical analyzers, or models of software
interfaces. Concrete topics in such curricula include automata, regular expres-
sions, context-free grammars, and Turing machines. For problems and assign-
ments related to these topics Automata Tutor v3 can automatically: (1) Detect
whether the student’s solution is correct. (2) Detect different types of student’s
mistakes and translate them into explanatory feedback. (3) If possible, generate
new problems together with the corresponding solutions for teachers to use in
class.

Automata Tutor v3 greatly expands its predecessor Automata Tutor v2,
which only provides ways to pose and solve problems for deterministic and non-
deterministic finite automata constructions. This paper describes the new com-
ponents introduced by Automata Tutor v3 and how this new version improves
on its previous one. The key advantages to its competitors are the breadth,
automatic generation and grading of exercises, infrastructure allowing for use
in large courses and a useful feedback to the students, compared to text-based
interfaces used by Autotool [13], rudimentary feedback in JFLAP [14] and none
in Gradience [1].

Since Automata Tutor has already been well received by teachers around the
world, we believe that the readers from the CAV community will find great value
in knowing about this new and fundamentally richer version of the tool and how

1 https://automata.model.in.tum.de.

https://automata.model.in.tum.de


Automata Tutor v3 5

it can extensively help with teaching the automata and formal languages courses,
a task we know many of the attendees have to face on a yearly basis.

Our contributions are the following:

– Twelve new types of problems (added to the four problems from the
previous version) that can be created by teachers and for which the tool
can assign grades together with feedback to student attempts. While the
previous version of Automata Tutor could only support problems involv-
ing finite automata constructions, Automata Tutor v3 now supports prob-
lems for proving language non-regularity using the pumping lemma, building
regular expressions, context free grammars, pushdown automata and Turing
machines, and conversions between such models.

– Automatic problem generation for five types of problems, with the code
modularity allowing to add it for all the others. This feature allows teachers
to effortlessly create new assignments, or students to practice by themselves
with potentially infinitely many exercises.

– A new and improved user interface that allows teachers and students
to navigate the increased number of problem types and assignments. Fur-
thermore, each problem type comes with an intuitive user interface (e.g., for
drawing pushdown automata).

– An improved infrastructure for the use in large courses, in particular, incor-
porating login systems (e.g. LDAP or OAuth), getting a certified mapping
from users to students and enabling teachers to grade homework or exams.

– A user study run on a class of 950 students to assess the effectiveness and
usability of Automata Tutor v3. In our survey, students report to have learned
quickly, felt confident, and enjoyed using Automata Tutor v3, and found it
easy to use. Most importantly, students found the feedback given by the tool
to be useful and claimed they understood more after using the tool and felt
better prepared for an upcoming exam. In our personal experience, the tool
saves us dozens of thousands of corrections in each single course.

2 Automata Tutor in a Nutshell

Automata Tutor is an online education tool created to support courses teaching
basic concepts in automata and formal languages [7]. In this section, we describe
how Automata Tutor helps teachers run large courses and students learn effi-
ciently in such courses.

Learning Without Automata Tutor. Figure 1 schematically shows a student-
teacher interaction in a course taught without an online tutoring system. The
teacher creates exercises, grades them manually, and (sometimes) manually pro-
vides personalized feedback to the students. This type of interaction has many
limitations: (1) it is asynchronous (i.e., the student has to wait a long time for
what is often little feedback) and does not scale to large classrooms, posing
strenuous amount of work on teachers, (2) it does not guarantee consistency in
the assigned grades and feedback, and (3) it does not allow students to revise



6 L. D’Antoni et al.

Exercises

Teacher
Students

creates

grades

solve

feedback

Internet?
want more… feedback?

… practice?

Fig. 1. Common structure of practical sessions for CS classes.

their solutions upon receiving feedback as the teachers often release a solution
to all students as part of the feedback and do not grade new submissions.

Another drawback of this interaction is the limited number of problems stu-
dents can practice on. Because teachers do not have the resources to create many
practice problems and provide feedback for them, students are often forced to
search the Internet for old exams and practice sheets or even exercises from
other universities. Due to the lack of feedback, this chaotic search for practice
problems often ends up confusing the students rather than helping them.

Fig. 2. Overview of Automata Tutor v3 (our contributions in green). The teacher
creates exercises on various topics. The students solve the exercises in a feedback cycle:
After each attempt they are automatically graded and get personalized feedback. The
teacher has access to the grade overview. For additional practice, students can generate
an unlimited number of new exercises using the automatic problem generation. (Color
figure online)

Learning with Automata Tutor. Figure 2 shows the improved interaction offered
by Automata Tutor v3. Here, a teacher creates the problem instances with the



Automata Tutor v3 7

Fig. 3. Creating a new problem of type “PDA Construction”.

help of the tool. The problems are then posed to the students and, no matter how
large a class is, Automata Tutor automatically grades the solution attempts of
students right when they are submitted and immediately gives detailed and per-
sonalized feedback for each submission. If required, e.g. for a graded homework,
it is possible to restrict the number of attempts. Using this feedback, the stu-
dents can immediately try the problem again and learn from their mistakes. As
shown in a large user study run on the first version of Automata Tutor [6], this
fast feedback cycle is encouraging for students and results in students sponta-
neously exploring more practice problems and engaging with the course material.
Additional practice is supported by the automatic problem generation, with the



8 L. D’Antoni et al.

Fig. 4. Feedback received when solving the problem created in Fig. 3.

same level of detailed and personalized feedback as before without increasing the
workload of the teacher. Furthermore, automatic problem generation can assist
the teacher in creating new exercises. Finally, whenever necessary, the teacher
can download an overview of all the grades.

Improved User interface. Automata Tutor is an online tool which runs in the
most used browsers. A new collapsible navigation bar groups problems by topic,
facilitating quick access to exercises and displaying the structure of the course
(see Figure 6 in [5, Appendix B]). To create a new exercise, a teacher clicks the
“+”-button and is presented the view of Fig. 3. In this case, the drawing canvas
allows to easily specify the sample solution pushdown automaton. Similarly,
when students solve this exercise, they draw their solution attempt also on the
canvas. After submitting, they receive their personalized feedback and grade (see
example in Fig. 4). For the automatic problem generation, a dropdown menu to
select the problem type and a slider to select the difficulty is displayed together
with the list of all problems the user has generated so far (see the screenshot in
Figure 7 in [5, Appendix B]).

3 Design

3.1 University and Course Management

While Automata Tutor can be used for independent online practice, one of the
main advantages is its infrastructure for large university courses. To this end,



Automata Tutor v3 9

it is organized in courses. A course is created and supervised by one or more
teachers. Together, they can create, test and edit exercises. The students can-
not immediately see the problems, but only after the teachers have decided to
pose them. This involves setting the maximum number of points, the number of
allowed attempts as well as the start and end date.

To use Automata Tutor, students must have an account. One can either
register by email or, in case the university supports it, login with an external login
service like LDAP or Oauth. When using the login service of their university,
teachers get a certified mapping from users to students and enabling teachers to
use Automata Tutor v3 for grading homework or exams.

Students can enroll in a course using a password. Enrolled students see all
posed problems and can solve them (using the allowed number of attempts). The
final grade can be accessed by the teachers in the grade overview.

3.2 New Problem Types

In this section, we list the problem types newly added to Automata Tutor v3.
They are all part of the course [10] and a detailed description of each problem
can be found in [5, Appendix A], including the basic theoretical concept, how
a student can solve such a problem, what a teacher has to provide to create a
problem, the idea of the grading algorithm, and what feedback the tool gives.

RE/CFG/PDA Words: Finding words in or not in the language of a regular
expression, context free grammar or pushdown automaton.

RE/CFG/PDA Construction: Given a description of a language, construct a
regular expression, context free grammar or pushdown automaton.

RE to NFA: Given a regular expression, construct a nondeterministic-finite
automaton.

Myhill-Nerode Equivalence Classes: There are two subtypes: either, given a reg-
ular expression and two words, find out whether they are equivalent w.r.t.
the language, or, given a regular expression and a word, find further words
in the same equivalence class.

Pumping-Lemma Game: Given a language, the student has to guess whether it
is regular or not and then plays the game as one of the quantifiers.

Find Derivation: Given a context free grammar and a word, the student has to
specify a derivation of that word.

CNF: Given a context free grammar, the student has to transform it into Chom-
sky Normal Form.

CYK: Given a context free grammar in CNF and a word, the student has to
decide whether the word is in the language of the grammar by using the
Cocke–Younger–Kasami algorithm.

While to TM: Given a while-program (a Turing-complete programming language
with very restricted syntax), construct a (multi-tape) Turing machine with
the same input-output behaviour.



10 L. D’Antoni et al.

3.3 Automatic Problem Generation

Automatic Problem Generation (APG) allows one to generate new exercises of
a requested difficulty level and problem type. This allows students to practice
independently and supports teachers when creating new exercises. While APG
is currently implemented for four CFG problem types and for the problem type
“While to TM”, it can be easily extended to other problem types by providing
the following components:

– Procedure for generating exercises at random either from given basic
building blocks or from scratch.

– A “quality” metric qual(E) for assessing the quality of the generated exer-
cise E, ranging from trivial or infeasible to realistic.

– A “difficulty” metric diff (E) for assessing the difficulty of E.

Given these components, Automata Tutor generates a new problem with a given
minimum difficulty dmin and maximum difficulty dmax as follows. Firstly, 100
random exercises are generated. Secondly, Automata Tutor chooses exercises E

with the best quality such that dmin ≤ diff (E) ≤ dmax.
Concretely, for the CFG problem types, CFGs with random productions are

generated and sanitized. Resulting CFGs that do not accept any words or have
too few productions are excluded using the quality metric. The difficulty metric
always depends on the number of productions; additionally, depending on the
exact problem type, further criteria are taken into account.

For the problem type “While to TM” we use an approach similar to the
one suggested in existing tools for automatic problem generation [15,18]: We
handcrafted several base programs which are of different difficulty level. In the
generation process, the syntax tree of such a base program is abstracted and
certain modifying operations are executed; these change the program without
affecting the difficulty too much. E.g. we choose different variables, switch the
order of if-else branches or change arithmetic operators. Then several programs
are generated and those of bad quality are filtered out. A program is of bad
quality if its language is trivially small or if it contains infinite loops; since
detecting these properties is undecidable, we employ heuristics such as checking
that the loops terminate for all inputs up to a certain size with a certain timeout.

4 Implementation and Scalability

Automata Tutor v3 is open source and it consists of a frontend, a backend, and
a database. It also provides a developer’s manual for creating new exercises.

The frontend, written in scala, renders the webpage. The drawing canvases
for the different automata and the Turing machines rely on javascript. The fron-
tend and backend communicate using XML objects.

The backend, written in C#, contains methods to unpack the xml of the
frontend to compute the grade and feedback for solutions. It is also used to
check the syntax of exercises and for the automatic problem generation. It relies



Automata Tutor v3 11

on AutomataDotNet2, a library that provides efficient algorithms for automata
and regular expressions.

The database keeps track of existing users, problems and courses. It uses the
H2 Database Engine.

All the new parts of Automata Tutor v3 were developed and tested over the
last 3 years at TU Munich, where they were used to support the introductory
theoretical computer science course. This local deployment served as an impor-
tant test-bed before publicly deploying the tool online at large scale. Due to its
modular structure, the tool is easily scalable by having multiple frontends and
backends together with a load distributor. This approach has successfully scaled
to 950 concurrent student users; for this, we used 7 virtual machines: 3 host-
ing frontends, 3 hosting backends (each with 2 cores 2.60 GHz Intel(R) Xeon(R)
CPU and 4 GB RAM), and 1 for load distribution and the database (with 4 such
cores and 8 GB RAM). We will scale the number of machines based on need.

5 Evaluation and User Study

Large-Class Deployment. In the latest iteration of the TU Munich course
in 2019, we used Automata Tutor v3 (in the following denoted as AT) in a
mandatory homework system for a course with about 950 students; the home-
work system also included written and programming exercises. In total, we posed
79 problems consisting of 18 homework and 61 practice problems. The teachers
saved themselves the effort of correcting 26,535 homework exercises, and the
students used AT to get personalized feedback for their work 76,507 times. On
average, each student who used AT did so 107 times.

Student Survey Results. At the end of the course, we conducted an
anonymized survey, based on the System Usability Survey [4]. 14.6% of the
students in the course answered the survey, which is an ordinary rate of return
for an online questionnaire, especially given that there was no incentive. The
students were given statements to judge on a Likert scale from 1 to 5 (strongly
disagree to strongly agree). We define “The students agreed with the following
statement” to mean that the average and median scores were at least 4 and less
than 10% of the students chose a score below 3. Dually, if the students disagreed
with the statement with median and average score that was at most 2 and less
than 10% having a score greater than 3, we say that they “agreed with the
negation of the statement”. For all statements that do not satisfy either of the
criteria, we report mixed answers. The full survey results can be found in [5,
Appendix C].

Usability. Regarding the usability of the tool, the students agreed with the
following statements:

2 https://github.com/AutomataDotNet/Automata.

https://github.com/AutomataDotNet/Automata


12 L. D’Antoni et al.

– I quickly learned to use the AT.
– I do not need assistance to use the AT.
– I feel confident using the AT.
– The AT is easy to use.
– I enjoy using the AT/the AT is fun to use.

However, there were lots of valuable suggestions for improvements, many of
which we have implemented since then. Moreover, the survey also revealed space
for improvement, in particular for streamlining as documented by the following
statements where the answers were more mixed:

– The AT is unnecessarily complex.
– The canvas for drawing is intuitive.
– The use of AT is self-explanatory.

Usefulness. Regarding how useful AT was for learning, the students agreed with
the following statements:

– I understand more after using the AT.
– I prefer using the AT to using pen and paper exercises (12.9% disagreed, but

median and average are 4).
– The feedback of the AT was helpful and instructive.
– The exercises within the AT are well-designed.
– The AT fits in well with the programming tasks and written homework.
– The AT did not hinder my learning.
– I feel better prepared for the exam after using AT.
– The feedback of the AT was not misleading/confusing.

Note that there are no statements with mixed or negative answers regarding the
usefulness. Additionally, as shown in Fig. 5, when we asked students about their
preferred means of learning, AT gets the highest approval rate, being preferred
to written or programming exercises as well as lectures.

Fig. 5. Question from the survey we conducted to evaluate Automata Tutor, showing
that the tool is preferred by a majority of students.

Overall, this class deployment of Automata Tutor v3 and the accompanying
surveys were great successes, and showed how the tool is of extreme value for
both students and teachers, in particular for such large a course.



Automata Tutor v3 13

6 Conclusion

This paper presents the third version of Automata Tutor, an online tool helping
teachers and students in large automata/computation theory courses. Automata
Tutor v3 now supports automated grading and feedback generation for a wide
variety of problems and, for some of them, even automatic generation of new
problem instances. Furthermore, it is easy to extend and we invite the community
to contribute by implementing further exercises. Finally, our experience shows
that Automata Tutor v3 improves the economical aspects of teaching greatly as
it scales effortlessly with the number of students.

Earlier versions of Automata Tutor have already been adopted by thousands
of students at dozens of schools and we hope this paper allows Automata Tutor v3
to help even more students and teachers around the world.

References

1. Gradiance online accelerated learning. http://www.newgradiance.com/
2. Ahmed, U.Z., Gulwani, S., Karkare, A.: Automatically generating problems and

solutions for natural deduction. In: IJCAI 2013, Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence, 3–9 August 2013, Beijing, China
(2013)

3. Alur, R., D’Antoni, L., Gulwani, S., Kini, D., Viswanathan, M.: Automated grad-
ing of DFA constructions. In: Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCAI 2013, pp. 1976–1982. AAAI Press
(2013)

4. Brooke, J., et al.: Sus-a quick and dirty usability scale. In: Jordan, P.W., Thomas,
B., McClelland, I.L., Weerdmeester, B. (eds.) Usability Evaluation in Industry, vol.
189(194), pp. 4–7. CRC Press, Ohio (1996)

5. D’Antoni, L., Helfrich, M., Kretinsky, J., Ramneantu, E., Weininger, M.: Automata
tutor v3. CoRR, abs/2005.01419 (2020)

6. D’antoni, L., Kini, D., Alur, R., Gulwani, S., Viswanathan, M., Hartmann, B.: How
can automatic feedback help students construct automata? ACM Trans. Comput.
Hum. Interact. 22(2), 1–24 (2015)

7. D’ Antoni, L., Weavery, M., Weinert, A., Alur, R.: Automata tutor and what
we learned from building an online teaching tool. Bull. EATCS, 3(117), 144–158
(2015)

8. National Research Council: How People Learn: Brain, Mind, Experience, and
School: Expanded Edition. The National Academies Press, Washington, D.C (2000)

9. Gulwani, S., Korthikanti, V.A., Tiwari, A.: Synthesizing geometry constructions.
SIGPLAN Not. 46(6), 50–61 (2011)

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley, Boston (2007)

11. Itzhaky, S., Gulwani, S., Immerman, N., Sagiv, M.: Solving geometry problems
using a combination of symbolic and numerical reasoning. In: McMillan, K., Mid-
deldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 457–472.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5 31

12. Patterson, D.: Why are English majors studying computer science? November 2013

http://www.newgradiance.com/
https://doi.org/10.1007/978-3-642-45221-5_31


14 L. D’Antoni et al.

13. Rahn, M., Waldmann, J.: The leipzig autotool system for grading student home-
work. Functional and Declarative Programming in Education (FDPE) (2002)

14. Shekhar, V.S., Agarwalla, A., Agarwal, A., Nitish, B., Kumar, V.: Enhanc-
ing JFLAP with automata construction problems and automated feedback. In:
Parashar, M., et al. (ed.) Seventh International Conference on Contemporary Com-
puting, IC3 2014, Noida, India, 7–9 August 2014, pp. 19–23. IEEE Computer Soci-
ety (2014)

15. Shenoy, V., Aparanji, U., Sripradha, K., Kumar, V.: Generating DFA construc-
tion problems automatically. In: 2016 International Conference on Learning and
Teaching in Computing and Engineering, LaTICE, pp. 32–37. IEEE (2016)

16. Singh, R., Gulwani, S., Rajamani, S.K.: Automatically generating algebra prob-
lems. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelli-
gence, 22–26 July 2012 Toronto, Ontario, Canada (2012)

17. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for intro-
ductory programming assignments. In: Proceedings of PLDI 2013, New York, NY,
USA, pp. 15–26. ACM (2013)

18. Weinert, A.: Problem generation for DFA construction (2014). https://
alexanderweinert.net/papers/2014dfageneration.pdf. Accessed 04 May 2020

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://alexanderweinert.net/papers/2014dfageneration.pdf
https://alexanderweinert.net/papers/2014dfageneration.pdf
http://creativecommons.org/licenses/by/4.0/

	Automata Tutor v3
	1 Introduction
	2 Automata Tutor in a Nutshell
	3 Design
	3.1 University and Course Management
	3.2 New Problem Types
	3.3 Automatic Problem Generation

	4 Implementation and Scalability
	5 Evaluation and User Study
	6 Conclusion
	References


