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Abstract. Fine needle aspiration biopsy �FNAB� is a rapid
and cost-effective method for obtaining a first-line diagno-
sis of a palpable mass of the breast. However, because it
can be difficult to manually discriminate between adipose
tissue and the fibroglandular tissue more likely to harbor
disease, this technique is plagued by a high number of
nondiagnostic tissue draws. We have developed a por-
table, low coherence interferometry �LCI� instrument for
FNAB guidance to combat this problem. The device con-
tains an optical fiber probe inserted within the bore of the
fine gauge needle and is capable of obtaining tissue struc-
tural information with a spatial resolution of 10 �m over a
depth of approximately 1.0 mm. For such a device to be
effective clinically, algorithms that use the LCI data must
be developed for classifying different tissue types. We
present an automated algorithm for differentiating adipose
tissue from fibroglandular human breast tissue based on
three parameters computed from the LCI signal �slope,
standard deviation, spatial frequency content�. A total of
260 breast tissue samples from 58 patients were collected
from excised surgical specimens. A training set �N=72�
was used to extract parameters for each tissue type and the
parameters were fit to a multivariate normal density. The
model was applied to a validation set �N=86� using like-
lihood ratios to classify groups. The overall accuracy of
the model was 91.9% �84.0 to 96.7� with 98.1% �89.7 to
99.9� sensitivity and 82.4% �65.5 to 93.2� specificity
where the numbers in parentheses represent the 95% con-
fidence intervals. These results suggest that LCI can be
used to determine tissue type and guide FNAB of the
breast. © 2008 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction
Fine needle aspiration biopsy �FNAB� is often the first line of
diagnosis for a palpable mass.1–3 To perform a FNAB, the
mass is manually stabilized, a small diameter needle �typi-
cally 23 to 25 gauge� is inserted into the mass, and a small
amount of tissue or fluid is aspirated into the needle. The
aspirate within the bore of the needle is then expressed onto a
slide, smeared, stained, and examined by a pathologist. Due to
the small size of the needle, patient discomfort is generally
limited to the initial stick of the needle. Complications includ-
ing hematoma and infection are rare. The simplicity of FNAB
significantly reduces the time and cost of obtaining an initial
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diagnosis compared with core or excisional tissue biopsy and
allows rapid feedback to both the clinician and patient. In
addition, comparisons of the sensitivities and specificities of
core needle biopsy �CNB� and FNAB for palpable masses
show them to be high and similar.4,5 As a result, FNAB has
become a frequently used diagnostic tool for the evaluation of
many superficial, palpable masses.

Manual palpation of a superficial mass is often the only
cue for determining the optimal position of the needle in tis-
sue during biopsy. As a result, FNAB can frequently be non-
diagnostic, especially with an inexperienced operator.6–10

Sample adequacy is graded on a sliding scale based on the
degree of epithelial cellularity from which a diagnosis can be
made.9,10 Nondiagnostic samples are completely void of epi-
thelial cells and consist primarily of adipose cells and cyst
fluid.10 When not guided by an imaging modality, breast
FNABs obtain diagnostic tissue in approximately 65 to 78%
of cases.6,8,9 This difficulty is particularly problematic when
performing FNABs in locations that are rich in adipose tissue,
such as the breast and axilla. One method of increasing FNAB
yield is concomitant use of noninvasive imaging devices, such
as ultrasound, to guide needle placement. Radiologic guid-
ance is almost always employed when FNAB is performed on
nonpalpable masses. Although the addition of noninvasive im-
aging technology has been shown to increase FNAB yield, it
is time-consuming, relatively expensive, and often requires
additional personnel with specialized expertise.11

Recently, a portable, low-cost device based on low coher-
ence interferometry �LCI� has been developed for fine needle
aspiration �FNA� needle guidance.12 LCI is an optical ranging
technique that is capable of measuring depth-resolved �axial,
z� tissue structure, birefringence, flow �Doppler shift�, and
spectra at a micrometer-level resolution.13–15 Other groups
have investigated the use of needle-based optical probes for
biopsy guidance based on imaging16 or by direct measure of
tissue optical properties such as multispectral reflection
analysis,17 scattering coefficient,18 and refractive index19 mea-
surements. Miniature LCI needle probes have also been used

to correlate brain motion with electrocardiogram waves in a
minimally invasive fashion.20

An initial feasibility study performed on excised breast
surgical specimens indicated that LCI may have the potential
for classifying adipose and fibroglandular breast tissue based
on the slope and standard deviation of the axial depth
profiles.12 The sample size for this study was small and the
accuracy of LCI for breast tissue type diagnosis was therefore
not evaluated. Furthermore, this data was analyzed in a semi-
automatic fashion that is not suitable for clinical use; the
minimum and maximum boundaries over which the data were
analyzed were selected manually. Here, we present an auto-
mated algorithm for classifying adipose and fibroglandular
breast tissues that includes an additional, independent param-
eter that quantifies LCI signal spatial frequencies. The accu-
racy of this algorithm was determined prospectively in a
blinded fashion on a cohort of 260 biopsy correlated LCI
scans from 58 patients. Intrasample variability of the algo-
rithm was also tested. Similar classification parameters were
recently introduced to develop methods for computationally
driven differentiation of human breast tissue.21 However, to
our knowledge, our study represents the first complete study
to test the efficacy of such parameters for classification of
human breast tissue.

2 Methods
2.1 System Description
The LCI system and probe have been described previously
and are shown schematically in Fig. 1.12 Briefly, the LCI sys-
tem consisted of a nonreciprocal fiber optic Michelson inter-
ferometer. A broadband super luminescent diode �SLD� cen-
tered at 1310 nm with a full width at half maximum
bandwidth of 50 nm �Optiphase, Inc., Van Nuys, California�
was used as a light source. The axial resolution was �15 �m
in air, or 11 �m in tissue �n=1.4�. Light from the source was
transmitted through the first output port of a circulator and an
80 /20 splitter, which directed approximately 750 �W to the

Fig. 1 Schematic of the LCI biopsy guidance instrument. A super luminescent diode �SLD� is sent through a circulator �Circ� and an 80/20 splitter.
The reference arm optical delay line �ODL� consists of a retroreflector mounted on a galvanometer-driven lever arm. The LCI-FNA probe consists
of a single mode fiber inserted through a hub connecting the syringe and the needle. An optical connector attaches the LCI-FNA probe to the
sample arm of the interferometer.
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sample arm. LCI depth scans �A-lines� were obtained at a rate
of 40 Hz and the path length in the reference arm was
scanned by illuminating a retroreflector mounted on a
galvanometer-driven lever arm �Model 6220, Cambridge
Technology, Lexington, Massachusetts�. Light from the
sample and reference arms were recombined and directed to-
ward a polarization beamsplitter and two photodetectors, en-
abling polarization diverse detection. Shot noise limited de-
tection was achieved with a maximum signal-to-noise ratio
�SNR� of 101 dB.

The optical probe consisted of a single mode optical fiber
inserted through the bore of a 23 gauge ��570-�m outside
diameter� FNA needle. No focusing lens was used. The needle
was attached to a regular syringe through a hub �Model
54501, Inrad, Northvale, New Jersey�. The syringe was held
within a FNA biopsy gun. The fiber probe was designed to be
simple and therefore inexpensive. Because the fiber core ap-
erture was always at the needle tip, there was no uncertainty
regarding the probe location, and the interrogated tissue was
directly in front of the needle location. Although the fiber
probe was housed within a FNA needle, no tissue aspirates
were collected during the measurements.

2.2 Experimental Protocol
Excised surgical specimens were collected, stored in 10%
phosphate buffered saline and data was collected at 37°C
within 24 h of collection. The needle and FNA gun were se-
cured onto a vertical translation stage as shown in Fig. 2.

During imaging, samples were placed flat on a piece of cor-
rugated cardboard within a Petri dish and positioned under the
needle probe. The needle was lowered onto the sample until
the fiber surface came into contact with the sample. Ten con-
secutive A-lines were collected at each site. Following imag-
ing, the needle was raised, and the needle location was
marked with India ink. The samples were then fixed in forma-
lin. Histologic sections were obtained and stained with hema-
toxylin and eosin.

Histology slides were read by a pathologist who was
blinded to the LCI data. Slides were randomly ordered to
avoid bias from reading samples from the same patient con-
secutively. Histology samples were grouped into two critical
cases for this application—adipose and fibroglandular tissue
types. Fibroglandular tissues included benign fibrous paren-
chyma, adenocarcinoma, and ductal carcinoma in situ �DCIS�
tissue types. Only homogeneous samples classified as pure
adipose or fibroglandular tissue were included for parameter
extraction and algorithm development/classification. Samples
with significant heterogeneity in the image field as defined by
the pathologist or samples where no ink was visible on his-
tology were excluded. Heterogeneous samples were defined
as tissues where the ratio of major to minor tissue type was
approximately less than 3:1 within 1 mm of the ink mark.

2.3 Parameter Extraction
For each sample, 10 consecutive A-lines were acquired. Sig-
nal parameters were extracted for each A-line, and the mean
value for each parameter was used to represent the sample.
Each parameter was calculated using an automated MATLAB

script without the need for additional user input other than the
sample file. Prior to parameter extraction, the raw LCI inter-
ferogram data was converted to depth-dependent reflectivity
profiles in the standard fashion.12 The signal was transformed
using discrete Fourier transform �DFT�, bandpass filtered, fre-
quency shifted to zero, and inverse transformed. The resulting
linear intensity values were then converted to decibel scale by
20 log10 multiplication.

2.3.1 Automatic LCI scan boundary extraction
At the beginning and end of the LCI scan, the signal contains
data that are not representative of the tissue sample. As a
result, prior to parameter extraction, the data must be auto-
matically parsed to determine the segment of the LCI scan
that contains tissue reflectivity information. The location of
the fiber-sample interface was automatically determined by
the following procedure. The noise floor was determined by
averaging the signal within the first 200 �m of imaging
depth, which corresponded to a region proximal to the fiber-
sample interface. All signal points below the threshold were
set to be equal to the noise floor, using a threshold of 20 dB.
Next, a first-order derivative was computed and the first peak
was determined by the first zero crossing of the derivative. To
avoid error from specular reflection at the fiber-sample inter-
face, the start index was shifted an additional 100 �m beyond
the first peak. Automatic selection of the beginning location of
the LCI scan in this manner allowed the effective start index
to always fall within signal values representing the tissue
structure. The last 100 �m of the LCI signal were also
skipped because the signal was generally low in this region.

Fig. 2 FNA gun mounted with needle and positioned above sample.
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Thus, the analyzed data consisted of the region from the ef-
fective start index to the end of the LCI scan minus the last
100 �m. This algorithm was automated and applied to all
LCI scans to determine the data range over which to compute
the slope, standard deviation, and spatial frequency content
parameters. The average depth over which the signal was ana-
lyzed was 936 �m with a range from 820 �m to 1.03 mm.

2.3.2 Slope
To first order, the LCI reflectivity intensity decreases in accor-
dance with the Beer-Lambert law. At a source wavelength of
1300 nm, tissue optical properties are such that scattering
dominates over absorption.22 Therefore, the slope of the loga-
rithmic axial depth profile is related to the scattering coeffi-
cient and can be used as a parameter for classifying tissue
type. A higher slope indicates more attenuation and a larger
scattering coefficient, whereas, a lower slope indicates a lower
scattering coefficient. The slope was calculated by a first-
order polynomial fit over the region of interest.

2.3.3 Standard deviation
The variation of scattering cross sections within a LCI depth
scan can be used as another parameter for classifying tissue
type. One way to assess the scattering variance is to measure
the slope-subtracted standard deviation of the axial depth pro-
file. If the scattering fluctuates significantly, the reflection pro-
file will have peaks interspersed with periods of low signal
and the standard deviation will be high. Conversely, if the
scattering is relatively homogeneous, the signal will be more
continuous and the standard deviation will be low. To remove
the effect of the bulk averaged scattering coefficient, the re-
sidual of the linear fit was used to compute the standard de-
viation.

2.3.4 Spatial frequency content
Scattering center distribution, representing the distance be-
tween scatterers, may be evaluated by analyzing the spatial
frequency components of the signal. The power spectrum of
the signal can be interpreted as the signal energy within spa-
tial frequency windows, and the unique signature from differ-
ent tissue types was recently described as a method for differ-
entiating human breast tissue.21 The spatial frequency
parameter was computed in the following manner. First, as
with the computation of the standard deviation, the linear re-
gression was conducted and the residual was used for subse-
quent processing. Next, the dc component was removed by
mean subtraction. Data outside the start and end index were
set to zero. The resulting signal was zero mean, with compo-
nents that fluctuated with varying frequency content depend-
ing on tissue type. The DFT was then computed. The spatial
frequency parameter was then defined by integrating the mag-
nitude of the spatial frequency content over a particular win-
dow band. The window was defined by calculating the aver-
age DFTs for the entire training set and observing where the
adipose and fibroglandular tissue samples differed. A zoomed
portion of the mean DFTs for the training set are shown in
Fig. 3. The vertical lines represent the width of the integration
window.

2.4 Algorithm Model
A multivariate Gaussian model was used for classification.
The data set was randomly split into training and validation
sets. A pooled estimate of the covariance matrix was used for
the training set. The result of the model was an equation for
each class that defined the probability that any new set of
parameters fell within that class. Prospective analysis was
then performed on the validation set. Classification was car-
ried out by extracting parameters for each test sample, calcu-
lating the probability of falling within a particular class, and
then assigning classification based on the highest probability.

2.5 Intrasample Variability
To test the intrasample variability of the device and algorithm,
an additional experiment was conducted using another data
set. The needle probe was lowered onto each sample and a
10–A-line acquisition was performed. The needle was then
raised off of the sample using the vertical translation stage
and relowered back onto the sample for an additional 10–A-
line acquisition. This process was repeated 10 times so that
each sample had 10 data sets of 10 A-lines each all from the
same exact location. After the 10 measurement, the needle
was raised and the sample was marked with India ink and sent
for histology sectioning and staining. Each set of 10 A-lines
was processed in the same manner as the earlier experiments
so that a single set of extracted parameters characterized each

Table 1 Training set statistics.

Parameter
Adipose
�N=37�

Fibroglandular
�N=35� p

Slope −1.74±1.36 −4.39±2.23 �1.7�10−7

Std. Dev. 7.23±1.54 5.41±0.71 �2.2�10−7

Spat. Freq. 1.42±0.54 0.97±0.27 �2.2�10−9

Fig. 3 Average power spectrum data from LCI depth scans over the
entire training set that show a region of difference between adipose
and fibroglandular tissues types. The integration window �green lines�
represents the area over which the spatial frequency content param-
eter is generated. �Color online only.�
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set of A-lines. The samples were then classified using the
multivariate Gaussian model. The result was a set of 10 clas-
sifications from the same sample at the same location. The
intrasample variability was defined as the percentage of mis-
classified measurements within a particular sample.

2.6 Statistical Analysis
The accuracy of LCI for classifying breast tissue type was
assessed by comparing the predicted tissue type to the gold
standard histopathologic classification. All data processing
and parameter extraction were done within MATLAB. Each pa-
rameter is listed as ���, where � is the mean, and � is the
standard deviation. The p-values were calculated using a two-
sided unpaired t-test to determine if the difference in sample
means between parameters were statistically significant, and
95% confidence intervals �CI� are also reported.

3 Results
Typical LCI profiles of adipose and fibroglandular breast tis-
sue were very different �Fig. 4�. The adipose samples con-
tained multiple reflectivity peaks, presumably representing the
lipid core and cell membrane interface �Fig. 4�. Human adi-
pocytes range in size from 50 to 150 �m, which makes the
location of the reflectivity peaks highly variable.23 The scat-
tering centers in the fibroglandular tissue case are much closer
together and most likely come from small changes in the re-
fractive index from within the extracellular matrix. As a re-
sult, the LCI signal for fibroglandular tissue was smoother and
more continuous.

Data was collected from a total of 260 samples from 58
patients. Of those, 34 were not analyzed due to the absence of
a fiducial ink mark in the histopathologic slide, and 54 were
excluded owing to the presence of heterogeneous tissue at the
LCI measurement site. The set of 158 histopathology corre-
lated LCI data sets included 71 adipose and 87 fibroglandular
cases. The fibroglandular data set included 71 benign fibrous
parenchyma, 13 adenocarcinoma, and 3 DCIS cases. The data
sets were randomly separated into a training set �n=72; 37
adipose, 35 fibroglandular� and a validation set �n=86; 34
adipose, 52 fibroglandular�. There were 7 �5 adenocarinoma, 2
DCIS� and 9 tumor �8 adenocarcinoma, 1 DCIS� cases in-
cluded in the fibroglandular group for the training and valida-
tion sets, respectively. The additional samples were used for
intravariability testing �N=14�.

3.1 Training Set
The results from the training set are listed in Table 1. As the
table demonstrates, each parameter has a significant p-value.
The average magnitude of the slope parameter was higher for
fibroglandular tissue, which indicates a higher scattering co-
efficient for fibroglandular breast tissue compared with adi-
pose tissue. The mean standard deviation was higher for adi-
pose tissue as a result of the signal variation resulting from
refractive index fluctuations. The spatial frequency parameter
had more energy for the adipose samples within the integrated
window band. There was no spatial frequency region where
the fibroglandular tissue had higher energy as was seen at
higher spatial frequencies in Zysk et al.21 This could be due to
differences in axial resolution �10 �m versus 2 �m� because
the Fourier transform resolution highly depends on spatial
sampling frequency.

Another way to represent the training data is through the
use of a scatter matrix as shown in Fig. 5. The scatter matrix
plots two-dimensional scatter plots between each set of pa-
rameters and can be used to observe correlations between
classification parameters. It can be seen that there is little
correlation between the slope and standard deviation as well
as the slope and spatial frequency parameters. In addition, the
slope–standard deviation and slope–spatial frequency scatter
plots show that the adipose and fibroglandular data sets fall
into separate regions, making classification based on these
parameters possible. The scatter plot matrix also shows that
the standard deviation and spatial frequency parameters are
highly correlated. This is expected as both parameters are re-
lated to the scattering strength and scatterer distribution. The
correlation is higher for the adipose �R=0.938� than for the
fibroglandular �R=0.780� tissue samples.

3.2 Validation Set
The results from the validation set using all three parameters
for classification are listed in Table 2. The classification pa-
rameters show the same trends as were seen in the training set
data. The classification results are listed in Table 3. During a
FNA procedure, the collection of adipose tissue is seen as a
nondiagnostic result. Therefore, the correct classification of
adipose tissue can be viewed as a true negative �TN�, and the
correct classification of fibroglandular tissue can be viewed as
a true positive �TP�. In this way, the sensitivity, as defined by
TP / �TP+FN� �FN=false negative� is equivalent to the ac-

Fig. 4 Characteristic axial depth scans from adipose �left� and fibroglandular �right� human breast tissue. The red line is a first-order polynomial fit
through the data. Intensity data shown in logarithmic scale. �Color online only.�
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curacy of detecting fibroglandular tissue. In addition, the
specificity, as defined by TN / �TN+FP� �FP=false positive�
is equivalent to the accuracy of detecting adipose tissue. The
sensitivity and specificity of the validation set were 98.1%
�95% CI: 89.7 to 99.9� and 82.4% �95% CI: 65.5 to 93.2�,
respectively. The overall accuracy was defined as the total
number of correctly classified tissue samples regardless of
tissue type. With 86 �34 adipose, 52 fibroglandular� samples
in the validation set, the overall accuracy was 91.9% �95% CI:
84.0 to 96.7�. CIs were calculated using the normal approxi-
mation to the binomial distribution.24 The one misclassified
sample from the fibroglandular validation set was an adeno-
carcinoma case. The other 8 of 9 tumor cases were correctly
classified as fibroglandular tissues.

These results use all three classification parameters as pre-
viously described. To determine whether or not the three-

parameter model was statistically better than simply using the
slope and standard deviation parameters,12 it was necessary to
look at a truth table describing the differences between the
two models. The overall classification results using only the
slope and standard deviation parameters are shown in Table 3.
The sensitivity and specificity were 80.8% �67.5 to 90.4� and
82.4% �65.5 to 93.2�, respectively. Using only the two-
parameter model, four tumor cases, all adenocarcinoma, were
misclassified as adipose tissue. A truth table to quantify the
differences between the two models is shown in Table 4. In
Table 4, a �/� cell indicates that both the two-parameter and
the three-parameter models correctly classified the sample. A
�/� cell indicates that the two-parameter model correctly
classified a sample, whereas, the three-parameter model mis-
classified a sample. Similarly, a �/� cell indicates that the
three-parameter model classified the sample correctly when
the two-parameter model misclassified the sample, and a �/�
cell indicates that both models misclassified the samples. The
table shows that there are nine cases where the three-
parameter model classified a fibroglandular sample correctly
when the two-parameter model misclassified the sample, and
no cases with the reverse scenario. The associated p-value is
calculated using McNemar’s test for correlated proportions
and shows that there is a statistically significant difference
between the two- and three-parameter models in terms of fi-
broglandular tissue classification. No statistical difference was
observed for the adipose case.

Fig. 5 Scatter plot representation of the entire training set data that can be used to visualize relationships between parameters. There is a high
degree of correlation between the standard deviation and the spatial frequency content parameters for both the adipose �red plus sign� and
fibroglandular �blue cross� tissue types. Tumor tissues are labeled in green circles and were included in the fibroglandular tissue classification.
�Color online only.�

Table 2 Validation set statistics.

Parameter
Adipose
�N=34�

Fibroglandular
�N=52� p

Slope −1.69±1.25 −5.04±2.21 �1.9�10−11

Std. Dev. 6.92±1.35 5.51±1.55 �7.0�10−5

Spat. Freq. 1.23±0.31 0.82±0.23 �4.6�10−9
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Because the standard deviation parameter is calculated
from the slope-subtracted LCI signal, errors in the slope cal-
culation could result in an artificially high standard deviation
measurement. To test the effect this would have on our clas-
sification, we simulated errors in the slope by randomly modi-
fying the slope parameter �/� 5, 10, and 20% of its nominal
value. The standard deviation and spatial frequency content
parameters were then recalculated using the modified slope
value. The resulting classification was compared to the nomi-
nal value result using McNemar’s test as previously de-
scribed. There was no significant difference in the classifica-
tion results for either the adipose or fibroglandular tissue type.
For the maximum error of �/� 20%, the sensitivity was
96.2% �95% CI: 86.8 to 99.5� and the specificity was 76.5%
�95% CI: 58.8 to 89.3�.

3.3 Intrasample Variability
Data to test intrasample variability were collected and ana-
lyzed from a separate set of 14 samples from 6 patients �6
adipose, 8 fibroglandular�. The average intrasample variability
was 18.3% �9.5 to 30.4� for adipose and 1.3% �0.03 to 6.8� for
the fibroglandular tissue samples. The overall Cohen’s � sta-
tistic was 0.821 �0.725 to 0.981�. The number of errors for
each 10–A-line set was as follows: adipose �1 0 0 0 7 3� and
fibroglandular �0 0 0 1 0 0 0 0�. The one outlier sample within
the adipose data set �7 /10 error rate� was due to low signal
content, which tended to reduce the spatial frequency content
parameter and shift the probability toward the fibroglandular
tissue type. If the outlier were be removed, the adipose in-
trasample variability rate would become 8.0% �2.2 to 19.2�
and the � value would become 0.918 �0.847 to 0.988�.

4 Discussion
We present an automated algorithm for differentiating ex vivo
adipose tissue and fibroglandular human breast tissue using
LCI interferometry that achieves a high sensitivity and speci-
ficity. The extracted parameters used for classification are
simple and require minimal additional computation time com-
pared with the standard postprocessing of the LCI signals.
The goal of this project is to differentiate between nondiag-
nostic adipose tissue and the fibroglandular tissue more likely
to harbor disease. The ability of LCI to differentiate between
adipose and fibroglandular tissue indicates that this technol-
ogy has the potential to be a useful tool in FNA procedures in
an attempt to reduce nondiagnostic sampling rates. More im-
portantly, tumor samples are correctly classified as fibroglan-
dular, meaning that they will not be misclassified as adipose
tissue, resulting in a missed diagnosis.

There remain a few challenges to taking such a system into
a FNA clinic. First, in this work only homogeneous samples
were used for analysis and classification. This was done to
define a clear set of parameters that represent the true nature
of adipose and fibroglandular tissue types. In a clinical set-
ting, heterogeneous samples will be encountered that will de-
crease the accuracy of the model. Future work will focus on
further defining boundaries between tissue types to provide a
regional diagnosis that will account for heterogeneity. In ad-
dition, some clinical applications may require further differ-
entiation of fibroglandular tissues into normal fibrous and tu-
mor tissue types as well as identification of additional
categories such as necrotic tissue. The classification of nondi-
agnostic adipose tissue samples, however, does not require
this distinction, and as such, was outside the scope of this
paper. Also, LCI assumes that the signal comes from single-
scattering events, but the presence of multiple scattering, es-
pecially at larger depths within the sample can lead to de-
creased resolution, and changes in the signal profile. In
particular, the slope parameter, with its connection to the
Beer-Lambert law is particularly sensitive to the single-
scattering assumption. It may be necessary to define the bor-
der between single and multiple scattering to improve the
model and include additional tissue types. In addition, be-
cause the standard deviation parameter is calculated from the
slope-subtracted LCI scan, any error in the slope fit could
result in artificially high standard deviation measurements.
However, we found that errors up �/� 20% did not signifi-
cantly affect the classification result.

Insertion of the LCI needle probe within the tissue struc-

Table 3 Classification results.

Predicted Class

Two-Parameter Model
Slope, Std. Dev.

Three-Parameter Model
Slope, Std. Dev., Spat. Freq.

Adipose Fibroglandular Adipose Fibroglandular

True Class Adipose 28 6 29 5

Fibroglandular 10 42 1 51

Table 4 Model comparison.

3 Parameter Model

Fibroglandular Adipose

Two-Parameter
Model

+ − + −

+ 42 0 26 3

− 9 1 2 3

p�0.01 p�1
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ture in an in vivo setting, as opposed to surface-only measure-
ments as were done in this study, may introduce additional
obstacles that could limit the algorithm’s effectiveness. Issues
such as bleeding, tissue or optical fiber compression, and op-
erator motion artifacts will all come into play. We plan on
studying these issues through in vivo animal experiments to
further define any limitations of the LCI needle probe. We
anticipate that higher speed systems will significantly reduce
any motion artifacts seen in the current device. Lastly, the
ability to collect tissue aspirates directly following a LCI
measurement will need to be addressed. Issues such as the
collection of sufficient aspirate material as well as the devel-
opment of a disposable probe are the subject of an ongoing
investigation. Additional future work will focus on the devel-
opment of higher speed systems based on recent advance-
ments in LCI technology.25,26 These advancements will allow
for higher speed imaging, improved SNR, and greater imag-
ing depth.
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