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Abstract
Purpose A computerized classification scheme to recognize
breast parenchymal patterns in whole breast ultrasound (US)
images was developed. A preliminary evaluation of the sys-
tem performance was performed.
Methods Breast parenchymal patterns were classified into
three categories: mottled pattern (MP), intermediate pattern
(IP), and atrophic pattern (AP). Each classification was def-
ined as proposed by an experienced physician. A total of
281 image features were extracted from a volume of interest
which was automatically segmented. Canonical discriminant
analysis with stepwise feature selection was employed for the
classification of the parenchymal patterns.
Results The classification scheme accuracy was computed to
be 83.3% (10/12 cases) in MP cases, 91.7% (22/24 cases) in
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IP cases, 92.9% (13/14 cases) in AP cases, and 90.0% (45/50
cases) in all the cases.
Conclusions The feasibility of an automated ultrasonogra-
phy classifier for parenchymal patterns was demonstrated
with promising results in whole breast US images.
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Introduction

Breast cancer is one of the malignancies with high incidence
rate in the world. In Japan, breast has been the most com-
monly involved site among female Japanese cancer patients
since 1996 [1]. Mammography is an effective screening met-
hod for early detection of breast cancer. It is shown to help
to reduce mortality [2,3]. Biennial screening mammography
has been recommended by the Japanese Ministry of Health,
Labour and Welfare for all women over the age of 40. How-
ever, mammography is less effective in dense breasts because
lesions might be obscured by dense fibroglandular tissues in
the breast [4–6]. In contrast, ultrasonography may be particu-
larly useful for detection of the lesions in such dense breasts.
Actually, breast cancer screening with ultrasonography has
started in some areas of Japan because Japanese women tend
to have relatively denser breasts than their counterparts in
Western countries and the breast cancer incidence rate is high
for women aged 40–59 years in Japan. The effectiveness of
combined screening with ultrasonography and mammogra-
phy has also been reported [7–9].

Ultrasonography using a conventional hand-held probe
is an operator-dependent examination which potentially has
following problems: (1) Examination accuracy depends on
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Fig. 1 Whole breast ultrasound
scanner ASU-1004. a A patient
positions her breast on the
scanner. b Structure of the
scanner (cross sectional view).
The scanner has a water tank
with a linear probe and a
membrane
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operator’s skills. (2) Part of a breast may not been scanned
due to error. (3) It is difficult for double reading. (4) It is also
difficult to directly compare with mammography. Recently,
some automated whole breast ultrasound (US) scanners have
been developed for breast cancer screening [10–12]. These
instruments automatically scan entire breast without leaving
any part of the breast unscanned and they do not produce
operator-dependent subjective images but objective images.
Therefore, these scanners are probably useful in the screen-
ing and breast cancer screening with ultrasonography would
be increased by promoting widespread use of whole breast
US scanners.

The Japanese mammography guideline categorizes mam-
mographic parenchymal patterns as fatty, scattered fibroglan-
dular, heterogeneously dense, and extremely dense based on
visual assessment. The assessment indicates the degree of risk
where the lesions are obscured by normal mammary gland
tissues, i.e., reliability of diagnosis. Moreover, it is also an
index for recommending another examination such as ultra-
sonography. Such assessment is not described in the Jap-
anese breast ultrasonography guideline because radiologists
examine the patient and interpret the images at the same time
during breast cancer screening with conventional ultrasonog-
raphy. However, in case of screening with automated whole
breast US scanners, radiologists can interpret US images
after examination similar to mammography. As a result, the
assessment of ultrasonographic parenchymal patterns may be
needed in whole breast US images. In addition, such assess-
ment may be useful as a marker of breast cancer risk because
it have been reported that the risk for women with increased
mammographic parenchymal density is at a four to sixfold
higher than women with primarily fatty breasts [13–18].

While visual assessment of mammographic parenchymal
patterns is poorly reproducible due to the subjective assess-
ment [17] and extensive training is required for improving the
concordance rate, computerized methods can yield objective
measures. Many researchers have developed the computer-

ized methods for the assessment of mammographic patterns
[18–22]. In case of whole breast US images, computerized
methods for assessing parenchymal patterns will probably be
useful. Chang et al. [23] proposed two methods where whole
breast US images were automatically classified into mam-
mographic grades. However, there have been no reports on
the computerized analysis of parenchymal patterns in whole
breast US images except for our initial experimental work
[24]. Thus, the purpose of our study was to design a method
for the classification of breast parenchymal patterns in whole
breast US images and to perform a preliminary evaluation of
the performance of this method. We improved the perfor-
mance of the classification by the addition of image features
and the selection of useful features.

Materials and methods

Database

A data set of whole breast US cases was collected by the
researcher (T.M.). Patients were scanned with an automated
whole breast US scanner ASU-1004 (ALOKA Co., Ltd.)
[10], as shown in Fig. 1, which had a 7.5 MHz 6 cm linear
transducer (US probe) immersed in a water tank and moved
mechanically. A patient positions her one breast at a time on a
membrane covering the water tank, and the instrument scans
her entire breast in three overlapping runs. A whole breast
slice image (axial plane) was generated from three original
images by using an integration algorithm proposed in our pre-
vious work for computerized detection of masses in whole
breast US images [25]. The whole breast slice image con-
sisted of 167 slice images with 1-mm slice intervals, and the
width and depth of each slice image were 611 and 469 pixels,
respectively. The images had a gray-level resolution of 8 bits.

In this preliminary study, three categories of ultrasono-
graphic parenchymal patterns, namely, mottled pattern (MP),
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Fig. 2 Ultrasonographic parenchymal patterns in each category. a Mottled pattern (MP). b Intermediate pattern (IP). c Atrophic pattern (AP)
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Fig. 3 Distribution of each pattern according to age in the 50 whole
breast ultrasound cases

intermediate pattern (IP), and atrophic pattern (AP), were
defined and proposed based on breast parenchymal condi-
tions by a Japan Association of Breast and Thyroid Sonology
(JABTS) certified physician (T.M.) who has 18 years of expe-
rience in breast ultrasonography. Examples of each pattern
are shown in Fig. 2. In the case of MP, many small hypoechoic
regions are included in a mammary gland because the gland
contains large amount of milk. In the case of AP, while a lot of
fat tissues are contained in a breast, mammary gland tissues
are fewer than other cases because the gland has atrophied.
The IP case is an intermediate case between MP and AP cases
and many mammary gland tissues are observed in the image.

The whole breast US cases obtained 50 patients aged
24–59 years (mean 37.1 years, median 35 years) were used
for this study. The 50 experimental cases were categorized
into 12 MP, 24 IP, and 14 AP by the same physician (T.M.)
who proposed those categories. The distribution of age in
each pattern of 50 cases is shown in Fig. 3. MP was more fre-
quent in the 20s and 30s, and IP and AP were more frequent
in the 30s and 40s, respectively. Although, it was expected
for AP in the 50s to be more frequent than other patterns in
the 50s, IP was more frequent. Besides, the AP was more
frequent in the 40s, and less frequent in the 50s. These were
attributed to the fact that the number of cases in 50s was
extremely few.

Input whole breast ultrasound case

Preprocessing

Extraction of volume of interest

Image feature extraction

Classification of patterns

Fig. 4 Overall computerized scheme for classification of parenchymal
patterns in whole breast ultrasound images

Computerized analysis of ultrasonographic
parenchymal patterns

Overview

The developed scheme for the classification of parenchymal
patterns in whole breast US images includes several major
steps: preprocessing, extraction of volume of interest (VOI),
image feature extraction, and classification, as shown in
Fig. 4. A preprocessing which consisted of noise reduction
and normalization of gray levels was performed after gen-
erating a whole breast US image. Then image features were
extracted from a VOI which was automatically defined in the
entire breast volume image. Finally, we classified the paren-
chymal patterns based on statistical methods and extracted
image features.

Preprocessing

Many noises such as impulse and speckle noises are
generally included in US images, which are caused by the
interference effects between overlapping echoes. Further-
more, image brightness also varies due to adjustment of the
gain control for an US system. In this step, we produced
three images which were used for various processes in subse-
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quent steps. First, we generated an image f1 from an original
whole breast image by applying a median filter for reduc-
tion of impulse noises. An image f2, brightness normal-
ized, and an image f3, brightness normalized after speckle
noise reduction, were produced from the image f1. A his-
togram equalization technique was adopted for normalizing
image brightness, and an anisotropic diffusion filter [26] was
applied for the reduction of speckle noises. The images f1 and
f2 were used in the image feature extraction step because var-
ious texture features affected by speckle noises were useful
for the classification of ultrasonographic parenchymal pat-
terns. In contrast, the most noise-reduced image f3 was used
in the VOI extraction procedure because the segmentation
algorithm was easily influenced by noises.

Extraction of volume of interest

The whole breast US images generally included artifacts,
pectoral muscle, ribs, and abdominal regions except mam-
mary gland and fat tissues. Therefore, we extracted image
features only from VOIs in the breast images to avoid pref-
erably effects of there regions. The VOI was defined in the
breast region behind the nipple position in an image. As mam-
mary glands extend from the nipple to the entire breast, the
VOI usually includes mammary gland tissues. The point with
the maximum value of y axis in a breast volume was deter-
mined as the nipple position N = (nx,, ny, nz), where xy
and z axes are defined in axial plane and in the slice direc-
tion, respectively. The breast volume was segmented from the
image f3 with our proposed method [25], as shown in Fig. 5.
The VOI was empirically defined as nx −95 ≤ x ≤ nx +95,
ny − 76 ≤ y ≤ ny , nz − 25 ≤ z ≤ nz + 25 within the breast
volume.

Image feature extraction

Four groups of features based on the absolute value of the
gray levels, gray-level histogram analysis, small hypoechoic
regions, and textures were extracted from a VOI. Six fea-
tures based on the absolute value of the gray levels included
the average gray-level AVG, the standard deviation of the
gray levels SD, and various gray-level thresholds that yield
5, 30, 70, and 95% of the area under the gray-level histo-
gram of the VOI in the image f2. The gray-level threshold
features indicated difference of distribution of gray-level his-
togram [21], and the trend of the distribution was different
from each breast parenchymal pattern in the images. Accord-
ingly, the features were employed in this study. The 5, 30,
70, and 95% gray-level threshold features were denoted as
GT5, GT30, GT70, and GT95, respectively. The four features
based on gray-level histogram analysis included the skew-
ness, the kurtosis, the balance 1, and the balance 2 of the
histogram in the image f2. These histogram features can be

Fig. 5 Breast volume segmented from a whole breast ultrasound
images. a Original whole breast slice image. b Breast volume. Solid
line shows the contour of a breast volume

used to quantify the ratio of pixels with high gray-level val-
ues to those with low gray-level values relative to the mean.
The skewness S and kurtosis K were given by

S =
∑255

i=0 (i − µ)3 p(i)

σ 3 ,

K =
∑255

i=0 (i − µ)4 p(i)

σ 4 ,

µ =
255∑

i=0

i p(i),

σ 2 =
255∑

i=0

(i − µ)2 p(i),

where p(i) is the normalized gray-level histogram value of
gray-level value i [27]. µ and σ 2 are the average gray level
and the variance of gray levels, respectively. The balance 1
B1 and balance 2 B2 were measured at different thresholds
of the gray-level histogram to quantify the balances of the
histogram [21], which were defined as

B1 = GT95 − AVG

AVG − GT5
,

B2 = GT70 − AVG

AVG − GT30
.

The feature based on small hypoechoic regions was extrac-
ted from an image f1 by use of a black top-hat transformation

123



Int J CARS (2009) 4:299–306 303

Fig. 6 Small hypoechoic regions a original image including small
hypoechoic regions. b Segmented regions with a black top-hat transfor-
mation and gray-level thresholding (white color: segmented regions)

and gray-level thresholding, as shown in Fig. 6a. The black
top-hat transformation is a gray-scale morphological oper-
ation implemented by subtracting an original image from
the morphological closing image. We first applied the black
top-hat transformation to the image f1. Following this, small
hypoechoic regions were segmented with gray-level thres-
holding technique, as shown in Fig. 6b. This feature was
defined as the number of the segmented regions per unit area.

Six Haralick’s texture features, i.e., energy (ENG), con-
trast (CNT), correlation (CRR), variance (VAR), entropy
(EPY), and local homogeneity (LHG), were measured from
gray level co-occurrence matrix (GLCM) [28] generated from
a slice on an axial plane of a VOI. The GLCMs were com-
puted at three different gray levels (g = 128, 64, and 32),
five different pixel-pair distances (d = 1, 2, 3, 4, and 5 mm),
and three different directions (θ = 0◦, 45◦, and 90◦) in the
image f2. Thus, 270 texture features were extracted in each
GLCM. However, each texture feature was obtained by aver-
aging the corresponding feature values over all slices of the
VOI.

Classification of parenchymal patterns

Canonical discriminant analysis was employed for the clas-
sification of parenchymal patterns into three categories, and
stepwise feature selection [21] was used to select useful
features from 281 computer-extracted features. This proce-
dure was accomplished into two steps. First, the stepwise
feature selection was performed to identify useful features.
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Fig. 7 Distribution of canonical discriminant scores of all 50 whole
breast ultrasound cases and the discriminant boundary lines in resub-
stitution method

Second, coefficient of each feature variable in each discrimi-
nant function was determined by use of the selected features.
In this study, two discriminant functions formulated by a
linear combination of the feature variables were created to
achieve maximum separation between the three categories.
The stepwise procedure was based on Wilks’ lambda defined
as the ratio of within-group variance to the total variance and
correlation coefficient of each feature.

Results

Because of the limited database available for this preliminary
study, a resubstitution method was employed to evaluate the
classification scheme. This method uses the same data set,
first for training and then for testing. In the stepwise feature
selection procedure that designs two discriminant functions,
the following seven features were selected from the com-
puter-extracted features: gray-level threshold feature GT95,
number of small hypoechoic regions, CRR with g = 128,
d = 4, θ = 45, LHG with g = 128, d = 5, θ = 90,
VAR with g = 64, d = 5, θ = 0, EPY with g = 64,
d = 5, θ = 90, and CNT with g = 32, d = 3, θ = 45.
Figure 7 shows the distribution of the canonical discriminant
scores and the discriminant boundary lines. Table 1 presents
the performance of the computerized classification compared
with the classification by the physician. The accuracies of the
computerized classification scheme in this preliminary study
were 83.3% (10/12 cases) in MP cases, 91.7% (22/24 cases)
in IP cases, 92.9% (13/14 cases) in AP cases, and 90.0%
(45/50 cases) in total case.

We also evaluated the performance of the classification
scheme by employing leave-one-out method using the seven
image features selected by the stepwise feature selection. The
accuracies were 83.3% (10/12 cases) in MP cases, 83.3%
(20/24 cases) in IP cases, 85.7% (12/14 cases) in AP cases,
and 84.0% (42/50 cases) in total case, as shown in Table 2.
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Table 1 Performance of
computerized classification
scheme in resubstitution method

Computerized classification

Category (cases) Accuracy (%)

MP IP AP By category Total

Radiologist classification

MP 10 2 0 83.3 (10/12)

IP 1 22 1 91.7 (22/24) 90.0 (45/50)

AP 0 1 13 92.9 (13/14)

Table 2 Performance of
computerized classification
scheme in leave-one-out method

Computerized classification

Category (cases) Accuracy (%)

MP IP AP By category Total

Radiologist classification

MP 10 2 0 83.3 (10/12)

IP 1 20 3 83.3 (20/24) 84.0 (42/50)

AP 0 2 12 85.7 (12/14)

Discussion

In this preliminary study, we used the canonical discriminant
analysis and the stepwise feature selection with 281 features
extracted from VOIs in whole breast US cases for the clas-
sification of breast parenchymal patterns. Although a small
database was used for the evaluation, the results showed the
usefulness of the proposed scheme and demonstrated the fea-
sibility of our approach to the development of the analysis
system. For a more precise evaluation, however, we need to
evaluate the performance of the scheme with a cross-vali-
dation test using a larger database because the results of this
study may have been biased toward the specific data set used.

One IP case was classified as category MP in resubstitu-
tion method because it included small hypoechoic regions
such as MP cases, as shown in Fig. 8. These heterogeneous
hypoechoic regions were not due to milk including mammary
gland, but these were due to artifact like posterior attenua-
tion caused by the nipple. In addition, the volume behind the
nipple generally involved several tissues except mammary
gland and fat, such as milk duct and Cooper’s ligament. To
improve the performance, therefore, it is necessary to develop
an automated method for segmentation of tissues (skin, fat,
mammary gland, etc.) in whole breast US images and then
use only the mammary gland and fat volume for the clas-
sification of parenchymal patterns. Besides it is also to be
expected overcoming the posterior attenuation by improving
the US scanner.

Although, we used the canonical discriminant analysis as
a classifier in this study, it is necessary to compare the classi-

Fig. 8 Example of miss classified cases. The whole breast slice image
of IP case was classified as MP case

fier with other well-established classification algorithms for
the selection of an appropriate classifier for the system. The
classification performance might be improved through the
use of other classifier such as an artificial neural network and
a clustering algorithm.

The breast cancer risk is estimated higher for women with
MP and IP breasts than AP breasts because women with
mammographic dense breast tissues are grouped into higher
risk [15–18]. We expect that in the future, this system for
classification of breast parenchymal patterns may be applied
to a computer-aided diagnosis (CAD) system for classifica-
tion of breast masses and breast cancer risk estimation sys-
tem. Therefore, we will improve this scheme using a larger
database and the segmentation of breast tissues.

123



Int J CARS (2009) 4:299–306 305

Conclusion

We developed an automated method for the classification of
breast parenchymal patterns in whole breast US images into
three categories and performed a preliminary evaluation of
the performance of this method. The extracted image features
from volume of behind the nipple and the canonical discrim-
inant analysis with stepwise feature selection were useful for
the classification of the patterns. In the future work, we need
to improve the proposed scheme and evaluate the robustness
of the method with a larger database.
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