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A B S T R A C T

Slice-to-volume registration (SVR) methods allow reconstruction of high-resolution 3D

images from multiple motion-corrupted stacks. SVR-based pipelines have been increas-

ingly used for motion correction for fetal MRI since they allow more informed and de-

tailed diagnosis of brain and body anomalies including congenital heart defects (Lloyd

et al., 2019). Recently, fully automated rigid SVR reconstruction of the fetal brain in

the atlas space was achieved in (Salehi et al., 2019) that used segmentation and pose es-

timation convolutional neural networks (CNNs). However, these CNN-based methods

have not yet been applied to the fetal body region. Meanwhile, the existing rigid and

deformable SVR (DSVR) solutions (Uus et al., 2020) for the fetal trunk region are lim-

ited by the requirement of manual input as well the narrow capture range of the classical

gradient descent based registration methods that cannot resolve severe fetal motion fre-

quently occurring at the early gestational age (GA). Furthermore, in our experience, the

conventional 2D slice-wise CNN-based brain masking solutions are reportedly prone

to errors that require manual corrections when applied on a wide range of acquisition

protocols or abnormal cases in clinical setting.

In this work, we propose a fully automated pipeline for reconstruction of the fetal

thorax region for 21-36 weeks GA range MRI datasets. It includes 3D CNN-based

intra-uterine localisation of the fetal trunk and landmark-guided pose estimation steps

that allow automated DSVR reconstruction in the standard radiological space irrespec-

tive of the fetal body position or the regional stack coverage. The additional step for

generation of the common template space and rejection of outliers provides the means

for automated exclusion of stacks affected by low image quality or extreme motion.

The pipeline was evaluated on a series of experiments including fetal MRI datasets and

simulated rotation motion. Furthermore, we performed a qualitative assessment of the

image reconstruction quality in terms of the definition of vascular structures on 100

early (median 23.14 weeks) and late (median 31.79 weeks) GA group MRI datasets

covering 21 to 36 weeks GA range.

© 2021 Elsevier B. V. All rights reserved.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.22.461335doi: bioRxiv preprint 

http://www.sciencedirect.com
http://www.elsevier.com/locate/media
https://doi.org/10.1101/2021.09.22.461335
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Alena Uus et al. /Medical Image Analysis (2021)

1. Introduction

Since the emergence of fast acquisition sequences and ad-

vanced motion compensation techniques (Malamateniou et al.,

2013) MRI has been gradually integrated into clinical practice

for imaging of fetal anomalies (Story and Rutherford, 2015;

Manganaro et al., 2018).

Single shot turbo spin echo (ssTSE) sequences allow acqui-

sition of each slice in less than a second, which minimises the

impact of fetal motion artefacts on image quality. However,

inter-slice fetal and maternal motion leads to loss of structural

continuity between slices and corruption of 3D volumetric in-

formation in 3D stacks.

Slice-to-volume registration (SVR) tools allow reconstruc-

tion of high-resolution isotropic 3D images of the fetal brain

(Gholipour et al., 2010; Rousseau et al., 2010; Kuklisova-

Murgasova et al., 2012) from multiple low-resolution motion

corrupted MRI stacks. The more recently proposed deformable

SVR (DSVR) method (Uus et al., 2020) designed for correction

of non-rigid motion has also been applied for reconstruction of

the fetal body (Davidson et al., 2021).

Fig. 1. An example of a fetal CMR dataset (30 weeks GA). A: Motion cor-

rupted low resolution stacks acquired under different orientations visu-

alised in the through plane view. B: The corresponding high-resolution

SVR-reconstructed fetal thorax and 3D segmentation of the heart and ves-

sels based on the pipeline proposed in (Lloyd et al., 2019).

Since 2018, rigid SVR (Kuklisova-Murgasova et al., 2012;

Kainz et al., 2015) has been employed on regular basis for aver-

aged 3D reconstruction of the 3D fetal heart anatomy as a part

of the current clinical practice for diagnosis of fetal congenital

heart disease (CHD) (Lloyd et al., 2019, 2021) at Evelina Lon-

don Children’s Hospital. An example of a 30 weeks GA cardiac

MRI (CMR) dataset in Fig. 1 shows a set of motion corrupted

input stacks (in the through-plane view) and the corresponding

SVR-reconstructed 3D fetal thorax which allows detailed seg-

mentation of the heart and examination of fine vascular struc-

tures.

However, at present, acceptable reconstruction quality can be

achieved primarily for the cohort of fetuses from the > 28 weeks
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gestational age (GA) range. This limitation is caused by the fact

that the current SVR methodology (Kuklisova-Murgasova et al.,

2012; Kainz et al., 2015) is based on classical registration that

cannot resolve large (> 45 − 90◦) rotations and translations of

the fetal body. Early GA cases are particularly prone to large ro-

tations and translations due to the amount of intra-uterine space

available for manoeuvre. For instance, Fig. 2 demonstrates a 23

weeks GA dataset affected by large rotations and translations

of the fetus between the stacks which led to failed SVR recon-

struction of the thorax.

Fig. 2. An example of the global change of the fetal body (blue) and brain

(red) position between stacks during acquisition for an early (23 weeks)

GA case. This particular case was affected by severe motion with > 90◦

rotations and this led to failed SVR reconstruction of the thorax.

In general, the degree of motion corruption and its sever-

ity varies between datasets. A major proportion of early GA

datasets can still be successfully reconstructed using classical

SVR or DSVR methods (Uus et al., 2020) if there is a sufficient

number of stacks where the fetal body is in the same position

and only they are selected for the reconstruction. On the other

hand, some of late GA cases can also be affected by large rota-

tions due to polyhydramnios when there is too much amniotic

fluid around the fetus. The plot in Fig. 3 shows the average

degree of rotation of the fetal thorax position between stacks

within individual datasets for randomly selected 40 early and

late GA datasets. There is a notable increase in the rotation

range for the early GA cases which confirms the limited appli-

cability of the classical SVR-based methods for this cohort.

This limitation was recently addressed for the fetal brain

by application of spatial transformer convolutional neural net-

works (CNN) networks for reorientation of individual 2D slices

to the standard radiological atlas space prior to reconstruction

(Hou et al., 2018; Salehi et al., 2019) as well as the already

reconstructed 3D volumes (Salehi et al., 2019). However, this

approach has not yet been applied for motion correction in the

fetal trunk ROI. Contrary to the brain, in the fetal trunk ROI,

individual 2D slices do not have distinct features required for

precise and reliable reorientation to the atlas space. This con-

stitutes a challenge for application of the 2D approaches for

pose-estimation of the fetal trunk.

Automation of SVR reconstruction process is another im-

portant aspect of general usability and integration into clinical

practice. The classical SVR and DSVR methods require man-

ual masks and template stack selection as an input. The existing

most efficient solutions for automation of SVR proposed to use

2D CNN slice-wise segmentation for brain masking and intra-
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Fig. 3. Comparison of the degree of the global fetal mobility during MRI

acquisition for early (red) and late (blue) GA cohorts (40 randomly selected

datasets acquired at St. Thomas’s Hospital and Evelina London Children’s

Hospital): average rotation ranges for the fetal thorax ROI (region of in-

terest) between stacks within individual datasets.

uterine localisation (Salehi et al., 2018; Ebner et al., 2020).

However, in our experience, 2D segmentation often leads to

errors due to the insufficient context information or when the

object is not present in a stack due to partial coverage. There-

fore, the existing automated SVR pipelines reportedly require

manual editing and input in a certain proportion of cases. Fur-

thermore, in routine clinical practice, there are also expected

inter-site differences in acquisition protocols as well as the cov-

erage of the ROI in input MRI stacks. Full automation without

the need for manual inspection of stacks by an operator would

require robust localisation.

1.1. Related work

During the past decade, different implementations of rigid

SVR super-resolution (SR) reconstruction methods were pro-

posed for reconstruction of the fetal brain (Gholipour et al.,

2010; Rousseau et al., 2010; Kuklisova-Murgasova et al., 2012;

Kainz et al., 2015; Ebner et al., 2020). Based on the approxi-

mately rigid motion assumption within the rib cage, SVR was

also successfully applied for reconstruction of the averaged 3D

fetal heart anatomy (Lloyd et al., 2019). More recently, de-

formable SVR (Uus et al., 2020) showed to provide improved

reconstruction quality for the fetal body and placenta ROIs af-

fected by non-rigid motion.

In terms of the limited capture range of the classical regis-

tration methods, the two major existing solutions for the fetal

brain pose estimation are based on regression (Hou et al., 2018;

Salehi et al., 2019) convolutional neural networks (CNN). They

are used for prediction of position of individual 2D slices in the

standard atlas space and the outputs transformations are then

used to initialise the SVR reconstruction pipelines. In (Wright

et al., 2018), a Long Short-Term Memory (LSTM) network was

used for rigid registration of motion-corrected 3D MRI and ul-

trasound images of the fetal brain and reorientation to the stan-

dard space. An alternative landmark-based CNN approach was

proposed in (Xu et al., 2019) for pose estimation of the whole

fetal body in low-resolution echo-planar imaging (EPI) stacks.

Recently, a series of CNN segmentation-based solutions

were proposed for fetal brain localisation and automation of

SVR reconstruction. These works employed a 2D UNet (Salehi

et al., 2018), a 2D P-net (Ebner et al., 2020) or a 3D V-net for

ellipse brain model fitting (Cordero-Grande1 et al., 2019). The

2D output segmentations were then combined into 3D masks

and refined using morphological operations and passed to SVR

pipelines. In (Li et al., 2020; Fadida-Specktor et al., 2021), a

3D UNet was successfully used for localisation of the whole

fetus in EPI and balanced turbo field echo stacks.

1.2. Contributions

In this work, we propose a fully automated pipeline for 3D

reconstruction of the fetal thorax in the atlas space from motion-

corrupted MRI stacks that can capture the full range of fetal mo-

tion. It is based on 3D CNN global localisation and landmark-

guided pose estimation that allows correction of large rotations

and translations that cannot be resolved by the classical regis-

tration methods. The additional step for generation of the com-

mon template space and rejection of outliers is used in order

to account for stacks affected by low image quality or extreme

motion. Furthermore, we employ DSVR (Uus et al., 2020) re-

construction rather than rigid SVR used in (Lloyd et al., 2019)

since it provides superior performance for the fetal body ROI

affected by non-rigid motion.

In addition to automation, this solution extends the applica-

tion of DSVR thorax reconstruction to early GA range cohort

that was not previously achievable due to the large rotation mo-

tion present in the early GA datasets. The pipeline is evaluated

on a series of experiments including both fetal MRI datasets

and simulated rotation motion experiments. The general im-

age reconstruction quality with respect to the acceptability for

anatomical interpretation is qualitatively evaluated in terms of

definition of cardiovascular structures on 100 early and late GA

MRI datasets from 21 to 36 weeks GA range.

2. Methods

2.1. Overview of the algorithm

The proposed pipeline for automated DSVR fetal thorax re-

construction is presented in Fig. 4. In summary, at first, the fetal

trunk is globally localised in all stacks using a robust 3D CNN-

based segmentation and they are cropped to the trunk ROI. This

is followed by segmentation of the thorax, abdomen, heart and

liver ROIs and the corresponding centroid landmarks are used

for reorientation of all stacks to the standard radiological atlas

space. The reoriented stacks are then automatically analysed

in terms of similarity and degree of motion corruption in the

thorax ROI. Following exclusion of outliers, the template space

and the thorax mask are generated as a median average from

all preregistered input stacks and masks. The output files are

then passed to the standard DSVR reconstruction pipeline (Uus

et al., 2020) that produces isotropic high-resolution 3D images.
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Fig. 4. Proposed pipeline for automated DSVR reconstruction of the fetal thorax from motion-corrupted MRI stacks.

2.2. Global 3D localisation

In clinical practice, acquired fetal MRI stacks cover different

ROIs such as the entire uterus, only the fetal brain or only the

trunk. This poses a general challenge to fully automated intra-

uterine localisation methods. Furthermore, the existing solu-

tions for localisation of fetal brain in MRI stacks employ 2D

slice-wise CNN-based segmentation in combination with mor-

phological operations (Salehi et al., 2018; Ebner et al., 2020).

Our experiments showed that this tends to lead to localisation

errors due to the insufficient context information in individual

2D slices. This is especially relevant for the slices that con-

tain only the peripheral parts of the fetal brain/trunk and do not

have distinctive structure or contrast. We found that the masks

generated by the 2D slice-wise approach pipelines are likely to

require additional manual editing and a certain level of direct

quality control from an operator.

In this work, we propose to use a multi-label 3D UNet for

simultaneous segmentation of the uterus, fetal brain and trunk

(Fig. 5) to account for the stacks where only fetal brain or trunk

are present and to avoid errors when maternal structures outside

the uterus have resemblance to the fetal body components. The

advantage of 3D multi-component segmentation is the exten-

sive structural information content. In this work, we use only

the trunk label for further processing but the brain mask can be

potentially used for the whole fetal body reconstruction.

We employ a classical 3D UNet (Çiçek et al., 2016) archi-

tecture with 5 encoding-decoding branches with 32, 64, 128,

256 and 512 channels, respectively. Each encoder block con-

sists of 2 repeated blocks of 3 × 3 × 3 convolutions (with a

stride of 1), instance normalisation (Ulyanov et al., 2016) and

LeakyReLU activations. The first two down-sampling blocks

contains a 2× 2× 2 average pooling layers, while the others use

2×2×2 max pooling layers. The decoder blocks have a similar

architecture as the encoder blocks, followed by upsampling lay-

ers. The model outputs an N-channel 3D image, corresponding

to our N = 4 classes: background, uterus, fetal brain and trunk.

The segmentation network is trained by minimizing a gener-

alised Dice loss (Sudre et al., 2017) using the Adam optimizer

with the default parameters (β1 = 0.9 and β2 = 0.999).

As summarised in Fig. 6, following the 3D UNet segmenta-

tion step, the trunk labels are extracted with an additional mor-

phological filtering of the largest connected component.

Fig. 5. Multi-label 3D UNet network for 3D localisation of the fetal brain

(red), fetal trunk (blue) and uterus (lilac) in motion-corrupted 3D MRI

stacks.

Fig. 6. Proposed automated pipeline, Step I: 3D localisation of the fetal

brain and thorax in motion-corrupted stacks.

2.3. Landmark-guided pose estimation

As mentioned before, correction of large rotations and trans-

lations of the fetal thorax within the same dataset cannot be re-

solved by the classical rigid registration and poses a particular

challenge for processing of the wider GA range MRI datasets.

Therefore, integration of the fetal body pose estimation step

into the pipeline and reorientation of all input stacks to the same

reference space is one of the requirements for robust reconstruc-

tion performance. In this work, we propose to perform reorien-

tation of the 3D input stacks rather than 2D slice-wise approach

used in (Hou et al., 2018; Salehi et al., 2019). This allows in-

corporation of 3D spatial information and that minimises the

errors for marginal 2D slices with not sufficiently defined struc-

tural content.

In summary, the proposed fetal body pose estimation step

(Fig. 7) is based on automated detection of a set of ROI-specific

3D landmarks within the fetal trunk in each stack followed by

point-based registration to the atlas space. One of the advan-

tages of the 3D landmark-based solution is that it is transla-

tion invariant and simultaneously corrects for both rotations and

translations, while the previous solutions (e.g., (Salehi et al.,

2019)) employed separate regression components.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.22.461335doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461335
http://creativecommons.org/licenses/by-nc-nd/4.0/


Alena Uus et al. /Medical Image Analysis (2021) 5

Fig. 7. Proposed automated pipeline, Step II: landmark-based 3D fetal tho-

rax pose estimation and reorientation to the atlas space.

We selected centre points of the thorax, abdomen, heart and

liver ROI masks as the landmarks since these ROIs are eas-

ily identifiable in low-resolution MRI stacks and are present

in both normal and abnormal cases. The ROI masks are ex-

tracted using the classical 3D UNet (see architecture described

in Sec. 3.2) segmentation of the input stacks cropped to the fetal

trunk region. The transformations to the standard radiological

coordinate system are estimated using rigid point-based regis-

tration to the same landmarks in the standard radiological atlas

space.

Fig. 8. An example of landmark-based reorientation to the atlas reference

space: (A) an original motion-corrupted stack in random orientation with

detected ROI-specific landmarks, (B) the corresponding 3D models in the

original orientation and after transformation to the standard space based

on point registration (pose estimation) and (C) the final reoriented stack.

This procedure is performed for every stack and the output

rigid transformations are applied directly to the NIfTI header

orientation matrices.

However, taking into account the varying degree of motion

corruption and possible inaccuracies in 3D segmentation of the

landmarks, the output transformations are not precise. We also

cannot use direct registration to the atlas due to expected inter-

subject deviations from the atlas anatomy, especially for abnor-

mal cases. Thus, we introduce an additional rigid registration

step which is performed at the next stage of the pipeline.

2.4. Automated stack selection and template generation

Selection of the initial template for global registration di-

rectly defines the quality of reconstruction outputs (Kuklisova-

Murgasova et al., 2012; Uus et al., 2020). Poor template quality

(due to either severe motion corruption or a ROI pose differ-

ent from the majority of stacks) is one of the common reasons

for failure of the classical SVR methods. The conventional ap-

proach for template selection implies manual inspection of all

input stacks by an operator.

At the next step of the proposed automated pipeline, the re-

oriented stacks are rigidly registered to each other for refine-

ment of the global landmark-based estimated pose transforma-

tions and automatically analysed in terms of the mutual simi-

larity and the degree of motion corruption. This is necessary

for selection of the most optimal common trunk position and

generation of the robust average template and thorax mask re-

quired for reconstruction. This step also includes rejection of

outlier stacks, which may be affected by misregistration, severe

motion corruption, intensity artifacts or the absence of the fetal

trunk within the stack coverage.

Fig. 9. Proposed automated pipeline, Step III: selection of stacks, rejection

of outliers and template generation.

The pipeline summarised in Fig. 9 includes: (i) refinement

of pair-wise stack alignments by rigid registration of all pairs

of stacks (the thorax ROI only) initialised by the landmark-

based transformations; (ii) calculation of inter-slice motion-

corruption (Eq. 1), volume difference (Eq. 3) and mutual stack

similarity (Eq. 2) metrics; (iii) selection of the stack with the

highest quality and similarity scores (C
(i)
cor · C

(i)

sim
) for definition

of the common reference space; (iv) reorientation of all stacks

to the stack with the highest mutual similarity; (v) rejection of

stack outliers based on the computed metrics; (vi) generation of

the median template from the selected reoriented stacks; (vii)

generation of the average thorax mask from the selected stack

masks.

For each individual stack (denoted by index i, i =

1, ...,Nstacks) we compute the following metrics: the degree of
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within-stack motion corruption C
(i)
cor, similarity with the rest of

the stacks C
(i)

sim
and deviation from the median thorax volume

C
(i)

vol
. These metrics are computed as:

C
(i)
cor =

∑N
(i)

slices
−1

j=1
NCC2D( j, j + 1)

N
(i)

slices
− 1

(1)

C
(i)

sim
=

∑Nstacks

n=1
NCC3D(i, n)

Nstacks

(2)

C
(i)

vol
=
‖V

(i)

thorax mask
− Vmedian‖

Vmedian

(3)

where NCC is normalised cross-correlation between sequential

2D slices or individual 3D stacks computed over a non-zero

overlapping region, Nstacks is the number of stacks, N
(i)

slices
is the

number of slices in stack i and Vmedian and Vthorax mask are the

median and individual stack thorax mask volumes.

The corresponding stack inclusion criteria are as follows:

C
(i)
cor > 0.5 ·max

i
{C

(i)
cor} (4)

C
(i)

sim
> 0.5 ·max

i
{C

(i)

sim
} (5)

C
(i)

vol
< 40% (6)

These criteria ensure exclusion of misregistered and severely

motion-corrupted stacks as well as stacks with small mask vol-

umes (e.g., when the thorax is absent in the stack).

Following registration of stacks and analysis of the computed

metrics, all stacks are reoriented with respect to the stack with

the highest mutual stack similarity metric. Following rejection

of outliers, the final template and thorax mask are generated as

a median average of all remaining stacks.

2.5. DSVR reconstruction

As the final step, the selected reoriented stacks along with

the generated average template and the mask are passed to

the 3D reconstruction step, which is based on our earlier pro-

posed DSVR method. DSVR showed to outperform rigid SVR

(Kuklisova-Murgasova et al., 2012) for the fetal trunk ROI af-

fected by non-rigid motion such as bending and stretching. It

also includes the structure-based outlier rejection step that min-

imises the impact of misregistered or low image quality slices

on reconstruction results. The output of the reconstruction

pipeline is a 3D high-resolution (0.7mm) volume of the thorax

ROI in the standard radilogical atlas space.

Fig. 10. Proposed automated pipeline, Step IV: 3D DSVR reconstruction of

the thorax ROI.

3. Implementation

3.1. Input data requirements

The proposed reconstruction technique requires a sufficient

number of stacks in different orientations, coverage of the fetal

body ROI and singleton pregnancies.

Furthermore, for the datasets with interleaved slice acquisi-

tion order like those used in the current work (Sec.4.1), the in-

puts stacks are divided into individual packages (with 5 mm

slice spacing) prior to processing in order to ensure best possi-

ble structural continuity in 3D space. This step is not required

for widely employed clinical thick-slice acquisition format with

ascending slice order.

However, low image quality in terms of SNR levels and se-

vere B1 artefacts is another challenge that affects localisation

and reconstruction results and should be addressed separately,

either during acquisition or using suitable pre-processing tech-

niques. For the purpose of this work, we exclude datasets with

extremely low SNR or severe intensity artifacts.

3.2. 3D localisation and pose estimation

Software

In summary, the proposed pipeline includes three 3D CNN

modules: (i) 4 label 3D UNet for global localisation of fe-

tal body and brain (the two other labels are uterus and back-

ground); (ii) 3 label 3D UNet for segmentation of the marks

global fetal thorax and abdomen landmark (the third label is the

background); (iii) 3 label 3D UNet for segmentation of the in-

dividual fetal organ landmarks (heart, liver and the third label

is the background). The networks (ii) and (iii) were used to de-

fine the four landmarks used for reorientation of the stacks. We

selected this set up because it was robust in presence of normal

functional variation (e.g. variable presence of fluid in the di-

gestive tract) as well as fetal congenital abnormalities (such as

diaphramatic hernia). We used two separate networks to seg-

mentation of the landmarks primarily due to low quality of the

input manual thorax and abdomen masks used for training since

they defined the approximate global ROIs rather than precise

anatomical organ boundaries.

The networks were implemented in PyTorch2 based on the

classical 3D UNet architecture (Çiçek et al., 2016) with Tor-

chIO (Pérez-Garcı́a et al., 2020) augmentation. The selected

128 × 128 × 128 grid size due to the varying ROI coverage in

stacks and the size of the fetus with respect maternal structures.

All input stacks are resampled and padded to this grid size prior

to processing. The code is available online at SVRTK Fetal

MRI Segmentation repository3.

Training the network for global localisation of the fetus

For the global 3D localisation step, 32 fetal CMR CHD MRI

datasets from the 28-32 GA range were used for training (318

stacks) and 3 for validation (36 stacks). The uterus, brain and

body masks were created manually for one of the stacks within

2PyTorch: https://pytorch.org
3SVRTK fetal MRI segmentation repository: https://github.com/

SVRTK/Segmentation_FetalMRI
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each dataset and then propagated to the rest using rigid registra-

tion. All resulting masks were visually inspected and corrected,

when required. The training was performed for 800 epochs with

TorchIO augmentation (bias field, 360◦ rotations, motion arti-

facts).

Training thorax and landmark segmentation networks

For the thorax, abdomen and organ (heart and liver) ROI seg-

mentation, 65 fetal MRI datasets with normal anatomy from

25 to 32 GA range were used for training and 5 for validation.

Rather than using the original motion-corrupted stacks, we used

3D DSVR reconstructed fetal trunk ROI images obtained from

a subset of cases from the outputs of (Uus et al., 2020) analysis.

The masks were created using label propagation from a gener-

ated average fetal trunk atlas followed by manual refinement, if

required. The training of the networks was performed for 500

epochs each with TorchIO augmentation (bias field, 360◦ rota-

tions, motion artifacts).

3.3. Reorientation, stack selection and DSVR reconstruction

The landmark-based reorientation is based on the classical

3D point rigid registration method (Arun et al., 1987) imple-

mented using MIRTK library 4. The reference point landmarks

were defined in the average fetal trunk atlas reoriented to the

standard radiological space.

The step for automated selection of the stacks for reconstruc-

tion and generation of the template was also implemented based

on MIRTK library and is available as a part of SVRTK package5

as stack selection function.

3.4. Software and hardware requirements

The full compiled pipeline will be available at the SVRTK

docker repository 6 (fetal thorax tag) after publication of the

article.

The recommended hardware configuration is 16 GB GPU,

32-64 GB RAM and 6-12 CPU cores. The total processing time

varies between 20 and 60 minutes depending on the ROI size

(defined by GA), number of stacks, input and output resolution

and system configuration.

4. Experiments and results

4.1. Fetal MRI data

The fetal MRI data used in this work include 85 datasets ac-

quired under the iFIND7 project at St. Thomas’s Hospital, Lon-

don [REC: 14/LO/1806] and 93 datasets acquired as a part of

the clinical fetal CHD CMR service at Evelina London Chil-

dren’s Hospital [REC: 07/H0707/105]. The datasets were col-

lected subject to the informed consent of the participants. The

inclusion criteria for the datasets were: singleton pregnancy, no

extreme SNR loss and ≥ 6 input stacks.

4MIRTK library: https://github.com/BioMedIA/MIRTK
5SVRTK toolbox: https://github.com/SVRTK/SVRTK
6SVRTK fetal thorax reconstruction docker (fetal thorax tag): https://

hub.docker.com/repository/docker/fetalsvrtk/svrtk
7iFIND project: https://www.ifindproject.com

The acquisitions were performed on a Philips Ingenia

1.5T MRI system using ssTSE sequence with TR=15000ms,

TE=80ms, voxel size 1.25 × 1.25 × 2.5mm, slice thickness

2.5mm, slice spacing 1.25mm and interleaved slice order. The

stacks were acquired under different orientations and different

ROI coverage, with 100-160 slices per stack, depending on GA

and orientation. Each of the datasets contains 6-13 T2-weighted

stacks with minimum 4 different orientations and covering dif-

ferent ROIs (whole uterus, brain or body only).

4.2. Automated 3D localisation: fetal MRI datasets

The fetal localisation pipeline was evaluated on 8 randomly

selected fetal CMR datasets each containing 9 - 13 stacks (100

stacks in total) acquired under minimum 7 different orientations

and with different ROI coverage (uterus, brain+trunk or brain or

trunk only).

We compared localisation performance of the 3D multi- and

single- label 3D UNet cases. The quantitative evaluation in-

cluded: the centroid distance (d[mm]), the false positive rate

(FPR) and the manually graded localisation quality scores

(LQS ) defined as {0-incorrect; 1-partially correct; 2-correct},

see Tab.1. The high centroid distances and FPR values in the

baseline 3D UNet results correspond to wrong localisation out-

puts, while differences in small values are not informative, be-

cause the ground truth (GT) masks are not precise.

Table 1. Evaluation of the fetal trunk localisation quality of the multi-label

3D UNet in comparison to a single-label 3D UNet. The results are statisti-

cally significant with p < 0.01.

Metric 3D UNet (3 labels) 3D UNet (1 label)

d[mm] 6.75 ± 4.68 18.17 ± 26.38

FPR × 103 0.154 ± 0.192 0.537 ± 0.944

LQS 1.91 ± 0.33 1.64 ±0.75

The multi-label 3D UNet correctly localised the trunk in all

datasets (and nothing was detected in brain-only stacks where

the trunk was absent) and provided high localisation quality

scores. Fetal trunk localisation using the single label scenario

failed in 16% of the cases, primarily in the stacks were only the

brain was present. This confirms the feasibility of the proposed

multi-label 3D segmentation approach for automated SVR re-

construction pipelines.

An example of the 3D trunk localisation results for two in-

vestigated scenarios is shown in Fig. 11 for three stacks with

different ROI coverage. Both multiple- and single-label net-

works successfully localised the thorax in the whole uterus and

trunk-only stacks but the single-label 3D UNet failed in the case

of the brain only coverage.

4.3. Automated 3D pose estimation: simulated experiment

In order to assess the capture range of the proposed pose esti-

mation approach (Sec. 2.3), we simulated rotations from whole

360 degrees range on 5 normal anatomy datasets from 29 - 32

week GA range each containing 7 stacks without significant

SNR loss or intensity and motion artifacts.

For each of these datasets, all stacks were cropped to the di-

lated trunk mask and globally reoriented to the atlas space with
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Fig. 11. An example of localisation results using multiple- (3) and single-

label 3D UNet in three stacks with different ROI coverage: the whole

uterus (A), trunk only (B), brain only (C). The segmentation output are

visualised as blue (trunk) and red (brain) overlays.

the origin set to zero. One of the stacks was then selected as

a template and the remaining were additionally registered to it

to ensure that the thorax is exactly in the same position. Six

of the stacks were rotated with in X, Y and Z direction with

the same ± angle. The following rotation angles were selected:

{0; 15; 30; 45; 60; 75; 90; 105; 120; 180} degrees in order cover

the whole range and identify the limit of the classical rigid reg-

istration. An example of simulated rotations is given in Fig. 12.

Fig. 12. An example of simulated 30, 90 and 180 degrees rotations along

one axis applied to a stack cropped to the fetal trunk ROI.

Next, we run registration of the rotated stacks to the template

using the following three approaches: (i) the classical gradient

descent based rigid registration (from MIRTK package), (ii) the

proposed automated landmark-based pose estimation approach

(Sec. 2.3) and (iii) the combination of the previous two meth-

ods with the landmark-based output used for initialisation of the

classical rigid registration.

Fig. 13. Simulated [0; 180] degrees range rotation experiment for compari-

son of the capture range of the classical rigid registration (red), automated

landmark-based solution (blue) and combination of the classical registra-

tion initialised with the automated output (yellow): average NCC between

the template and transformed registered stacks in the masked thorax ROI.

The graphs in Fig. 13 show the average NCC between the

template stack and transformed registered stacks in the masked

thorax ROI, calculated over all stacks in all datasets. The drop

in NCC values to almost zero for > 75 degrees rotations con-

firms the limited capture range of the classical rigid registration

method (red, average NCC = 0.243 ± 0.207). The consistent

intermediate level of similarity for the purely landmark-based

output (blue, average NCC = 0.177±0.005) with small standard

deviation confirms that this method is rotation-invariant and

provides approximate global reorientation to the atlas space.

The fact that the NCC values are lower than the classical regis-

tration outputs for < 90 degree range indicates that the align-

ment is not very accurate. This is caused by differences in

centre-point positions in segmented 3D landmark ROIs.

Combination of these methods by initialisation of the clas-

sical regression-based registration with the global landmark-

based pose estimation provides a stable high quality solution

for the whole rotation range (yellow, NCC = 0.411±0.083). At

the 90 - 180 degree range, the landmark-based approach out-

performs the classical rigid registration and the combined ap-

proach providing the best solution. The results are significant

with p < 0.001. At the remaining part of the range there is no

significant difference between the only classical and combined

registration approaches.

Therefore, in the proposed full reconstruction pipeline, addi-

tional registration to the common space is used as a part of the

stack selection step described in Sec. 2.4.

4.4. Automated DSVR reconstruction: severe motion datasets

The performance of the full proposed pipeline for automated

reconstruction was evaluated on 5 cases from 21 - 24 weeks

GA range and affected by severe motion with large rotations

and translations. For these cases the original SVR-based recon-

struction pipeline (Lloyd et al., 2019) failed (e.g., see Fig. 2)

and the standard DSVR-based pipeline (Uus et al., 2020) led
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to exclusion of large (> 50%) proportion of slices that resulted

in low reconstruction quality. Each of the datasets contains 6

stacks acquired under different orientations with respect to the

uterus and the fetus. Prior to processing, all stacks were divided

into four packages (groups of slices acquired consecutively and

covering the whole ROI) based on the interleaved slice acquisi-

tion order.

Table 2. Evaluation of the components of the proposed automated DSVR

reconstruction pipeline on 5 severe rotation and translation motion

datasets with respect to the % proportion of rejected slices and NCC be-

tween simulated and original slices in all stacks and only the excluded

stack. The investigated scenarios include: (i) Steps I+IV; (ii) Steps

I+II+IV; (iii) full pipeline: Steps I+II+III+IV. The results are statistically

significant with p < 0.001 for comparison between (i) vs. (ii) and (iii) sce-

narios and with p < 0.01 for (ii) vs. (iii) comparison. Step I is thorax

localisation, Step II is reorientation to the atlas, Step III is stack selection

and average template generation and Step IV is DSVR reconstruction.

Scenario % of rejected all NCC excl. NCC

I+IV 64.7 ± 5.3 % 0.579 ± 0.058 0.550 ± 0.218

I+II+IV 51.6 ± 8.0 % 0.728 ± 0.090 0.705 ± 0.105

I+II+III+IV 37.8 ± 9.1 % 0.834 ± 0.028 0.809 ± 0.058

We investigated 3 scenarios for automated reconstruction

with different combinations of the pipeline components: (i) tho-

rax localisation only with the least motion-corrupted stack se-

lected as a template followed by DSVR (steps I+IV); (ii) reori-

entation of all stacks to the standard space with the least motion-

corrupted stack selected as a template followed by DSVR (steps

I+II+IV); (iii) full proposed pipeline (steps I+II+III+IV). In

scenarios (i) and (ii), the template stack was automatically se-

lected based only on the degree of motion corruption (NCC be-

tween sequential slices) similarly to the approach proposed in

(Kainz et al., 2015). The results were quantitatively evaluated

in terms of the total proportion of excluded slices, average NCC

between all simulated and original slices and average NCC be-

tween the simulated and original slices of an excluded stack

(similarly to the approach in Uus et al. (2020)). The excluded

stack was selected so that the thorax would be in approximately

the same position as the in template to make sure that the main

structures will be preserved and that it would not be completely

misaligned.

The corresponding results presented in Tab. 2 show that ad-

dition of reorientation to the standard space (Step II) to the to

localisation-only scenario (Step I) decreases the proportion of

the excluded slices which depends on the quality of registra-

tion and increases the average NCC between for all slices in

the dataset. It should be noted that the structure-based outlier

rejection in the standard DSVR method was already designed

for exclusion of the majority of misregistered slices and the

localisation-only pipeline (Step I) is operational even in the ex-

treme motion cases.

The main causes of excluded slices are related to the inten-

sity artefacts due to motion as well as misregistrations. Com-

plete exclusion of outliers ensures that the intensity and regis-

tration errors are not propagated into the reconstructed volumes.

But this also leads to the loss of information content required

for super-resolution reconstruction (lower NCC in the excluded

stack in scenarios I+IV and I+II+IV).

The full pipeline with the stack selection and template gen-

eration components (Step III) resulted in the highest NCC val-

ues between the simulated and original slices. This step refined

global pose stack transformations (see. Sec. 4.3) while defi-

nition of the common average template space provided more

stable initial registration target which led to the higher number

of included slices.

An illustration of reconstruction results for one of the early

GA datasets (23 weeks) affected by severe > 90 degrees rotation

and translation motion is presented in Fig. 14. In comparison to

the failed output (A) of the classical rigid SVR pipeline (Lloyd

et al., 2019; Kuklisova-Murgasova et al., 2012), even without

reorientation, the automated DSVR pipeline could still recon-

struct the main anatomical features (B). However, this led to

rejection of a large proportion of slices (58.8%) and grainy un-

stable texture, which made interpretation challenging. Addition

of the reorientation step (C) reduced the number of excluded

slices (38.7%) but the template was not optimally selected re-

sulting in a blurred image. Finally, the proposed step for se-

lection of stacks and generation of the average template (D)

improved definition of the fine vascular structures due to the

higher number of included slices (only 30.8% were excluded).

Fig. 14. An example of reconstruction results for an early GA (23 weeks)

dataset with 6 stacks affected by > 90 degrees rotation motion: (A) orig-

inal manual rigid SVR pipeline (Lloyd et al., 2019), (B) Steps I+IV, (C)

Steps I+II+IV, (D) full pipeline with Steps I+II+III+IV. Note that all im-

ages were additionally aligned to the same space for visualisation purposes

(axial and coronal views). The global change of the fetal thorax (blue) po-

sition between the different input stacks in this dataset is shown in (E).

4.5. Qualitative evaluation: early and late GA datasets

The performance of the proposed pipeline was also qualita-

tively evaluated on 50 early GA datasets (≤ 24 weeks) from

healthy controls of the iFIND project and 50 late GA datasets

(≥ 30 weeks) from the clinical CMR practice where research

consent was obtained.
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Fig. 15. Fetal thorax reconstruction quality grading scheme for the heart

ROI based on the proposed fully automated DSVR pipeline along with the

examples from the early GA cohort.

The early GA-specific cohort is particularly prone to large ro-

tations and translations that cannot be resolved by the classical

registration methods, which effectively limited the previous 3D

SVR fetal cardiac MRI study to primarily late GA (median ∼ 32

weeks) cases (Lloyd et al., 2019). Furthermore, one of the con-

ditions for a stable reconstruction of small vascular structures in

this subject group is the inclusion of all available image infor-

mation and minimisation of the proportion of excluded slices.

The selection criteria out of all available iFIND datasets

were: ≤ 24 weeks GA, singleton pregnancies, similar acqui-

sition protocol (Sec.4.1), more than 5 available stacks, and no

extreme SNR loss. The 50 late GA CHD CMR datasets (≥

30 weeks) were selected randomly from the recent acquisitions

with the consent for research and no extreme SNR loss. The re-

constructions were performed using the full version of the pro-

posed automated pipeline with 0.7mm output isotropic resolu-

tion. The output 3D volumes were graded by a clinician trained

in fetal CMR in terms of both general image quality and visibil-

ity of the major cardiovascular structures essential for diagnosis

of a specific group of CHD (major vascular abnormalities). The

quality grading scheme (Fig. 15) has four categories {0; 1; 2; 3}

with 0 corresponding to failed reconstruction, and 1, 2 and 3 to

poor, good/adequate and high image quality, correspondingly.

The datasets graded ≥ 2 are considered to be acceptable for

detailed clinical assessment and interpretation of the specific

group of CHD (major vascular abnormalities) with all major

cardiovascular structures being clearly visible.

The histogram of the quality grades for the early GA cohort

presented in Fig. 16.B shows that the majority of the grades

are within 2-3 range and therefore acceptable for interpretation,

with the average grade 2.16 ± 0.68. The primary causes of the

Fig. 16. The results of qualitative assessment of fetal thorax DSVR recon-

struction: distribution of image quality scores for 50 early (B) 50 late GA

(C) fetal MRI datasets. The GA distribution of the investigated datasets is

presented in (A).

low grades in 6 cases are related to significantly lower SNR lev-

els in the input stacks (low quality acquisition) in combination

with the small vessel size.

The histogram of the reconstruction image quality grades for

the late GA cohort is presented in Fig. 16.C and nearly all

grades (apart from 1 case) are within 2-3 range and therefore

acceptable for interpretation with the average grade 2.60±0.53.

As expected, the proportion of the cases with the high image

quality score is higher than in the early GA cohort since the

size of the vessels in significantly larger with respect to the re-

construction resolution.

In addition, Fig. 17 shows comparison of the outputs of the

proposed automated DSVR-based pipeline with the classical

manual SVR reconstruction used in (Lloyd et al., 2019) on two

23 weeks GA cases affected by severe and minor rotations. The

visual assessment of the results shows the superior image qual-

ity and sharper features even for the minor motion dataset.

5. Discussion and limitations

Automation of 3D (D)SVR-based reconstruction process and

correction of extreme motion are reportedly the two major chal-

lenges in fetal MRI motion correction. And while the exist-

ing CNN-based solutions for the fetal brain (e.g., (Salehi et al.,

2019)) already showed promising results, these methods have

not yet been applied to the fetal trunk ROI.

This work focused on development of a practical solution for

automated DSVR reconstruction of the fetal thorax combining

3D CNN-based intra-uterine localisation of the fetal trunk in

motion corrupted stack followed by automated reorientation of

the fetal thorax to the standard atlas space using 3D CNN seg-

mentation of a set or ROI-specific landmarks within the fetal
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Fig. 17. An example of the proposed automated DSVR pipeline vs. the

classical manual SVR reconstruction used in (Lloyd et al., 2019) for severe

(A) and minor (B) rotation and translation motion early GA (23 weeks)

datasets.

body. The reoriented stacks are then passed to the classical

DSVR reconstruction (Uus et al., 2020) with an additional au-

tomated stack selection and template generation steps based on

motion corruption and mutual stack similarity metrics.

We demonstrated that the proposed localisation pipeline

based on the multi-label 3D UNet provides robust 3D detec-

tion of the trunk even in stacks with partial fetal body coverage.

The landmark-based solution is also efficient for global fetal

pose estimation and extends the rotation and translation cap-

ture range of the classical rigid registration. The proposed step

for automated generation of the template space and exclusion

of potentially misregistered or low image quality stacks also

showed to improve reconstruction quality.

In addition, the pipeline was qualitatively evaluated on 100

randomly selected fetal MRI datasets from 21 to 36 week GA

range in terms of the image quality acceptable for anatomical

interpretation of the major cardiovascular structures. The re-

sults showed that the majority of the early GA datasets (88%)

have good image quality with clearly defined most of the major

cardiovascular structures.

The poor reconstruction quality in the remaining proportion

of cases is related to the low input image quality in combination

with the small vessel size at this age range which emphasises

the need for optimisation of the super-resolution reconstruc-

tion step and correction of intensity artefacts. The automated

DSVR-based pipeline also produced superior image quality in

comparison to the conventional manual rigid SVR-based ap-

proach even for minor motion cases. In addition, the performed

assessment of 50 late GA CMR cases showed high image recon-

struction quality with well defined vascular structures. These

results indicate the potential feasibility to extend the application

of 3D fetal SVR/DSVR reconstruction-based CMR analysis to

the wider GA range which is currently primarily limited to the

late GA cases (Lloyd et al., 2019) due to the extreme rotation

motion affecting young fetus datasets.

In terms of the limitations of the proposed solution, it should

be noted that the image quality and degree of motion corruption

directly affect segmentation and landmark estimation accuracy

with potential errors propagating to the registration step. There-

fore, the landmark-based approach is limited by the condition

that the individual fetal body structures should be identifiable in

all stacks. Comparison to the more traditional regression-based

fetal pose estimation methods (e.g., Hou et al. (2018)) should

also be investigated since it might provide an alternative solu-

tion for severely motion-corrupted stacks. This is planned to be

addressed in our future work.

Other aspects such as low image quality (low SNR or inten-

sity artefacts) and different acquisition protocols would require

further training of the networks on a wider range of datasets

with different acquisition parameters and range of anomalies.

Although, both of the aforementioned limitations (errors in

registration or low image quality) can be resolved by rejection

of outliers this would still lead to loss to useful information re-

quired for reconstruction of fine vascular structures. In order to

minimise this loss of information, an optimal solution should

include advanced signal processing methods for reconstruction

of the datasets affected by low SNR or severe intensity artefacts.

6. Conclusions

In this work, we proposed and implemented a first fully auto-

mated pipeline for robust DSVR reconstruction of high resolu-

tion 3D fetal thorax images from motion-corrupted MRI stacks.

It based on CNN-based solutions for automated localisation and

pose estimation for correction of large magnitude motion for the

fetal trunk ROI, which was not achievable before. Furthermore,

the reconstruction process is performed directly in the standard

atlas space. The pipeline was quantitatively evaluated on a se-

ries of fetal MRI datasets and a simulated experiment. We also

performed qualitative assessment on 100 early and late GA fetal

MRI datasets with the image quality grading results suggesting

the potential feasibility of using 3D automated DSVR recon-

structions for clinical interpretation of the major cardiovascular

structures.
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