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Abstract

Segmentation of lungs with (large) lung cancer regions is a nontrivial problem. We present a new
fully automated approach for segmentation of lungs with such high-density pathologies. Our
method consists of two main processing steps. First, a novel robust active shape model (RASM)
matching method is utilized to roughly segment the outline of the lungs. The initial position of the
RASM is found by means of a rib cage detection method. Second, an optimal surface finding
approach is utilized to further adapt the initial segmentation result to the lung. Left and right lungs
are segmented individually. An evaluation on 30 data sets with 40 abnormal (lung cancer) and 20
normal left/right lungs resulted in an average Dice coefficient of 0.975 ± 0.006 and a mean
absolute surface distance error of 0.84 ± 0.23 mm, respectively. Experiments on the same 30 data
sets showed that our methods delivered statistically significant better segmentation results,
compared to two commercially available lung segmentation approaches. In addition, our RASM
approach is generally applicable and suitable for large shape models.
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I. Introduction

LUNG cancer represents a major health problem. World-wide, lung cancer is responsible for
1.3 million deaths annually, according to the WHO.1 Tomographic imaging modalities like
multidetector X-ray computed tomography (CT) play an important role in diagnosis,
treatment, and research of lung cancer. State-of-the-art CT imaging technology enables
physicians to create high-resolution volumetric scans describing lung anatomy and
pathology. Higher resolution benefits diagnostic capabilities, but on the other hand, the
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increased amount of image data to be analyzed represents a burden for physicians. To
address this problem, automated lung image analysis methods are required.

Many approaches to automated quantification of lung disease require the segmentation of
lung parenchyma in an initial processing step. In the case of normal lungs imaged with CT, a
large density difference between air-filled lung parenchyma and surrounding tissues can be
observed. A number of algorithms can be found in the literature (e.g., [1]–[5]) that rely on
this observation for the segmentation of lungs. We will denote such methods as conventional
lung segmentation approaches. In the case of lungs with lung cancer [Fig. 1(a)] or other high
density pathologies (e.g., pneumonia), lung segmentation becomes a nontrivial task, and
frequently, conventional algorithms fail to deliver suitable segmentation results [Fig. 1(b)].
Thus, to enable computer-aided cancer treatment planning (e.g., surgery or radiation
treatment) and to facilitate the quantitative assessment of lung cancer masses (e.g.,
evaluation of treatment response), robust lung segmentation methods are needed.

Only a few papers have been published that deal with segmentation of diseased lungs. None
of the existing methods directly targets the segmentation of lungs with large cancer regions
at arbitrary locations. For example, a Bézier surface-based method was proposed in [6] to
deal with lesions adjacent to the chest wall and mediastinum. First a shape model of lung
side walls is fitted to the target image by using an affine transformation. Second, an active
contour model was utilized to refine the initial segmentation. Because the lung apex and
base are not included in the model, the resulting segmentation was combined with a
conventional segmentation method. Thus, lesions adjacent to the lung apex or diaphragm
can result in segmentation errors. Pu et al. [7] proposed an automated lung segmentation
approach based on a 2-D adaptive border marching algorithm to deal with juxtapleural lung
nodules. Larger areas of under-segmentation were reported in hilar and pulmonary
consolidation regions. In recent work, Pu et al. describe a shape “Break-and-Repair”
strategy which was utilized to segment lungs with juxtapleural lung nodules [8]. A method
for the robust segmentation of lung parenchyma based on the curvature of ribs was
presented in [9]. The method is based on an adaptive thresholding scheme and utilizes a
comparison of the curvature of the lung boundary to the curvature of the ribs to select
thresholds. Because lung pathologies like cancer can have density values similar to other
tissues surrounding the lung, the method will likely show errors in such cases. Recently,
Wang et al. proposed a method for the segmentation of lungs with interstitial disease [10].
First, an initial segmentation was generated by utilizing a threshold-based conventional lung
segmentation method. Second, interstitial lung tissue regions were identified based on
texture features. The resulting segmentations were then combined to form the final
segmentation result. Sluimer et al. proposed a segmentation by registration approach for the
segmentation of pathological lungs [11]. While delivering promising results, not all
pathological cases could be handled successfully [11]. In addition, the authors also identified
the need to reduce computing time from 3 h to a clinically more acceptable processing time
[11]. To solve this problem, a hybrid lung segmentation method was presented in a recent
publication of the same group [12]. The basic idea is to first use a conventional lung
segmentation method, assess the correctness of the segmentation based on volume and shape
features, and utilize the segmentation by registration approach similar to [11] only if the
conventional method failed.

In this work, we present a new approach for the fully automated segmentation of lungs with
lung cancer regions which addresses the limitations of existing methods like robustness or
processing speed. Our approach is based on a robust model matching method for 3-D active
shape models (ASM). It builds on preliminary work, which required a manual initialization
of the ASM [13]. To address this limitation, we propose a model initialization method which
is based on a novel rib detection approach that is suitable for normal or contrast enhanced
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CT scans. The performance of our fully automated lung segmentation system is assessed on
30 lung CT scans with 40 abnormal (lung cancer) and 20 normal (no signs of lung disease)
left/right lungs. In addition, we provide a performance comparison with two commercially
available methods on the same image data. Both methods are utilized routinely in the
context of lung radiation treatment planning. The first method is based on a region growing
algorithm and the second method utilizes a deformable template-based segmentation
approach. In terms of computing time, the model-based 3-D segmentation of lungs is
particularly challenging, because of the size of lungs and the amount of image data to be
processed. Our approach addresses this issue—the robust matching algorithm is specifically
designed to take advantage of general-purpose computation on graphics processing units,
which reduces the execution time considerably.

II. Methods

An overview of our segmentation approach is shown in Fig. 2. First, ribs are detected and
utilized to initialize (place) the ASM [14] in the lung CT scan. Second, a robust ASM
(RASM) matching algorithm is applied to generate a coarse segmentation of the (diseased)
lungs. Third, the segmentation result is adapted by means of a constraint optimal surface
finding approach. In the following sections, we describe our approach in detail.

A. Lung Model Generation

Our lung segmentation approach requires learning shapes to build a lung model. In this
context it is desirable to have a learning set which is representative for the targeted
population. For our experiments, a set of n = 41 different total lung capacity (TLC) lung CT
scans without contrast enhancement, which showed no signs of lung disease or other
pathology, were available. Clearly, the utilized learning set size is limited. However,
additional learning samples can be easily added, if needed. The details of the model
generation process are described in the following paragraph.

Learning data sets were segmented using the commercial lung image analysis software
Pulmonary Workstation 2.0 (PW2) (VIDA Diagnostics, Inc., Coralville, IA). The selected
segmentation algorithm generates smooth surfaces which “cut” across main bronchi and
pulmonary arteries/veins in the area near the mediastinum. In addition, all segmentation
results were manually inspected and corrected, if needed. To produce left and right lung
models, the below outlined process was applied to segmented left and right lungs,
respectively. From the segmentations, triangle meshes were generated by utilizing a
marching cube algorithm [15]. A set of corresponding points (landmarks) {s1, s2, …. sm}
with m = 2562 were automatically identified on all meshes by means of a minimum
description length (MDL) approach [16] based on shape index and curvedness [17]. The
result of this processing step is a set of n meshes with m corresponding vertices. In this
context, we found that the selected number of landmarks represents a good trade-off
between computing time and surface point density.

All n landmark sets were aligned in a common coordinate frame by using Procrustes
analysis [19], resulting in a mean shape vector . For each learning shape, a shape vector Xi
with i = 1, 2, …, n was generated by concatenating the coordinates: Xi = [xi,1, yi,1, zi,1, xi,2,
yi,2, zi,2, …, xi,m, yi,m, zi,m]T. A principal component analysis (PCA) was applied to the

covariance matrix  to generate a point distribution
model (PDM) [14]. An instance of a left or right lung shape can be generated from the
corresponding PDM by the linear model
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(1)

where P denotes the shape eigenvector matrix derived from S, and b represents the shape
coefficients. The statistic model (1) allows describing lung shapes in terms of a mean shape
and variation about the mean.

B. Automated Model Initialization

It is well known that active shape models (ASMs) have typically a limited capture range.
Consequently, they need to be initialized in proximity to the target structure. Therefore,
initial shape (b) and pose (size, rotation, and location) parameters of the ASM need to be
determined. For initialization, we set the lung model to its mean shape (b = 0) and utilize an
automated method which detects rib centerlines in the CT volume to determine isotropic
scale and location (pose) parameters for a given CT data set (Fig. 3). Note that instead of
segmenting ribs, we utilize a shape-based rib centerline detection approach, which is more
robust against rib density variations due to age, etc. A detailed description is given in the
next paragraphs.

1) Centerline-Based Representation of Rib-Like Structures—In a first step,

tubular structures that are comparable in size, density, and scale to rib structures are detected
and a centerline-based representation is generated as follows.

a. The density values of the volume data set are truncated to a gray-value range of
interest between 0 and 500 HU [Fig. 3(a)]. Subsequently, Frangi’s “vesselness
measure” [18] at a scale of σ = 5 mm is computed to identify tubular structures of
appropriate size [Fig. 3(b)]. Note that at this scale, the cross-section of ribs appears
as a bright “blob,” thus the darker (less dense) bone marrow is no longer visible.
For the other parameters of Frangi’s approach, values of α = 0.5, β = 0.5, and c = 5
are used. Note that the cross-section of ribs varies significantly, but the choice of
parameters allows us to overcome this problem.

To speed up the computation of Frangi’s vesselness measure, the data set is first
downsampled by a factor of 4 in each dimension. In addition, a volume of interest
is generated by means of region growing to exclude the volume (e.g., air) outside of
the human body from calculation of the vesselness measure. For this purpose, the
border of the CT image is set as seed region and a threshold of −500 is utilized.

b. From the vesselness response image [Fig. 3(b)], a centerline description is extracted
for each tubular structure by utilizing a height ridge traversal with hysteresis
thresholding, which we have published previously in [20] [Fig. 3(c)]. In a
postprocessing step, centerlines with less than ten voxels are discarded, because
they typically are caused by image noise or imaging artifacts. In addition,
centerlines are cut at furcations of multiple centerlines to avoid problems in areas
where other structures like bones (e.g., shoulder blade) or contrast enhanced vessels
are in close proximity to ribs, and thus, appear connected at the scale of σ = 5 mm.

The centerlines found [Fig. 3(c)] are then utilized in the subsequent analysis step to detect
centerlines representing ribs.

2) Detection of Rib Centerlines—Our approach is based on the observation that ribs

show similar centerline patterns among each other, compared to other structures like
(contrast enhanced) vessels, for example. Thus, we utilize a clustering-based approach
outlined in Fig. 3 to find rib centerlines. The algorithm consists of two stages. First, potential
candidates are selected [Fig. 3(d)]. Second, a more fine-grain pattern analysis is performed
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[Fig. 3(e)]. This two step approach has been chosen to save computing time, because the
second step is computationally more expensive. The two steps are described in detail below.

In both stages, a mean shift [21] clustering approach is utilized to detect repeating patterns
of ribs. For analysis of feature vectors q = {q1, q2, … qd, an exponential kernel with profile
k(a) =exp(−a/2) and kernel size hj is used. hj corresponds to the feature dimension j and is
utilized to set the scale of the mode detection. Using the above defined kernel, the mean
shift algorithm [21] is utilized to find the mode points for all centerlines. After this analysis,
a quantification step is performed to group close-by mode points. If two mode points are
closer than the smallest kernel size they are combined to a new mode point represented by
the average of both modes. This process is repeated until convergence.

The features used for clustering are based on geometric properties of the centerlines. For this
purpose, a PCA analysis is applied to all points of each centerline, and the resulting eigen-
values ∣e1∣ ≤ ∣e2∣ ≤ ∣e3∣ and corresponding eigenvectors w1, w2, and w3 are further analyzed.

As outlined above, the actual rib detection is performed in two stages.

a. The goal of this stage is to reject centerline objects that do not show a typical
spatial extent of ribs (long curved structures). For all detected centerlines, a feature
vector q = (e1, e2, e3)T is generated. For analysis, the mean-shift kernel sizes are set
as follows: h1 = 5.0e –1, h2 = 5.0e –4, and h3 = 3.0e – 5. The above described mean
shift clustering typically results in one large and a number of smaller clusters. The
feature points of the large cluster represent irregular and small-size centerlines
corresponding to structures like vessels, vertebrae, etc. After removing this cluster,
the remaining feature points relate to ribs and large-size structures like spine, aorta,
or parts of the shoulder blade Fig. 4(b), which are further analyzed in the next
stage.

b. For rib centerlines, the eigenvectors w2 and w3 span a slanted plane in which the
rib centerline is located [Fig. 4(a) and (b)]. In addition, the eigenvector w1 is
approximately oriented along the z-axis. Because the eigenvectors of similar rib
centerlines can point in opposite directions [Fig. 4(a) and (b)], we utilize a tensor-
based representation (T1, T2, and T3) of eigenvectors with Ti = [tik,l]k=1,2,3; l=1,2,3,
where Ti corresponds to wi. Note that each tensor matrix Ti is symmetric.
Consequently, only the upper triangular part of the matrix is utilized for further
analysis: ti = {ti1,1, ti1,2, ti1,3, ti2,2, ti2,3, ti3,3. To describe the orientation of
centerlines, the term τ = ∣w1 · (0, 0, 1)T∣ is calculated. A feature vector is generated
for each centerline by concatenation: q = {t1, t2, t3, τ}. For cluster analysis, the
kernel sizes are set as follows: ht1 = 0.82, ht2 = 0.9, ht3 = 1.0, and hτ = 0.07. After
applying mean shift clustering, the majority of ribs are located in the largest cluster,
because of the similarity of their feature vectors, and all other clusters are
discarded.

The kernel sizes for both stages were determined on the learning data set. We observed that
occasionally false positives (e.g., included clavicles or costal cartilage) and false negatives
cases (missing ribs) occur, but we found that such minor errors still allow deriving model
pose parameter which are suitable for a rough initialization of the shape model. As
demonstrated in Fig. 3, our approach is also suitable to deal with contrast enhanced lung CT
scans.

3) Model Pose Parameter Estimation

Based on the detected rib centerlines, isotropic scale and center location for the ASM are
derived. For this purpose, a bounding box for the ribcage is calculated. First, the smallest
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and largest x- and y-coordinate as well as the median z-coordinate for each centerline in the
detection result are calculated. Second, the bounding box B = (xmin, xmax, ymin, ymax, zmin,
zmax) is determined. To robustly estimate xmin, xmax, ymin, and ymax, the third largest (max)
or third smallest (min) value of all centerline extremes in x- and y-direction is selected,
respectively. This allows us to deal with occasionally occurring false positive centerline
parts (see discussion in previous paragraph). zmin and zmax are directly calculated from the
median z-coordinates of all centerlines. Finally, the scale and position are estimated for the
left and right lung separately. For this purpose the rib bounding box is split in the middle,
perpendicular to the x-axis. The initial position for the left and right lung model is found by
calculating the center of the left and right bounding box, respectively. An isotropic scale
factor is calculated for each lung by averaging the two x- and y-size ratios between left/right
mean shape and corresponding bounding box. If needed, the algorithm can be extended to
estimate rotation parameters, but based on the utilized CT scan protocols this was not
necessary.

C. ASM Matching

For ASM-based segmentation, we utilize a novel robust ASM matching approach (Section
II-C2) that extends the standard ASM matching scheme described below.

1) Standard ASM Matching

The PDM (Section II-A) can be used for lung segmentation by matching the model to the
target structure. This could be achieved by utilizing a standard ASM matching framework,
similar as described in [14]. The matching procedure consists of four steps.

a. An instance of the shape model (e.g., mean shape) is generated and placed in
proximity to the target structure (Section II-B).

b. To match the model to the target, shape points are updated by searching from the
current landmark location along a profile normal to the model surface with length
lASM. To find update points y, we use the following cost function:

(2)

ci represents the cost of the ith column element, and the associated sampled
gradient magnitude, gradient direction, and surface normal vector are denoted as
gmagi, gdiri, and ni, respectively. The gradient calculation is based on Gaussian
derivatives with a standard deviation of σASM, and the calculation of gdir and gmag

is done for each voxel of the volume before the model matching is started. These
precalculated gradient values are then used to interpolate gradient vectors during
model matching. If a gradient value outside the volume is required during model
matching, the position closest to the boundary is utilized. In the case that no new
update point can be found, the old position is used.

c. Once all shape points are updated, pose parameters are adjusted to map the updated
shape points in the target image coordinate frame to the mean shape in the model
coordinate frame. For this purpose, a Procrustes alignment step is used to estimate
transformation matrix T, which consists of scaling, rotation, and translation

parameters, by minimizing . Model parameters b are
updated using
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(3)

and a new instance of the model is calculated utilizing (1) and transformed to the
image space by T−1.

d. Steps a–c are repeated until the model converges.

2) Robust ASM Matching

We are interested in the segmentation of pathological lungs that contain large areas of lung
cancer (high density). Thus, it is very likely that some update points are found during the
model matching procedure that do not represent lung surface (outliers) and belong to an area
of transition between normal and diseased lung tissue. Consequently, the standard matching
approach will fail, because it is a least squares optimization procedure that is not suitable to
handle outliers. Therefore, a robust shape model matching approach is required.

The basic idea behind robust ASM matching is to only use inlier components of y to update
model parameters. In this context, Rogers et al. investigated M-estimators and random
sampling-based robust parameter estimation techniques for 2-D ASM matching [22]. It is
well known that the effectiveness of M-estimators strongly depends on the selection of the
weighting function and its parameters. Usually, this selection is not trivial, and the optimal
selection might change from case to case. Random sampling techniques try to find a subset
of inliers by evaluating a number of randomly sampled subsets of update points. Such
approaches work well, if the required subset of inliers is quite small. In the case of large
ASM models, this strategy can lead to suboptimal results, because a small set of inliers
might not be representative enough to describe a complex lung shape (many landmark
points), and thus can negatively impact the matching result. For our application, it is
desirable to use as many inliers as possible for the model update. Lekadir et al. proposed a
robust 3-D active shape model matching method based on local shape dissimilarity defined
by point triplet ratios [23]. In the case of large ASMs, a large number of possible triplets
exist and selecting an optimal subset is not trivial.

Our approach utilizes a robust PCA coefficient estimation scheme that builds on the work of
Storer et al. [24]. Storer’s method was designed for robust image reconstruction and targets
a predefined number of inliers. In this paper, we propose a novel voting scheme that does
not require to specify a targeted number of inliers. Our method consists of two processing
steps. First, normal shape patterns of landmark subsets are learned. Second, these patterns
are then utilized during ASM matching to identify and reject outliers.

Offline Learning—The overview of the robust shape pattern learning process is shown in

the Fig. 5. Corresponding landmark points of all learning shapes are partitioned randomly
into k shape subsets of approximately equal size. This process is repeated l-times, resulting
in a set of subsets: Ω = {wi,j|i ∈ 1,2,…,l; j ∈ 1,2,…,k}. Note that corresponding landmark
points of all n learning data sets are always assigned to the same subset. Consequently, each

subset wi,j consists of n subset samples. For each subset wi,j, a mean shape  is calculated
by using Procrustes analysis, and all shapes of the subset are aligned. The subset shapes are
then converted to shape vectors by concatenating their x-, y-, and z-components. By means
of PCA, the corresponding eigenvector matrices Pwi,j and eigen-value vectors λwi,j are

calculated. , Pwi,j, and λwi,j are stored and utilized for robust ASM matching.
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Robust Matching—In order to match the model to the target image, outlier components

of the update position y in each iteration need to be identified. This is accomplished by
analyzing the subset combinations of y and utilizing a voting scheme. Let ywi,j represent the
components of y that are corresponding to the landmark points that constitute subset wi,j. Let
mwi,j represent the number of update points in each subset. A subset reconstruction error is
defined

(4)

where Twi,j is a transformation matrix that aligns ywi,j to the corresponding mean . The

vector  is derived from

(5)

by constraining bwi,j(v) in , v ∈ {1, 2,  mwi,j}. A large
reconstruction error ewi,j is an indication that subsetwi,j is very likely contaminated by one or
more outliers. The l-times repeated subdivision increases the possibility of outlier free point
combinations. To identify the outliers, the reconstruction error ewi,j is interpreted as a vote,
which is casted for all update points that are included in the subset ywi,j. This voting process
is carried out for all subsets wi,j ∈ Ω. Outliers frequently get large vote values. The casted
votes are collected in a matrix Verr of size m × l, in which rows correspond to shape points
in y. After all votes are casted, Verr is analyzed to detect outliers. First, to increase
robustness, a rank order statistics filter is applied to each row; the values are sorted, and the
g-lowest value is selected to represent the filter result. This filtering step reduces Verr to a
vector verr = [v1, v2, …, vm]T and helps to reject accidentally occurring point constellations
that contain outliers, which are similar to constellations of inlier points. A typical histogram
of vector component values is shown in Fig. 6. Second, a threshold δ is derived from verr by
analyzing the distribution of vector components vi: δ = μ + βσ with μ = mediani∈1, 2,…,m and

, where β represents a constant. Third, the threshold is applied to
verr to yield a selection vector: psel = [p1, p2,…,pm]T with

(6)

to discriminate between inliers (pi = 1) and outliers (pi = 0). Once the inliers are identified,
the transformation matrix T is obtained by aligning selected update points y{pi =1} to the

selected mean shape points  and then shape parameters b are calculated using

(7)

An advantage of our outlier detection algorithm is that it is well suited for parallel
processing, because the analysis of the k shape subsets which is repeated l-times is
independent from each other, and thus, can be done in parallel. For example, we utilize a
GPGPU-based implementation to speed up the model-based segmentation algorithm.

To achieve a robust behavior of the ASM during matching, all outliers present must be
rejected. In addition, we would like to utilize as many inliers as possible to achieve a good
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match between image and model. This has several implications for the selection of
parameters for the RASM matching algorithm. For example, when selecting the number of
shape subsets k, a trade-off must be made. On the one hand, the value for k must be small
enough such that the shape points within each shape set can form distinctive point patterns.
On the other hand, a larger number of shape subsets is preferable, because it becomes more
likely that outlier-free shape subsets can be found, which reduces the number of required
subset evaluation iterations (parameter l). The parameter β should be selected
conservatively, to make sure that all outliers are rejected, even if this implies that a small
number of inliers is not utilized for matching the ASM.

For our application, we used the following parameters: lASM = ±40mm, k = 200, l = 60, ξ =
2, g = 10, and β = 13. To update the robust ASM, a gradient image was calculated based on
Gaussian derivatives with a standard deviation of σASM = 4. The maximum gradient position
along the search profile was used to calculate updates for shape points. The model matching
was iterated until the average of the shape point movement was below 0.04 mm or at most
100 iterations.

D. Constrained Optimal Surface Finding

Depending on the training data utilized for model building, the model might not be able to
describe smaller local shape variations. To capture this information, we generate the final
lung segmentation by applying a global optimal surface finding method [25], which allows
finding a smooth surface related to a shape prior (ASM segmentation). The algorithm
transforms the segmentation problem into a graph optimization problem, which is solved by
means of a maximum-flow algorithm [25]. An edge-weighted directed graph is built, and
weights derived from the volume are assigned to the graph edges to reflect local image
properties. For this purpose, the final ASM mesh is utilized. Since the ASM vertices are
sparse, the mesh is restructured by adding triangles, before the graph is built. For graph
generation, columns along the surface normal of each vertex (search profile) are generated.
The length lp of the profile is utilized to constrain the segmentation to the proximity of the
initial ASM segmentation. In addition, a surface smoothness constraint Δ is incorporated
into the graph as described in [25]. For segmentation we use the following cost function:

(8)

where ci represents the cost of the ith column element and gmax the maximum gradient
magnitude of the volume, similar to the cost function utilized in Section II-C. The gradient
calculation is based on Gaussian derivatives with a standard deviation of σg. The optimal
surface finding is utilized in an iterative coarse to fine fashion using following sequence of
values of σg and and Δ : {6.0, 3.0, 1.0, 0.5} and {10, 8, 5, 2}, respectively. For the search
profile lp = ±10 voxel is used.

III. Evaluation Methodology

A. Image Data and Experimental Setup

For our study, 30 multidetector computed tomography (MDCT) thorax scans of cancer
patients with lung tumors were utilized. The images where acquired with several different
scanners and imaging protocols. In 26 MDCT scans, the vasculature was contrast enhanced.
In each data set, either the left and/or right lung contained one or more lung cancer regions
with significant higher density, compared to normal lung tissue. To roughly quantify the size
of high density lung pathology, the longest diameter in the axial image plane was measured,
similar to the response evaluation criteria in solid tumors (RECIST) [26]. In this context,
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note that necrotic lung masses were measured in the same way as solid tumors. The average
diameter was 46.28 mm, and the average diameter for right and left lungs was 53.0 mm and
38.8 mm, respectively. The image size varied from 512 × 512 × 424 to 512 × 512 × 642
voxel. The in-plane resolution of the images ranged from 0.58 × 0.58 to 0.82 × 0.82 mm and
the slice thickness from 0.6 to 0.7 mm.

With our approach, 60 segmentations of 21 diseased right, 9 normal right, 19 diseased left,
and 11 normal left lungs were performed, respectively. All computations were performed on
a workstation equipped with a NVIDIA Tesla C1060 Computing Processor which offers 240
thread processors and 4 GB of memory.

In addition to the proposed combination of robust ASM and optimal surface finding (RASM
+OSF), segmentations were performed with a standard ASM and robust ASM (RASM)
without the subsequent surface finding step. The same automatically generated initialization
(Section II-B) was utilized for all three segmentation variants. Further, we applied two
different methods for lung segmentation provided by a commercial radiation treatment
planning system (Pinnacle3, Philips, The Netherlands). The first approach which will be
denoted as “P1” and utilizes region growing and morphological post-processing steps,
similar to many commercially available and clinically used lung segmentation methods. The
second will be denoted as “P2” and is based on a deformable template approach. In order to
utilize method P2, the user is required to manually place a lung shape template in the
volume data and to adapt its scale, before iterative matching is performed. One medical
expert processed all test data sets with both methods. In the case of method P2, the expert
was asked to repeat the process three times to allow assessing the impact of model
initialization on segmentation performance. Performance measures reported for method P2
represent the average over all three repetitions. For both methods, clinically utilized standard
parameter settings were used. Method P2 allows the user to manually refine a lung
segmentation result. For a fair comparison between methods, the operator was not allowed
to use this feature.

B. Independent Reference Standard

For quantitative evaluation of our segmentation method, an independent reference standard
was generated by utilizing a commercial lung image analysis software package PW2 from
VIDA Diagnostics, Inc., Coralville, IA. First, an automated (conventional) lung
segmentation was performed. Second, since the software was not designed to deal with
lungs containing large lung cancer regions, two experts inspected all the segmentations
slice-by-slice and corrected all segmentation errors manually. In the case of diseased lungs,
this process took several hours per lung. Because of this, each case was processed only by
one expert.

C. Quantitative Indices

The following quantitative error indices are utilized: Dice coefficient D[27], Hausdorff
distance H[27], mean signed border positioning errors (ds) [27], and mean absolute surface
distance (da) [28]. In the case of ds, a negative value indicates that the segmentation
boundary is inside and a positive value indicates that the border is outside the reference.

IV. Results

Segmentation performance measures averaged over all left lungs and right lungs are
summarized in Table I for the proposed method as well as the ASM and RASM approaches.
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Based on the Dice coefficient, the boxplots in Fig. 7 show a comparison among those three
methods for left [Fig. 7(a)] and right [Fig. 7(b)] normal and diseased lungs, respectively.
The mean and standard deviation of performance measures of our method for left and right
lungs with and without disease is presented in Table II.

Table III summarizes the results achieved on the same data with methods P1 and P2 in
combination with the results of a statistical comparison with the proposed approach.
Corresponding boxplots of the Dice coefficient are depicted in Fig. 9.

Fig. 8(b) depicts a segmentation result which was generated by our method. For comparison,
the reference segmentation is shown in Fig. 8(a). A segmentation of the same data set with a
conventional approach was previously shown in Fig. 1(b). Additional segmentation
examples are depicted in Fig. 10, which also shows corresponding results generated with
methods P1 and P2.

On average, 2 min were required for calculating left and right model initialization
parameters and another 2 min for segmenting a right or left lung, which resulted in an
overall average processing time of 6 min per data set. In this context, the mean time required
for the intrinsic robust ASM matching was only 24 s due to code optimization and utilization
of GPGPU techniques.

V. Discussion

A. Performance

The robust ASM is an important component of the presented fully automated lung
segmentation method. Results presented in Table I and Figs. 7 and 12 demonstrate that our
robust ASM matching approach outperforms the standard ASM approach. Even on normal
lungs, our robust ASM delivers superior performance. These results are not surprising,
because standard ASM matching is a least squares optimization, which is sensitive to
outliers. Because the model is only roughly initialized in proximity to the lung, all obstacles
between model and target structure like aorta and vessels can cause problems. Our robust
matching method can even handle missing data, as shown in Fig. 13.

Since our shape model was built from 41 data sets, smaller local shape variations cannot be
explained by the model. The optimal surface finding step allows us to overcome this
problem. A good initial match between model and image data is required for this processing
step, and the performance of a standard ASM would not be sufficient for this task (Fig. 12).
The boxplots in Fig. 7 show that the Dice coefficient is increased significantly by the
optimal surface finding step for all constellations of left/right and normal/diseased lungs.
This is also clearly reflected in the averaged results for the Dice coefficient D, Hausdorff
distance H, and mean absolute surface distance error da (Table I). In the case of the mean
signed border positioning error (ds) shown in Table I, the value increases slightly after
optimal surface finding, but is within the average dimension of a voxel. Table II shows
performance measures for normal left/right and diseased left/right lungs, respectively. The
results for the Dice coefficient are in a close range for all possible constellations. Distance-
based error metrics for normal left lungs are somewhat lower compared to diseased left
lungs. In the case of the right lungs, distance error metrics are higher for normal lungs
compared to diseased lungs. The reason for this is that the size of one out of the nine normal
right lung is extremely small compared to the corresponding left lung [Fig. 14(a)]. Thus, the
shape is significantly deviating from learned shapes. Consequently, the model does not
initialize the optimal surface finding in close proximity to the target surface in this region,
which results in a larger local distance error. If this case is excluded from the calculation, the
following performance measures are obtained for normal right lungs: D = 0.978 ± 0.004, H
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= 18.93±4.19 mm, da = 0.80±0.15 mm, ds = 0.63±0.17 mm. These results show a similar
pattern to the results for the left lung. The described problem can be addressed by expanding
the learning shape set utilized for model generation (Section II-A) such that similar
variations are included. Another option would be to allow anisotropic scaling of the model
during matching which would give it more flexibility.

In our segmentation results, we observed frequently major deviations from the reference in
hilar regions where airways and pulmonary vessels enter/leave the lung. Even for experts, it
is hard to segment this area consistently.

Currently, our method requires on average 6 min for the processing of normal or diseased
lungs, consisting of initialization and sequential segmentation of the left and right lung. The
core component of our approach is a novel robust 3-D ASM matching algorithm which is
suitable for large models and can run in parallel. For example, our GPGPU-based
implementation required approximately 24 s for matching the RASM to a left or right lung.
This demonstrates the feasibility of fast and robust model-based segmentation of large
structures. In the current implementation, many processing steps are not optimized nor do
they utilize GPGPU approaches. For example, the segmentation of left and right lungs can
be done in parallel and parts of the model initialization method can be optimized. Thus, we
are optimistic that processing time can be significantly reduced, which is an important issue
for routine utilization.

B. Comparison to Other Methods

Segmentation of lungs with large lung cancer regions in chest CT scans is a nontrivial
problem. Many of the currently utilized methods are prone to produce incorrect results, as
shown in Fig. 1(b). Such methods typically rely on simple strategies (e.g., region growing),
that do not incorporate knowledge about the shape of the target object. Problems with
standard methods can even occur in the case of normal lungs, as depicted in Fig. 11. This is
also clearly demonstrated by our assessment of method P1 (Table III) and corresponding
examples depicted in Fig. 10. As a consequence, extensive manual postprocessing of
segmentations is necessary. The deformable template approach (method P2) represents an
improvement compared to method P1 (Table III and Fig. 9), but still shows local
segmentation errors (Fig. 10). The result of method P2 can vary significantly with the
initialization [Fig. 10(l)–(n)], which limits reproducibility. In some cases, method P2
provided correct segmentations of lungs with masses [Fig. 10(b)–(d)], while in other cases,
it consistently produced segmentation errors [Fig. 10(g)–(i)]. Both methods are
outperformed by the proposed approach (RASM+OSF), which shows statistically significant
better results for all performance metrics (Table III) and does not require manual
initialization. In this context, it also interesting to note that method P2 and our RASM
(without OSF) show similar values for the average Dice coefficient (Tables III and I).
However, when the Hausdorff distance and the mean signed border positioning error are
considered, which are more relevant for refining a segmentation in a subsequent processing
step (e.g., OSF), our RASM is the better choice, because it is on average closer to the true
lung boundary.

A direct comparison of our work to methods presented in Section I is difficult, because of
different objectives and/or data sets utilized for algorithm evaluation. So far, the issue of
excessive processing time of more advanced methods was only addressed by one group
which proposed to use a hybrid approach that first uses a conventional method, and in the
case of segmentation errors, a more time-consuming segmentation by registration approach
is utilized [12]. The average time required for segmentation was 18.6 min. In the case of
failed segmentations, the segmentation by registration method took 120 min on average,
which was required in 22 out of 150 lung scans. Compared to the segmentation by
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registration approach, our approach has the advantage that only one model needs to be
matched to volumetric image data instead of several data sets, which is faster. For the 22
cases where the segmentation by registration approach was applied, the following
performance indices were reported [12]: volumetric overlap fraction O = 0.94±0.03, H =
23.53±11.97 mm, da = 1.90±2.70 mm. We also calculated the volumetric overlap fraction
for our test data: O = 0.951±0.011 in addition to the results shown in Table I and Table II.
Overall, volumetric performance metrics of our approach are in a similar range compared to
[12]. In the case of distance-based performance metrics, our method appears to deliver better
performance (Table I). However, the different data sets used for evaluation limit the
comparability of results.

C. Current Limitations and Future Work

While our robust model matching method successfully deals with outliers and other
disturbances (e.g., missing data) (Figs. 12 and 13), it requires learning data which is
representative for the target population. If a lung shape is encountered that cannot be
explained by the model, the shape needs to be added to the learning set. Such an approach
allows to build a more complete model over time and will reduce the likelihood that similar
problems are encountered in the future. Also, note that the optimal surface finding step after
robust ASM segmentation reduces the need to add new lung shapes to the learning set.

In general, cases of pneumothorax or pleural effusion are difficult to segment automatically,
and our model-based approach might require some additional processing steps. For example,
Fig. 14(b) depicts a robust ASM matching result of a thorax CT scan with a pleural effusion.
The left lung model approximates the “normal” lung location and matches with the
diaphragm at the bottom. To segment the left lung, some additional steps are needed and
might also allow to quantify the pleural effusion volume, which is of interest to physicians.

For our experiments, we have utilized a simple cost function based on gradient magnitude
and direction. Thus, performance can be further improved by utilizing more complex cost
functions for model matching and optimal surface finding, which could be based on the
relative location of shape points as well as density/gray-value properties and shape features.
For example, currently the detected ribs are only utilized for model initialization, but can
provide valuable information for cost function design. Also, the proposed work targets
larger cancer masses and is not optimized for handling juxtapleural nodules. Again, this
problem can be addressed by adapting the cost function as well as the formulation of the
smoothness constraint utilized for optimal surface finding.

In the current version of our algorithm, left and right lungs are segmented separately, which
can lead to inconsistencies (e.g., overlap). This problem can be solved by utilizing a multiple
surface graph search approach as described in [25]. In addition, we plan to extend our
approach to 4-D to segment TLC and FRC (functional residual capacity) lung scans
simultaneously.

In some cases the optimal surface segmentation has problems in segmenting areas with
sharp angles like the area where the diaphragm meets the chest wall (costophrenic angles).
To solve this problem, locally more dense mesh vertices in combination with an adaption of
search profiles will be required.

Preliminary work investigating the applicability of our lung segmentation method to lungs
with other kinds of diseases like idiopathic pulmonary fibrosis is promising and will be
subject to future research (Fig. 15).
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VI. Conclusion

In this paper, a novel method for the fully automated segmentation of lungs with lung cancer
regions was presented. The robustness and effectiveness of our approach was demonstrated
on 30 lung scans containing 20 normal lungs and 40 diseased lungs where conventional
segmentation methods frequently fail to deliver usable results. Low segmentation errors
were achieved in cases with and without high-density pathology, compared to two clinically
utilized methods. The presented approach to lung segmentation opens up new avenues for
computer-aided lung image analysis. For example, segmentation of diseased lungs and
segmentation of the diseased tissue itself are related problems. Thus, we expect that our
method will be of significant benefit for the quantification of lung diseases.

A core component of our method is a novel robust ASM matching method. The approach
not only allows coping with disturbances (e.g., outliers), but it is also well suitable for large
shape models and parallel implementation, allowing low computation times. Our robust
ASM framework is also applicable to other segmentation problems as well as imaging
modalities, requiring mainly an adaption of the matching cost function.
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Fig. 1.
Segmentation of a lung with cancer using a conventional approach. (a) Axial CT image
showing normal right and cancerous left lung tissue. (b) Corresponding segmentation result
generated with a conventional lung segmentation method. Segmentation errors are indicated
by arrows.
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Fig. 2.
Overview of our model-based segmentation approach.
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Fig. 3.
Outline of main rib detection processing steps. (a) Volume rendering of the input thorax CT
data truncated to a gray-value range between 0 and 500 HU. (b) Volume rendering of
Frangi’s “vesselness measure” [18] computed at a scale of σ = 5 mm and (c) corresponding
centerlines of rib candidates (Section II-B1). Note that many responses from vessels (e.g.,
aorta) can be found in (b) and (c), because the CT image is contrast enhanced. Centerlines
from vessels and other non-rib structures are removed in subsequent rib detection steps.
Output of first (d) and second (e) rib clustering/detection stage (Section II-B2).
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Fig. 4.
Visualization of eigenvector patterns utilized for rib detection. Eigenvectors are shown for
ribs [(a), (b)] and the aortic arch (c).
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Fig. 5.
Robust shape pattern learning. A random sampling process is repeated l-times (rows). In
each random sampling process, k shape subsets are derived from all n training shapes and
utilized to generated point subset distribution models.
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Fig. 6.
Histogram of component values of verr and automatically derived threshold utilized to detect
outlier components.

Sun et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 May 20.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 7.
Comparison of the Dice coefficient of standard ASM, robust ASM (RASM), and proposed
(RASM+OSF) lung segmentation approaches for (a) left and (b) right lungs. Note that
boxplots for normal (N) and diseased (D) lungs are shown separately.
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Fig. 8.
Segmentation result for the example shown in Fig. 1(a). (a) Reference segmentation and (b)
proposed segmentation approach.
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Fig. 9.
Boxplots of the Dice coefficient for P1, P2, and our approach.
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Fig. 10.
Examples of segmentation results on three different data sets (rows). (a) , (f), (k) Results for
method P1. (b)–(d), (g)–(i), (l)–(n) Results generated with method P2 based on three
different template initializations. (e), (j), (o) Results of the proposed automated approach
(RASM+OSF).
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Fig. 11.
Comparison between conventional and proposed lung segmentation methods. (a) The
conventional method leaks into the gas filled colon. (b) Our method provides a correct
segmentation.
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Fig. 12.
Performance comparison between (a) standard ASM and (b) RASM matching (without
optimal surface finding step). The RASM delivers a better match for normal and diseased
lungs.
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Fig. 13.
Segmentation of an incomplete lung CT data set; the top portion was not scanned. (a)
Standard ASM. (b) Robust ASM (without optimal surface finding step). Note that the
standard and robust ASM are not aware of the spatial extent of the data set, because of the
clamping of gradient values to the boundary (Section II-C1). Surfaces outside of the data set
were clipped after the segmentation process was completed.
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Fig. 14.
Examples of RASM segmentation results (without optimal surface finding step). (a) Case
with small right lung and (b) pleural effusion in left lung. See text in Section V for details.
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Fig. 15.
Example segmentation results of lung with idiopathic pulmonary fibrosis. (a) A manual
reference segmentation. (b) Result of a conventional segmentation method. (c) Preliminary
segmentation result of our approach (RASM+OSF).
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TABLE I

Comparison of Overall Performance Between Standard ASM, Robust ASM (RASM), and Proposed (RASM
+OSF) Lung Segmentation Approaches Averaged Over all Left and Right Lungs Processed. Mean and
Standard Deviation (STD) is Given for Each Index

ASM RASM RASM+OSF

D (-) mean 0.848 0.936 0.975

std 0.046 0.015 0.006

H (mm) mean 35.06 22.77 20.13

std 7.87 5.75 6.17

da (mm) mean 5.47 2.24 0.84

std 1.37 0.50 0.23

ds (mm) mean −3.02 0.51 0.59

std 1.14 0.41 0.39
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TABLE II

Segmentation Results of the Proposed Method on Normal Left (NL), Diseased Left (DL), Normal Right (NR),
and Diseased Right (DR) Lungs. Mean and Standard Deviation (std) is Given for Each Index

Lung

NL DL NR DR

D (-) mean 0.975 0.974 0.976 0.976

std 0.004 0.007 0.006 0.005

H (mm) mean 18.63 19.32 21.64 21.00

std 5.51 5.82 9.02 5.52

da (mm) mean 0.75 0.84 0.94 0.85

std 0.10 0.2 0.43 0.18

ds (mm) mean 0.44 0.50 0.92 0.60

std 0.09 0.24 0.87 0.19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 May 20.



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Sun et al. Page 33

TABLE III

Overall Performance Measures for Methods P1 and P2 Averaged Over all Left and Right Test Lungs. Mean,
Standard Deviation (std) is Given for Each Index. In Addition, the P-Value of a Paired Wilcoxon Rank Sum
Test of the Hypothesis That Method P1 or P2 and Our Approach Come From Distributions With Equal
Medians is Reported

P1 P2

D mean (-) 0.844 0.949

std (-) 0.106 0.012

P-value (-) 2.47e-14 5.92e-20

H mean (mm) 98.49 33.07

std (mm) 50.88 7.69

P-value (-) 1.11e-19 2.05e-15

da mean (mm) 8.56 1.89

std (mm) 6.14 0.45

P-value (-) 6.64e-17 4.21e-20

ds mean (mm) 15.21 1.25

std (mm) 12.76 0.72

P-value (-) 2.31e-05 1.77e-09
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