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Abstract. Ultra-High Resolution Optical Coherence Tomography is a
novel imaging technology that allows non-invasive, high speed, cellular
resolution imaging of anatomical structures in the human eye, including
the retina and the cornea.

A three-dimensional study of the cornea, for example, requires the seg-
mentation and mutual alignment of a large number of two-dimensional
images. Such segmentation has, until now, only been undertaken by hand
for individual two-dimensional images; this paper presents a method
for automated segmentation, opening substantial opportunities for 3D
corneal imaging and analysis, using many hundreds of 2D slices.
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modelling, segmentation, reconstruction.

1 Introduction

Optical Coherence Tomography is an optical imaging technique that allows for
non-invasive (non-contact), micrometer-scale imaging of transparent objects and
biological tissue. Some of the most advanced medical applications of OCT are
in the field of ophthalmology for non-invasive imaging of healthy and diseased
human retina and cornea [1–4].

The human cornea, which is the application focus of our research, consists of
five distinct layers of variable thickness: Epithelium (∼50μm), Bowman’s mem-
brane (∼15μm), Stroma (∼500μm), Descemet’s membrane (∼10μm) and En-
dothelium (∼5μm), labeled in Figure 1. Identifying individual corneal layers in
OCT tomograms and the precise measurement of their thicknesses is essential
in the evaluation of corneal disease, for example to study the progression and
treatment of Keratitis, Keratoconus, Fuchs’ dystrophy, and Hypoxia [5–8], as
these corneal diseases transform the shape and layer thickness of the cornea.

Until now, corneal layer segmentation has only been undertaken by hand
for individual 2D images, greatly limiting the types of problems or number of
patients who could be studied, and making completely impractical any 3D study
based on the segmentation and registration of hundreds of 2D images.
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This paper presents a method for automated segmentation, opening substan-
tial opportunities for 3D corneal imaging and analysis. The proposed segmenta-
tion method is the first fully automated algorithm, to the author’s knowledge,
that can segment the five corneal layers based on Optical Coherence Tomogra-
phy images. Since both boundaries of the Descemet’s membrane are less than
the imaging resolution, the Descemet’s Endothelium complex is represented by
a single boundary instead. The data in this paper were acquired with an Ul-
traHigh Resolution Optical Coherence Tomography (UHROCT) system, which
allows for non-invasive imaging of a human cornea with 3μm axial resolution
and an acquisition rate of 47,000 2D scans per second [9].

Fig. 1. UHROCT image of the cornea containing labeled layer boundaries

The Background section discusses existing 3D corneal reconstruction tech-
niques and segmentation algorithms. The Reconstruction Method section de-
scribes the novel 2D segmentation algorithm, developed in this paper, applied
to multiple cornea images, leading to the development of an approach for 3D
reconstruction.

2 Background

The proposed method intends to extend existing reconstruction techniques so
that a 3D model can be obtained from a series of noisy UHROCT images. The
following sections describe existing reconstruction methods and several segmen-
tation methods that can be used to facilitate corneal reconstruction.

2.1 3D Reconstruction

Existing medical imaging techniques can be utilized for imaging large organs,
such as the brain using MRI, or imaging small cells using electron microscopy.
Depending on the scale of the object, different reconstruction algorithms are
applied to the data collected from the imaging process.

When performing gross medical imaging, a series of 2D images might be
stacked together if the object motion and the imaging system motion is
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negligible compared to the overall dimensions of the object. For example, when
performing ultra-sound to image large organs, the vibrations of the ultra-sound
probe and the small motion of muscles surrounding the organs are insignificant
due to the relative scale of the object being imaged [10]. In addition, stacking
can be acceptable if a stationary object reference is visible in each frame. When
performing a brain MRI, the stationary bone structure of the skull can be used
to translate the 2D scans for the registration process [11].

Although on the smaller scale, electron microscopy is used to image cells. In
these cases, the vibrations and motions of the cells are significant. However, like
in gross medical imaging, electron microscopy can use reference points that are
present in multiple 2D images [12]. Single-particle analysis [13, 14] attempts to
identify macromolecules in each view and attempts to determine the orientation
of each macromolecule in the particle.

Scarpa presents a method to reconstruct a cornea from confocal microscope
imaging [15]. A region of interest is identified in each sequential set of images,
then a normalized correlation method [16] is applied to the region of interest
to find correspondences between the image frames. The images in the stack
are translated to align the correspondences in consecutive images. The process,
however, does not directly utilize the corneal layer boundaries for reference. The
process also relies on a stack of images instead of using images perpendicular to
the stack to assist with alignment.

Li applied confocal microscopy through focusing to measure the central layer
thickness of the Epithelium, Bowman’s layer, and total corneal thickness [17].
Although the approach is limited to manually measuring the central thickness,
it was the first technique to obtain measurements for three of the five corneal
layers. The proposed algorithm automates the manual process and extends the
segmentation to all five corneal layer boundaries.

Currently, corneal OCT images may be aligned using a software package from
Amira. Amira provides a suit of tools that can be used to align a stack of OCT
images by comparing the direct image intensity and any salient features con-
tained in sequential images [18, 19]. The software also allows the users to man-
ually align the images. Unfortunately, the package does not use the structural
properties of the cornea in the reconstruction process, preventing a suitable 3D
reconstruction, and the 3D reconstructions generated failed to yield the accuracy
necessary for corneal layer thickness research.

The proposed method attempts to automate and extend the 3D reconstruc-
tion process by utilizing the corneal layer boundaries and orthogonal UHROCT
images to establish accurate point correspondences.

2.2 Segmentation

The proposed 3D reconstruction algorithm requires the segmentation of the
corneal layer boundaries within the 2D UHROCT images.

Snakes and active contours are curves designed to surround lines and shapes
that may be present in the image [20–24]. The active contour converges when the
sum of internal (prior) and external (measurement) forces are minimized, such
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that the internal forces prefer contour smoothness (or some other prior shape),
and the external forces prefer a fit to the given image, normally related to the
image gradient.

The concept of intelligent scissors [25] allows the user to semi-manually seg-
ment the image. By placing points on the image, the user guides the intelligent
scissor algorithm, which snaps to the image gradient as the algorithm fits a curve
through the user-defined points. The advantage of this algorithm is that the user
can specify a few points on each corneal layer boundary while the algorithm fits
a curve to the image gradient that follows the layer boundaries. When applied to
a smooth image gradient, the algorithm can fit a curve to the gradient with little
user interaction. However, when applied to the UHROCT images, the intelligent
scissors fit the noise obscured the otherwise smooth gradient preventing the ef-
fective segmentation of the boundaries. Figure 2(b) illustrates the performance
of the algorithm despite having the user generate 20 to 30 points for each layer.

Fig. 2. UHROCT segmentation results for (left) geometric active contour and (right)
intelligent scissors. Neither method produces accurate segmentation results.

Fig. 3. Comparison of retinal (left) and corneal (right) UHROCTs. Unlike corneal
layers, each retinal layer has a visibly distinct intensity compared to adjacent layers.
In contrast, corneal layers contain a visible thin, dark boundary between each layer.

While many well developed retinal OCT imaging techniques exist to iden-
tify layer boundaries of the retina, corneal imaging provides different challenges.
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Garvin proposes the use of a general graph-based approached that attempts to
reconstruct the retinal images into a 3D model and isolate the surfaces that cor-
respond to the retinal layers [26]. In addition, Mishra developed a method using
image gradient information and a kernel function to successfully compensate for
the speckle noise, present in OCT images, and efficiently segments retinal lay-
ers [27]. The major difference between retinal and corneal segmentation is due
to composition of the layers. As shown in Figure 3, unlike the cornea, the retinal
layers have different mean intensities for each layer. The retinal methods are
good at finding the edge between these layers. In contrast, corneal layers have
a similar mean intensity, but are separated by low-contrast, discontinuous, thin
layer boundaries instead. As a result, retinal methods were able to find the high
contrast outer layers, but could not locate the inner layers.

3 Reconstruction Method

A variety of active contours, including parametric, geometric, and edge-free,
were implemented and tested on UHROCT images. Not one of the implemented
methods was able to segment the cornea; Figure 2(a) illustrates a typical example
of the final state of a geometric active contour [28]. In many ways this failure is
unsurprising: the images are noisy, the contours have frequent breaks, and the
active-contour methods have only a weak prior (smoothness) which knows very
little about corneal structure.

The failure of existing algorithms to segment the corneal layer boundaries
motivated the development of a method to perform 2D corneal segmentation.
The proposed method imposes a corneal model on the data to allow the corneal
layer boundaries to be segmented, despite the presence of noise and imaging
artefacts.

The reconstruction process consists of two major steps. The 2D UHROCT
images are first segmented so that each of the five layer boundaries can be
obtained and the layers are subsequently used as markers to for a second step,
the 3D reconstruction. These two respective steps are described in the following
two sections.

3.1 2D Reconstruction

The 2D reconstruction uses a corneal model to locate the internal layers of the
cornea. The starting point is to observe that the upper and lower corneal layers
have sufficient contrast, due to the high refractive index at the interface between
the cornea and the surrounding fluid, to segment these layers robustly. The
model then asserts that all internal layers can be derived using the curvature
information from the upper and lower corneal layers.

Let the data acquired from the UHROCT imaging device be a 2D greyscale
image I(x, y). During the imaging process, a higher contrast endothelium layer
can be obtained by focusing the UHROCT system on the endothelium layer in-
stead of the epithelium layer. Since the epithelium layer boundary is the interface
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between air and the cornea, the refractive index can produce sufficient contrast
for the segmentation algorithm. The focusing emphasizes the contrast of the en-
dothelium layer. However, as a consequence the cornea becomes inverted on the
image plane, as seen in Figure 4(a).

(a) (b)

Fig. 4. (a) The original UHROCT image obtained from the imaging system. (b) The
result of preprocessing applied to the original UHROCT image, to improve contrast to
robustly find the upper and lower layers.

The UHROCT layer boundaries appear quite noisy. The boundaries are about
one to two pixels thick, have a varying pixel intensity, and are surrounded by
what appears to be speckle or correlated noise, actually due to the distribution
of cells within the cornea. To improve segmentation accuracy in the presence
of noise, image preprocessing is undertaken by applying contrast-limited adap-
tive histogram equalization [29] to normalize pixel intensities across the image,
morphological operators to enhance arc structures, and a Gaussian blur filter to
smooth the remaining noise. The resulting preprocessed image, Ipre(x, y), shown
in Figure 4(b), contains sufficient contrast to clearly separate the cornea from
the surrounding fluid.

As a most basic segmentation of cornea from fluid, a Prewitt edge detector
is applied to find horizontal edges fragments in Ipre(x, y), producing edge map
Iedge(x, y), containing edges that correspond to the upper and lower boundaries,
as shown in Figure 5(a). Candidate endothelium / epithelium pixel locations are
determined by locating those edges stronger than some threshold in the upper
/ lower half of Iedge.

Manually-segmented boundaries were available for a limited number of images,
making it possible to learn a model and as ground truth in assessing the learned
layers. Then an optimization problem is formulated to fit a quadratic curve,
Qend(s) over arc-length s, to the upper layer boundary. An initial quadratic
polynomial, Qend(s), based on statistics from the manual boundaries, was used
to specify an initial curve for the optimization algorithm, as shown in Figure 5(b),
where ∑

∀pεPend

[
min

s
‖p − Qend(s)‖2

]
(1)
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is minimized, minimizing the Euclidean distance from the curve to all thresh-
olded edge points.

The quadratic is robust, but not a terribly good fit to the anatomy of the
cornea. Various polynomials were tested to find the lowest order that could best
model the corneal curvature. Since the difference between 5th and 4th-order
polynomials was insignificant a 4th-order polynomial was selected to model the
data. Having found the optimal quadratic fit, outlier rejection was performed by
point trimming and the best 4th-order polynomial fit Q∗

end(s) was found. The
preceding process was applied, unchanged, to the bottom half of the edge points
to find the best-fit curve to the epithelium Q∗

epi(s).
Both curves, Ω∗

end(s) and Ω∗
epi(s), are illustrated in Figure 5(c).

(a) (b)

(c)

Fig. 5. (a) Edge detection applied to the preprocessed OCT Image. (b) The initial
model of the upper and lower curves are independent of UHROCT image. (c) The
segmentation of the upper and lower layer boundaries.

The model asserts that a continuous transformation exists that maps the
Endothelium to the Epithelium; consequently, the curves representing the three
internal layer boundaries are expressed as a low-dimensional parameterized func-
tion that uses the upper and lower curves as a basis:

Ωα=0(s) = Ω0
epi(s − s0) Ωα=1(s) = Ω0

end(s − s1) (2)

The parameterized corneal model is illustrated in Figure 6. Any of the five corneal
layers can be represented by the parameterized curve Ωα(s), where parameter
α provides a mechanism to continuously transition between the upper and lower
curves:

Ωα(s) = (1 − α)Ωα=0(s) + αΩα=1(s) (3)
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Fig. 6. Corneal model parametrization. s indexes along the arc, whereas α is essentially
an interpolation parameter between the bottom (α = 0) and top (α = 1) curves.

where the parameters s0 and s1 are required to establish point correspondences
between the upper and lower curves, established by the medial axis transform.

All five corneal layer boundaries are detected using a process essentially based
on the generalized Hough transform [30]. The mean pixel intensity, μα of the
UHROCT image, I(x, y), is sampled along the curve Ωα(s) as a function of α:

μα =
1
n

n∑

i=1

I

(
Ωα

(
i

n

)

x

, Ωα

(
i

n

)

y

)
(4)

An example of μα for a particular UHROCT is shown in Figure 7. The proposed
algorithm applies a peak detector that identifies the peaks with the largest dif-
ference between the proximate maximum and minimum. In this example the five
most significant peaks occur at α = [0.0930, 0.0138, 0.1227, 0.9917, and 0.9598],
which correspond to the five corneal layers.

Figure 9 illustrates six examples of segmenting the five layers overlaid onto
the original UHROCT image and illustrates the robustness of the algorithm
when applied to UHROCT data containing imaging artifacts. It needs to be
emphasized that the method is fully automated and that, to this point, no such
algorithm has existed which is able to perform such a segmentation. The results
are accurate, and robust in the presence of significant imaging artifacts.

Fig. 7. A plot of the generalized Hough projection μα, projecting along corneal arcs,
to identify prospective layers
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3.2 3D Reconstruction

The novelty and performance of the 2D segmentation from the previous section
is already a highly significant step in ophthalmologic research. Our ideal goal,
however, is 3D reconstruction.

A 3D reconstruction of the cornea can be obtained from an ensemble of 2D
segmented images either imaged in parallel or, preferably, in two orthogonal
directions, as illustrated in Figure 8. Parallel imaging requires some sort of
model regarding cross-plane behaviour, whereas perpendicular planes can be
fused without prior assumptions, by using the intersections of the image planes
as reference points for alignment. Since the primary source of alignment error
is due to eye motion and camera vibration, it is reasonable to assume that the
dominant inter-plane offsets are translational, rather than rotational or changes
in scale. The local coordinates

∣∣x y 0 1
∣∣T
‖ , for the parallel images, and

∣∣x y 0 1
∣∣T
⊥

for the perpendicular images are mapped to the global coordinates
∣∣X Y Z 1

∣∣T

using the linear transformations
∣∣∣∣∣∣∣∣

X
Y
Z
1

∣∣∣∣∣∣∣∣
= H0

‖

∣∣∣∣∣∣∣∣

x
y
0
1

∣∣∣∣∣∣∣∣
‖

∣∣∣∣∣∣∣∣

X
Y
Z
1

∣∣∣∣∣∣∣∣
= H0

⊥

∣∣∣∣∣∣∣∣

x
y
0
1

∣∣∣∣∣∣∣∣
⊥

(5)

where

H0
‖ =

∣∣∣∣∣∣∣∣

1 0 0 xo

0 1 0 yo

0 0 1 zo

0 0 0 1

∣∣∣∣∣∣∣∣
H0

⊥ =

∣∣∣∣∣∣∣∣

0 0 1 zo

0 1 0 yo

1 0 0 xo

0 0 0 1

∣∣∣∣∣∣∣∣
(6)

The framework can be extended to six degrees of freedom by manipulating the
homogeneous transformation matrices, where (5) transforms the local coordi-
nates of Ωα(s) into global coordinates generating 3D coordinates for each layer
boundary.

Fig. 8. Orientation of image planes for 3D Reconstruction, superimposed on the no-
tional layers of a cornea

The intersection of the ith parallel plane with the jth perpendicular plane
produces a line on both image planes. The intersection of this line with the layer
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boundaries can produce point correspondences for each image. An optimization
problem can be formulated to minimize the total Euclidean distance, in 3D
space, between all of the corresponding points. The intersection of two lines
can be derived by relating the coordinates the ith parallel plane with the jth

perpendicular plane ∣∣∣∣∣∣∣∣

x
y
0
1

∣∣∣∣∣∣∣∣
j

= Hj
i

∣∣∣∣∣∣∣∣

x
y
0
1

∣∣∣∣∣∣∣∣
i

=

∣∣∣∣∣∣∣∣

zi − xj
o

yi + yi
o − yj

o

xi + xi
o − zj

o

1

∣∣∣∣∣∣∣∣
(7)

using a homogeneous transformation, Hj
i ,

Hj
i =

(
H0

⊥
)−1

H0
‖ = H⊥

0 H0
‖ =

∣∣∣∣∣∣∣∣

0 0 1 zi
o − xj

o

0 1 0 yi
o − yj

o

1 0 0 xi
o − zj

o

0 0 0 1

∣∣∣∣∣∣∣∣
(8)

The sequence of steps, below, in (9), defines the distance di,j between the bound-
ary layer defined by αi on the ith image plane and the corresponding boundary
defined by αj on the jth image plane:

xi = zj
o − xi

o

solve (Ωαi

i (si)x = xi, si)
yi = Ωαi

i (si)y

yj = yi + yi
o − yj

o

xj = zi
o − xj

o

solve
(
Ω

αj

j (sj)x = xj , sj

)

d2
i,j =

(
yj − Ω

αj

j (sj)y

)2

(9)

The method is extensible to the general case, including rotations to allow six
degrees of freedom, however the intersection line becomes significantly more
complicated.

4 Results

The 2D segmentation algorithm has been tested on 2,050 UHROCT images
obtained from 12 healthy subjects. The images were also manually segmented
to provide ground truth. The proposed algorithm located the Epithelium and
Endothelium boundaries to within about 2.5 pixels of the manually segmented
images for all of the images, with a standard deviation of about 1.3 and 3.2
pixels, respectively. Table 1 contains the results in pixels and a approximation
of μm for the other layers. These results can also be immediately improved
by compensating for the segmentation bias. Each boundary is statistically too
high in the image by between 0.7 to 3.7 pixels depending on the boundary. The
boundaries can be systematically adjusted to reduce the error.
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Fig. 9. Six examples of applying 2D corneal segmentation to OCT images. The model
accomplishes exact segmentation, despite significant noise and varying corneal layer
location within the image. The prominent imaging artifacts result from the high reflec-
tively of the cornea when imaging near the apex.

Fig. 10. Nine 3D Corneal reconstructions from the segmentation and mutual alignment
of 2D UHROCT images. The images are taken from three subjects, one on each row.
The segmentation results are superimposed on the underlying UHROCT data, which
can be seen to have significant noise and artifacts.
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Table 1. Segmentation Experimental Results

Error

Layer Bias [pixels] Std.Dev [pixels] Bias [pixels] [μm] Std.Dev [μm]

epi 1.32 1.26 3.92 4.38
bow 0.709 10.7 4.59 5.38
str 2.56 5.19 2.86 3.50
des 3.68 4.69 5.94 6.07
end 2.52 3.25 6.52 7.11

The 3D reconstruction algorithm used the results of the 2D segmentation
algorithm applied to 3 healthy human subjects. Although four datasets were
collected from each human subject, initial problems with the imaging procedure
prevented the use of some data because the cornea moved out of the imaging
plane as the subjects were being scanned. Figure 10 illustrates the 3D reconstruc-
tion obtained from the algorithm. Notice that the reconstruction for subject 2,
image panes (d-f), contains sparse data due to the aforementioned imaging prob-
lem (since corrected). The figure visually shows how well the 3D reconstruction
process aligned all of the layer boundaries, and supplementary material provided
with this paper includes video, rotating the results in 3D to better illustrate how
well the layers are aligned.

During the study, 442 UHROCT tomograms were successfully segmented for
all three subjects. The segmentation process required approximately eight hours
using Matlab on a dual-core 2.5GHz laptop (if these layers were manually seg-
mented, at an average rate of 15 minutes per image, it would take an experienced
user about 110 hours). The advantage of the segmentation algorithm is that it
is immune to fatigue and, given multiple processors, can segment UHROCT im-
ages in parallel. With such segmentation quality and reconstruction rates, the
inference and clinical use of 3D corneal layer boundaries becomes quite feasible.

5 Conclusions

The method proposed in this paper is capable of automatically producing two-
dimensional segmentations and three-dimensional reconstructions of a human
cornea.

The proposed segmentation algorithm was applied to over two-thousand im-
ages, segmenting each automatically, a performance so far unmatched in any
published method.

The three-dimensional corneal reconstruction is based on the simultaneous co-
alignment of segmented two-dimensional frames, with each frame permitted trans-
lational degrees of freedom, to be optimized. The resulting three-dimensional re-
construction was successfully applied to three test subjects.

The ability to produce large, three-dimensional corneal reconstructions opens
significant clinical and research opportunities. Collaborators in science and
optometry are eager to continue refining the methodology, to allow future work
in revealing details of corneal and retinal anatomy.
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Further work can introduce additional degrees of freedom in the perpendicular
planes to account for variance in planar orientation. Although perpendicular
planes were proposed, there is no inherit requirement in the algorithm prohibiting
planes of arbitrary orientation. Perpendicular planes were selected for imaging
convenience.
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