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Automated analysis of security protocols

with global state

Abstract. Security APIs, key servers and protocols that need to keep the status of transactions, require to maintain a global,
non-monotonic state, e.g., in the form of a database or register. However, most existing automated verification tools do not
support the analysis of such stateful security protocols – sometimes because of fundamental reasons, such as the encoding of
the protocol as Horn clauses, which are inherently monotonic. A notable exception is the recent tamarin prover which allows
specifying protocols as multiset rewrite (msr) rules, a formalism expressive enough to encode state. As multiset rewriting is
a “low-level” specification language with no direct support for concurrent message passing, encoding protocols correctly is a
difficult and error-prone process.

We propose a process calculus which is a variant of the applied pi calculus with constructs for manipulation of a global state
by processes running in parallel. We show that this language can be translated to msr rules whilst preserving all security prop-
erties expressible in a dedicated first-order logic for security properties. The translation has been implemented in a prototype
tool which uses the tamarin prover as a backend. We apply the tool to several case studies among which a simplified fragment
of PKCS#11, the Yubikey security token, and an optimistic contract signing protocol.

Keywords: Automated verification, Stateful security protocols, Security APIs

1. Introduction

Automated analysis of security protocols has been extremely successful. Using automated tools, flaws

have been for instance discovered in the Google Single Sign On Protocol [5], in commercial security

tokens implementing the PKCS#11 standard [10], and one may also recall Lowe’s attack [23] on the

Needham-Schroeder public key protocol 17 years after its publication. While efficient tools such as

ProVerif [7], AVISPA [4] or Maude-NPA [14] exist, these tools are generally not suitable to analyze pro-

tocols that require non-monotonic global state, i.e., some database, register or memory location that can

be read and altered by different parallel threads. The input language of the AVISPA tool offers support

for this kind of state but only supports a bounded number of sessions. This is particularly restrictive when

analysing security APIs where attacks typically require several keys and API calls, which are difficult

to bound a priori. ProVerif, one of the most efficient and widely used protocol analysis tools for an un-

bounded number of sessions, relies on an abstraction that encodes protocols in first-order Horn clauses.

This abstraction is well suited for the monotonic knowledge of an attacker (who never forgets), makes the

tool extremely efficient for verifying an unbounded number of protocol sessions and allows to build on

existing techniques for Horn clause resolution. However, Horn clauses are inherently monotonic: once a
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fact is true it cannot be set to false anymore. As a result, even though ProVerif’s input language, a variant

of the applied pi calculus [2], allows a priori encodings of a global memory, the abstractions performed

by ProVerif introduce false attacks. In the ProVerif user manual [8, Section 6.3.3] such an encoding of

memory cells and its limitations are indeed explicitly discussed:

“Due to the abstractions performed by ProVerif, such a cell is treated in an approximate way: all

values written in the cell are considered as a set, and when one reads the cell, ProVerif just guarantees

that the obtained value is one of the written values (not necessarily the last one, and not necessarily

one written before the read).”

Some work [3,24,13] has nevertheless used ingenious encodings of mutable state in Horn clauses, but

these encodings have limitations that we discuss below.

A prominent example where non-monotonic global state appears are security APIs, such as the RSA

PKCS#11 standard [27], IBM’s CCA [11] or the trusted platform module (TPM) [34]. They have been

known to be vulnerable to logical attacks for some time [22,9] and formal analysis has shown to be a

valuable tool to identify attacks and find secure configurations. One promising paradigm for analyzing

security APIs is to regard them as a participant in a protocol and use existing analysis tools. However,

Herzog [18] already identified not accounting for mutable global state as a major barrier to the application

of security protocol analysis tools to verify security APIs. Apart from security APIs many other protocols

need to maintain databases: key servers need to store the status of keys, in optimistic contract signing

protocols a trusted party maintains the status of a contract, RFID protocols maintain the status of tags

and more generally websites may need to store the current status of transactions.

Our contributions We propose a tool for analyzing protocols that may involve non-monotonic global

state, relying on Schmidt et al.’s tamarin tool [29,30] as a backend. We designed a new process calculus

that extends the applied pi calculus by defining, in addition to the usual constructs for specifying con-

current processes, constructs for explicitly manipulating global state. This calculus serves as the tool’s

input language. The heart of our tool is a translation from this extended applied pi calculus to a set of

multiset rewrite rules that can then be analyzed by tamarin which we use as a backend. We prove the

correctness of this translation and show that it preserves all properties expressible in a dedicated first

order logic for expressing security properties. As a result, relying on the tamarin prover, we can analyze

protocols without bounding the number of sessions, nor making any abstractions. Moreover it allows to

model a wide range of cryptographic primitives by the means of equational theories. As the underlying

verification problem is undecidable, tamarin may not terminate. However, it offers an interactive mode

with a GUI which allows to manually guide the tool in its proof. Our specification language includes

support for private channels, global state and locking mechanisms (which are crucial to write meaningful

programs in which concurrent threads manipulate a common memory). The translation has been care-

fully engineered in order to favor termination by tamarin, including a goal ranking method tailored to

the output of the translation. Several case studies illustrate the tool’s capability: a simple security API in

the style of PKCS#11, a complex case study of the Yubikey security token, as well as several examples

analyzed by other tools that aim at analyzing stateful protocols. In all of these case studies we were able

to avoid restrictions that were necessary in previous works.

Related work The most closely related work is the StatVerif tool by Arapinis et al. [3]. They propose

an extension of the applied pi calculus, similar to ours, which is translated to Horn clauses and analyzed

by the ProVerif tool. Their translation is sound but allows for false attacks, limiting the scope of proto-

cols that can be analyzed. Moreover, StatVerif can only handle a finite number of memory cells: when
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analyzing an optimistic contract signing protocol this appeared to be a limitation and only the status of a

single contract was modeled, providing a manual proof to justify the correctness of this abstraction. In

important case studies, e. g. key-management APIs like PKCS#11 or the Yubikey, an unbounded amount

of memory is required to avoid artificially bounding the number of keys or Yubikey devices. Finally,

StatVerif is limited to the verification of secrecy properties. As illustrated by the Yubikey case study, our

work is more general and we are able to analyze complex injective correspondence properties.

Mödersheim [24] proposed a language with support for sets together with an abstraction where all

objects that belong to the same sets are identified. His language, which is an extension of the low level

AVISPA intermediate format, is compiled into Horn clauses that are then analyzed, e. g., using ProVerif.

His approach is tightly linked to this particular abstraction, limiting the scope of applicability, e. g., when

keys may be compromised (all keys with the same attributes are abstracted to one and the same, thus

either all are revealed, or none) or when the set of states a key or value is not bounded a priori (as in

the Yubikey case study). Mödersheim also discusses the need for a more high-level specification level

which we provide in this work.

There has also been work tailored to particular applications. In [12], Delaune et al. show by a dedicated

hand proof that for analyzing PKCS#11 one may bound the message size. Their analysis still requires

to artificially bound the number of keys. Similarly in spirit, Delaune et al. [13] give a dedicated result

for analyzing protocols based on the TPM and its registers. However, the number of reboots (which

reinitialize registers) needs to be limited.

Guttman [17] also extended the strand space model by adding support for state. While the protocol

execution is modeled using the classical strand spaces model, state is modeled by a multiset of facts,

and manipulated by multiset rewrite rules. The extended model has been used for analyzing by hand an

optimistic contract signing protocol. In a more recent paper Ramsdell et al. [26] propose another approach

also based on the strand space model. Using the CPSA tool they obtain a symbolic representation (called

skeletons) of all possible attacks. However, as their model analyzed by CPSA encodes the state in a

message passing style, the tool may consider false attacks. They therefore import the CPSA result, as an

axiom, in the theorem prover PVS and, based on a more precise model of the possible state transitions,

refine their analysis to exclude the false attacks. The approach has been applied to the so-called envelope

protocol, which was also analysed (in a slightly more restrictive model) in [13].

In the goal of relating different approaches for protocol analysis Bistarelli et al. [6] also proposed a

translation from a process algebra to multiset rewriting: they do however not consider private channels,

have no support for global state and assume that processes have a particular structure. These limitations

significantly simplify the translation and its correctness proof. Moreover their work does not include any

tool support for automated verification.

Obviously any protocol that we are able to analyze can be directly analyzed by the tamarin

prover [29,30] as the rules produced by our translation could have been given directly as an input to

tamarin. Indeed, tamarin has already been used for analyzing a model of the Yubikey device [21], the

case studies presented with Mödersheim’s abstraction, as well as those presented with StatVerif. It is fur-

thermore able to reproduce the aforementioned results on PKCS#11 [12] and the TPM [13] – moreover,

it does so without bounding the number of keys, security devices, reboots, etc. Contrary to ProVerif,

tamarin sometimes requires additional typing lemmas which are used to guide the proof. These lemmas

need to be written by hand (but are proved automatically). In our case studies we also needed to provide

a few such lemmas manually. In our opinion, an important disadvantage of tamarin is that protocols are

modeled as a set of multiset rewrite rules. This representations is very low level and far away from ac-

tual protocol implementations, making it very difficult to model a protocol adequately. Encoding private
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channels, nested replications and locking mechanisms directly as multiset rewrite rules is a tricky and

error prone task. As a result we observed that, in practice, the protocol models tend to be simplified. For

instance, locking mechanisms are often omitted, modeling protocol steps as a single rule and making

them effectively atomic. Such more abstract models may obscure issues in concurrent protocol steps and

increase the risk of implicitly excluding attacks in the model that are well possible in a real implementa-

tion, e. g., race conditions. Using a more high-level specification language, such as our process calculus,

arguably eases protocol specification and overcomes some of these risks. Examples in which the explicit

modelling of locking mechanisms in SAPIC improved the protocol and/or the analysis include the Yu-

bikey case study presented in Section 7. In our modelling of the Yubikey the server can handle several re-

quests from different devices in parallel, which was not possible in the direct modelling in [21]. Another

example is the model of the enhanced authorization mechanism introduced in the TPM 2.0 specification

by Shao et al. [32]. In this work, a model of the TPM that executes API commands sequentially is com-

pared to one that executes them in parallel, finding flaws in the parallel version. The TPM model in the

tamarin example files models TPM commands as atomic steps. While an explicit modelling of locking

steps is possible in tamarin, judging from existing models, it is not widely used, although protocols and

analysis could benefit from it.

Since the first prototype of this translation was presented [19], subsequent work has demonstrated and

extended its scope. The present calculus and verification method have been used to verify a configuration

of the key-management API PKCS#11 [20] and was extended with loops to allow for the analysis of the

streaming protocol TESLA [25]. In [32], Shao et al. used our tool to analyse the enhanced authorization

mechanism introduced in the TPM 2.0 specification.

2. Preliminaries

Terms and equational theories. As usual in symbolic protocol analysis we model messages by abstract

terms. Therefore we define an order-sorted term algebra with the sort msg and two incomparable subsorts

pub and fresh . For each of these subsorts we assume a countably infinite set of names, FN for fresh

names and PN for public names. Fresh names will be used to model cryptographic keys and nonces

while public names model publicly known values. We furthermore assume a countably infinite set of

variables for each sort s, Vs and let V be the union of the set of variables for all sorts. We write u : s
when the name or variable u is of sort s. Let Σ be a signature, i.e., a set of function symbols, each with

an arity. We write f/n when function symbol f is of arity n. We denote by TΣ the set of well-sorted

terms built over Σ, PN , FN and V . For a term t we denote by names(t), respectively vars(t) the set

of names, respectively variables, appearing in t. The set of ground terms, i.e., terms without variables, is

denoted by MΣ. When Σ is fixed or clear from the context we often omit it and simply write T for TΣ
and M for MΣ.

We equip the term algebra with an equational theory E, that is a finite set of equations of the form

M = N where M,N ∈ T . From the equational theory we define the binary relation =E on terms,

which is the smallest equivalence relation containing equations in E that is closed under application of

function symbols, bijective renaming of names and substitution of variables by terms of the same sort.

Furthermore, we require E to distinguish different fresh names, i. e., ∀a, b ∈ FN : a 6= b ⇒ a 6=E b.

Example. Symmetric encryption can be modelled using a signature Σ = { senc/2, sdec/2 } and an

equational theory defined by sdec(senc(m, k), k) = m.
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For the remainder of the article we assume that E refers to some fixed equational theory and that the
signature and equational theory always contain symbols and equations for pairing and projection, i.e.,
{〈., .〉, fst, snd} ⊆ Σ and equations fst(〈x, y〉) = x and snd(〈x, y〉) = y are in E. We will sometimes use
〈x1, x2, . . . , xn〉 as a shortcut for 〈x1, 〈x2, 〈. . . , 〈xn−1, xn〉 . . .〉.

We suppose the usual notion of positions for terms. A position p is a sequence of positive integers and
t|p denotes the subterm of t at position p.

Facts. We also assume an unsorted signature Σfact , disjoint from Σ. The set of facts is defined as

F := {F (t1, . . . , tk) | ti ∈ TΣ, F ∈ Σfact of arity k}.

Facts will be used both to annotate protocols, by the means of events, and for defining multiset rewrite
rules. We partition the signature Σfact into linear and persistent fact symbols. We suppose that Σfact

always contains a persistent, unary symbol !K and a linear, unary symbol Fr. Given a sequence or set of
facts S we denote by lfacts(S) the multiset of all linear facts in S and pfacts(S) the set of all persistent
facts in S. By notational convention facts whose identifier starts with ‘!’ will be persistent. G denotes
the set of ground facts, i.e., the set of facts that does not contain variables. For a fact f we denote by
ginsts(f) the set of ground instances of f . This notation is also lifted to sequences and sets of facts as
expected.

Predicates. We assume an unsorted signature Σpred of predicate symbols that is disjoint from Σ and
Σfact . The set of predicate formulas is defined as

P := {pr(t1, . . . , tk) | ti ∈ TΣ, pr ∈ Σpred of arity k}.

Predicate formulas will be used to describe branching conditions in protocols. The semantics of a pred-
icate is defined via a first-order formula over atoms of the form t1 ≈ t2, i.e. the grammar for such
formulae is

〈φ〉 ::= t1 ≈ t2 | ¬φ | φ1 ∧ φ2 | ∃x.φ

where t1, t2 are terms and x ∈ V . For an n-ary predicate symbol pr , pr(x1, ..., xn) is defined by a
formula φpr such that fv(φpr ) ⊆ x1, ..., xn, where fv denotes the free variables in a formula, i. e.,
variables v ∈ V not bound by ∃v. The semantics of the first-order formulae is as usual where we interpret
≈ as =E .

Example. Suppose encSucc ∈ Σpred is a binary predicate symbol. We can define it as follows, so that it
allows to check whether a term x1 was encrypted using a key x2:

φencSucc = ∃m.enc(m,x2) ≈ x1

Substitutions. A substitution σ is a partial function from variables to terms. We suppose that substitu-
tions are well-typed, i.e., they only map variables of sort s to terms of sort s, or of a subsort of s. We de-
note by σ = {t1/x1 , . . . ,

tn /xn} the substitution whose domain is D(σ) = {x1, . . . , xn} and which maps
xi to ti. As usual we homomorphically extend σ to apply to terms and facts and use a postfix notation to
denote its application, e.g., we write tσ for the application of σ to the term t. A substitution σ is ground-
ing for a term t if tσ is ground. Given function g we let g(x) = ⊥ when x 6∈ D(x). When g(x) = ⊥
we say that g is undefined for x. We define the function f := g[a 7→ b] with D(f) = D(g) ∪ { a } as
f(a) := b and f(x) := g(x) for x 6= a.
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〈P ,Q〉 ::= 0

| P | Q
| ! P
| νn : fresh; P
| out(M,N ); P
| in(M,N ); P
| if Pred then P [else Q]

〈P ,Q〉 ::= (continued)

| event F ; P (F ∈ F)

| insert M ,N ; P
| delete M ; P
| lookup M as x in P [else Q]

| lock M ; P
| unlock M ; P

Fig. 1. Syntax, where M,N ∈ T and Pred ∈ P

Sets, sequences and multisets. We write Nn for the set {1, . . . , n}. Given a set S we denote by S∗ the

set of finite sequences of elements from S and by S# the set of finite multisets of elements from S.

We use the superscript # to annotate usual multiset operation, e.g. S1 ∪
# S2 denotes the multiset union

of multisets S1, S2. Given a multiset S we denote by set(S) the set of elements in S. The sequence

consisting of elements e1, . . . , en will be denoted by [e1, . . . , en] and the empty sequence is denoted by

[]. We denote by |S| the length, i.e., the number of elements of the sequence. We use · for the operation

of adding an element either to the start or to the end, e.g., e1 · [e2, e3] = [e1, e2, e3] = [e1, e2] · e3. Given

a sequence S, we denote by idx (S) the set of positions in S, i.e., Nn when S has n elements, and for

i ∈ idx (S) Si denotes the ith element of the sequence. Set membership modulo E is denoted by ∈E and

defined as e ∈E S iff ∃e′ ∈ S. e′ =E e. ⊂E and =E are defined for sets in a similar way. Application of

substitutions are lifted to sets, sequences and multisets as expected. By abuse of notation we sometimes

interpret sequences as sets or multisets; the applied operators should make the implicit cast clear.

3. A cryptographic pi calculus with explicit state

3.1. Syntax and informal semantics

Our calculus, dubbed SAPiC (Stateful Applied Pi calculus) is a variant of the applied pi calculus [2].

In addition to the usual operators for concurrency, replication, communication and name creation, it

offers several constructs for reading and updating an explicit global state. The grammar for processes is

described in Figure 1.

0 denotes the terminal process. P | Q is the parallel execution of processes P and Q and !P the

replication of P , allowing an unbounded number of sessions in protocol executions. The construct νn;P
binds the name n ∈ FN in P and models the generation of a fresh, random value. The processes

out(M,N ); P and in(M,N ); P represent the output, respectively input, of message N on channel M .

Readers familiar with the applied pi calculus [2] may note that we opted for the possibility of pattern

matching in the input construct, rather than merely binding the input to a variable x. The process if
Pred then P else Q will execute P or Q, depending on whether Pred holds. For example, if Pred =
equal(M,N), and φequal = x1 ≈ x2, then if equal(M,N) then P else Q will execute P if M =E N
and Q otherwise. (In the following, we will use M = N as short-hand for equal(M,N).) The event

construct is merely used for annotating processes and will be useful for stating security properties. For

readability we sometimes omit to write else Q when Q is 0, as well as trailing 0 processes.

The remaining constructs are used for manipulating state and are new compared to the applied pi

calculus. The construct insert M ,N binds the value N to a key M . Successive inserts allow changing this

binding. We emphasise that we have only one value bound to a key, and that successive inserts update
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the binding. The delete M operation simply “undefines” the mapping for the key M . The lookup M
as x in P else Q allows for retrieving the value associated to M , binding it to the variable x in P . If

the mapping is undefined for M the process behaves as Q. The lock and unlock constructs are used to

gain or waive exclusive access to a resource M , in the style of Djkstra’s binary semaphores: if a term M
has been locked, any subsequent attempt to lock M will be blocked until M has been unlocked. This is

essential for writing protocols where parallel processes may read and update a common memory.

In the following example, which will serve as our running example, we model a security API that, even

though much simplified, illustrates the most salient issues that occur in the analysis of security APIs such

as PKCS#11 [12,10,15].

Example. We consider a security device that allows the creation of keys in its secure memory. The user

can access the device via an API. If he creates a key, he obtains a handle, which he can use to let the

device perform operations on his behalf. For each handle the device also stores an attribute which defines

what operations are permitted for this handle. The goal is that the user can never gain knowledge of the

key, as the user’s machine might be compromised. We model the device by the following process (we

use out(m) as a shortcut for out(c,m) for a public channel c):

!Pnew | !Pset | !Pdec | !Pwrap , where

Pnew := νh; νk; event NewKey(h,k); insert 〈‘key’,h〉,k; insert 〈‘ att ’ ,h〉 , ‘dec’; out(h)

In the first line, the device creates a new handle h and a key k and, by the means of the event

NewKey(h, k), logs the creation of this key. It then stores the key that belongs to the handle by asso-

ciating the pair 〈‘key’, h〉 to the value of the key k. In the next line, 〈‘att’, h〉 is associated to a public

constant ‘dec’. Intuitively, we use the public constants ‘key’ and ‘att’ to distinguish two databases. The

process

Pset := in(h); insert 〈‘att’,h〉, ‘wrap’

allows the attacker to change the attribute of a key from the initial value ‘dec’ to another value ‘wrap’. If

a handle has the ‘dec’ attribute set, it can be used for decryption:

Pdec := in(〈h,c〉); lookup 〈‘att’,h〉 as a in if a=‘dec’ then
lookup 〈‘key’ ,h〉 as k in if encSucc(c,k) then

event DecUsing(k,sdec(c,k)); out(sdec(c,k))

The first lookup stores the value associated to 〈‘att’, h〉 in a. The value is compared against ‘dec’. If the

comparison and another lookup for the associated key value k succeeds, we check whether decryption

succeeds and, if so, output the plaintext.

If a key has the ‘wrap’ attribute set, it might be used to encrypt the value of a second key, e. g., to

export the key for external storage:

Pwrap := in(〈h1,h2〉); lookup 〈‘att’,h1〉 as a1 in if a1=‘wrap’ then
lookup 〈‘key’ ,h1〉 as k1 in lookup 〈‘key’, h2〉 as k2 in

event Wrap(k1,k2); out(senc(k2,k1))
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a ∈ FN ∪ PN a /∈ ñ
νñ.σ ⊢ a

DNAME
νñ.σ ⊢ t t =E t′

νñ.σ ⊢ t′
DEQ

x ∈ D(σ)

νñ.σ ⊢ xσ
DFRAME

νñ.σ ⊢ t1 · · · νñ.σ ⊢ tn f ∈ Σk

νñ.σ ⊢ f(t1, . . . , tn)
DAPPL

Fig. 2. Deduction rules.

The bound names of a process are those that are bound by νn. We suppose that all names of sort

fresh appearing in the process are under the scope of such a binder. Free names must be of sort pub. A

variable x can be bound in two ways: (i) by the construct lookup M as x, or (ii) x ∈ vars(N) in the

construct in(M,N ) and x is not under the scope of a previous binder, While the construct lookup M
as x always acts as a binder, the input construct does not rebind an already bound variable but performs

pattern matching. For instance in the process

P = in(c,f(x)); in(c,g(x))

x is bound by the first input and pattern matched in the second. It might seem odd that lookup acts as

a binder, while input does not. We justify this decision as follows: as Pdec and Pwrap in the previous

example show, lookups appear often after input was received. If lookup were to use pattern matching,

the following process

P = in(c, x); lookup ‘store’ as x in P ′

might unexpectedly perform a check if ‘store’ contains the message given by the adversary, instead of

binding the content of ‘store’ to x, due to an undetected clash in the naming of variables.

A process is ground if it does not contain any free variables. We denote by Pσ the application of

the homomorphic extension of the substitution σ to P . As usual we suppose that the substitution only

applies to free variables. We sometimes interpret the syntax tree of a process as a term and write P |p to

refer to the subprocess of P at position p (where |, if and lookup are interpreted as binary symbols, all

other constructs as unary). Our tool supports additional syntactic sugar: else-branches consisting of the

0-Process can be omitted, as well as let-construct for terms ( let m = dec(c, k) in out(m) ) and processes

( let P = . . . in !P ) perform simple substitution.

3.2. Semantics

Frames and deduction. Before giving the formal semantics of SAPiC we introduce the notions of frame

and deduction. A frame consists of a set of fresh names ñ and a substitution σ and is written νñ.σ.

Intuitively a frame represents the sequence of messages that have been observed by an adversary during a

protocol execution and secrets ñ generated by the protocol, a priori unknown to the adversary. Deduction

models the capacity of the adversary to compute new messages from the observed ones.

Definition 1 (Deduction). We define the deduction relation νñ.σ ⊢ t as the smallest relation between

frames and terms defined by the deduction rules in Figure 2.
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x1 ∈ D(σ)

νñ.σ ⊢ c

x2 ∈ D(σ)

νñ.σ ⊢ k1
νñ.σ ⊢ sdec(c, k1) sdec(c, k1) =E k2

νñ.σ ⊢ k2

Fig. 3. Proof tree witnessing that νñ.σ ⊢ k2, where c = senc(k2, k1)

Example. If one key is used to wrap a second key, then, if the intruder learns the first key, he can deduce

the second. For ñ = k1, k2 and σ = { senc(k2,k1)/x1 ,
k1 /x2 }, νñ.σ ⊢ k2, as witnessed by the proof tree

given in Figure 3.

Operational semantics. We can now define the operational semantics of our calculus. The semantics

is defined by a labelled transition relation between process configurations. A process configuration is a

5-tuple (E ,S,P, σ,L) where

– E ⊆ FN is the set of fresh names generated by the processes;

– S : MΣ → MΣ is a partial function modeling the store;

– P is a multiset of ground processes representing the processes executed in parallel;

– σ is a ground substitution modeling the messages output to the environment;

– L ⊆ MΣ is the set of currently acquired locks.

The transition relation is defined by the rules described in Figure 4. Transitions are labelled by sets

of ground facts. For readability we omit empty sets and brackets around singletons, i.e., we write → for
∅

−→ and
f

−→ for
{ f }
−→. We write →∗ for the reflexive, transitive closure of → (the transitions that are

labelled by the empty sets) and write
f
⇒ for →∗ f

→→∗. We can now define the set of traces, i.e., possible

executions that a process admits.

Definition 2 (Traces of P ). Given a ground process P we define the set of traces of P as

tracespi(P ) =
{

[F1, . . . , Fn] | (∅, ∅, {P}, ∅, ∅)
F1=⇒ (E1,S1,P1, σ1,L1)

F2=⇒

. . .
Fn=⇒ (En,Sn,Pn, σn,Ln)

}

Example. In Figure 5 we display the transitions corresponding to the creation of a key on the security

device in our running example and witness that [NewKey(h′, k′)] ∈ tracespi(P ).

4. Labelled multiset rewriting

We now recall the syntax and semantics of labelled multiset rewriting rules, which constitute the input

language of the tamarin tool [29].

Definition 3 (Multiset rewrite rule). A labelled multiset rewrite rule ri is a triple (l, a, r), l, a, r ∈ F∗,

written l −[ a ]→ r. We call l = prems(ri) the premises, a = actions(ri) the actions, and r =
conclusions(ri) the conclusions of the rule.

Definition 4 (Labelled multiset rewriting system). A labelled multiset rewriting system is a set of labelled

multiset rewrite rules R, such that each rule l −[ a ]→ r ∈ R satisfies the following conditions:
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Standard operations:

(E ,S,P ∪# {0}, σ,L) −→ (E ,S,P, σ,L)

(E ,S,P ∪# {P |Q}, σ,L) −→ (E ,S,P ∪# {P,Q}, σ,L)

(E ,S,P ∪# {!P}, σ,L) −→ (E ,S,P ∪# {!P, P}, σ,L)

(E ,S,P ∪# {νa;P}, σ,L) −→ (E ∪ {a′},S,P ∪# {P{a′/a}}, σ,L)
if a′ is fresh

(E ,S,P, σ,L)
K(M)
−−−−→ (E ,S,P, σ,L) if νE .σ ⊢ M

(E ,S,P ∪# {out(M,N);P}, σ,L)
K(M)
−−−−→ (E ,S,P ∪# {P}, σ ∪ {N/x},L)

if x is fresh and νE .σ ⊢ M

(E ,S,P ∪# {in(M,N);P}, σ,L)
K(〈M,Nτ〉)
−−−−−−−→ (E ,S,P ∪# {Pτ}, σ,L)

if νE .σ ⊢ M, νE .σ ⊢ Nτ and τ is grounding for N

(E ,S,P ∪# {out(M,N);P, in(M ′, N ′);Q}, σ,L) −→ (E ,S,P ∪ {P,Qτ}, σ,L)
if M =E M ′ and N =E N ′τ and τ grounding for N ′

(E ,S,P ∪ {if pr(M1, . . . ,Mn) then P else Q}, σ,L) −→ (E ,S,P ∪ {P}, σ,L)
if φpr{

M1/x1
, . . . ,Mn /xn

} is satisfied

(E ,S,P ∪ {if pr(M1, . . . ,Mn) then P else Q}, σ,L) −→ (E ,S,P ∪ {Q}, σ,L)
if φpr{

M1/x1
, . . . ,Mn /xn

} is not satisfied

(E ,S,P ∪ {event(F ); P}, σ,L)
F
−→ (E ,S,P ∪ {P}, σ,L)

Operations on global state:

(E ,S,P ∪# {insert M,N ; P}, σ,L) −→ (E ,S[M 7→ N ],P ∪# {P}, σ,L)

(E ,S,P ∪# {delete M ; P}, σ,L) −→ (E ,S[M 7→ ⊥],P ∪# {P}, σ,L)

(E ,S,P ∪# {lookup M as x in P else Q }, σ,L) −→ (E ,S,P ∪# {P{V/x}}, σ,L)
if S(N) =E V is defined and N =E M

(E ,S,P ∪# {lookup M as x in P else Q }, σ,L) −→ (E ,S,P ∪# {Q}, σ,L)
if S(N) is undefined for all N =E M

(E ,S,P ∪# {lock M ; P}, σ,L) −→ (E ,S,P ∪# {P}, σ,L ∪ {M }) if M 6∈EL

(E ,S,P ∪# {unlock M ; P}, σ,L) −→ (E ,S,P ∪# {P}, σ,L \ {M ′ | M ′ =E M })

Fig. 4. Operational semantics

– l, a, r do not contain fresh names and

– r does not contain Fr-facts.

A labelled multiset rewriting system is called well-formed, if additionally

– for each l′ −[ a′ ]→ r′ ∈E ginsts(l −[ a ]→ r) we have that ∩r′′=Er′names(r′′) ∩ FN ⊆
∩l′′=E l′names(l′′) ∩ FN .

We define one distinguished rule FRESH which is the only rule allowed to have Fr-facts on the right-

hand side

FRESH : [] −[]→ [Fr(x : fresh)]

The semantics of the rules is defined by a labelled transition relation.
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(∅, ∅, { !Pnew | !Pset |!Pdec |!Pwrap
︸ ︷︷ ︸

=:P ′

}#, ∅, ∅) → (∅, ∅, {Pnew }# ∪# P ′, ∅, ∅)

→ (∅, ∅, { ν h; ν k; event NewKey(h, k); . . . }# ∪# P ′, ∅, ∅)

→∗({h′, k′ }, ∅, {event NewKey(h′, k′); . . . }# ∪# P ′, ∅, ∅)

NewKey(h′,k′)
−−−−−−−−−→ ({h′, k′ }, ∅, { insert 〈‘key′, h′〉, k′; . . . }# ∪# P ′, ∅, ∅)

→∗({h′, k′ },S, {out(h′); 0 }# ∪# P ′, ∅, ∅) →∗ ({h′, k′ },S,P ′, { h′

/x1 }, ∅)

where S(〈‘key′, h′〉) = k′ and S(〈‘att′, h′〉) = ‘dec’.

Fig. 5. Example of transitions modelling the creation of a key on a PKCS#11-like device

Definition 5 (Labelled transition relation). Given a multiset rewriting system R we define the labeled

transition relation →R⊆ G# × P(G)× G# as

S
a

−→R ((S \# lfacts(l)) ∪# r)

if and only if l −[ a ]→ r ∈E ginsts(R ∪ FRESH), lfacts(l) ⊆# S and pfacts(l) ⊆ S.

Definition 6 (Executions). Given a multiset rewriting system R we define its set of executions as

execmsr (R) =
{

∅
A1−→R . . .

An−→R Sn |∀a, i, j : 0 ≤ i 6= j < n.

(Si+1 \
# Si) = {Fr(a)} ⇒ (Sj+1 \

# Sj) 6= {Fr(a)}
}

The set of executions consists of transition sequences that respect freshness, i. e., for a given name a
the fact Fr(a) is only added once, or in other words the rule FRESH is at most fired once for each name.

We define the set of traces in a similar way as for processes.

Definition 7 (Traces). The set of traces is defined as

tracesmsr (R) =
{

[A1, . . . , An] | ∀ 0 ≤ i ≤ n. Ai 6= ∅ and ∅
A1=⇒R . . .

An=⇒R Sn ∈ execmsr (R)
}

where
A

=⇒R is defined as
∅

−→∗
R

A
−→R

∅
−→∗

R.

Note that both for processes and multiset rewrite rules the set of traces is a sequence of sets of facts.

5. Security Properties

In the tamarin tool [29] security properties are described in an expressive two-sorted first-order logic.

The sort temp is used for time points, Vtemp are the temporal variables.
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Definition 8 (Trace formulas). A trace atom is either false ⊥, a term equality t1 ≈ t2, a timepoint

ordering i⋖ j, a timepoint equality i
.
= j, or an action F@i for a fact F ∈ F and a timepoint i. A trace

formula is a first-order formula over trace atoms.

As we will see in our case studies this logic is expressive enough to analyze a variety of security

properties, including complex injective correspondence properties.

To define the semantics, let each sort s have a domain D(s). D(temp) = Q, D(msg) = M,

D(fresh) = FN , and D(pub) = PN . A function θ : V → M∪Q is a valuation if it respects sorts, i. e.,

θ(Vs) ⊂ D(s) for all sorts s. If t is a term, tθ is the application of the homomorphic extension of θ to t.

Definition 9 (Satisfaction relation). The satisfaction relation (tr , θ) � ϕ between a trace tr , a valuation

θ and a trace formula ϕ is defined as follows:

(tr , θ) � ⊥ never

(tr , θ) � F@i iff θ(i) ∈ idx (tr) and Fθ ∈E trθ(i)
(tr , θ) � i⋖ j iff θ(i) < θ(j)
(tr , θ) � i

.
= j iff θ(i) = θ(j)

(tr , θ) � t1 ≈ t2 iff t1θ =E t2θ
(tr , θ) � ¬ϕ iff not (tr , θ) � ϕ
(tr , θ) � ϕ1 ∧ ϕ2 iff (tr , θ) � ϕ1 and (tr , θ) � ϕ2

(tr , θ) � ∃x : s.ϕ iff there is u ∈ D(s) such that (tr , θ[x 7→ u]) � ϕ

For readability, we define t1 ⋗ t2 as ¬(t1 ⋖ t2 ∨ t1
.
= t2) and ( ·≤, 6

.
=, ·≥) as expected. We also use

classical notational shortcuts such as t1 ⋖ t2 ⋖ t3 for t1 ⋖ t2 ∧ t2 ⋖ t3 and ∀i ≤ j. ϕ for ∀i. i ≤ j → ϕ.

When ϕ is a ground formula we sometimes simply write tr � ϕ as the satisfaction of ϕ is independent

of the valuation.

Definition 10 (Validity, satisfiability). Let Tr ⊆ (P(G))∗ be a set of traces. A trace formula ϕ is said to

be valid for Tr , written Tr �
∀ ϕ, if for any trace tr ∈ Tr and any valuation θ we have that (tr , θ) � ϕ.

A trace formula ϕ is said to be satisfiable for Tr , written Tr �
∃ ϕ, if there exist a trace tr ∈ Tr and a

valuation θ such that (tr , θ) � ϕ.

Note that Tr �
∀ ϕ iff Tr 6�∃ ¬ϕ. Given a multiset rewriting system R we say that ϕ is valid, written

R �
∀ ϕ, if tracesmsr (R) �∀ ϕ. We say that ϕ is satisfied in R, written R �

∃ ϕ, if tracesmsr (R) �∃ ϕ.

Similarly, given a ground process P we say that ϕ is valid, written P �
∀ ϕ, if tracespi(P ) �

∀ ϕ, and

that ϕ is satisfied in P , written P �
∃ ϕ, if tracespi(P ) �∃ ϕ.

Example. The following trace formula expresses secrecy of keys generated on the security API, which

we introduced in Section 3.

¬(∃h, k : msg , i, j : temp. NewKey(h, k)@i ∧K(k)@j)

6. A translation from processes into multiset rewrite rules

In this section we define a translation from a process P into a set of multiset rewrite rules JP K and a

translation on trace formulas such that P |=∀ ϕ if and only if JP K |=∀ JϕK. Note that the result also holds

for satisfiability, as an immediate consequence. For a rather expressive subset of trace formulas (see [29]

for the exact definition of the fragment), checking whether JP K |=∀ JϕK can then be discharged to the

tamarin prover that we use as a backend.
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Out(x) −[ ]→ !K(x) (MDOUT)
!K(x)−[ K(x) ]→ In(x) (MDIN)

−[ ]→ !K(x : pub) (MDPUB)
Fr(x : fresh) −[ ]→ !K(x : fresh) (MDFRESH)

!K(x1), . . . , !K(xk) −[ ]→ !K(f(x1, . . . , xk)) for f ∈ Σk (MDAPPL)

Fig. 6. The set of rules MD.

6.1. Definition of the translation of processes

To model the adversary’s message deduction capabilities, we introduce the set of rules MD defined

in Figure 6. In order for our translation to be correct, we need to make some assumptions on the set

of processes we allow. These assumptions are however, as we will see, rather mild and most of them

without loss of generality. First we define a set of reserved variables that will be used in our translation

and whose use we therefore forbid in the processes.

Definition 11 (Reserved variables and facts). The set of reserved variables is defined as the set containing

the elements na for any a ∈ FN and lock l for any l ∈ N. The set of reserved facts Fres is defined as

the set containing facts f(t1, . . . , tn) where t1, . . . , tn ∈ T and f ∈ { Init, Insert, Delete, IsIn, IsNotSet,

state, Lock, Unlock, Out, Fr, In, Msg, ProtoNonce, Event, InEvent, Predpr , Pred_notpr | pr ∈ Σpred }.

For our translation to be sound, we require that for each process, there exists an injective mapping

assigning to every unlock t in a process a lock t that precedes it in the process’ syntax tree. Moreover,

given a process lock t; P the corresponding unlock in P shall not be under a parallel or replication.

These conditions allow us to annotate each corresponding pair lock t, unlock t with a unique label l.

The annotated version of a process P is denoted P . In case the annotation fails, i.e., P violates one of

the above conditions, the process P contains ⊥. This is similar to the hypotheses on locks made in

StatVerif [3]. They precisely require that:

”In every branch of the syntax tree, every lock must be followed by precisely one corresponding

unlock. In lock;P , the part of the process P that occurs before the next unlock, if any, may not include

parallel, replication, or lock.”

Unlike StatVerif we do not need to forbid nested locks for our results to hold, even though nested locks

are not very useful as they directly lead to deadlocks.
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Definition 12 (Process annotation). Given a ground process P we define the annotated ground process

P as ap(P, []) where:

ap(0, A) := 0

ap(P |Q,A) :=







ap(P,A)|ap(Q,A) if A = []

⊥ otherwise

ap(!P,A) :=







!ap(P,A) if A = []

⊥ otherwise

ap(if Pred then P else Q,A) := if Pred then ap(P,A) else ap(Q,A)

ap(lookup M as x in P else Q,A) := lookup M as x in ap(P,A) else ap(Q,A)

ap(α;P,A) := α; ap(P,A) where α /∈ { lock t, unlock t : t ∈ T }

ap(lock t;P,A) := lockl t; ap(P,A · (t, l)) where l ∈ N is a fresh label

ap(unlock t;P,A) :=







unlockl t; ap(P,A \ {(t, l)}) if ∃i. Ai = (t, l)

and ∀l′, j < i.Aj 6= (t, l′)

for A = (A0, . . . , Am)

⊥ otherwise

Intuitively, the function ap(P,A) makes a traversal of the process P and maintains the list A of pending

unlocks. A pair (l, t) is in A whenever the instruction lock t was encountered, annotated by the label l
and no corresponding instruction unlock t was found yet. When encountering an unlock t instruction

we annotate it with the first corresponding label that was added to the list. We choose the first occurrence

in the list in order to guarantee that the resulting process is uniquely defined. Remark that the Appendix

of [19] contains a different but equivalent formulation of this definition.

Definition 13 (well-formed). A ground process P is well-formed if

– no reserved variable nor reserved fact appears in P ,

– any bound name and variable in P cannot be rebound, i.e., if u is bound in P then u is not under

the scope of a previous binder, and

– P does not contain ⊥.

A trace formula ϕ is well-formed if no reserved variable nor reserved fact appear in ϕ.

The two first restrictions of well-formed processes can be assumed without loss of generality as pro-

cesses and formulas can be consistently renamed to avoid reserved variables and α-converted to avoid

binding names or variables several times. Also note that the second condition is not necessarily preserved

during an execution, e.g. when unfolding a replication, !P and P may bind the same names. We only

require this condition to hold on the initial process for our translation to be correct.

The annotation of locks restricts the set of protocols we can translate, but allows us to obtain better ver-

ification results, since we can predict which unlock is “supposed” to close a given lock. This additional

information is helpful for tamarin’s backward reasoning. We think that our locking mechanism captures
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all practical use cases. Obviously, locks can be modelled both in tamarin’s multiset rewriting calculus

(this is actually what the translation does) and Mödersheim’s set rewriting calculus [24]. However, proto-

col steps typically consist of a single input, followed by several database lookups, and finally an output.

In practice, they tend to be modelled as a single rule, and are therefore atomic. Real implementations are

however different, as several entities might be involved, database lookups could be slow, etc. In this case,

such simplified models could, e. g., miss race conditions. To the best of our knowledge, StatVerif is the

only comparable tool that models locks explicitly and it has stronger restrictions.

Definition 14. Given a well-formed ground process P we define the labelled multiset rewriting system

JP K as

MD ∪ {INIT} ∪ JP , [], []K,

where the rule INIT is defined as

INIT : [] −[ Init() ]→ [state[]()] and

JP, p, x̃K is defined inductively for process P , position p ∈ N
∗ and sequence of variables x̃ in Figure 7.

For a position p in P we define statep to be persistent if P |p = !Q for some process Q; otherwise statep
is linear.

In the definition of JP, p, x̃K we intuitively use the family of facts statep to indicate that the process is

currently at position p in its syntax tree. A fact statep will indeed be true in an execution of these rules

whenever some instance of Pp (i.e. the process defined by the subtree at position p of the syntax tree

of P ) is in the multiset P of the process configuration. The translation of the zero-process, parallel and

replication operators merely use statep-facts. For instance JP | Q, p, x̃K defines the rule

[statep(x̃)] → [statep·1(x̃), statep·2(x̃)]

which intuitively states that when a process is at position p (modelled by the fact statep(x̃) being true)

then the process is allowed to move both to P (putting statep·1(x̃) to true) and Q (putting statep·2(x̃) to

true). The translation of JP | Q, p, x̃K also contains the set of rules JP, p · 1, x̃K ∪ JQ, p · 2, x̃K express-

ing that after this transition the process may behave as P and Q, i.e., the processes at positions p · 1,

respectively p · 2, in the process tree. Also note that the translation of !P results in a persistent fact as

!P always remains in P . The translation of the construct ν a translates the name a into a variable na, as

msr rules must not contain fresh names. Any instantiation of this rule will substitute na by a fresh name,

which the Fr-fact in the premise guarantees to be new. This step is annotated with a (reserved) action

ProtoNonce. This annotation is merely used in the proof of correctness to distinguish adversary and

protocol nonces which is useful as it allows us to identify the restricted names of the process. Note that

the fact statep·1 in the conclusion carries na, so that the following protocol steps are bound to the fresh

name used to instantiate na. The first rules of the translation of out and in model the communication

between the protocol and the adversary, and vice versa. In the case of out, the adversary must know the

channel M , modelled by the fact In(M) in the rule’s premisse, and learns the output message, modelled

by the fact Out(N) in the conclusion. In the case of in, the knowledge of the message N is additionally

required and the variables of the input message are added to the parameters of the state fact to reflect

that these variables are bound. The second and third rules of the translations of out and in model an
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J0, p, x̃K = {[statep(x̃)] → []}

JP | Q, p, x̃K = {[statep(x̃)] → [statep·1(x̃), statep·2(x̃)]}

∪JP, p · 1, x̃K ∪ JQ, p · 2, x̃K

J!P, p, x̃K = {[!statep(x̃)] → [statep·1(x̃)]} ∪ JP, p · 1, x̃K

Jνa;P, p, x̃K = {[statep(x̃),Fr(na : fresh)] −[ ProtoNonce(na : fresh) ]→

[statep·1(x̃, na : fresh)]} ∪ JP, p · 1, (x̃, na : fresh)K

JOut(M,N);P, p, x̃K = {[statep(x̃), In(M)] −[ InEvent(M) ]→ [Out(N), statep·1(x̃)],

[statep(x̃)] → [Msg(M,N), statesemi
p (x̃)],

[statesemi
p (x̃),Ack(M,N)] → [statep·1(x̃)]} ∪ JP, p · 1, x̃K

JIn(M,N);P, p, x̃K = {[statep(x̃), In(〈M,N〉)] −[ InEvent(〈M,N〉) ]→

[statep·1(x̃ ∪ vars(N))], [statep(x̃),Msg(M,N)] →

[statep·1(x̃ ∪ vars(N)),Ack(M,N)]}

∪JP, p · 1, x̃ ∪ vars(N)K

Jif pr(M1, . . . ,Mk)

then P else Q, p, x̃K
=

{[statep(x̃)] −[ Predpr (M1, . . . ,Mk) ]→ [statep·1(x̃)],

[statep(x̃)] −[ Pred_notpr (M1, . . . ,Mk) ]→ [statep·2(x̃)]}

∪JP, p · 1, x̃K ∪ JQ, p · 2, x̃K

Jevent F ;P, p, x̃K = {[statep(x̃)] −[ Event(), F ]→ [statep·1(x̃)]} ∪ JP, p · 1, x̃K

Jinsert s, t;P, p, x̃K = {[statep(x̃)] −[ Insert(s, t) ]→ [statep·1(x̃)]} ∪ JP, p · 1, x̃K

Jdelete s;P, p, x̃K = {[statep(x̃)] −[ Delete(s) ]→ [statep·1(x̃)]} ∪ JP, p · 1, x̃K

Jlookup M as v in P else Q, p, x̃K = {[statep(x̃)] −[ IsIn(M, v) ]→ [statep·1(M̃, v)],

[statep(x̃)] −[ IsNotSet(M) ]→ [statep·2(x̃)]}

∪JP, p · 1, (x̃, v)K ∪ JQ, p · 2, x̃K

Jlockl s;P, p, x̃K = {[Fr(lockl), statep(x̃)] −[ Lock(lock l, s) ]→ [statep·1(x̃, lock l)]}

∪JP, p · 1, x̃K

Junlockl s;P, p, x̃K = {[statep(x̃)] −[ Unlock(lock l, s) ]→ [statep·1(x̃)]} ∪ JP, p · 1, x̃K

Fig. 7. Translation of processes: definition of JP, p, x̃K

internal communication, which is synchronous. For this reason, when the second rule of the translation

of out is fired, the state-fact is substituted by an intermediate, semi-state fact, statesemi, reflecting that

the sending process can only execute the next step if the message was successfully received. The fact

Msg(M,N) models that a message is present on the synchronous channel. Only with the acknowledge-

ment fact Ack(M,N), resulting from the second rule of the translation of in, is it possible to advance

the execution of the sending process, using the third rule in the translation of out, which transforms the

semi-state and the acknowledgement of receipt into statep·1(. . .). Only now the next step in the execution

of the sending process can be executed. The remaining rules essentially update the position in the state
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[] −[ Init() ]→ [!state[]()]
[!state[]()] −[ ]→ [state[1]()]

[state[1](),Fr(h)] −[ ]→ [state[11](h)]
[state[11](h),Fr(k)] −[ ]→ [state[111](k, h)]

[state[111](k, h)] −[ Event(),NewKey(h, k) ]→ [state[1111](k, h)]
[state[1111](k, h)] −[ Insert(〈’key’, h〉, k) ]→ [state[11111](k, h)]
[state[11111](k, h)] −[ Insert(〈’att’, h〉, ’dec’) ]→ [state[111111](k, h)]
[state[111111](k, h)] −[ ]→ [Out(h), state[1111111](k, h)]

Fig. 8. The set of multiset rewrite rules J!Pnew K (omitting the rules in MD)

facts and add labels. Some of these labels are used to restrict the set of executions. For instance the label

Pred_pr (M1, . . . ,Mk) will be used to indicate that we only consider executions in which φpr holds for

M1, . . . ,Mk. As we will see in the next section these restrictions will be encoded in the trace formula.

Example. Figure 8 illustrates the above translation by presenting the set of msr rules J!Pnew K (omitting

the rules in MD already shown in Figure 6).

A graph representation of an example trace, similar to the one generated by the tamarin tool, is depicted

in Figure 9. Every node stands for the application of a multiset rewrite rule, where the premises are at

the top, the conclusions at the bottom, and the actions (if any) annotate the node. Every premise needs to

have a matching conclusion, visualized by the arrows, to ensure the graph depicts a valid msr execution.

(This is a simplification of the dependency graph representation tamarin uses to perform backward-

induction [29,30].) We also note that in the current example !state[]() is persistent and can therefore be

used multiple times as a premise. As Fr( ) facts are generated by the FRESH rule which has an empty

premise and action, we omit instances of FRESH and leave those premises, but only those, disconnected.

Remark 1. One may note that, while for all other operators, the translation produces well-formed mul-

tiset rewriting rules (as long as the process is well-formed itself), this is not the case for the translation

of the lookup operator, i. e., it violates the well-formedness condition from Definition 4. Tamarin’s con-

straint solving algorithm requires all rules, with the exception of FRESH, to be well-formed. We show

however that, under these specific conditions, the solution procedure is still correct. See Appendix A for

the proof.

6.2. Definition of the translation of trace formulas

We can now define the translation for formulas.

Definition 15. Given a well-formed trace formula ϕ we define

JϕK∀ := α ⇒ ϕ and JϕK∃ := α ∧ ϕ

where α is defined in Figure 10.

The formula α uses the actions of the generated rules to filter out executions that we wish to discard:

– αinit ensures that the init rule is only fired once.
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!state[]()
Init()

!state[]()

state1()

!state[]()

state1()

Fr(h) state1()
state11(h)

state1() Fr(h′)
state11(h′)

Fr(k) state11(h)
state111(h,k)

state11(h′) Fr(k′)
state111(h′,k′)

state111(h,k)
state1111(h,k)

state111(h′,k′)
state1111(h′,k′)

Event()
NewKey(h, k)

Event()
NewKey(h′, k′)

state1111(h,k)
state11111(h,k)

state1111(h′,k′)
state11111(h′,k′)

Insert(〈‘att’,h〉,‘dec’) Insert(〈‘att’,h′〉,‘dec’)

state11111(h,k)
Out(h) state11111(h,k)

state11111(h′,k′)
state11111(h′,k′) Out(h′)

Fig. 9. Example trace for the translation of !Pnew .

– αpred ensures that we only consider traces where for all positive and negative branches in condi-

tionals the corresponding predicate formula, respectively its negation, hold.

– αin and αnotin ensure that a successful lookup was preceded by an insert that was neither revoked

nor overwritten while an unsuccessful lookup was either never inserted, or deleted and never re-

inserted.

– αlock checks that between each two matching locks there must be an unlock. Furthermore, between

the first of these locks and the corresponding unlock, there is neither a lock nor an unlock.

– αinev ensures that whenever an instance of MDIN is required to generate an In-fact, it is generated

as late as possible, i. e., there is no visible event between the action K(t) produced by MDIN, and

a rule that requires In(t).

We also note that Tr �
∀ JϕK∀ iff Tr 6�∃ J¬ϕK∃.

6.3. Discussion of design choices

There exist certainly other ways of correctly translating our calculus into msr rules. Most of our choices

were guided by the way tamarin internally works. To better appreciate our choices we will give a high-

level overview of the procedure implemented in tamarin. A detailed review of the procedure is however

out of scope of this paper and we refer the reader to [29] for a detailed description.

A short overview of tamarin. Tamarin basically applies a backward reasoning approach to try to find

a trace which satisfies a given formula. (Validity claims are first translated to satisfiability claims.) This

is reminiscent to the reasoning when proving protocol correctness in the strand space model [33]. More

precisely, rather than reasoning about traces, tamarin reasons about dependency graphs, an enriched rep-

resentation of traces. Dependency graphs are DAGs, where each node corresponds to a ground instance
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α := αinit ∧ αpred ∧ αnoteq ∧ αin ∧ αnotin ∧ αlock ∧ αinev and

αinit := ∀i, j. Init()@i ∧ Init()@j =⇒ i
.
= j

αpred :=
∧

pr∈Σpred
{∀x1, . . . , xk, i. Predpr (x1, . . . , xk)@i =⇒ φpr | pr is of arity k}∧

∧

pr∈Σpred
{∀x1, . . . , xk, i. Pred_notpr (x1, . . . , xk)@i =⇒ ¬(φpr ) | pr is of arity k}

αin := ∀x, y, t3. IsIn(x, y)@t3 =⇒ ∃t2. Insert(x, y)@t2 ∧ t2 ⋖ t3

∧ ∀t1. Delete(x)@t1 =⇒ (t1 ⋖ t2 ∨ t3 ⋖ t1)

∧ ∀t1, y. Insert(x, y)@t1 =⇒ (t1 ·≤ t2 ∨ t3 ⋖ t1)

αnotin := ∀x, t3. IsNotSet(x)@t3 =⇒ (∀t1, y. Insert(x, y)@t1 =⇒ t3 ⋖ t1)∨

(∃t1. Delete(x)@t1 ∧ t1 ⋖ t3

∧ ∀t2, y. (Insert(x, y)@t2 ∧ t2 ⋖ t3) =⇒ t2 ⋖ t1)

αlock := ∀x, l, l′, t1, t3. Lock(l, x)@t1 ∧ Lock(l′, x)@t3 ∧ t1 ⋖ t3

=⇒ ∃t2. Unlock(l, x)@t2 ∧ t1 ⋖ t2 ⋖ t3

∧ (∀t0. Unlock(l, x)@t0 =⇒ t0
.
= t2)

∧ (∀l′, t0. Lock(l
′, x)@t0 =⇒ t0 ·≤ t1 ∨ t2 ⋖ t0)

∧ (∀l′, t0. Unlock(l
′, x)@t0 =⇒ t0 ⋖ t1 ∨ t2 ·≤ t0)

αinev := ∀x, t3. InEvent(x)@t3 =⇒ ∃t2. K(x)@t2 ∧ t2 ⋖ t3

∧ (∀t0. Event()@t0 =⇒ (t0 ⋖ t2 ∨ t3 ⋖ t0))

∧ (∀t0, x
′. K(x′)@t0 =⇒ (t0 ·≤ t2 ∨ t3 ⋖ t0))

Fig. 10. Definition of α.

of an msr rule and the edges represent the causal dependencies among these rules. For every premise of a

rule there is an incoming edge from another rule with a conclusion that matches the premise. Moreover,

linear facts may have at most one outgoing edge and fresh rules are unique. Every topological ordering

then corresponds to a trace.

Tamarin’s backward search is formalised by a constrained solving algorithm. The solutions of a con-

straint system are the dependency graphs whose traces satisfy the constraints. The initial constraint sys-

tem is simply the formula to be satisfied. The procedure then applies simplification rules which preserve

all solutions. If the constraint system reaches ⊥ the formula is unsatisfiable. In case no more rules can be

applied the system is solved, and the dependency graphs that are the solutions of the constraint system

can be directly constructed.

Slightly simplifying, a typical rule in the constraint solving algorithm would state that if the formula

is of the form a@i then the dependency graph must contain a node corresponding to a rule ℓ
b
−→ r with

an action b that matches a. Next, it will try to solve each premise in ℓ by adding a constraint that this rule

must be preceded by a node corresponding to rules with a fact in its conclusion matching this premise.
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Another example of a simplification rule is the following, which reasons about the uniqueness of fresh

names: when the constraint system contains both Fr(n)@i and Fr(n)@j it concludes that i
.
= j.

The constraint simplification procedure may of course enter a loop and not terminate. This is natural

given that the underlying problem is undecidable. The algorithm can nevertheless be guided by heuristics

to avoid some of these loops and use previously proven lemmas and axioms to prune otherwise infinite

branches.

Design choices. The axioms in the translation of the formula are designed to work hand in hand with the

translation of the process into rules. They express the correctness of traces with respect to our calculus’

semantics, but are also meant to guide tamarin’s constraint solving algorithm. The use of axioms, rather

than other possible encodings, often helps the algorithm to enforce termination as they can be used to cut

branches that are not consistent with the axioms. We will discuss the axioms related to state manipulation.

Let us first consider the axioms related to lock actions. A naïve axiomatization would postulate that

“every lock is preceded by an unlock and no lock or unlock in between, unless it is the first lock.” This

would however cause tamarin to loop, as we will see below. We will first illustrate how the axiom αlock

avoids this caveat because it only applies to pairs of locks carrying the same annotations.

Consider the constraint solving procedure for the following process

P := !(lock ‘s’; lookup ‘visited’ as v in unlock ‘s’

else event Visit (); insert ‘ visited ’ , ‘s’ ; unlock ‘s’)

and the trace formula ∀i, j.Visit()@i∧Visit()@j =⇒ i
.
= j. The msr rules generated by our translation

are depicted in Figure 11.

[] −[ Init() ]→ [!state()]
[!state()] −[ ]→ [state1()]

[state1(),Fr(l)] −[ Lock(l, ‘s’) ]→ [state11(l)]
[state11(l)] −[ IsIn(‘visited’, v) ]→ [state111(l, v)]

[state111(l, v)] −[ (l, ‘s’) ]→ [state1111(l, v)]
[state11(l)] −[ IsNotSet(‘visited’) ]→ [state112(l)]
[state112(l)] −[ Event(),Visit() ]→ [state1121(l)]
[state1121(l)]−[ Unlock(‘visited’, ‘s’) ]→ [state11211(l)]
[state11211(l)] −[ Unlock(l, ‘s’) ]→ [state112111(l)]

Fig. 11. Translation of process P

i : Visit() j : Visit() i⋖ j

Fig. 12. Constraint system resulting from the negation of ∀i, j.Visit()@i ∧ Visit()@j =⇒ i
.
= j.

1. Tamarin shows validity of the trace formula by showing that its negation ∃i, j.Visit()@i ∧
Visit()@j∧(i⋖j∨j⋖i) is not satisfiable. Two symmetrical constraint systems need to be refuted,

we focus on the one pictured in Figure 12, i. e., the case where i⋖ j.
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!state[]()
Init()

i⋖ j

!state[]()

state1()

!state[]()

state1()

t1 :
Fr(l1) state1()

state11(l1)
t3 :

state1() Fr(l2)
state11(l2)

Lock(l1, ‘s’) Lock(l2, ‘s’)

state11(l1)
state112(l1)

state11(l2)
state112(l2)

IsNotSet(‘visited’) IsNotSet(‘visited’)

i : state112(l1)
state1121(l1)

j : state112(l2)
state1121(l2)

Event()
Visit()

Event()
Visit()

Fig. 13. All state-premises have exactly one matching conclusion and are resolved up to a (unique) instance of INIT.

!state[]()
Init()

i⋖ j t1 ⋖ t2 ⋖ t3
∀l′, t0. Lock(l′,‘s’) @t0 =⇒ t0 ⋖ t1 ∨ t2 ⋖ t0
∀l′, t0. Unlock(l′,‘s’) @t0 =⇒ t0 ⋖ t1 ∨ t2 ⋖ t0

!state[]()

state1()

!state[]()

state1()

t1 :
Fr(l1) state1()

state11(l1)
t3 :

state1() Fr(l2)
state11(l2)

Lock(l1, ‘s’) Lock(l2, ‘s’)

state11(l1)
state112(l1)

state11(l2)
state112(l2)

IsNotSet(‘visited’) IsNotSet(‘visited’)

i : state112(l1)
state1121(l1)

j : state112(l2)
state1121(l2)

Event()
Visit()

Event()
Visit()

t2 :
state11211(l1)
state112112(l1)

Unlock(l1,‘s’)

Fig. 14. By αlock , there exists node Unlock(l1,‘s’) at position t2 such that t1 ⋖ t2 ⋖ t3 without any matching lock or unlock for
‘s’ between t1 and t2.

2. As all state-premises have exactly one rule with a matching conclusion, there are two chains of

rule instances from i and j up to the INIT rule, which is unique by αinit . Both are recovered in this

step, see Figure 13. As tamarin pre-computes chains of rule instantiations whose open premises

can be uniquely resolved, this is done in two steps, one for each chain.

3. Now αlock is applied, which adds the constraint that the first lock needs to have a matching unlock,

i. e., a node Unlock(l1,‘s’) has to appear at some position t2 between positions t1 and t3 as sketched

in Figure 14. More precisely, we require the existence of an unlock for ‘s’ annotated with l1, and

no lock or unlock for ‘s’ in between. The axiom itself contains only one case, so the only case

distinction that takes place is over which rule produces the matching Unlock-action. Due to the
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!state[]()
Init()

i⋖ j t1 ⋖ t2 ⋖ t3
∀l′, t0. Lock(l′,‘s’) @t0 =⇒ t0 ⋖ t1 ∨ t2 ⋖ t0
∀l′, t0. Unlock(l′,‘s’) @t0 =⇒ t0 ⋖ t1 ∨ t2 ⋖ t0

!state[]()

state1()

!state[]()

state1()

!state[]()

state1()

t1 :
Fr(l1) state1()

state11(l1)

Fr(l1) state1()

state11(l1)
t3 :

state1() Fr(l2)
state11(l2)

Lock(l1, ‘s’) Lock(l1, ‘s’) Lock(l2, ‘s’)
.
=

state11(l1)
state112(l1)

state11(l1)
state112(l1)

state11(l2)
state112(l2)

IsNotSet(‘visited’) IsNotSet(‘visited’) IsNotSet(‘visited’)

i : state112(l1)
state1121(l1)

state112(l1)
state1121(l1)

j : state112(l2)
state1121(l2)

Event()
Visit()

Event()
Visit()

state1121(l1)
state11211(l1)

Insert(‘visited’,‘s’)

t2 :
state11211(l1)
state112112(l1)

Unlock(l1,‘s’)

Fig. 15. state-premise at position t2 can be resolved up to INIT. Same fresh value l1 is generated at positions t1 and t2.

annotation, however, all but one are refuted immediately in the next step, as two nodes containing

the same fact Fr(l1) in the premise are unified immediately.

4. Due to the annotation, the fact state11211(l1) contains the same fresh name l1 that instantiates the

annotation variable in Unlock(l1,‘s’) at t1. Every fact statep′(. . .) for some position p′ that is a

prefix of p and a suffix of the position of the corresponding lock contains this fresh name. Further-

more, every rule instantiation that is an ancestor of a node in the dependency graph corresponds to

the execution of a command that is an ancestor in the process tree. Therefore, the backward search

eventually reaches the matching lock, including the annotation, which is determined to be l1, and

hence appears in the Fr-premise (Figure 15).

5. Because of the common premise Fr(l1), both subgraphs are merged. The result is a sequence of

nodes from the first lock to the corresponding unlock, and graph constraints restricting the second

lock to not take place between the first lock and the unlock. We note that the axiom αlock is only

instantiated once per pair of locks, since it requires that i⋖ j, thereby fixing their order.

If we would not annotate locks with fresh names, these two subgraphs would not be merged, as

they could be different. In fact, the axion αlock would apply again, e. g., for Lock(l1,‘s’) (or rather

Lock(‘s’)) at t1 and the newly created rule instantiation with the same action. We would thus run

in a loop.

6. We have achieved a total ordering on all rule instantiations that appear in the constrain system.

Now αnotin can be applied for the rule instantiation at k as pictured in Figure 16. Since t2 ⋖ t3, it

holds that i′ ⋖ k and thus the first case can be refuted. The second case is also refuted right away,

as there is no rule with action Delete in the translation of P .
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!state[]()
Init()

i⋖ j t1 ⋖ t2 ⋖ t3
∀l′, t0. Lock(l′,‘s’) @t0 =⇒ t0 ⋖ t1 ∨ t2 ⋖ t0
∀l′, t0. Unlock(l′,‘s’) @t0 =⇒ t0 ⋖ t1 ∨ t2 ⋖ t0

!state[]()

state1()

!state[]()

state1()

t1 :
Fr(l1) state1()

state11(l1)
t3 :

state1() Fr(l2)
state11(l2)

Lock(l1, ‘s’) Lock(l2, ‘s’)

state11(l1)
state112(l1)

k : state11(l2)
state112(l2)

IsNotSet(‘visited’) IsNotSet(‘visited’)

i : state112(l1)
state1121(l1)

j : state112(l2)
state1121(l2)

Event()
Visit()

Event()
Visit()

i′ : state1121(l1)
state11211(l1)

Insert(‘visited’,‘s’)

t2 :
state11211(l1)
state112112(l1)

Unlock(l1,‘s’)

Fig. 16. Because of the identical premise Fr(l1) in both chains leading to ti and t2, and as all state-facts below position [1] are
linear, both subgraphs are merged.

In contrast, consider now the naïve formulation of αlock ( “every lock is preceded by an unlock and no

lock or unlock in between, unless it is the first lock”):

α′
lock = ∀t1, l, s.Lock(l, s)@t1 =⇒ (∃t0, l

′.Unlock(l′, s)@t0 ∧ t0 ⋖ t1
∧(∀ti, li.Lock(li, s)@ti ⇒ (ti ⋖ t0) ∨ (t1 ⋖ ti))
∧(∀ti, li.Unlock(li, s)@ti ⇒ (ti ⋖ t0) ∨ (t1 ⋖ ti)))

∨(∀ti, li.Lock(li, s)@ti ⇒ t0 ⋖ ti)

Even if annotations are employed, this would easily provoke a loop: applied after the second step, to

the Lock-node at t3 (see Figure 13), the first case would require a node Unlock(l′,‘s’) at position t0 with

t0 ⋖ t3. Similar to the second step, a chain of rule instances from this node to the unique instantiation

of the INIT rule would be created in one step, pictured in Figure 17. Observe that the rule instantiation

at position t′0 has an action Lock(l′,‘s’). As l′ is not necessarily equal to l1 or l2, this chain of rule

instantiations cannot be merged with any other subgraphs. Hence the Lock-action at position t′0 needs

is considered to be new, and thus α′
lock can be applied again, resulting in a loop. This loop is triggered

whenever an action Lock(l,‘s’) appears.

In summary, a careful formulation of this axiom was necessary to avoid loops. The annotation helps

distinguishing which unlock is expected between two locks, vastly improving the speed of the backward

search. This optimisation, however, required us to put restrictions on the locks. The axiom is formulated

in a way that links the lock with the corresponding unlock by means of this annotation. The equiva-

lence between αlock and the naïve formulation is non-trivial, but shown in the proof of Lemma 10 in

Appendix B.
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state[]()
Init()

i⋖ j t1 ⋖ t2 ⋖ t3
∀l′, t0. Lock(l′,‘s’) @t0 =⇒ t0 ⋖ t1 ∨ t2 ⋖ t0
∀l′, t0. Unlock(l′,‘s’) @t0 =⇒ t0 ⋖ t1 ∨ t2 ⋖ t0

!state[]()

state1()

!state[]()

state1()

!state[]()

state1()

t1 :
Fr(l1) state1()

state11(l1)
t′0 :

Fr(l′) state1()
state11(l′)

t3 :
state1() Fr(l2)

state11(l2)
Lock(l1, ‘s’) Lock(l′, ‘s’) Lock(l2, ‘s’)

state11(l1)
state112(l1)

state11(l′)
state112(l′)

state11(l2)
state112(l2)

IsNotSet(‘visited’) IsNotSet(‘visited’) IsNotSet(‘visited’)

i : state112(l1)
state1121(l1)

state112(l′)
state1121(l′)

j : state112(l2)
state1121(l2)

Event()
Visit()

Event()
Visit()

state1121(l′)
state11211(l′)

Insert(‘visited’,‘s’)

t0 :
state11211(l′)
state112112(l′)

Unlock(l′,‘s’)

Fig. 17. The naïve formulation α′

lock provokes a loop: t1 and t′0 are possibly distinct, thus α′

lock applies to Lock(l′,‘s’) at t′0.

Similarly, the axioms αin and αnotin are designed to work well with tamarin’s constraint solving algo-

rithm: when a constraint with the action IsIn is created, by definition of the translation, this corresponds

to a lookup command. The existential in αin translates into a graph constraint that postulates the exis-

tence of an insert node for the value fetched by the lookup, and three formulas assuring that (i) this insert

node appears before the lookup, (ii) is uniquely defined, i. e., it is the last insert to the corresponding key,

and (iii) there is no delete in between. Due to these conditions, αnotin only adds one Insert node per IsIn
node – the case where an axiom postulates a node, which itself allows for postulating yet another node

needs to be avoided, as tamarin runs into loops otherwise. The technique of enforcing correctness of the

translation through rewriting the formula via these axioms additionally allows us to convey information

on the nature of our rules resulting from the translation to the constraint solving algorithm.

6.4. Correctness of the translation

The correctness of our translation is stated by the following theorem.

Theorem 1. Given a well-formed ground process P and a well-formed trace formula ϕ we have that

tracespi(P ) �⋆ ϕ iff tracesmsr (JP K) �⋆ JϕK⋆

where ⋆ is either ∀ or ∃.

We here give an overview of the main propositions and lemmas needed to prove Theorem 1. To show

the result we need two additional definitions. We first define an operation that allows to restrict a set of

traces to those that satisfy the trace formula α as defined in Definition 15.
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Definition 16. Let α be the trace formula as defined in Definition 15 and Tr a set of traces. We define

filter(Tr) := {tr ∈ Tr | ∀θ.(tr , θ) � α}.

The following proposition states that if a set of traces satisfies the translated formula then the filtered

traces satisfy the original formula.

Proposition 1. Let Tr be a set of traces and ϕ a trace formula. We have that

Tr �
⋆ JϕK⋆ iff filter(Tr) �⋆ ϕ

where ⋆ is either ∀ or ∃.

Proof. We first show the two directions for the case ⋆ = ∀. We start by showing that Tr �
∀ JϕK implies

filter(Tr) � ϕ.

Tr �
∀ JϕK∀ ⇒ filter(Tr) �∀ JϕK∀ (since filter(Tr) ⊆ Tr )

⇔ filter(Tr) �∀ α ⇒ ϕ (by definition of JϕK∀)

⇔ filter(Tr) �∀ ϕ (since filter(Tr) �∀ α)

We next show that filter(Tr) �∀ ϕ implies Tr �
∀ JϕK∀.

filter(Tr) �∀ ϕ ⇒ filter(Tr) �∀ α ∧ ϕ (since filter(Tr) �∀ α)

⇔ Tr �
∀ ¬α ∨ (α ∧ ϕ) (since filter(Tr) ⊆ Tr and (Tr \ filter(Tr)) 6�∀ α)

⇔ Tr �
∀ α ⇒ ϕ

⇔ Tr �
∀ JϕK∀ (by definition of JϕK∀)

The case of ⋆ = ∃ now easily follows:

Tr �
∃ JϕK∃ iff Tr 6�∀ J¬ϕK∀ iff filter(Tr) 6�∀ ¬ϕ iff filter(Tr) �∃ ϕ.

Next we define the hiding operation which removes all reserved facts from a trace.

Definition 17 (hide). Given a trace tr and a set of facts F we inductively define hide([]) = [] and

hide(F · tr) :=

{

hide(tr) if F ⊆ Fres

(F \ Fres) · hide(tr) otherwise

Given a set of traces Tr we define hide(Tr) = {hide(t) | t ∈ Tr}.

As expected well-formed formulas that do not contain reserved facts evaluate the same whether re-

served facts are hidden or not.
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Proposition 2. Let Tr be a set of traces and ϕ a well-formed trace formula. We have that

Tr �
⋆ ϕ iff hide(Tr) �⋆ ϕ

where ⋆ is either ∀ or ∃.

Proof. We start with the case ⋆ = ∃ and show the stronger statement that for a trace tr

∀θ.∃θ′. if (tr , θ) � ϕ then (hide(tr), θ′) � ϕ

and

∀θ.∃θ′. if (hide(tr), θ) � ϕ then (tr , θ′) � ϕ.

We will show both statements by a nested induction on |tr | and the structure of the formula. (The under-

lying well-founded order is the lexicographic ordering of the pairs consisting of the length of the trace

and the size of the formula.)

If |tr | = 0 then tr = [] and tr = hide(tr) which allows us to directly conclude letting θ′ := θ.

If |tr | = n, we define tr and F such that tr = tr · F . By induction hypothesis we have that

∀θ.∃θ
′
. if (tr , θ) � ϕ then (hide(tr), θ

′
) � ϕ

and

∀θ.∃θ
′
. if (hide(tr), θ) � ϕ then (tr , θ

′
) � ϕ.

We proceed by structural induction on ϕ.

– ϕ = ⊥, ϕ = i⋖ j, ϕ = i
.
= j or t1

.
= t2. In these cases we trivially conclude as the truth value of

these formulas does not depend on the trace and for both statements we simply let θ′ := θ.

– ϕ = f@i. We start with the first statement. Suppose that (tr , θ) � f@i. If θ(i) < n then we have

also that tr , θ � f@i. By induction hypothesis, there exists θ
′

such that (tr , θ
′
) � f@i. Hence we

also have that (tr , θ
′
) � f@i and letting θ′ := θ

′
allows us to conclude. If θ(i) = n we know that

f ∈ trn. As ϕ is well-formed f 6∈ Fres and hence f ∈ hide(tr)n′ where n′ = |hide(tr)|. The

proof of the other statement is similar.

– ϕ = ¬ϕ′, ϕ = ϕ1 ∧ ϕ2, or ϕ = ∃x : s.ϕ′. We directly conclude by induction hypotheses (on the

structure of ϕ).

From the above statements we easily have that Tr �
∃ ϕ iff hide(Tr) �

∃ ϕ. The case of ⋆ = ∀ now

easily follows:

Tr �
∀ ϕ iff Tr 6�∃ ¬ϕ iff hide(Tr) 6�∃ ¬ϕ iff hide(Tr) �∀ ϕ
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We can now state our main lemma which is relating the set of traces of a process P and the set of

traces of its translation into multiset rewrite rules.

Lemma 1. Let P be a well-formed ground process. We have that

tracespi(P ) = hide(filter(tracesmsr (JP K))).

The proof is given in Appendix B. Our main theorem can now be proven by applying Lemma 1,

Proposition 2 and Proposition 1.

Proof of Theorem 1.

tracespi(P ) �⋆ ϕ ⇔ hide(filter(tracesmsr (JP K))) �⋆ ϕ (by Lemma 1)

⇔ filter(tracesmsr (JP K)) �⋆ ϕ (by Proposition 2)

⇔ tracesmsr (JP K) �⋆ JϕK⋆ (by Proposition 1)

7. Case studies and dedicated heuristics

In the following we will briefly overview some case studies we performed. These case studies include a

simple security API similar to PKCS#11 [27], the Yubikey security token, the optimistic contract signing

protocol by Garay, Jakobsson and MacKenzie (GJM) [16] and a few other examples discussed in Arapinis

et al. [3] and Mödersheim [24]. We do not detail all the formal models of the protocols and properties that

we studied, and sometimes present slightly simplified versions. All files of our prototype implementation

and our case studies are available at

http://sapic.gforge.inria.fr/

In addition to the syntax of the calculus described in Section 3 our tool also allows the user to fall back

to labelled msr rules inside of processes. The treatment of this extension is described in the conference

version [19]. Having an access to the underlying formalism may sometimes be convenient, but as we do

not use it in the examples described in this paper we chose to omit this feature to clarify the presentation.

Related work complements these case studies with an analysis of a more complete model of

PKCS#11 [20], and the enhanced authorisation mechanism in the TPM 2.0 [32], as well as an extension

of SAPIC that allows for the analysis of stream protocols such as TESLA [25].

We will also discuss a dedicated heuristics we developed that favours termination of tamarin on msr

systems produced by our tool. The results are summarized in Table 1. For each case study we provide

the number of typing lemmas that were needed by the tamarin prover and whether manual guidance of

the tool was required. In case no manual guidance is required we also give execution times.

http://sapic.gforge.inria.fr/
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Example
Typing

Lemmas

Automated run

(w/o heuristics)∗
Automated run

(w/ heuristics)∗

Security API à la PKCS#11 4 no yes (2m1s)

Needham-Schroeder-Lowe [23] 1 yes (1, 4s) yes (17, 7s)

Yubikey Protocol [21,35] 5 no no

GJM protocol [3,16] 0 yes (11, 5s) yes (9, 9s)

Mödersheim’s example [24] 0 no yes(0, 8s)

Security Device [3] 1 yes (3, 5s) yes (8, 7s)

∗ (Running times on Intel i7-4770 CPU 3.40GHz (8 Cores) and 8 GB RAM)

Table 1

Case studies.

7.1. Security API à la PKCS#11

This example illustrates how our modelling might be useful for the analysis of Security APIs in the

style of the PKCS#11 standard [27]. Indeed, Künnemann [20] used our tool to perform an automated

analysis of PKCS#11 v2.20. In addition to the processes presented in the running example in Section 3

the actual case study models the following two operations: (i) encryption: given a handle and a plain-

text, the user can request an encryption under the key the handle points to. (ii) unwrap given a ciphertext

senc(k2, k1), and a handle h1, the user can request the ciphertext to be unwrapped, i.e. decrypted, under

the key pointed to by h1. If decryption is successful, the result is stored on the device, and a handle

pointing to k2 is returned. Moreover, contrary to the running example, at creation time keys are assigned

the attribute ‘init’, from which they can move to either ‘wrap’, or ‘unwrap’. Furthermore, the database

maps handles to pairs of keys and attributes. See the following snippet:

1 in(〈‘ set_dec ’ ,h〉); lock h;

2 lookup h as v in

3 if att (v)=‘ init ’ then

4 event DecKey(h,key(v));

5 insert h, 〈key(v) , ‘dec’〉;

6 unlock h

Note that, in contrast to the running example, it is necessary to encapsulate the state changes between

lock and unlock. Otherwise an adversary can stop the execution after line 3, set the attribute to ‘wrap’

in a concurrent process and produce a wrapping. After resuming operation at line 4, he can set the key’s

attribute to ‘dec’, even though the attribute is set to ‘wrap’. Hence, the attacker is allowed to decrypt the

wrapping he has produced and can obtain the key. Such subtleties can produce attacks that our modeling

allows to detect. If locking is handled correctly, we show secrecy of keys produced on the device, proving

the property introduced in Example 6. If locks are removed the attack described before is found. The

conference version [19] mistakenly reported that the verification of this example was fully automated, but

the verified model contained a typo, where Pset_wrap wrote to 〈attr , h〉 rather than 〈att , h〉, effectively

disabling unwrapping altogether. Using the new heuristics, it is again possible to verify this example

automatically.
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7.2. Yubikey

The Yubikey [35] is a small hardware device designed to authenticate a user against network-based

services. Manufactured by Yubico, a Swedish company, the Yubikey itself is a low cost ($25), thumb-

sized USB device. In its typical configuration, it generates one-time passwords based on encryptions of

a secret value, a running counter and some random values using a unique AES-128 key contained in

the device. The Yubikey authentication server accepts a one-time password only if it decrypts under the

correct AES key to a valid secret value containing a counter larger than the last counter accepted. The

counter is thus a means to prevent replay attacks. To date, over a million Yubikeys have been shipped to

more than 50,000 customers including governments, universities and enterprises, e.g. Google, Microsoft

and Facebook [36].

The following process PYubikey models a single Yubikey, as well as its initial configuration, where an

entry in the server’s database for the public id pid is created. This entry contains a tuple consisting of the

Yubikey’s secret id, AES key, and an initial counter value.

PYubikey =
ν k; ν pid; ν secretid ;

insert 〈‘Server ’ , pid〉 , 〈 secretid ,k , ‘zero’〉;

insert 〈‘Yubikey’ , pid〉 , (‘zero’+‘one’);
event Init (pid , secretid ,k);

out(pid); !PPlugin | !PButtonPress

Here, the processes !PPlugin and !PButtonPress model the Yubikey being unplugged and plugged in again

(possibly on a different computer), and the emission of the one-time password. We will only discuss

PButtonPress here. When the user presses the button on the Yubikey, the device outputs a one-time pass-

word consisting of a counter tc, the secret id secretid and additional randomness npr encrypted using

the AES key k. For readability, we leave out events that are only used in helping lemmas as well as

message input from the adversary that is included in the model to force him to provide the next counter

(which he always can, as it is public).

PButtonPress =
lock pid; lookup 〈‘Yubikey’ , pid〉 as tc in

insert 〈‘Yubikey’ , pid〉 , tc + ‘one’;

ν nonce; ν npr;

event YubiPress(pid , secretid ,k , tc );

out(〈pid ,nonce,senc(〈 secretid , tc ,npr〉 ,k)〉);

unlock pid

The one-time password senc(〈secretid, tc, npr〉, k) can be used to authenticate against a server that

shares the same secret key, which we model in the process PServer . The process receives the encrypted

one-time password along with the public id pid of a Yubikey and a nonce that is part of the protocol,

but is irrelevant for the authentication of the Yubikey on the server. The server then looks up the secret id

and the AES key associated to the public id, as well as the last recorded counter value otc. If the key and

secret id used in the request match the values retrieved from the database, then the event Login(pid , k, tc)
is logged, marking a successful login of the Yubikey pid with key k for the counter value tc. Afterwards,

the old tuple 〈secretid , k, otc〉 is replaced by 〈secretid , k, tc〉, to update the latest counter value received.
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PServer =
! in(〈pid ,nonce,senc(〈 secretid , tc ,npr〉 ,k)〉);

lock 〈‘Server ’ , pid〉; lookup 〈‘Server ’ , pid〉 as tuple in
if fst ( tuple )=secretid then

if fst (snd( tuple ))=k then
in (otc); if snd(snd( tuple ))=otc then

if smaller(otc , tc ) then
event Login(pid,k , tc );

insert 〈’Server ’ , pid〉 , 〈 secretid ,k , tc 〉;

unlock 〈‘Server ’ , pid〉

Note that, in our modelling, the server keeps one lock per public id, which means that it is possible

to have several active instances of the server thread in parallel as long as all requests concern different

Yubikeys.

We model the counter as a multiset only consisting of the symbols “one” and “zero”. The multiplicity

of ‘one’ in the multiset is the value of the counter. A counter value is considered smaller than another

one, if the first multiset is included in the second, therefore

φsmaller (x1, x2) := ∃z.x1 + z = x2

The process we analyse models a single authentication server (that may run arbitrarily many threads)

and an arbitrary number of Yubikeys, i. e., PServer | !PYubikey . Among other properties, we show by the

means of an injective correspondence property that an attacker that controls the network cannot perform

replay attacks, and that each successful login was preceded by a user “pressing the button”, formally:

∀ pid , k, x, t2.Login(pid , k , x )@t2 ⇒

∃sid , t1.YubiPress(pid , sid , k , x )@t1 ∧ t1 ⋖ t2 ∧ ∀t3 .Login(pid , k , x )@t3 ⇒ t3
.
= t2

Besides injective correspondence, we show the absence of replay attacks and the property that a suc-

cessful login invalidates previously emitted one-time passwords. All three properties follow more or less

directly from a stronger invariant, which itself can be proven in 516 steps. To find theses steps, tamarin

needs some additional human guidance (17 steps), which can be provided using the interactive mode.

This mode still allows the user to complement his manual efforts with automated backward search. The

example files contain the modelling in our calculus, the complete proof, and the manual part of the proof

which can be verified by tamarin without interaction.

Our analysis makes three simplifications: First, in PServer , we use pattern matching instead of decryp-

tion as demonstrated in the process Pdec we introduced in Section 3. Second, we omit the CRC checksum

and the time-stamp that are part of the one-time password in the actual protocol, since they do not add to

the security of the protocol in the symbolic setting. Third, the Yubikey has actually two counters instead

of one, a session counter, and a token counter. We treat the session and token counter on the Yubikey as a

single value, which we justify by the fact that the Yubikey either increases the session counter and resets

the token counter, or increases only the token counter, thereby implementing a complete lexicographical

order on the pair (session counter , token counter).
A similar analysis has already been performed by Künnemann and Steel, using tamarin’s multiset

rewriting calculus [21]. However, the model in our new calculus is more fine-grained and we believe more
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readable. Security-relevant operations like locking and tests on state are written out in detail, resulting

in a model that is closer to the real-life operation of such a device. The modeling of the Yubikey takes

approximately 38 lines in our calculus, which translates to 49 multiset rewrite rules. The model of [21]

contains only four rules, but they are quite complicated, resulting in 23 lines of code. More importantly,

the gap between their model and the actual Yubikey protocol is larger – in our calculus, it becomes clear

that the server can treat multiple authentication requests in parallel, as long as they do not claim to stem

from the same Yubikey. An implementation on the basis of the model from Künnemann and Steel would

need to implement a global lock accessible to the authentication server and all Yubikeys. This is however

unrealistic, since the Yubikeys may be used at different places around the world, making it unlikely

that there exist means of direct communication between them. While a server-side global lock might be

conceivable (albeit impractical for performance reasons), a real global lock could not be implemented

for the Yubikey as deployed.

7.3. The GJM contract signing protocol [16]

A contract signing protocol allows two parties to sign a contract in a fair way: none of the participants

should be bound to the contract without the other participant being bound as well. A straightforward

solution is to use a trusted party that collects both signatures on the contract and then sends the signed

contracts to each of the participants. Optimistic protocols have been designed to avoid the use of a trusted

party whenever possible (optimizing efficiency, and avoiding the potential cost of a trusted party). In

these protocols the parties first try to simply exchange the signed contracts; in case of failure, or cheating

behavior of one of the parties, the trusted party can be contacted. Depending on the situation, the trusted

party may either abort the contract, or resolve it. In case of an abort decision the protocol ensures that

none of the parties obtains a signed contract, while in case of a resolve the protocol ensures that both

participants obtain the signed contract. For this the trusted party needs to maintain a database with the

current status of all contracts (aborted, resolved, or no decision has been taken). In our calculus the status

information is naturally modelled using our insert and lookup constructs. The use of locks is also crucial

here to avoid the status to be changed between a lookup and an insert.

This protocol was also studied by Arapinis et al. [3]. They showed the crucial property that a same

contract can never be both aborted and resolved. However, due to the fact that StatVerif only supports a

finite number of memory cells, they have shown this property for a single contract and provide a manual

proof to lift the result to an unbounded number of contracts. We directly prove this property for an

unbounded number of contracts.

7.4. Further Case Studies

We investigated the case study presented by Mödersheim [24], a key-server example, as well as a

simple security device which served as an example for StatVerif [3]:the device is initialized once, either

to left or right. Later on, it accepts pairs of encryptions and decrypts either the left component of the pair

or the right component, but not both. As the input language of StatVerif is very similar to ours their model

could be easily adapted to our tool. In fact, we were able to remove the restriction to a single security

device. Finally, we also illustrate the tool’s ability to analyze classical security protocols by analyzing

the Needham Schroeder Lowe protocol [23].
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7.5. Heuristics

In order to improve our results on the case studies presented in the conference version [19], we have

altered the heuristics of the tamarin-prover. We make use of the a priori knowledge that the msr system

is an output of our translation. These heuristics can be switched on using the command line switch

--heuristic=p and alter the ranking of goals which is used to determine the next step in an automatic

proof. The heuristics have no bearing on the correctness of tamarin, but often improve automation of the

verification procedure, as our case studies show (see Table 1). These heuristics also allowed an automated

proof of the PKCS#11 case study [20].

The main goal is to avoid a loop in the resolution procedure, so our approach is conservative in that

we only prioritize goals that do not cause other prioritized goals to appear, unless the protocol has been

annotated to do that. The heuristic alters tamarin’s standard “smart” heuristic in the following way: state-

facts are resolved right away. As state-goals can only be solved by exactly one rule (except for message

transmission), and state predicates in the premise of a rule are indexed with a position that is a prefix

of the position of the state predicate in the conclusion, loops are impossible and case distinctions rare.

Moreover, tamarin precomputes chains and is hence often able to resolve the chain until state0 in one

step. Goals for Unlock-actions are solved right away. As these goals are produced by αlock , they identify

the correct unlock using the annotations introduced in Definition 12. By reformulating αlock (compared

to the conference article), we were able to avoid the repeated application of this rule. We removed the

prioritisation of goals for adversarial deduction of fresh values, as it is counter-productive in the case

of handles. They are fresh values that can usually be derived from protocol output, so a case distinction

on all possible ways of deriving them is sometimes misleading. Another addition prioritizes goals for

Insert-actions when the first element of the key is prefixed “F_”, so the user can prioritize the reasoning

on lookups to keys like 〈′F_database′, p〉. Adversarial deduction for fresh values can be prioritized in

the same way, using “L_” instead of “F_” achieves deprioritisation.

7.6. Proof effort

A comparison between the effort needed to derive a proof for a protocol in our calculus and a protocol

modelled via multiset rewrite rules is only sound when both model the same thing. Whenever the direct

encoding is simplified, e. g., in the Yubikey model, the proof is obviously simpler, but on the other hand,

as we have already discussed in Section 7.2, it may be oversimplified. Whenever models were relatively

close, our experiments suggested that the same kind of lemmas are needed. In particular for the GJM

contract signing protocol, the simple security device and the Needham-Schroeder-Lowe protocol, the

lemmas were literally the same. This suggests that these helping lemmas prove properties beyond the

level of representation, i.e., properties of the protocol itself.

Our dedicated heuristics discussed in the previous section also improve termination. One may note

that tamarin also includes several heuristics that can be chosen from and combined in several ways to

help termination. Some of the case studies, e.g., the group protocols analysed in [31], also required the

development of dedicated heuristics. Our heuristics benefit from the fact that the msr rules are generated

and, therefore, are more restricted than the arbitrary msr rules that may be given to tamarin using a direct

msr rule modelling.

When these heuristics fail, or the user wishes to inspect the proof, tamarin’s interactive mode allow

manual inspection and selection of the proof goals that are chosen at each step. To make use of this, in

addition to the working of the tamarin interactive mode, a basic understanding of our translation (but
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not of the correctness proof) is necessary. A tight integration of SAPIC into tamarin would surely aid

in this regard, but requires significant engineering effort. Such an integration could additionally pro-

vide information given by the process description. Relations between locks, lookup and inserts could be

highlighted and protocol roles (often defined as abbreviations by protocol designers) distinguished.

For protocols which have complicated control flow or structure (e. g. group protocols [31]), a direct en-

coding may actually be better suited. We provide a mechanism for embedding labelled msr rules directly

inside processes (described in the conference version [19]), which may useful is some circumstances,

and such a mixed model might sometimes give the user “the best of the two approaches”.

8. Conclusion

We present a process calculus which extends the applied pi calculus with constructs for accessing a

global, shared memory together with an encoding of this calculus in labelled msr rules which enables

automated verification using the tamarin prover as a backend. Our prototype verification tool, automating

this translation, has been successfully used to analyze several case studies. As future work we plan to

increase the degree of automation of the tool by automatically generating helping lemmas. To achieve

this goal we can exploit the fact that we generate the msr rules, and hence control their form. We also

plan to use the tool for more complex case studies, specifically contract signing protocols.
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Appendix

A. Correctness of tamarin’s solution procedure for translated rules

The multiset rewrite system produced by our translation for a well-formed process P could ac-

tually contain rewrite rules that are not valid with respect to Definition 4, because they violate the

third condition, which is: for each l′ −[ a′ ]→ r′ ∈ R ∈E ginsts(l −[ a ]→ r) we have that

∩r′′=Er′names(r′′) ∩ FN ⊆ ∩l′′=E l′names(l′′) ∩ FN .

This does not hold for rules in JP K=p where p is the position of the lookup-operator. The right hand-

side of this rule can be instantiated such that, assuming the variable bound by the lookup is named v, this

variable v is substituted by a names that does not appear on the left-hand side. In the following, we will

show that the results from [29] still hold. In practice, this means that the tamarin-prover can be used for

verification, despite the fact that it outputs well-formedness errors for each rule that is a translation of a

lock.

First we give some intuition. The third condition assures that rules do not introduce new names on

the right-hand side of rules, i. e., all new names originate from the FRESH rule. While the condition is

indeed violated by the appearance of v, v cannot be instantiated to a new name, since αin guarantees

that each value v retrieved in a lookup has appeared in an insert before. We show that one could as well

introduce a dummy fact !Dum(v) at the left-hand side of the rewrite rule corresponding to the lookup,

and consequently at the right-hand side of the rewrite rule corresponding to the previous insert, which

must exist in each trace satisfying αin . This modified translation would not violate the third condition

anymore, but as these dummy facts constitute overhead and rather a proof argument than a real necessity,

we will use the modified translation to show that the actual translation is correct despite the warning.

We will introduce some notation first. We re-define JP K to contain the INIT rule and JP , [], []K, but not

MD (which is different to Definition 14). We furthermore define a translation with dummy-facts, denoted

JP KD, that contains INIT and JP , [], []K
D

, which is defined as follows:

Definition 18. We define JP KD := INIT ∪ JP , [], []K
D

, where JP , [], []K
D

is defined just as JP , [], []K, with

the exception of two cases, P = lookup M as v in P else Q and P = insert s, t;P , where it is defined

as follows:

Jlookup M as v in P else Q, p, x̃KD = {[statep(x̃), !Dum(v)] −[ IsIn(M, v) ]→ [statep·1(M̃, v)],

[statep(x̃)] −[ IsNotSet(M) ]→ [statep·2(x̃)]}

∪ JP, p · 1, (x̃, v)KD ∪ JQ, p · 2, x̃KD

Jinsert s, t;P, p, x̃KD = { [statep(x̃)] −[ Insert(s, t) ]→ [statep·1(x̃), !Dum(t)] }

∪ JP, p · 1, x̃KD

The only difference between JP K and JP KD is therefore, that JP KD produces a permanent fact !Dum
for every value v that appears in an action insert(k, v), which is a premise to every rule instance with an

action IsIn(k′, v). We see that JP KD contains now only valid multiset rewrite rules.

In the following, we would like to show that the tamarin-prover’s solution algorithm is correct for

JP K. To this end, we make use of the proof of correctness of tamarin as presented in Benedikt Schmidt’s
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Ph.D. thesis [28]. We will refer to Lemmas, Theorems and Corollaries in this work by their numbers. We

will use the notation of this work, to make it easier to the reader to compare our statements against the

statements there. In particular, trace(execs(R)) is tracesmsr (R) in our notation.

Again, we give some intuition first. The crucial step in the correctness proof is Lemma A.12, as the

third condition is used only once in the overall correctness proof, namely in Lemma A.14 (which is used

by Lemma A.12). In this step the switch is made from dependency graphs to normalized dependency

graphs, which enforce normalized message deduction, e. g., that messages are not deduced twice, that

a message deduced is not unnecessarily deconstructed, and that rule instances are normal with respect

a rewriting system that simplifies message deduction for Diffie-Hellman groups (RDHe). Normalized

dependency graphs are much more constrained than dependency graphs and thus necessary for efficient

backward analysis. Lemma A.12 shows that normal dependency graphs have the same observable traces

as traces generated using multiset rewriting. For this step it is necessary to show that all accessible

factors (or their inverses) that appear in the normalized dependency graph are known to the adversary

(Lemma A.14). In general, if the third condition is not met, a new factor could appear ‘out of nowhere’,

when the right-hand side of the rule is instantiated. However, as Lemma A.14 holds for the dummy

translation, it holds for the actual translation, too, given a trace that satisfies αin . This will be detailed

below, but first we recall the overall proof structure.

Formally, we have to show that:

Lemma 2. For all well-formed process P and guarded trace properties φ,

trace(execs(JP K ∪ MD) �DHe ¬αin ∨ φ

if and only if

trace(ndgraphs(JP K)) �ACC ¬αin ∨ φ.

Proof. The proof proceeds similar to the proof to Theorem 3.27. We refer to results in [28], whenever

their proofs apply despite the fact that the rules in JP K do not satisfy the third condition of multiset

rewrite rules.

trace(execs(JP K ∪ MD) �DHe ¬αin ∨ φ

⇔ trace(execs(JP K ∪ MD) �DHe ¬αin ∨ φ (Lemma 3.7 (unaltered))

⇔ trace(execs(JP K ∪ MD)) ↓RDHe�DHe ¬αin ∨ φ (Definition of �DHe)

⇔ trace(dgraphsDHe
(JP K ∪ MD)) ↓RDHe�DHe ¬αin ∨ φ (Lemma 3.10 (unaltered))

⇔ trace({dg | dg ∈ dgraphsACC(⌈JP K ∪ MD⌉RDHe

insts )

∧dg ↓RDHe -normal}) �DHe ¬αin ∨ φ (Lemma 3.11 (unaltered))

⇔ trace(ndgraphs(JP K)) �DHe ¬αin ∨ φ (Lemma A.12 (*))

⇔ trace(ndgraphs(JP K)) �ACC ¬αin ∨ φ (Lemma 3.7 and A.20(both unaltered))
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It is only in Lemma A.12 where the third condition is used: The proof to this lemma applies

Lemma A.14, which says that all factors (or their inverses) are known to the adversary. We will quote

Lemma A.14 here:

Lemma 3 (Lemma A.14 in [28]). For all ndg ∈ ndgraphs(P ), conclusions (i, u) in ndg with conclusion

fact f and terms t ∈ afactors(f), there is a conclusion (j, v) in ndg with j < i and conclusion fact

Kd(m) such that m ∈ACC { t, (t−1) ↓RBPe }.

If there is ndg ∈ ndgraphs(JP K), such that trace(ndg) �ACC αin , then

trace(ndgraphs(JP K)) �ACC ¬αin ∨ φ

⇔∀ndg ∈ ndgraphs(JP K) s. t. trace(ndg) �ACC αin

trace(ndg) �ACC φ

Since for the empty trace, [] �ACC αin , we only have to show that Lemma A.14 holds for ndg ∈
ndgraphs(JP K), such that trace(ndg) �ACC αin .

For every ndg ∈ ndgraphs(JP K), such that trace(ndg) �ACC αin , there is a trace equivalent ndg ′ ∈

ndgraphs(JP KD), since the only difference between JP K and JP KD lies in the dummy conclusion and

premises, and αin requires that any v in an action IsIn(u, v) appeared previously in an action Insert(u, v)
(equivalence modulo ACC ). Therefore, ndg ′ has the same Kd-conclusions ndg has, and every conclusion

in ndg is a conclusion in ndg ′.

We have that Lemma A.14 holds for JP KD, since all rules generated in this translation are valid multiset

rewrite rules. Therefore, Lemma A.14 holds for all ndg ∈ ndgraphs(JP K), such that trace(ndg) �ACC

αin , too, concluding the proof by showing the marked (*) step.

B. Proof of Lemma 1

We will first show a few useful preliminary lemmas. Then we will show each of the two directions of

Lemma 1.

B.1. Preliminary definitions and lemmas

In order to prove Lemma 1, we need a few additional lemmas.

We say that a set of traces Tr is prefix closed if for all tr ∈ Tr and for all tr ′ which is a prefix of tr

we have that tr ′ ∈ Tr .

Lemma 4 (filter is prefix-closed). Let Tr be a set of traces. If Tr is prefix closed then filter(Tr) is

prefix closed as well.

Proof. It is sufficient to show that for any trace tr = tr ′·a we have that if ∀θ.(tr , θ) � α then ∀θ.(tr ′, θ) �
α. This can be shown by inspecting each of the conjuncts of α.
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We next show that the translation with dummy facts defined in Definition 18 produces the same exe-

cutions as JP K, excluding executions not consistent with the axioms. For this we define the function d
which removes any dummy fact from an execution, i.e.,

d(∅
F1−→ S1

F2−→ . . .
Fn−→ Sn) = ∅

F1−→ S′
1

F2−→ . . .
Fn−→ S′

n

where S′
i = Si \

# ∪t∈T !Dum(t). To state this property we lift the function filter (Definition 16) from

traces to executions, i.e. for a set of msr executions Ex we define

filter(Ex) = {∅
F1−→ S1

F2−→ . . .
Fn−→ Sn ∈ Ex | [F1, . . . , Fn] 
 α}

where α is defined in Definition 15.

Lemma 5. Given a ground process P , we have that

filter(execmsr (JP K)) = filter(d(execmsr (JP KD ∪ MD)))

Proof. The only rules in JP KD that differ from JP K are translations of insert and lookup. The first one

only adds a permanent fact, which by the definition of d, is removed when applying d. The second one

requires a fact !Dum(t), whenever the rule is instantiated such the actions equals IsIn(s, t) for some s.

Since the translation is otherwise the same, we have that

filter(d(execmsr (JP KD ∪ MD))) ⊆ filter(execmsr (JP K))

For any execution in filter(d(execmsr (JpK ∪ MD))) and any action IsIn(s, t) in this execution, there is

an earlier action Insert(s′, t′) such that s = s′ and t = t′, as otherwise αin would not hold. Therefore the

same execution is part of filter(d(execmsr (JpKD ∪ MD))), as this means that whenever !Dum(t) is in

the premise, !Dum(t′) for t = t′ has previously appeared in the conclusion. Since it is a permanent fact,

it has not disappeared and therefore

filter(d(execmsr (JP KD ∪ MD))) ⊇ filter(execmsr (JP K))

Lemma 6. Let P be a ground process and ∅
F1−→ S1

F2−→ . . .
Fn−→ Sn ∈ filter(execmsr (JP K)). For all

1 ≤ i ≤ n, if Fr(a) ∈ Si and F (t1, . . . , tk) ∈ Si for any F ∈ Σfact \ {Fr }, then a 6∈ ∩t=Et′names(t′),
for any t ∈ {t1, . . . , tk}.

Proof. The translation with the dummy fact introduced in Appendix A will make this proof easier as for

JP KD ∪ MD, we have that the third condition of Definition 4 holds, namely,

∀l′ −[ a′ ]→ r′ ∈E ginsts(l −[ a ]→ r) : ∩r′′=Er′names(r′′)∩FN ⊆ ∩l′′=E l′names(l′′)∩FN (1)

We will show that the statement holds for all ∅
F1−→ S1

F2−→ . . .
Fn−→ Sn ∈ filter(execmsr (JP KD∪MD)),

which implies the claim by Lemma 5. We proceed by induction on n, the length of the execution.
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– Base case, n = 0. We have that S0 = ∅ and therefore the statement holds trivially.
– Inductive case, n ≥ 1. We distinguish two cases.

1. A rule that is not FRESH was applied and there is a fact F (t1, . . . , tk) ∈ Sn, such that

F (t1, . . . , tk) /∈ Sn−1, and Fr(a) ∈ Sn such that a ∈ ∩ti=Et′names(t′) for some ti. (If there

are no such F (t1, . . . , tk) and Fr(a) we immediately conclude by induction hypothesis.) By

Equation 1, a ∈ t′j for some F ′(t′1, . . . , t
′
l) ∈ Sn−1. Since FRESH is the only rule that adds a

Fr-fact and Fr(a) ∈ Sn, it must be that Fr(a) ∈ Sn−1, contradicting the induction hypothesis.

Therefore this case is not possible.
2. The rule FRESH was applied, i. e., Fr(a) ∈ Sn and Fr(a) /∈ Sn−1. If there is no a ∈

∩ti=Et′names(t′) for some ti, and F (t1, . . . , tk) ∈ Sn, then we conclude by induction hy-

pothesis. Otherwise, if there is such a F (t1, . . . , tk) ∈ Sn, then, by Equation 1, a ∈ t′j for

some F ′(t′1, . . . , t
′
l) ∈ Si for i < n. We construct a contradiction to the induction hypothesis

by taking the prefix of the execution up to i and appending the instantiation of the FRESH

rule to its end. Since d(execmsr (JP KD ∪ MD)) is prefix closed by Lemma 4 we have that

∅
F1−→ S′

1
F2−→ . . .

Fi−→ Si ∈ filter(d(execmsr (JP KD ∪ MD))). Moreover as rule FRESH was

applied adding Fr(a) ∈ Sn it is also possible to apply the same instance of FRESH to the

prefix (by Definition 6) and therefore

∅
F1−→ S′

1
F2−→ . . .

Fi−→ Si −→ Si ∪ {Fr(a) } ∈ filter(d(execmsr (JP KD ∪ MD)))

contradicting the induction hypothesis.

Lemma 7. For any frame νñ.σ, t ∈ M and a ∈ FN , if a 6∈ st(t), a 6∈ st(σ) and νñ.σ ⊢ t, then

νñ, a.σ ⊢ t.

Proof. In [1, Proposition 1] it is shown that νñ.σ ⊢ t if and only if ∃M.fn(M) ∩ ñ = ∅ and Mσ =E t.
Define M ′ as M renaming a to some fresh name, i.e., not appearing in ñ, σ, t. As a 6∈ st(σ, t) and the

fact that equational theories are closed under bijective renaming of names we have that M ′σ =E t and

fn(M ′) ∩ (ñ, a) = ∅. Hence νñ, a.σ ⊢ t.

Lemma 8. Let P be a ground process and ∅
F1−→ S1

F2−→ . . .
Fn−→ Sn ∈ filter(execmsr (JP K)). Let

ñ = {a : fresh | ProtoNonce(a) ∈
⋃

1≤j≤n

Fj},

{t1, . . . , tm} = {t | Out(t) ∈1≤j≤n Sj}.

Let σ = {t1/x1 , . . . ,
tm /xm}. We have that

1. if !K(t) ∈ Sn then νñ.σ ⊢ t;
2. if νñ.σ ⊢ t then there exists S such that

– ∅
F1−→ S1

F2−→ . . .
Fn−→ Sn−→

∗S ∈ filter(execmsr
E (JP K)),

– !K(t) ∈E S and
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– Sn →∗
R S for R = { MDOUT, MDPUB, MDFRESH, MDAPPL, FRESH }.

Proof. We prove both items separately.

1. The proof proceeds by induction on n, the number of steps of the execution.

Base case: n=0. This case trivially holds as Sn = ∅.

Inductive case: n>0. By induction we suppose that if !K(t) ∈ Sn−1 then νñ′.σ′ ⊢ t where ñ′, σ′

are defined in a similar way as ñ, σ but for the execution of size n−1. We proceed by case analysis

on the rule used to extend the execution.

– MDOUT. Suppose that Out(u) −[ ]→!K(u) ∈ ginsts(MDOUT) is the rule used to extend

the execution. Hence Out(u) ∈ Sn−1 and by definition of σ there exists x such that xσ = u.

We can apply deduction rule DFRAME and conclude that νñ.σ ⊢ u. If !K(t) ∈ Sn and t 6= u
we conclude by induction hypothesis as ñ = ñ′, σ = σ′.

– MDPUB. Suppose that −[ ]→ K(a : pub) ∈ ginsts(MDPUB) is the rule used to extend the

execution. As names of sort pub are never added to ñ we can apply deduction rule DNAME

and conclude that νñ.σ ⊢ a. If K(t) ∈ Sn and t 6= a we conclude by induction hypothesis

as ñ = ñ′, σ = σ′.

– MDFRESH. Suppose that Fr(a : fresh) −[ ]→ K(a : fresh) ∈ ginsts(MDFRESH) is the

rule used to extend the execution. By definition of an execution we have that Fr(a : fresh) 6=
(Sj+1 \ Sj) for any j 6= n − 1. Hence n 6∈ ñ. We can apply deduction rule DNAME and

conclude that νñ.σ ⊢ a. If !K(t) ∈ Sn and t 6= a we conclude by induction hypothesis as

ñ = ñ′, σ = σ′.

– MDAPPL. Suppose that !K(t1), . . . , !K(tk) −[ ]→!K(u) ∈ ginsts(MDAPPL) is the

rule used to extend the execution. We have that K(t1), . . . ,K(tk) ∈ Sn−1 and u =E

f(t1, . . . , tk). By induction hypothesis, νñ′.σ′ ⊢ ti for 1 ≤ i ≤ k. As ñ = ñ′, σ = σ′ we

have that νñ.σ ⊢ ti for 1 ≤ i ≤ k. We can apply deduction rule DAPPL and conclude that

νñ.σ ⊢ f(t1, . . . , tk). Hence, νñ.σ ⊢ u by rule DEQ. If K(t) ∈ Sn and t 6= f(t1, . . . , tk)
we conclude by induction hypothesis as ñ = ñ′, σ = σ′.

– If Sn−1
ProtoNonce(a)
−−−−−−−−−→Sn we have that Fr(a) ∈ Sn−1. By Lemma 6, we obtain that if !K(t) ∈

Sn−1 then there exist t′ and σ′′ such that t′ =E t, σ′′ =E σ′ and a 6∈ st(t′) and a 6∈ st(σ′′).
For each !K(u) ∈ Sn there is !K(u) ∈ Sn−1, and by induction hypothesis, νñ′.σ′ ⊢ u. By

Lemma 7 and the fact that σ′′ =E σ′ we have that νñ′, a.σ′ ⊢ u. As ñ′, a = ñ and σ′ = σ
we conclude.

– All other rules do neither add !K( )-facts nor do they change ñ and may only extend σ.

Therefore we conclude by the induction hypothesis.

2. Suppose that νñ.σ ⊢ t. We proceed by induction on the proof tree witnessing νñ.σ ⊢ t.

Base case. The proof tree consists of a single node. In this case one of the deduction rules

DNAME or DFRAME has been applied.

– DNAME. We have that t 6∈ ñ. If t ∈ PN we use rule MDPUB and we have that Sn → S =
Sn ∪ {!K(t)}. In case t ∈ FN we need to consider 3 different cases: (i) !K(t) ∈ Sn and we

immediately conclude (by letting S = Sn), (ii) Fr(t) ∈ Sn and applying rule MDFRESH we

have that Sn → S = Sn ∪ {!K(t)}, (iii) Fr(t) 6∈ Sn. By inspection of the rules we see that

Fr(t) 6∈ Si for any 1 ≤ i ≤ n: the only rules that could remove Fr(t) are MDFRESH which
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would have created the persistent fact !K(t), or the ProtoNonce rules which would however

have added t to ñ. Hence, applying successively rules FRESH and MDFRESH yields a valid

extension of the execution Sn → Sn ∪ {Fr(t)} → S = Sn ∪ {!K(t)}.

– DFRAME. We have that xσ = t for some x ∈ D(σ), that is, t ∈ {t1, . . . , tm}. By definition

of {t1, . . . , tm}, Out(t) ∈ Si for some i ≤ n. If Out(t) ∈ Sn we have that Sn → S =
(Sn \{Out(t)})∪{!K(t)} applying rule MDOUT. If Out(u) 6∈ Sn, the fact that the only rule

in JP K that allows to remove an Out-fact is MDOUT, suggests that it was applied before, and

thus !K(u) ∈ S.

Inductive case. We proceed by case distinction on the last deduction rule which was applied.

– DAPPL. In this case t = f(t1, . . . , tk), such that f ∈ Σk and νñr̃.σ ⊢ ti for every i ∈
{1, . . . , k}. Applying the induction hypothesis we obtain that there are k transition sequences

Sn →∗
R Si for 1 ≤ i ≤ k which extend the execution such that ti ∈ Si. All of them only add

!K facts which are persistent facts. If any two of these extensions remove the same Out(t)-
fact or the same Fr(a)-fact it also adds the persistent fact !K(t), respectively !K(a), and we

simply remove the second occurrence of the transition. Therefore, applying the same rules

as for the transitions Sn →∗ Si (and removing duplicate rules) we have that Sn →∗ S′ and

!K(t1), . . . , !K(tk) ∈ S′. Applying rule MDAPPL we conclude.

– DEQ. By induction hypothesis there exists S as required with !K(t′) ∈E S and t =E t′ which

allows us to immediately conclude that !K(t) ∈E S.

Lemma 9. If νñ.σ ⊢ t, ñ =E ñ′, σ =E σ′ and t =E t′, then νñ′.σ′ ⊢ t′.

Proof. Assume νñ.σ ⊢ t. Since an application of DEQ can be appended to the leafs of its proof tree, we

have νñ.σ′ ⊢ t. Since DEQ can be applied to its root, we have νñ.σ′ ⊢ t′. Since ñ, ñ′ consist only of

names, ñ = ñ′ and thus νñ′.σ′ ⊢ t′.

B.2. Proof that tracespi(P ) ⊆ hide(filter(tracesmsr (JP K)))

To state our next lemma we need two additional definitions.

Definition 19. Let P be a well-formed ground process and pt a position in P . We define the set of multiset

rewrite rules generated for position pt of P , denoted JP K=pt
as follows:

JP K=pt
:= JP, [], []K=pt

where J·, ·, ·K=pt
is defined in Figure 18.

The next definition will be useful to state that for a process P every fact of the form statep(t̃) in a

multiset rewrite execution of JP K corresponds to an active process in the execution of P which is an

instance of the subprocess P |p.

Definition 20. Let P be a ground process, P be a multiset of processes and S a multiset of ground facts.

We write P ↔P S if there exists a bijection between P and the multiset {statep(t̃) | ∃p, t̃. statep(t̃) ∈
#

S}# such that whenever Q ∈# P is mapped to statep(t̃) ∈
# S we have that
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J0, p, x̃K=pt
= { [statep(x̃)] → [] }

p
?
=pt

JP | Q, p, x̃K=pt
= { [statep(x̃)] → [statep·1(x̃), statep·2(x̃)] }

p
?
=pt

∪JP, p · 1, x̃K=pt
∪ JQ, p · 2, x̃K=pt

J!P, p, x̃K=pt
= { [!statep(x̃)] → [statep·1(x̃)] }

p
?
=pt

∪ JP, p · 1, x̃K=pt

Jνa;P, p, x̃K=pt
= { [statep(x̃),Fr(na : fresh)] −[ ProtoNonce(na : fresh) ]→

[statep·1(x̃, na : fresh)] }
p
?
=pt

∪ JP, p · 1, (x̃, na : fresh)K=pt

JOut(M,N);P, p, x̃K=pt
= { [statep(x̃), In(M)] −[ InEvent(M) ]→ [Out(N), statep·1(x̃)],

[statep(x̃)] → [Msg(M,N), statesemi
p (x̃)],

[statesemi
p (x̃),Ack(M,N)] → [statep·1(x̃)] }

p
?
=pt

∪ JP, p · 1, x̃K=pt

JIn(M,N);P, p, x̃K=pt
= { [statep(x̃), In(〈M,N〉)] −[ InEvent(〈M,N〉) ]→

[statep·1(x̃ ∪ vars(N))], [statep(x̃),Msg(M,N)] →

[statep·1(x̃ ∪ vars(N)),Ack(M,N)] }
p
?
=pt

∪JP, p · 1, x̃ ∪ vars(N)K=pt

Jif pr(M1, . . . ,Mk)

then P else Q, p, x̃K=pt

=
{ [statep(x̃)] −[ Predpr (M1, . . . ,Mk) ]→ [statep·1(x̃)],

[statep(x̃)] −[ Pred_notpr (M1, . . . ,Mk) ]→ [statep·2(x̃)] }
p
?
=pt

∪JP, p · 1, x̃K=pt
∪ JQ, p · 2, x̃K=pt

Jevent F ;P, p, x̃K=pt
= { [statep(x̃)] −[ Event(), F ]→ [statep·1(x̃)] }

p
?
=pt

∪ JP, p · 1, x̃K=pt

Jinsert s, t;P, p, x̃K=pt
= { [statep(x̃)] −[ Insert(s, t) ]→ [statep·1(x̃)] }

p
?
=pt

∪ JP, p · 1, x̃K=pt

Jdelete s;P, p, x̃K=pt
= { [statep(x̃)] −[ Delete(s) ]→ [statep·1(x̃)] }

p
?
=pt

∪ JP, p · 1, x̃K=pt

Jlookup M as v in P else Q, p, x̃K=pt
= { [statep(x̃)] −[ IsIn(M, v) ]→ [statep·1(M̃, v)],

[statep(x̃)] −[ IsNotSet(M) ]→ [statep·2(x̃)] }
p
?
=pt

∪JP, p · 1, (x̃, v)K=pt
∪ JQ, p · 2, x̃K=pt

Jlockl s;P, p, x̃K=pt
= { [Fr(lockl), statep(x̃)] −[ Lock(lock l, s) ]→ [statep·1(x̃, lock l)] }

p
?
=pt

∪JP, p · 1, x̃K=pt

Junlockl s;P, p, x̃K=pt
= { [statep(x̃)] −[ Unlock(lock l, s) ]→ [statep·1(x̃)] }

p
?
=pt

∪ JP, p · 1, x̃K=pt

Fig. 18. Definition of JP, p, x̃K=pt
where {·}

a
?
=b

= { · } if a = b and ∅ otherwise.
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1. P |pτ = Qρ, for some substitution τ and some bijective renaming ρ of fresh, but not bound names

in Q, and
2. ∃ri ∈E ginsts(JP K=p). statep(t̃) ∈ prems(ri).

When P ↔P S, Q ∈# P and statep(t̃) ∈
# S we also write Q ↔P statep(t̃) if this bijection maps Q

to statep(t̃).

Remark 2. Note that ↔P has the following properties (by the fact that it defines a bijection between

multisets).

– If P1 ↔P S1 and P2 ↔P S2 then P1 ∪
# P2 ↔P S1 ∪

# S2.
– If P1 ↔P S1 and Q ↔P statep(t̃) for Q ∈ P1 and statep(t̃) ∈ S1 (i.e. Q and statep(t̃) are related

by the bijection defined by P1 ↔P S1) then P1 \
# {Q} ↔P S1 \

# {statep(t̃)}.

We are now ready to prove the first part of Lemma 1, i. e.,

tracespi(P ) ⊆ hide(filter(tracesmsr (JP K)))

However, as we proceed by induction, we need to strengthen the induction hypothesis and prove the
following, stronger lemma.

Lemma 10. Let P be a well-formed ground process. If

(E0,S0,P0, σ0,L0)
E1−→ (E1,S1,P1, σ1,L1)

E2−→ . . .
En−→ (En,Sn,Pn, σn,Ln)

where (E0,S0,P0, σ0,L0) = (∅, ∅, ∅, {P }, ∅, ∅) then there are (F1, S1), . . . , (Fn′ , Sn′) such that

S0
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′ ∈ execmsr (JP K)

and there exists a monotonic, strictly increasing function f : Nn → Nn′ such that f(n) = n′, S0 = ∅,

and for all i ∈ Nn

1. Ei = { a | ProtoNonce(a) ∈
⋃

1≤j≤f(i) Fj }

2. ∀t ∈ M. Si(t) =







u if ∃j ≤ f(i).Insert(t, u) ∈ Fj

∧∀j′, u′.j < j′ ≤ f(i) → Insert(t, u′) 6∈E Fj′ ∧Delete(t) 6∈E Fj′

⊥ otherwise

3. Pi ↔P Sf(i)

4. {xσi | x ∈ D(σi) }
# = { t | ∃k ∈ Nf(i)−1.Out(t) ∈ Sk+1 \ Sk }

#

5. Li =E { t | ∃j ≤ f(i), u. Lock(u, t) ∈E Fj ∧ ∀j < k ≤ f(i).Unlock(u, t) 6∈E Fk }
6. [F1, . . . , Fn′ ] � α where α is defined as in Definition 15.
7. ∃k. f(i− 1) < k ≤ f(i) and Ei = Fk and ∪f(i−1)<j 6=k≤f(i) Fj ⊆ Fres

To see that this lemma indeed implies

tracespi(P ) ⊆ hide(filter(tracesmsr (JP K)))

note that for every trace [E1, . . . , En] ∈ tracespi(P ) there exists [F1, . . . Fn′ ] ∈ tracesmsr (JP K) such
that, by Condition 6, [F1, . . . Fn′ ] ∈ filter(tracesmsr (JP K)) and, by Condition 7, hide([F1, . . . Fn′ ]) =
[E1, . . . , En].
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Proof. We proceed by induction over the number of transitions n.

Base Case. For n = 0, we let f(n) = 1 and S1 be the multiset obtained by using the Rule INIT:

∅
Init
−→ { state[]() }

#

Condition 1, Condition 2, Condition 4, Condition 5, Condition 6 and Condition 7 hold trivially. To show

that Condition 3 holds, we have to show that P0 ↔P { state[]() }
#. Note that P0 = {P }#. We choose

the bijection such that P ↔P state[](). For τ = ∅ and ρ = ∅ we have that P |[]τ = Pτ = Pρ. By

Definition 19, JP K=[] = JP, [], []K=[]. We see from Figure 18 that for every P we have that state[]() ∈

prems(JP, [], []K=[]). Hence, we conclude that there is a ground instance ri ∈E ginsts(JP K=[]) with

state[]() ∈ prems(ri).

Inductive step. Assume the invariant holds for n − 1 ≥ 0. We have to show that the lemma holds for n
transitions

(E0,S0,P0, σ0,L0)
E1−→ (E1,S1,P1, σ1,L1)

E2−→ . . .
En−→ (En,Sn,Pn, σn,Ln)

By induction hypothesis, we have that there exists a monotonically increasing function from Nn−1 →
Nn′ and an execution

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′ ∈ execmsr (JP K)

such that Conditions 1 to 7 hold. Let fp be this function and note that n′ = fp(n − 1). Fix a bijection

such that Pn−1 ↔P Sfp(n−1). We will abuse notation by writing P ↔P statep(t̃), if this bijection goes

from P to statep(t̃).
We now proceed by case distinction over the type of transition from (En−1,Sn−1,Pn−1, σn−1,Ln−1)

to (En,Sn,Pn, σn,Ln). We will (unless stated otherwise) extend the previous execution by a number of

steps, say s, from Sn′ to some Sn′+s, and prove that Conditions 1 to 7 hold for n (since by induction

hypothesis, they hold for all i < n) and a function f : Nn → Nn′+s that is defined as follows:

f(i) :=

{

fp(i) if i ∈ Nn−1

n′ + s if i = n

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ {0}, σn−1,Ln−1) → (En−1,Sn−1,P
′, σn−1,Ln−1). By induction

hypothesis we have that Pn−1 ↔P Sn′ . Let p and t̃ be such that 0 ↔P statep(t̃). By Definition 20, there

is a ri ∈ ginsts(JP K=p) such that statep(t̃) is part of its premise. By definition of JP K=p, we can choose

ri = [statep(t̃)] −[ ]→ []. We can extend the previous execution by one step using ri , therefore:

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′−→JP KSn′+1 ∈ execmsr (JP K)

with Sn′+1 = {Sf(n−1) \ {statep(t̃) }. It is left to show that Conditions 1 to 7 hold for n.

Condition 1, Condition 2, Condition 4, Condition 5, Condition 6, and Condition 7 hold trivially.

Condition 3 holds because P ′ = Pn−1\
#{0}, Sf(n) = Sf(n−1)\

#{ statep(t̃) }
#, and 0 ↔P statep(t̃)

(see Remark 2).
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Case: (En−1,Sn−1,Pn−1 = P ′ ∪ {Q|R}, σn−1,Ln−1) → (En−1,Sn−1,P
′ ∪ {Q,R},

σn−1,Ln−1). By induction hypothesis we have that Pn−1 ↔P Sn′ . Let p and t̃ be such that Q|R ↔P

statep(t̃). By Definition 20, there is a ri ∈ ginsts(JP K=p) such that statep(t̃) is part of its premise. By

definition of JP K=p, we can choose ri = [statep(t̃)] −[ ]→ [statep·1(t̃), statep·2(t̃)]. We can extend the

previous execution by one step using ri , therefore:

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′−→JP KSn′+1 ∈ execmsr (JP K)

with Sn′+1 = Sf(n−1) \ { statep(t̃) }
# ∪ { statep·1(t̃), statep·2(t̃) }

#. It is left to show that Conditions 1

to 7 hold for n.

Condition 1, Condition 2, Condition 4, Condition 5, Condition 6 and Condition 7 hold trivially. We

now show that Condition 3 holds.

Condition 3 holds because Pn = Pn−1 \
# {Q|R} ∪# {Q,R}, {Q} ↔P {statep·1(x̃)} and {R} ↔P

{statep·2(x̃)} (by definition of the translation) (see Remark 2).

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ {!Q}, σn−1,Ln−1) → (En−1,Sn−1,P
′ ∪ {!Q,Q},

σn−1,Ln−1). Let p and t̃ such that !iQ ↔P statep(t̃). By Definition 20, there is a ri ∈ ginsts(JP K=p)

such that statep(t̃) is part of its premise. By definition of JP K=p, we can choose ri = [statep(t̃)] −[ ]→

[statep(t̃), statep·1(t̃)]. We can extend the previous execution by 1 step using ri , therefore:

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′

(ri)
→JP K Sn′+1 ∈ execmsr (JP K)

with Sn′+1 = Sf(n) ∪
# { statep·1(t̃) }

#. Condition 3 holds because Pn = Pn−1 ∪
# {Q} and {Q} ↔P

{statep·1(t̃)} (by definition of JP K=p). Condition 1, Condition 2, Condition 4, Condition 5, Condition 6

and Condition 7 hold trivially.

Case: (En−1,Sin−1,Pn−1 = P ′ ∪ { νa;Q }, σn−1,Ln−1) → (En−1 ∪ {a′},Sin−1,
P ′ ∪ {Q{a

′

/a}}, σn−1,Ln−1) for a fresh a′. Let p and t̃ be such that {νa;Q} ↔P statep(t̃). There

is a ri ∈ ginsts(JP K=p) such that statep(t̃) is part of its premise. By definition of JP K=p, there is a

ri ∈ ginsts(JP K=p), ri = [statep(t̃),Fr(a
′ : fresh)] −[ ProtoNonce(a′ : fresh) ]→ [statep·1(t̃, a

′ :

fresh)]. Assume there is an i < n′ such that Fr(a′) ∈ Si. If Fr(a′) ∈ Sn, then we can remove the

application of the instance of FRESH that added Fr(a′) while still preserving Conditions 1 to 7. If Fr(a′)
is consumned at some point, by the definition of JP K, the transition where it is consumned is annotated

either ProtoNonce(a′) or Lock(a ′, t) for some t. In the last case, we can apply a substitution to the

execution that substitutes a by a different fresh name that never appears in ∪i ≤ n′Si. The conditions we

have by induction hypothesis hold on this execution, too, since Lock ∈ Fres , and therefore Condition 7

is not affected. The first case implies that a′ ∈ En−1, contradicting the assumption that a′ is fresh with

respect to the process execution. Therefore, without loss of generality, the previous execution does not

contain an i < n′ such that Fr(a′) ∈ Si, and we can extend the previous execution by two steps using the

FRESH rule and ri , therefore:

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′

(FRESH)
→JP K Sn′+1

(ri)
→JP K Sn′+2 ∈ execmsr (JP K)

with Sn′+1 = Sn′ ∪# {Fr(a′ : fresh) }# and Sn′+2 = Sf(n) = Sn′ ∪# { statep·1(t̃, a
′ : fresh) }#. We

define f(i) := fp(i) for i < n and f(n) := f(n − 1) + 2. We now show that Condition 3 holds. As
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by induction hypothesis νa;Q ↔P statep·1(t̃) we also have that P |pσ = νa;Qρ for some σ and ρ. Ex-

tending ρ with {a′ 7→ a} it is easy to see from definition of JP K=p that {Q{a
′

/a}} ↔P {statep·1(t̃, a
′)}.

As Pn = Pn−1 \
# {νa;Q} ∪# {Q{a

′

/a} }
#, we also immediately obtain that Pn ↔P Sf(n). Since a′

is fresh, and therefore { a′ } = En \ En−1, and Fn = ProtoNonce(a′), Condition 1 holds. Condition 2,

Condition 4, Condition 5, Condition 6 and Condition 7 hold trivially.

Case: (En−1,Sn−1,Pn−1, σn−1,Ln−1)
K(t)
−→ (En−1,Sn−1,Pn−1, σn−1,Ln−1). This step requires that

νEn−1.σn−1 ⊢ t. From Lemma 8 follows that there is an execution ∅
F1−→S1

F2−→ . . .
Fn′

−−→Sn′ →∗ S ∈
execmsr

E (JP K) such that !K(t) ∈E S and Sn′ →∗
R S for R = { MDOUT, MDPUB, MDFRESH,

MDAPPL }.

From S, we can go one further step using MDIN, since !K(t) ∈ S:

∅
F1−→JP KS1

F2−→JP K . . .
Fn′

−−→JP KSn′−→∗
R⊂JP KS = Sn′+s−1

K(t)
−−−→JP KSn′+s ∈ execmsr (JP K)

where Sn′+s = S ∪ {In(t)}.

From the fact that Sf(n−1) →∗
R Sf(n) = S, and the induction hypothesis, we can conclude that

Condition 7 holds. Condition 3 holds since Pn = Pn−1 and no state-facts where neither removed nor

added. Condition 1, Condition 2, Condition 4, Condition 5 and Condition 6 hold trivially.

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ { out(t, t′);Q }, σn−1,Ln−1)
K(t)
−−−→(En−1,Sn−1,

P ′ ∪# {Q }, σn−1 ∪ {t
′

/x},Ln−1). This step requires that x is fresh and νEn−1.σ ⊢ t. Using

Lemma 8, we have that there is an execution ∅
F1−→S1

F2−→ . . .
Ff(n)
−−−→Sf(n−1) →∗ S ∈ execmsr

E (JP K)
such that !K(t) ∈E S and Sf(n−1) →∗

R S for R = { MDOUT, MDPUB, MDFRESH, MDAPPL }.

Let p and t̃ such that {out(t, t′);Q} ↔P statep(t̃). By Definition 20, there is a ri ∈ ginsts(JP K=p)

such that statep(t̃) is part of its premise. From the definition of JP K=p, we see that we can choose

ri = [statep(t̃), In(t)] −[ InEvent(t) ]→ [Out(t′), statep·1(t̃)]. To apply this rule, we need the fact In(t).
Since νEn−1.σ ⊢ t, as mentioned before, we can apply Lemma 8. It follows that there is an execution

∅
F1−→S1

F2−→ . . .
Fn′

−−→Sn′ →∗ S ∈ execmsr
E (JP K) such that !K(t) ∈E S and Sn′ →∗

R S for R = { MDOUT,
MDPUB, MDFRESH, MDAPPL }. From S, we can now go two steps further, using MDIN and ri :

∅
F1−→JP K S1 . . .

Fn′

−→JP K Sn′ →∗
R⊂JP K S = Sn′+s−2

K(t)
−−−→JP KSn′+s−1

InEvent(t)
−−−−−−→JP KSn′+s ∈ execmsr (JP K)

where Sn′+s−1 = S ∪# { In(t) }# and Sf(n) = S \# { statep(t̃) } ∪
# {Out(t′), statep·1(t̃) }.

Taking k = n′ + s − 1 we immediately obtain that Condition 7 holds. Note first that, since Sn′ →R

S, set(Sn′) \ {Fr(t),Out(t)|t ∈ M} ⊂ set(S) and set(S) \ { !K(t)|t ∈ M} ⊂ set(Sn′). Since

Pn = Pn−1 \ {out(t, t
′);Q} ∪ {Q} and {Q} ↔P {statep·1(t̃)} (by definition of JP K=p), we have that

Pn ↔P Sf(n), i. e., Condition 3 holds. Condition 4 holds since t′ was added to σn−1 and Out(t) added

to Sf(n−1). Condition 6 holds since K(t) appears right before InEvent(t). Condition 1, Condition 2, and

Condition 5 hold trivially.



S. Kremer, R. Künnemann / Automated analysis of security protocols with global state 47

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ {in(t,N);Q}, σn−1,Ln−1) → (En−1,Sn−1,
P ′ ∪# {Qθ }, σn−1,Ln−1). This step requires that θ is grounding for N and that νEn−1.σn−1 ⊢

〈t,Nθ〉. Using Lemma 8, we have that there is an execution ∅
F1−→S1

F2−→ . . .
Ff(n−1)
−−−−−→Sf(n−1) →∗

S ∈ execmsr
E (JP K) such that !K(t) ∈E S and Sf(n−1) →∗

R S for R = { MDOUT, MDPUB,
MDFRESH, MDAPPL }. The same holds for Nθ. We can combine those executions, by removing du-

plicate instantiations of FRESH, MDFRESH and MDOUT. (This is possible since !K is persistent.) Let

∅
F1−→S1

F2−→ . . .
Ff(n−1)
−−−−−→Sf(n−1) →

∗
R S ∈ execmsr

E (JP K) this combined execution, and !K(t), !K(Nθ) ∈E

S.

Let p and t̃ be such that, in(t,N);Q ↔P statep(t̃). By Definition 20 there is a ri ∈ ginsts(JP K=p)

such that statep(t̃) is part of its premise. From the definition of JP K=p and the fact that θ is grounding

for Nθ, we have statep(t̃) in their premise, namely,

ri = [statep(t̃), In(〈t,Nθ〉)] −[ InEvent(〈t,Nθ〉) ]→ [statep·1(t̃ ∪ (vars(N)θ)].

From Sn′ , we can first apply the above transition Sn′ →∗
R S, and then, (since !K(t), !K(Nθ),

statep(x̃) ∈ S), MDAPPL for the pair constructer, MDIN and ri :

∅
F1−→JP K S1 . . .

Fn′

−→JP K Sn′ →∗
R⊂JP K S = Sn′+s−3

(MDAPPL)
−−−−−−→JP KSn′+s−2

K(〈t,Nθ〉)
−−−−−−→JP KSn′+s−1

InEvent(〈t,Nθ〉)
−−−−−−−−−−→JP KSn′+s ∈ execmsr (JP K)

where

– since Sn′ →R S, S is such that set(Sn′) \ {Fr(t),Out(t)|t ∈ M} ⊆ set(S), set(S) \ { !K(t)|t ∈
M} ⊆ set(Sn′), and !K(t), !K(Nθ) ∈ S

– Sn′+s−2 = S ∪# { !K(〈t,Nθ〉) }#,

– Sn′+s−1 = S ∪# { In(〈t,Nθ〉) }#,

– Sn′+s = S \# { statep(t̃) } ∪
# { statep·1(t̃ ∪ (vars(N)θ)) }.

Letting k = n′ + s− 1 we immediately have that Condition 7 holds.

We now show that Condition 3 holds. Since by induction hypothesis, in(t,N);Q ↔P statep(t̃), we

have that P |pτ = in(t,N);Qρ for some τ and ρ. Therefore we also have that P |p·1τ = Qρ. Thus

(P |p·1τ)(θρ) = (Qρ)(θρ) = Qθρ. Now it is easy to see from the definition of JP K=p that {Qθ} ↔P

{statep·1(t̃, (vars(N)θ))}.

Since Pn = Pn−1 \
# {in(t,N);Q} ∪# {Q}, we have that Pn ↔P Sf(n), i. e., Condition 3 holds.

Condition 6 holds since K〈t,Nθ〉) appears right before InEvent〈t,Nθ〉). Condition 1, Condition 2,

Condition 4, Condition 5 and Condition 6 hold trivially.

Case: (E ,S,P ∪ {out(c,m);Q} ∪ {in(c′, N);R}, σ,L) → (E ,S,P ∪ {Q,Rθ }, σ,L). This step re-

quires that θ grounding for N , t =E Nθ and c =E c′. Let p, p′ and t̃, Ñ such that {out(c,m);P} ↔P

statep(t̃), {in(c
′, N);Q} ↔P statep′(t̃

′), and there are ri ∈ ginsts(JP K=p) and ri ′ ∈ ginsts(JP K=p′)

such that statep(t̃) and statep′(t̃
′) are part of their respective premise. From the definition of JP K=p and
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the fact that θ is grounding for N , we have:

ri1 = [statep(t̃)] → [Msg(t,Nθ), statesemi
p·1 (t̃)]

ri2 = [statep′(t̃
′),Msg(t,Nθ)] → [statep′·1(t̃

′ ∪ (vars(N)θ)),Ack(t,Nθ)]

ri3 = [statesemi
p (t̃),Ack(t,Nθ)] → [statep·1(t̃)].

This allows to extend the previous execution by 3 steps:

∅
F1−→JP K S1 . . .

Fn′

−→JP K Sn′

(ri1)
→JP K Sn′+s−2

(ri2)
→JP K Sn′+s−1

(ri2)
→JP K Sn′+s ∈ execmsr (JP K)

where:

– Sn′+s−2 = Sn′ \# { statep(t̃) } ∪
# {Msg(t,Nθ), statesemi

p·1 (t̃) }#,

– Sn′+s−1 = Sn′\#{ statep(t̃), statep′(t̃
′) }∪#{ statesemi

p·1 (t̃), statep′·1(t̃
′∪(vars(N)θ)),Ack(t,Nθ) }#,

– Sn′+s = Sn′ \# { statep(t̃), statep′(t̃
′) } ∪# { statep·1(t̃), statep′·1(t̃

′ ∪ (vars(N)θ)) }.

We have that Pn = Pn−1\
#{ out(c,m);Q, in(c′, t′);R }∪#{Q,Rθ }#. Exactly as in the two previous

cases we have that Q ↔ statep·1(t̃), as well as Rθ ↔ statep′·1(t̃
′). Hence we have that, Condition 3

holds. Condition 1, Condition 2, Condition 4, Condition 5, Condition 7 and Condition 6 hold trivially.

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ { if pr(t1, . . . , tl) then Q else Q′ }, σn−1,Ln−1) → (En−1,
Sn−1,P

′∪{Q }, σn−1,Ln−1). This step requires that σpr
{
t1/x1 , . . . ,

tl/xl

}
is satisfied. By induction

hypothesis we have that Pn−1 ↔P Sn′ . Let p and t̃ be such that if pr(t1, . . . , tl) then Q else Q′ ↔P

statep(t̃). By Definition 20, there is a ri ∈ ginsts(JP K=p) such that statep(t̃) is part of its premise.

By definition of JP K=p, we can choose ri = [statep(t̃)] −[ Predpr (t1, . . . , tl) ]→ [statep·1(t̃)]. We can

extend the previous execution by one step using ri , therefore:

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′

Predpr (t1,...,tl)
−−−−−−−−−−→JP KSn′+1 ∈ execmsr (JP K)

with Sn′+1 = {Sn′ \# { statep(t̃) }
# ∪# { statep·1(t̃) }

# }. It is left to show that Conditions 1 to 7

hold for n. The last step is labelled Ff(n) = Predpr (t1, . . . , tl). As σpr
{
t1/x1 , . . . ,

tl /xl

}
is satisfied,

Condition 6 holds, in particular, αpred is not violated. Since Predpr is reserved, Condition 7 holds as

well.

As before, since we have that Pn = Pn−1 \
# { if pr(t1, . . . , tl) then Q else Q′ }∪# {Q} and {Q} ↔

{statep·1(t̃, a)} (by definition of the translation), we have that Pn ↔P Sf(n), and therefore Condition 3

holds.

Condition 1, Condition 2, Condition 4 and Condition 5 hold trivially.

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ { if pr(t1, . . . , tl) then Q else Q′ }, σn−1,Ln−1) → (En−1,
Sn−1,P

′ ∪ {Q′ }, σn−1,Ln−1). This step requires that the predicate σpr
{
t1/x1 , . . . ,

tl /xl

}
is not satis-

fied. This proof step is similar to the previous case, except ri is chosen to be

[statep(t̃)] −[ Pred_notpr (t1, . . . , tl) ]→ [statep·2(t̃)].

The condition in αnoteq holds since σpr
{
t1/x1 , . . . ,

tl /xl

}
is not satisfied, and thus, by definition of the

satisfaction relation, ¬σpr
{
t1/x1 , . . . ,

tl /xl

}
is satisfied.
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Case: (En−1,Sn−1,Pn−1 = P ′ ∪ { event(F );Q }, σn−1,Ln−1)
F
−→(En−1,Sn−1,

P ′ ∪ {Q }, σn−1,Ln−1) . By induction hypothesis we have that Pn−1 ↔P Sn′ . Let p and t̃ be such that

event(F );Q ↔P statep(t̃). By Definition 20, there is a ri ∈ ginsts(JP K=p) such that statep(t̃) is part of

its premise. By definition of JP K=p, we can choose ri = [statep(t̃)] −[ F,Event() ]→ [statep·1(t̃)]. We

can extend the previous execution by one step using ri , therefore:

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′

F,Event()
−−−−−−→JP KSn′+1 ∈ execmsr (JP K)

with Sn′+1 = Sn′) \
# {statep(t̃)} ∪# {statep·1(t̃)}. It is left to show that Conditions 1 to 7 hold for

n. Condition 3 holds because Pn = Pn−1 \# { event(F );Q } ∪# {Q } and {Q} ↔ {statep·1(t̃)}
(by definition of JP K=p). Taking k = f(n) Condition 7 holds. Condition 1, Condition 2, Condition 4,

Condition 5 and Condition 6 hold trivially.

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ { insert t, t′; Q }, σn−1,Ln−1) → (En−1,Sn = Sn−1[t 7→ t′],
P ′ ∪ {Q }, σn−1,Ln−1). By induction hypothesis we have that Pn−1 ↔P Sn′ . Let p and t̃ be such that

insert t, t′; Q ↔P statep(t̃). By Definition 20, there is a ri ∈ ginsts(JP K=p) such that statep(t̃) is part

of its premise. By definition of JP K=p, we can choose ri = [statep(t̃)] −[ Insert(t, t
′) ]→ [statep·1(t̃)].

We can extend the previous execution by one step using ri , therefore:

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′

Insert(t,t′)
−−−−−−→JP KSn′+1 ∈ execmsr (JP K)

with Sn′+1 = Sf(n−1) \
# { statep(t̃) }

#∪# { statep·1(t̃) }
#. It is left to show that Conditions 1 to 7 hold

for n.

This step is labelled Ff(n) = Insert(t, t′), hence Condition 7 holds. To see that Condition 2 holds we

let j = f(n) for which both conjuncts trivially hold. Since, by induction hypothesis, Condition 6 holds,

i.e., [F1, . . . Fn′ ] � α, it holds for this step too. In particular, if [F1, . . . Fn′ ] � αin and [F1, . . . Fn′ ] �
αnotin , we also have that [F1, . . . Fn′ , Ff(n)] � αin and [F1, . . . Fn′ , Ff(n)] � αnotin : as the Insert-
action was added at the last position of the trace, it appears after any InIn or IsNotSet-action and by the

semantics of the logic the formula holds.

Since Pn = Pn−1 \
# { insert t, t′; Q } ∪# {Q } and {Q} ↔ {statep·1(t̃)} (by definition of JP K=p),

we have that Condition 3 holds. Condition 1, Condition 4 and Condition 5 hold trivially.

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ { delete t; Q }, σn−1,Ln−1) → (En−1,Sn = Sn−1[t 7→ ⊥],
P ′ ∪ {Q }, σn−1,Ln−1). By induction hypothesis we have that Pn−1 ↔P Sn′ . Let p and t̃ be such that

delete t; Q ↔P statep(t̃). By Definition 20, there is a ri ∈ ginsts(JP K=p) such that statep(t̃) is part of

its premise. By definition of JP K=p, we can choose ri = [statep(t̃)] −[ Delete(t) ]→ [statep·1(t̃)]. We

can extend the previous execution by one step using ri , therefore:

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′

Delete(t)
−−−−−→JP KSn′+1 ∈ execmsr (JP K)

with Sn′+1 = Sf(n−1) \
# {statep(t̃)} ∪

# {statep·1(t̃)}. It is left to show that Conditions 1 to 7 hold for

n.

This step is labelled Ff(n) = Delete(t), hence Condition 7 holds. Since, by induction hypothesis,

Condition 6 holds, i.e., [F1, . . . Fn′ ] � α, it holds for this step too. In particular, if [F1, . . . Fn′ ] � αin and
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[F1, . . . Fn′ ] � αnotin , we also have that [F1, . . . Fn′ , Ff(n)] � αin and [F1, . . . Fn′ , Ff(n)] � αnotin : as

the Insert-action was added at the last position of the trace, it appears after any InIn or IsNotSet-actions

and by the semantics of the logic the formula holds.

We now show that Condition 2 holds. We have that Sn = Sn−1[t 7→ ⊥] and therefore, for all t′ 6=E Tt,
Sn(x) = Sn−1(x). Hence for all such t′ we have by induction hypothesis that for some u,

∃j ≤ n′.Insert(t′, u) ∈ Fj ∧ ∀j′, u′.j < j′ ≤ n′ → Insert(t′, u′) 6∈E Fj′ ∧Delete(t′) 6∈E Fj′

As, Fn′+1 6=E Delete(x, u) and, for all u′ ∈ M, Fn′+1 6=E Insert(x, u′) we also have that

∃j ≤ n′ + 1.Insert(t′, u) ∈ Fj ∧ ∀j′, u′.j < j′ ≤ n′ + 1 → Insert(t′, u′) 6∈E Fj′ ∧Delete(t′) 6∈E Fj′ .

For t′ =E t, the above condition can never be true, because Fn′+1 = Delete(t) which allows us to

conclude that Condition 2 holds.

Since Pn = Pn−1 \
# { delete t; Q } ∪# {Q } and {P} ↔ {statep·1(t̃)} (by definition of JP K=p), we

have that Condition 3 holds. Condition 1, Condition 4 and Condition 5 hold trivially.

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ { lookup t as x in Q else Q′ }, σn−1,Ln−1) → (En−1,Sn−1,
P ′ ∪ {Q{v/x} }, σn−1,Ln−1). This step requires that Sn−1(t

′) =E v for some t′ =E t. By induction

hypothesis we have that Pn−1 ↔P Sn′ . Let p and t̃ be such that lookup t as v in Q else Q′ ↔P

statep(t̃). By Definition 20, there is a ri ∈ ginsts(JP K=p) such that statep(t̃) is part of its premise. By

definition of JP K=p, we can choose ri = [statep(t̃)] −[ IsIn(t, v) ]→ [statep·1(t̃, v)]. This is possible,

since by well-formedness of P , no variable is bound twice. Thus, by definition of the translation, x is not

bound by the left-hand side in JP K=p (i. e., x /∈ x̃), and thus x and can be instantiated to v (or anything

else). We can extend the previous execution by one step using ri , therefore:

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′

IsIn(t,v)
−−−−−→JP KSn′+1 ∈ execmsr (JP K)

with Sn′+1 = Sf(n−1) \
# {statep(t̃)} ∪

# {statep·1(t̃)}. It is left to show that Conditions 1 to 7 hold for

n.

This step is labelled Ff(n) = IsIn(t, v), hence Condition 7 holds.

From the induction hypothesis, Condition 2, we have that there is a j such that Insert(t, t′) ∈E Fj ,

j ≤ n′ and

∀j′, u′. j < j′ ≤ n′ → Insert(t, u′) 6∈E Fj′ ∧Delete(t) 6∈E Fj′

This can be strengthened, since Ff(n) = { IsIn(t, v) }:

∀j′, u′. j < j′ ≤ f(n) → Insert(t, u′) 6∈E Fj′ ∧Delete(t) 6∈E Fj′

This allows to conclude that Condition 2 holds. From Condition 2 it also follows that Condition 6, in

particular αin , holds.

We now show that Condition 3 holds. By induction hypothesis we have that lookup t as x
in Q else Q′ ↔P statep(t̃), and hence P |pτ = (lookup t as x in Q else Q′)ρ for some τ and ρ.

Therefore, we also have that P |p·1τ = Qρ. Thus (P |p·1τ){
vρ/x}) = (Qρ){vρ/x} = Q{v/x}ρ.
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Now it is easy to see from the definition of JP K=p that {Q{v/x}} ↔P {statep·1(t̃, v)}. Since

Pn = Pn−1 \
# { lookup t as x in Q else Q′ } ∪# {Q{v/x} } we have that Pn ↔P Sf(n), i. e., Condi-

tion 3 holds.

Condition 1, Condition 4 and Condition 5 hold trivially.

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ { lookup t as x in Q else Q′ }, σn−1,Ln−1) → (En−1,
Sn−1,P

′ ∪ {Q′ }, σn−1,Ln−1). This step requires that S(t′) is undefined for all t′ =E t. By induction

hypothesis we have that Pn−1 ↔P Sn′ . Let p and t̃ be such that lookup t as x in Q else Q′ ↔P

statep(t̃). By Definition 20, there is a ri ∈ ginsts(JP K=p) such that statep(t̃) is part of its premise. By

definition of JP K=p, we can choose ri = [statep(t̃)] −[ IsNotSet(t) ]→ [statep·1(t̃)]. We can extend the

previous execution by one step using ri , therefore:

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′

IsNotSet(t)
−−−−−−−→JP KSn′+1 ∈ execmsr (JP K)

with Sn′+1 = Sf(n−1) \
# statep(t̃) ∪

# statep·1(t̃). It is left to show that Conditions 1 to 7 hold for n.

This step is labelled Ff(n) = IsNotSet(t), hence Condition 7 holds. Condition 2 also holds trivially

and will be used to show Condition 6. Since this step requires that S(t′) is undefined for all t′ =E t, we

have by Condition 2 that

∀j ≤ f(n), u. Insert(t, u) ∈E Fj

→ ∃j′, u′.j < j′ ≤ f(n) ∧ (Insert(t, u′) ∈E Fj′ ∨Delete(t) ∈E Fj′)

Now suppose that

∃i ≤ f(n), y.Insert(t, y) ∈E Fi)

As there exists an insert, there is a last insert and hence we also have

∃i ≤ f(n), y.Insert(t, y) ∈E Fi ∧ ∀i′, y′.i < i′ ≤ f(n) → Insert(t, y′) /∈E Fi′

Applying Condition 2 (cf above) we obtain that

∃i ≤ f(n), y.Insert(t, y) ∈E Fi ∧ ∀i′, y′. i < i′ ≤ f(n) → Insert(t, y′) /∈E Fi′

∧ ∃j′, u′. i < j′ ≤ f(n) ∧ (Insert(t, u′) ∈E Fj′ ∨Delete(t) ∈E Fj′)

which simplifies to

∃i ≤ f(n), y.Insert(t, y) ∈E Fi ∧ ∀i′, y′. i < i′ ≤ f(n) → Insert(t′, y′) /∈ Fi′

∧ ∃j′. i < j′ ≤ f(n) ∧Delete(t) ∈E Fj′

Now we weaken the statement by dropping the first conjunct and restricting the quantification ∀i′.i <
i′ ≤ f(n) to ∀i′.j′ < i′ ≤ f(n), since i < j′.

∃i ≤ f(n). ∃j′. i < j′ ≤ f(n) ∧ ∀i′. j′ < i′ ≤ f(n) → Insert(t′, y′) /∈ Fi′ ∧Delete(t) ∈E Fj′
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We further weaken the statement by weakening the scope of the existential quantification ∃j′. i < j′ ≤
f(n) to ∃j′. j′ ≤ f(n). Afterwards, i is not needed anymore.

∃j′. j′ ≤ f(n) ∧ ∀i′. j′ < i′ ≤ f(n) → Insert(t′, y′) /∈ Fi′ ∧Delete(t) ∈E Fj′

This statement was obtained under the hypothesis that ∃i ≤ f(n), y.Insert(t, y) ∈E Fi). Hence we have

that

∀i ≤ f(n), y.Insert(t, y) 6∈E Fi

∨∃j′ ≤ f(n). Delete(t) ∈E Fj′ ∧ ∀i′. j′ < i′ ≤ f(n) → Insert(t′, y′) /∈ Fi′

This shows that Condition 6, in particular αnotin , holds.

Since Pn = Pn−1 \
# { lookup t as x in Q else Q′ } ∪# {Q′ } and {Q′} ↔ {statep·1(t̃)} (by defini-

tion of JP K=p), we have that Condition 3 holds. Condition 1, Condition 4 and Condition 5 hold trivially.

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ { lock t; Q }, σn−1,Ln−1) → (En−1,Sn−1,P
′ ∪# {Q′ },

σn−1,Ln−1∪{ t }). This step requires that for all t′ =E t, t′ /∈ Ln−1. Let p and t̃ such that lock t; Q ↔P

statep(t̃). By Definition 20, there is a ri ∈ ginsts(JP K=p) such that statep(t̃) is part of its premise. By

definition of JP K=p, we can choose ri = [Fr(l), statep(t̃)] −[ Lock(l, t) ]→ [statep·1(t̃, l)] for a fresh

name l, that never appeared in a Fr-fact in ∪j≤f(n−1)Sj . We can extend the previous execution by s = 2
steps using an instance of FRESH for l and ri :

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′−→{ FRESH }Sn′+s−1
Lock(l,t)
−−−−−→JP KSn′+s ∈ execmsr (JP K)

with Sn′+s−1 = Sf(n−1) \
# { statep(t̃) }

# ∪# {Fr(l) } and Sn′+s = Sf(n−1) \
# { statep(t̃) }

# ∪#

{ statep·1(t̃) }
#. It is left to show that Conditions 1 to 7 hold for n.

The step from Sf(n)−1 to Sf(n) is labelled Ff(n) = Lock(l, t), hence Condition 7 and Condition 2

hold.

Ff(n) also preserves Condition 5 for the new set of active locks Lf(n) = Lf(n−1) ∪ { t }.

In the following we show by contradiction that αlock , and therefore Condition 6 holds. αlock held in the

previous step, and Ff(n−1)+1 is empty, so we assume (by contradiction), that Ff(n) = Lock(l, t) violates

αlock . If this was the case, then:

∃i < f(n), l1. Lock(l1, t) ∈E Fi

∧∀i < j < f(n). Unlock(l1, t) 6∈E Fj

∨∃k. k 6= j ∧Unlock(l1, t) ∈E Fk

∨∃l2, k. Lock(l2, t) ∈E Fk ∧ i < k ≤ j
∨∃l2, k. Unlock(l2, t) ∈E Fk ∧ i ≤ k < j

We first note that the condition

∃k. k 6= j ∧Unlock(l1, t) ∈E Fk

is never satisfied if the first condition in the disjuction is unsatisfied and that hence this condition can be

removed: if there is j such that i < j < f(n) and Unlock(l1, t) ∈E Fj , then any k such that j 6= k and
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Unlock(l1, t) has Fr(l1) in the premise (by definition of the translation). Since Fr is linear, and since, by

Definition 6, Fr(l1) is only added once, this is impossible. Thus said condition can be removed.

Next we observe that, by definition of the translation, Unlock(a, b) ∈E Fi if and only if Lock(a′, b) /∈E

Fi. This allows us to tighten the bounds on the timepoint k in the two last disjuncts:

– we can remove the corner case Lock(l2, t) ∈E Fj , as it implies Unlock(l1, t) 6∈E Fj , and therefore

satisfies the first disjunct;

– we can remove the corner case Unlock(l2, t) ∈E Fi, as it contradicts the first conjunct

(Lock(l1, t) ∈E Fi).

These simplifications result in the following formula.

∃i < f(n), l1.Lock(l1, t) ∈E Fi

∧ ∀i < j < f(n). Unlock(l1, t) 6∈E Fj

∨ ∃l2, i < k < j. (Lock(l2, t) ∈E Fk ∨Unlock(l2, t) ∈E Fk)
(2)

Since the semantics of the calculus requires that for all t′ =E t, t′ /∈ Ln−1, by induction hypothesis,

Condition 5, we have that

∀i ≤ f(n− 1), l1. Lock(l1, t) ∈E Fi →

∃i < j ≤ f(n− 1). Unlock(l1, t) ∈E Fj

Since Ff(n−1)+1 = ∅ and f(n) = f(n− 1) + 2, we have:

∀i < f(n), l1.Lock(l1, t) ∈E Fi →

∃i < j < f(n). Unlock(l1, t) ∈E Fj

We also have that

∃i < j < f(n). Unlock(l1, t) ∈E Fj

⇔
∃j. i < j < f(n) ∧Unlock(l1, t) ∈E Fj ∧ ∀i < k < j. Unlock(l1, t) 6∈E Fk

To see that this statement holds consider two cases. Either the above statement is not satisfiable, i.e. there

is no j such that Unlock(l1, t) ∈E Fj . Then the second formula is not satisfiable either. Or the above

formula is satisfied, i.e., there exists j, such that Unlock(l1, t) ∈E Fj . Choosing j to be minimal, we

immediately have that ∀i < k < j. Unlock(l1, t) 6∈E Fk.

Hence, we obtain

∀i < f(n), l1. Lock(l1, t) ∈E Fi →

∃i < j < f(n). Unlock(l1, t) ∈E Fj ∧ ∀i < k < j. Unlock(l1, t) 6∈E Fk
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Combining this with (2) we obtain that

∃i < f(n), l1. Lock(l1, t) ∈E Fi∧

∃i < j < f(n). Unlock(l1, t) ∈E Fj

∧ ∃l2, i < k < j. (Lock(l2, t) ∈E Fk ∨ (Unlock(l2, t) ∈E Fk ∧ l2 6=E l1))

Fix i < f(n), j such that i < j < f(n), and l1 such that Lock(l1, t) ∈E Fi and Unlock(l1, t) ∈E Fj .

Then, there are l2 and k such that i < k < j and either Lock(l2, t) ∈E Fk or Unlock(l2, t) ∈E Fk, but

l2 6=E l1. We proceed by case distinction.

Case 1: there is no unlock in between i and j, i. e., for all m, i < m < j, Unlock(l′, t) 6∈ Fm. Then there

is a k and l2 such that Lock(l2, t) ∈E Fk. In this case, αlock is already invalid at the trace produced by

the k-prefix of the execution, contradicting the induction hypothesis.

Case 2: there are l′ and m, i < m < j such that Unlock(l′, t) ∈ Fm (see Figure 19).

i

Lock(l1, t)

m

Unlock(l′, t)

j

Unlock(l1, t)

Fig. 19. Visualisation of Case 2.

We first observe that for any l, u, i1, i2 , if Unlock(l, u) ∈E Fi1 and Unlock(l, u) ∈E Fi2 , then i1 = i2.

We proceed by contradiction. By definition of JP K and well-formedness of P , the steps from i1 − 1 to

i1 and from i2 − 1 to i2 must be ground instances of rules JP K=q and JP K=q′ such that P |q and P |q′
start with unlock commands that are labelled the same and have the same parameter, since every variable

lockl in JP K appears in a Fr-fact in the translation for the corresponding lock command. By definition of

P , this means q and q′ have a common prefix ql that starts with a lock with this label.

Let ql ≤ q denote that ql is a prefix of q. Since P gives ⊥ if there is a replication or a parallel between

ql and q or q′, and since P is well-formed (does not contain ⊥), we have that every state fact stater for

ql ≤ r ≤ q or ql ≤ r ≤ q′ appearing in JP K is a linear fact, since no replication is allowed between ql and

q or q′. This implies that q′ 6= q. Furthermore, every rule in ∪ql≤r≤q∨ql≤r≤q′JP K=r adds at most one fact

stater and if it adds one fact, it either removes a fact stater′ where r = r′ · 1 or r′ · 2, or removes a fact

statesemi

r′ where r = r′ · 1, which in turn requires removing stater′ (see translation of out). Therefore,

either q ≤ q′ or q′ ≤ q. But this implies that both have different labels, and since JP K=ql
requires Fr(l),

and E distinguishes fresh names, we have a contradiction. (A similiar observation is possible for locks:

For any l, u, i1, i2 , if Lock(l, u) ∈E Fi1 and Lock(l, u) ∈E Fi2 , then i1 = i2, since by definition of the

translation, the transition from i1 − 1 to i1 or i− 2− 1 to i2 removes fact Fr(l).)
From the first observation we learn that , l′ 6=E l1 for any l′ and m, i < m < j such that Unlock(l′, t) ∈

Fm. We now choose the smallest such m. By definition of JP K, the step from Sm−1 to Sm must be

ground instance of a rule from JP K=q for P |q starting with unlock. Since P is well-formed, there is a ql
such that P |ql starts with lock, with the same label and parameter as the unlock. As before, since P is

well-formed, and therefore there are no replications and parallels between ql and q, there must be n such

that Lock(l′, t) ∈ Fn and n < m. We proceed again by case distinction.

Case 2a: n < i (see Figure 20). By the fact that m > i we have that there is no o such that n < o < i
and Unlock(l′, t) ∈E Fo (see first observation). Therefore, the trace produced by the i-prefix of this

execution does already not satisfy αlock , i. e., [F1, . . . , Fi] 6� αlock .
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n

Lock(l′, t)

i

Lock(l1, t)

m

Unlock(l′, t)

j

Unlock(l1, t)

Fig. 20. Visualisation of Case 2a.

Case 2b: i < n (see Figure 21). Again, αlock is not satisfied, i.e., [F1, . . . , Fn] 6� αlock , since there is no

o such that i < o < n and Unlock(l1, t) ∈E Fo.

i

Lock(l1, t)

n

Lock(l′, t)

m

Unlock(l′, t)

j

Unlock(l1, t)

Fig. 21. Visualisation of Case 2b.

Since we could, under the assumption that Condition 1 to Condition 7 hold for i ≤ n′, reduce every

case in which [F1, . . . , Fn′+1] 6� αlock to a contradiction, we can conclude that Condition 6 holds for

n′ + 1.

Since Pn = Pn−1\
#{ lock t; Q }∪#{Q } and {Q} ↔ {statep·1(t̃)} (by definition of the translation),

we have that Condition 3 holds. Condition 1, and Condition 4 hold trivially.

Case: (En−1,Sn−1,Pn−1 = P ′ ∪ { unlock t; Q }, σn−1,Ln−1) → (En−1,Sn−1,
P ′ ∪# {Q′ }, σn−1,Ln−1 \ { t′ : t′ =E t }). By induction hypothesis we have that Pn−1 ↔P Sn′ .

Let p and t̃ be such that unlock t; Q ↔P statep(t̃). By Definition 20, there is a ri ∈ ginsts(JP K=p)

such that statep(t̃) is part of its premise. By definition of JP K=p, we can choose ri = [statep(t̃)] −[

Unlock(l, t) ]→ [statep·1(t̃)]. We can extend the previous execution by one step using ri , therefore:

∅
F1−→JP K S1

F2−→JP K . . .
Fn′

−→JP K Sn′

Unlock(l,t)
−−−−−−→JP KSn′+1 ∈ execmsr (JP K)

with Sn′+1 = Sf(n−1) \
# {statep(t̃)} ∪

# {statep·1(t̃)}. It is left to show that Conditions 1 to 7 hold for

n.

The step from Sf(n−1) to Sf(n) is labelled Ff(n) = Unlock(l, t), hence Condition 7 and Condition 2

hold.

In order to show that Condition 5 holds, we perform a case distinction. Assume t 6∈E∈ Ln−1. Then,

Lf(n−1) = Lf(n). In this case, Condition 5 holds by induction hypothesis. In the following, we assume

t ∈E Ln−1. Thus, there is j ∈ n′, l′ such that Lock(l′, t) ∈E Fj and for all k such that j < k ≤ n′,

Unlock(l′, t) 6∈E Fk.

Since P |p is an unlock node and P is well-formed, there is a prefix q of p, such that P |q is a lock with

the same parameter and annotation. By definition of P , there is no parallel and no replication between

q and p. Note that any rule in JP K that produces a state named statep for a non-empty p is such that it

requires a fact with name statep′ for p = p′ · 1 or p = p′ · 2 (in case of the translation of out, it might

require statesemi

p′ , which in turn requires statep′). This means that, since statep(t̃) ∈ Sn′ , there is an i

such that stateq(t̃
′) ∈ Si and stateq(t̃

′) 6∈ Si−1 for t̃′ a prefix to t. This rule is an instance of JP K=q and

thus labelled Fi = Lock(l, t). We proceed by case distinction.

Case 1: j < i (see Figure 22). By induction hypothesis, Condition 6 holds for the trace up to n′. But,

[F1, . . . , Fi] 6� αlock , since we assumed that for all k such that j < k ≤ n′, Unlock(l′, t) 6∈E Fk.
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j

Lock(l′, t)

i

Lock(l, t)

n′ + 1

Unlock(l, t)

Fig. 22. Visualisation of Case 1.

i

Lock(l, t)

j

Lock(l′, t)

n′ + 1

Unlock(l, t)

Fig. 23. Visualisation of Case 2.

Case 2: i < j (see Figure 23). As shown in the lock case, any k such that Unlock(l, t) ∈E Fk is

k = n′ + 1. This contradicts Condition 6 for the trace up to j, since [F1, . . . , Fj ] 6� αlock , because there

is not k such that i < k < j such that Unlock(l, t) ∈E Fk. This concludes the proof that Condition 5

holds for n+ 1.

Condition 6 holds, since none of the axioms, in particular not αlock , become unsatisfied if they were

satisfied for the trace up to f(n− 1) and an Unlock is added.

Since Pn = Pn−1 \
# { unlock t; Q } ∪# {Q } and {Q} ↔ {statep·1(t̃)} (by definition of the transla-

tion), we have that Condition 3 holds. Condition 1, and Condition 4 hold trivially.

B.3. Proof that tracespi(P ) ⊇ hide(filter(tracesmsr (JP K)))

To prove this direction we actually need to make a detour. We first define the notion of a normal msr

execution and we next show that any msr execution resulting from a translation of a process has an

equivalent normal execution. Finally we show that

{ tr ∈ hide(filter(tracesmsr (JP K))) | tr is normal } ⊆ tracespi(P )

Definition 21 (normal msr execution). An msr execution ∅
E1−→JP K · · ·

En−−→JP KSn ∈ execmsr (JP K) for the

multiset rewrite system JP K defined by a ground process P is normal if:

1. The first transition is an instance of the INIT rule, i. e., S1 = state[]() and there is at least this

transition.

2. Sn neither contains any fact with the symbol statesemi
p for any p, nor any fact with symbol Ack.

3. if for some i and t1, t2 ∈ M, Ack(t1, t2) ∈ (Si−1 \
# Si), then there are p and q such that:

Si−3−→R1Si−2−→R2Si−1−→R3Si , where:

– R1 = [statep(x̃)] → [Msg(t1, t2), state
semi
p (x̃)]

– R2 = [stateq(ỹ),Msg(t1, t2)] → [stateq·1(ỹ ∪ ỹ′),Ack(t1, t2)]
– R3 = [statesemi

p (x̃),Ack(t1, t2)] → [statep·1(x̃)].

4. Sn−1
En−−→JP,[],[]K,MDIN,INITSn

5. if In(t) ∈ (Si−1 \
# Si) for some i and t ∈ M, then Si−2

K(t)
−−−→MDINSi−1
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Intuitively, a normal execution always starts with an INIT rule (item 1), internal communications are

always finished (item 2), and not interleaved with any other actions (item 3). Furthermore, the last action

is neither the generation of a fresh name, nor a message deduction rule. Indeed such a transition is not

useful if it is the last one, as the freshly generated name, or the deduced message would not be used.

Finally, if the attacker inputs a term to a process, this term is deduced just before (item 5).

We will now show that any execution has an equivalent normal execution, i. e., an execution that has

the same labels, up to reserved facts, and preserves α.

Lemma 11 (Normalisation). Le P be a well-formed ground process. If

S0 = ∅
E1−→JP K S1

E2−→JP K . . .
En−→JP K Sn ∈ execmsr (JP K)

and [E1, . . . , En] � α, then there exists a normal msr execution

T0 = ∅
F1−→JP K T1

F2−→JP K . . .
Fn′

−→JP K Tn′ ∈ execmsr (JP K)

such that hide([E1, . . . , En]) = hide(F1, . . . , Fn′) and [F1, . . . , Fn′ ] � α.

Proof. We will modify S0
E1−→JP K . . .

En−→JP K Sn by applying one transformation after the other, each

resulting in an msr execution that preserves satisfaction of α.

1. If an application of the INIT rule appears in S0
E1−→JP K . . .

En−→JP K Sn, we move it to the front.

Therefore, S1 = state[](). This is possible since the left-hand side of the INIT rule is empty. If

the rule is never instantiated, we prepend it to the trace. Since Init() ∈ Fres , the resulting msr

execution

S
(1)
0

E
(1)
1−→JP K . . .

E
(1)
n−→JP K S

(1)

n(1)

is such that hide([E1, . . . , En]) = hide([E
(1)
1 , . . . , E

(1)

n(1) ]). Since Init() is only added if it was not

present before, [E
(1)
1 , . . . , E

(1)

n(1) ] � α, especially αinit .

2. For each fact Ack(t1, t2) contained in S
(1)

n(1) , it also contains a fact statesemi
p (t̃) for some p and t̃

such that there exists a rule of type R3 that consumes both of them, since Ack(t1, t2) can only be

produced by a rule of type R2 which consumes Msg(t1, t2) which in turn can only be produced

along with a fact statesemi
p (t̃), and by definition of JP K, there exists a rule in JP K=p of form R3

that consumes Ack(t1, t2) and statesemi
p (t̃). We append as many applications of rules of type R3 as

there are facts Ack(t1, t2) ∈ S
(1)

n(1) , and repeat this for all t1, t2 such that Ack(t1, t2) ∈ S
(1)

n(1) . Then,

S
(1)

n(1)−→JP KS
(1)
n′ and S

(1)
n′ does not contain Ack-facts anymore.

If S
(1)
n′ contains a fact statesemi

p (t̃), we remove the last transition that produced this fact, i. e., for i

such that Si = Si−1 \
# { statep(t̃) }

# ∪# {Msg(t1, t2), state
semi
p (t̃) }#, we define

S
(1)′

j :=

{

S
(1)
j if j ≤ i− 1

S
(1)
j+1 \

# {Msg(t1, t2), state
semi
p (t̃) }# ∪# { statep(t̃) }

# if i− 1 < j < n′
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The resulting execution is valid, since statesemi
p (t̃) ∈ S

(1)
n′ and since Msg(t1, t2) ∈ S

(1)
n′ . The latter

is the case because if Msg(t1, t2) would be consumed at a later point, say j, j + 1 would contain

Ack(t1, t2), but since S
(1)′

n′−1 does not contain Ack-facts, they can only be consumed by a rule of

type R3, which would have consumed statesemi
p (t̃). We repeat this procedure for every remaining

statesemi
p (t̃) ∈ S

(1)
n′ , and call the resulting trace

S
(2)
0

E
(2)
1−→JP K . . .

E
(2)
n−→JP K S

(2)

n(2)

Since no rule added or removed has an action,

hide([E1, . . . , En]) = hide([E
(2)
1 , . . . , E

(2)

n(2) ]) and [E
(2)
1 , . . . , E

(2)

n(2) ] � α.

3. We transform S
(1)
0

E
(1)
1−→JP K . . .

E
(1)
n−→JP K S

(1)

n(1) as follows (all equalities are modulo E): Let us call

instances of R1, R2 or R3 that appear outside a chain

Si−3−→R1Si−2−→R2Si−1−→R3Si

for some i and t1, t2 ∈ M “unmarked”. Do the following for the smallest i that is an unmarked

instance of R3 ( we will call the instance of R3 ri3 and suppose it is applied from Si−1 to Si):

Apply ri3 after j < i such that Sj−1 to Sj is the first unmarked instance of R2, for some q and

ỹ, i. e., this instance produces a fact stateq·1(ỹ, ỹ
′) and a fact Ack(t1, t2). Since there is no rule

between j and i that might consume Ack(t1, t2) (only rules of form R3 do, and ri3 is the first

unmarked instance of such a rule) and since ri3 does not consume stateq·1(ỹ, ỹ
′), we can move

ri3 between j and j + 1, adding the conclusions of ri3 and removing the premises of ri3 from

every Sj+1, . . . , Si. Note that unmarked instances of R2 and R3 are guaranteed to be preceeded

by a marked R1, and therefore only remove facts of form Ack(. . .) or Msg(. . .) that have been

added in that preceeding step. Since the transition at step j requires a fact Msg(t1, t2), there is

an instance of R1 prior to j, say at k < j, since only rules of form R1 produces facts labelled

Msg(t1, t2). Since ri3 is now applied from Sj to Sj+1, we have that an instance ri1 of a rule of

form R1 that produces statesemi
p (t̃) must appear before j, i. e., ri1 ∈ ginsts(JP K=p). Therefore, it

produces a fact Msg(t1, t2) indeed. We choose the largest k that has an unmarked R1 that produces

Msg(t1, t2) and statesemi
p (t̃) and move it right before j, resulting in the following msr execution:

S
(1)′

t :=







S
(1)
t if t < k

S
(1)
t+1 ∪

# {Msg(t1, t2), state
semi
p (t̃) }# \# { statep(t̃) }

# if k ≤ t < j − 1

S
(1)
(t) if j − 1 ≤ t < j + 1

S
(1)
(t−1) \

# { statesemi
p (t̃),Ack(t1, t2) }

# ∪# { statep·1(t̃) }
# if j + 1 ≤ t < i+ 1

S
(1)
t if i+ 1 ≤ t
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We apply this procedure until it reaches a fixpoint and call the resulting trace

S
(3)
0

E
(3)
1−→JP K . . .

E
(3)
n−→JP K S

(3)

n(3)

Since no rule moved during the procedure has an action,

hide([E1, . . . , En]) = hide([E
(3)
1 , . . . , E

(3)

n(3) ]) and [E
(3)
1 , . . . , E

(3)

n(3) ] � α.

4. If the last transition is in { MDOUT, MDPUB, MDFRESH, MDAPPL, FRESH }, we remove it. Re-

peat until fixpoint is reached and call the resulting trace

S
(4)
0

E
(4)
1−→JP K . . .

E
(4)
n−→JP K S

(4)

n(4)

Since no rule removed during the procedure has an action,

hide([E1, . . . , En]) = hide([E
(4)
1 , . . . , E

(4)

n(4) ]) and [E
(4)
1 , . . . , E

(4)

n(4) ] � α.

5. If there is In(t) ∈ S
(4)

n(4)−1
, then there is a transition where In(t) is produced and never consumned

until n(4) − 1. The only rule producing In(t) is MDIN. We can move this transition to just before

n(4) − 1 and call the resulting trace

S
(5)
0

E
(5)
1−→JP K . . .

E
(5)
n−→JP K S

(5)

n(5)

Since [E
(4)
1 , . . . , E

(4)

n(4) ] � α, especially αinev , there is no action that is not in Fres between

the abovementioned instance of MDIN, therefore, hide([E1, . . . , En]) = hide([E
(5)
1 , . . . , E

(5)

n(5) ])
holds. Since αinev is the only part of α that mentions K, and since the tranformation preserved

αinev , we have that [E
(5)
1 , . . . , E

(5)

n(5) ] � α.

The next proposition states that normal executions have a kind of prefix closure. Normality is preserved

when removing a prefix, except if the prefix ends in the middle of an internal communication or with an

action in { MDOUT, MDPUB, MDFRESH, MDAPPL, FRESH }. In that case removing some additional

actions will provide a normal execution.

Proposition 3. If P is a ground process and ∅
E1−→JP K · · ·

En−−→JP KSn ∈ execmsr (JP K) is a normal msr

execution then

1. if n ≥ 2 and no Ack-fact in (Sn−1 \
# Sn), then there exists m < n such that Sm →∗

R Sn−1 and

∅
E1−→JP K · · ·

Em−−→JP KSm ∈ execmsr (JP K) is normal.
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2. if for some t1, t2 ∈ M, Ack(t1, t2) ∈ (Sn−1 \# Sn), then there exists m ≤ n − 3 such that

Sm →∗
R Sn−3 and ∅

E1−→JP K · · ·
Em−−→JP KSm ∈ execmsr (JP K) is normal.

for R = { MDOUT, MDPUB, MDFRESH, MDAPPL, FRESH }

Proof. If n ≥ 2 and there is no Ack-fact in Sn−1 \ Sn, then we chose the largest m < n such that

Sm−1
Em−−→JP,[],[]K,INIT,MDINSm, or, if there is an Ack-fact in Sn−1\Sn, we will chose the largest m < n−2

such that Sm−1
Em−−→JP,[],[]K,INIT,MDINSm. Such an m exists since S0

Init()
−−−→JP KS1 and INIT 6∈ R.

Such an m always exists, since in case t1, t2 ∈ M, Ack(t1, t2) ∈ (Sn−1 \
# Sn), we have that n ≥ 3,

because the execution is normal (item 3 of Definition 21).

Moreover, Sm →∗
R Sn−1 in case of no Ack-fact in Sn−1 \Sn and Sm →∗

R Sn−3 if there is an Ack-fact

in Sn−1 \ Sn, since otherwise there would be a larger m.

We will now show that the prefixes of the execution until m are normal.

– Item 1 of Definition 21 is preserved as in both cases m ≥ 1.

– Sm →∗
R Sn−1, respectively Sm′ →∗

R Sn−3, implies item 2 of Definition 21, as none of the rules

in R = { MDOUT, MDPUB, MDFRESH, MDAPPL, FRESH } remove Ack- or statesemi-facts, and

the chain of rules R1, R2, R3 consumes as many as it produces. Thus, if they where in Sm, they

would be in Sn, too.

– Items 3 and 5 of Definition 21 hold for all parts of the trace, and therefore also for the prefix of

size m.

– Item 4 of Definition 21 holds trivially since Sm →∗
R Sn−1, respectively Sm →∗

R Sn−3.

Definition 22. Let P be a ground process, P be a multiset of processes and S a multiset of multiset

rewrite rules. We write P !P S if there exists a bijection between P and the multiset {statep(t̃) |
∃p, t̃. statep(t̃) ∈

# S}# such that whenever Q ∈# P is mapped to statep(t̃) ∈
# S, then:

1. statep(t̃) ∈E prems(R) for R ∈ ginsts(JP K=p).

2. Let θ be a grounding substitution for statep(x̃) ∈ prems(JP K=p) such that t̃ = x̃θ. Then

(P |pτ)ρ =E Q

for a substitution τ , and a bijective renaming ρ of fresh, but not bound names in Q, defined as

follows:

τ(x) :=θ(x) if x not a reserved variable

ρ(a) :=a′ if θ(na) = a′

When P !P S, Q ∈# P and statep(t̃) ∈
# S we also write Q !P statep(t̃) if this bijection maps

Q to statep(t̃).

Remark 3. Note that !P has the following properties (by the fact that it defines a bijection between

multisets).

– If P1 !P S1 and P2 !P S2 then P1 ∪
# P2 !P S1 ∪

# S2.
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– If P1 !P S1 and Q !P statep(t̃) for Q ∈ P1 and statep(t̃) ∈ S1 (i.e. Q and statep(t̃) are

related by the bijection defined by P1 !P S1) then P1 \
# {Q} !P S1 \

# {statep(t̃)}.

Lemma 12. Le P be a well-formed ground process. If

S0 = ∅
E1−→JP K S1

E2−→JP K . . .
En−→JP K Sn ∈ execmsr (JP K)

is normal (see Definition 21) and [E1, . . . , En] � α (see Definition 15), then there are (E0,S0,P0, σ0,
L0), . . . , (En′ ,Sn′ ,Pn′ , σn′ ,Ln′) and F1, . . . , Fn′ such that:

(E0,S0,P0, σ0,L0)
F1−→ (E1,S1,P1, σ1,L1)

F2−→ . . .
Fn′

−→ (En′ ,Sn′ ,Pn′ , σn′ ,Ln′)

where (E0,S0,P0, σ0,L0) = (∅, ∅, ∅, {P }, ∅, ∅) and there exists a monotonically increasing, surjective

function f : Nn \ { 0 } → Nn′ such that f(n) = n′ and for all i ∈ Nn

1. Ef(i) = { a ∈ FN | ProtoNonce(a) ∈E

⋃

1≤j≤iEj }

2. ∀ t ∈ M. Sf(i)(t) =







u if ∃j ≤ i.Insert(t, u) ∈E Ej

∧∀j′, u′.j < j′ ≤ i → Insert(t, u′) 6∈E Ej′ ∧Delete(t) 6∈E Ej′

⊥ otherwise

3. Pf(i) !P Si

4. {xσf(i) | x ∈ D(σf(i)) }
# = { t | ∃k ∈ Ni−1.Out(t) ∈ Sk+1 \ Sk }

#

5. Lf(i) =E { t | ∃j ≤ i, u. Lock(u, t) ∈E Ej ∧ ∀j < k ≤ i.Unlock(u, t) 6∈E Ek }.

Furthermore,

6. hide([E1, . . . , En]) =E [F1, . . . , Fn′ ].

The Lemma indeed implies that { tr ∈ hide(filter(tracesmsr (JP K))) | tr is normal } ⊆ tracespi(P ):
for any normal trace [E1, . . . , En] that satisfies α, i.e. in filter(tracesmsr (JP K)) we show there exists a

trace [F1, . . . , Fn′ ] ∈ tracespi(P ) such that hide([E1, . . . , En]) =E [F1, . . . , Fn′ ] (Condition 6).

Proof. We proceed by induction over the number of transitions n.

Base Case. A normal msr execution contains at least an application of the init rule, thereby the shortest

normal msr execution is

∅−→JP KS1 = { state[]() }
#

We chose n′ = 0 and thus

(E0,S0,P0, σ0,L0) = (∅, ∅, ∅, {P }#, ∅, ∅).

We define f : { 1 } → { 0 } such that f(1) = 0.

To show that Condition 3 holds, we have to show that P0 !P { state[]() }
#. Note that P0 = {P }#.

We choose the bijection such that P !P state[]().
By Definition 19, JP K=[] = JP, [], []K=[]. We see from Figure 18 that for every P we have that

state[]() ∈ prems(Rθ), for R ∈ JP, [], []K=[] and θ = ∅. This induces τ = ∅ and ρ = ∅. Since

P |[]τρ = P , we have P !P state[](), and therefore P0 !P S1.

Condition 1, Condition 2, Condition 4, Condition 5, and Condition 6 hold trivially.
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Inductive step. Assume the invariant holds for n − 1 ≥ 1. We have to show that the lemma holds for n
transitions, i. e., we assume that

∅
E1−→JP K S1

E2−→JP K . . .
En−→JP K Sn ∈ execmsr (JP K)

is normal and [E1, . . . , En] � α. Then it is to show that there is

(E0,S0,P0, σ0,L0)
F1−→ (E1,S1,P1, σ1,L1)

F2−→ . . .
Fn′+1
−→ (En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

fulfilling Conditions 1 to 7.

Assume now for the following argument, that there is no fact with the symbol Ack in Sn−1 \
# Sn.

This is the case for all cases except for the case where rule instance applied from Sn−1 to Sn has the

form ri = [statesemi
p (s̃),Ack(t1, t2)] −[]→ [statep·1(s̃)]. This case will require a similar, but different

argument, which we will present when we come to this case.

Since ∅
E1−→JP K · · ·

En−−→JP KSn ∈ execmsr (JP K) is normal and n ≥ 2, by Proposition 3, there exists

m < n such that Sm →∗
R Sn for R = { MDOUT, MDPUB, MDFRESH, MDAPPL, FRESH } and

∅
E1−→JP K · · ·

Em−−→JP KSm ∈ execmsr (JP K) is normal, too. This allows us to apply the induction hypothesis

on ∅
E1−→JP K · · ·

Em−−→JP KSm ∈ execmsr (JP K). Hence there is a monotonically increasing function from

Nm → Nn′ and an execution such that Conditions 1 to 7 hold. Let fp be this function and note that

n′ = fp(m).
In the following case distinction, we will (unless stated otherwise) extend the previous execution

by one step from (En′ ,Sn′ ,Pn′ , σn′ ,Ln′) to (En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1), and prove that Condi-

tions 1 to 6 hold for n′ + 1. By induction hypothesis, they hold for all i ≤ n′. We define a function

f : Nn → Nn′+1 as follows:

f(i) :=







fp(i) if i ∈ Nm

n′ if m < i < n

n′ + 1 if i = n

Since, Sm →∗
R Sn for R = { MDOUT, MDPUB, MDFRESH, MDAPPL, FRESH }, only Sn \# Sm

contains only Fr-facts and !K-facts, and Sm \# Sn contains only Fr-facts and Out-facts. Therefore, 3 and

4 hold for all i ≤ n− 1. Since Em+1, . . . , En−1 = ∅, Condition 1, 2,5 and 6 hold for all i ≤ n− 1.

Fix a bijection such that Pn′ !P Sm. We will abuse notation by writing P !P statep(t̃), if this

bijection maps P to statep(t̃).
We now proceed by case distinction over the last type of transition from Sn−1 to Sn. Let llinear =E

Sn−1 \ Sn and r =E Sn \ Sn−1. llinear can only contain linear facts, while r can contain linear as well

as persistent facts. The rule instance ri used to go from Sn−1 to Sn has the following form:

[llinear , lpersistent ] −[ En ]→ r

for some lpersistent ⊂
#
E Sn−1.

Note that llinear , En and r uniquely identify which rule in R ∈ JP, [], []K ri is an instance of.

If R is uniquely determined, we fix some ri ∈ ginsts(R).
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Case: R = INIT or R ∈ MD \ { MDIN }. In this case, ∅
E1−→ . . .

En−−→Sn is not a well-formed msr

execution.

Case: R = MDIN. Let t ∈ M such that ri = Rτ =!K(t) −[ K(t) ]→ In(t).
From the induction hypothesis, and since Em+1, . . . , En = ∅, we have that

En′ = { a ∈ FN | ProtoNonce(a) ∈E

⋃

1≤j≤n

Ej }.

From the induction hypothesis, and since no rule producing Out-facts is applied between step m and

step n, we have that

{xσn′ | x ∈ D(σn′) }# =E {Out(t) ∈ ∪k≤nSk }
#.

Let r̃ = { a ∈ FN | RepNonce(a) ∈E

⋃

1≤j≤n Fj }. Then, by Lemma 8 and Lemma 9, we have that

νEn′ , r̃.σn′ ⊢ t. Therefore, νEn′ .σn′ ⊢ t. This allows us to chose the following transition:

· · ·
Fn′

−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)
K(t)
−−−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with (En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)=(En′ ,Sn′ ,Pn′ , σn′ ,Ln′).
Conditions 1 to 7 hold trivially.

Case: ri = [statep(t̃)] −[]→ [] (for some p and t̃). By induction hypothesis, we have Pn′ !P Sm, and

thus, as previously established, Pn′ !P Sn−1. Let Q ∈# Pn′ such that Q !P statep(t̃). Let θ be a

grounding substitution for statep(x̃) ∈ prems(JP K=p) such that t̃ = x̃θ. Then θ induces a substitution τ

and a bijective renaming ρ for fresh, but not bound names (in Q) such that P |pτρ = Q (see Definition 22).

From the form of the rule R, and since Q = P |pτρ, we can deduce that Q = 0.

We therefore chose the following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)
K(t)
−−−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′ \# {0 }#, σn′+1 = σn′ and Ln′+1 = Ln′ .

We define f as on page 62. Therefore, Conditions 1 to 7 hold for i < n − 1. It is left to show that

Conditions 1 to 7 hold for n.

Condition 3 holds since Q ↔ statep(t̃), Pn′+1 = Pn′ \# {0 }# and Sn = Sn−1 \
# { statep(t̃) }

#.

Conditions 1, 2, 4 and 6 hold trivially.

Case: ri = [statep(t̃)] −[]→ [statep·1(t̃), statep·2(t̃)] (for some p and t̃). By induction hypothesis, we

have Pn′ !P Sm, and thus, as previously established, Pn′ !P Sn−1. Let Q ∈# Pn′ such that

Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈ prems(JP K=p) such that t̃ = x̃θ.

Then θ induces a substitution τ and a bijective renaming ρ for fresh, but not bound names (in Q) such

that P |pτρ = Q (see Definition 22).

From the form of the rule R, and since Q = P |pτρ, we can deduce that Q = Q1|Q2, for some

processes Q1 = P |p·1τρ and Q2 = P |p·2τρ.

We therefore chose the following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)
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with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′ \# {Q1 | Q2 }
# ∪# {Q1, Q2 }

#, σn′+1 = σn′ and

Ln′+1 = Ln′ .

We define f as on page 62. Therefore, Conditions 1 to 7 hold for i < n − 1. It is left to show that

Conditions 1 to 7 hold for n.

By definition of JP K and JP K=p, we have that Q1 ↔ statep·1(t̃) and Q2 ↔ statep·2(t̃). Therefore, and

since Q ↔ statep(t̃), Pn′+1 = Pn′ \# {Q1 | Q2 }
#∪# {Q1, Q2 }

#, and Sn = Sn−1 \
# { statept̃ }

#∪#

{ statep·1(t̃), statep·2(t̃) }
#, Condition 3 holds.

Conditions 1, 2, 4 and 6 hold trivially.

Case: ri = [!statep(t̃)] −[]→ [statep·1(t̃)] (for some p, t̃). By induction hypothesis, we have Pn′ !P

Sm, and thus, as previously established, Pn′ !P Sn−1. Let Q ∈# Pn′ such that Q !P statep(t̃).
Let θ be a grounding substitution for statep(x̃) ∈ prems(JP K=p) such that t̃ = x̃θ. Then θ induces a

substitution τ and a bijective renaming ρ for fresh, but not bound names (in Q) such that P |pτρ = Q
(see Definition 22).

From the form of the rule R, and since Q = P |pτρ, we can deduce that Q = !Q′for a process

Q′ = P |p·1τρ..

We therefore chose the following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′ ∪# {Q′ }#, σn′+1 = σn′ and Ln′+1 = Ln′ .

We define f as on page 62. Therefore, Conditions 1 to 7 hold for i < n − 1. It is left to show that

Conditions 1 to 7 hold for n.

By definition of JP K and JP K=p, we have that Q′
!P statep·1(t̃). Therefore, and since Pn′+1 =

Pn′ ∪# {Q′ }#, while Sn = Sn−1 ∪
# { statep·1(t̃) }

#, Condition 3 holds.

Conditions 1, 2, 4 and 6 hold trivially.

Case: ri = [statep(t̃),Fr(a
′ : fresh)] −[ ProtoNonce(a′ : fresh) ]→ [statep·1(t̃, a

′ : fresh)] (for some

p, t̃ and a′ ∈ FN ). By induction hypothesis, we have Pn′ !P Sm, and thus, as previously established,

Pn′ !P Sn−1. Let Q ∈# Pn′ such that Q !P statep(t̃). Let θ be a grounding substitution for

statep(x̃) ∈ prems(JP K=p) such that t̃ = x̃θ. Then θ induces a substitution τ and a bijective renaming

ρ for fresh, but not bound names (in Q) such that P |pτρ = Q (see Definition 22).

From the form of the rule R, and since Q = P |pτρ, we can deduce that Q = ν a; Q′ for a name

a ∈ FN and a process Q′ = P |p·1τρ.

By definition of execmsr , the fact Fr(a′) can only be produced once. Since this fact is linear it can only

be consumed once. Every rule in JP K that produces a label ProtoNonce(x) for some x consumes a fact

Fr(x). Therefore,

a′ /∈ { a ∈ FN | ProtoNonce(a) ∈E

⋃

1≤j≤n−1

Ej }.

The induction hypothesis allows us to conclude that a′ /∈ En′ ,i. e., a′ is fresh. We therefore chose the

following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)
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with En′+1 = En′ ∪ a′, Sn′+1 = Sn′ , Pn′+1 = Pn′ \# { ν a;Q′ }# ∪# {Q′{ a/a′ } }
#, σn′+1 = σn′ and

Ln′+1 = Ln′ .

We define f as on page 62. Therefore, Conditions 1 to 7 hold for i < n − 1. It is left to show that

Conditions 1 to 7 hold for n.

By definition of JP K, statep·1(x̃, a) ∈ prems(R′) for an R′ ∈ JP K=p·1. We can choose θ′ := θ[na 7→

a′] and have statep·1(t̃, a
′) = statep·1(x̃, a)θ

′. Since Q = P |pτρ for τ and ρ induced by θ, Q′{ a′/a } =

P |pτ
′ρ′ for τ ′ and ρ′ induced by θ′, i. e., τ ′ = τ and ρ′ = ρ[a 7→ a′]. Therefore, Q′{ a′/a } !P

statep·1(t̃, a
′).

Condition 3 holds, since furthermore ν a′; Q’ ↔ statep(t̃), Pn′+1 = Pn′ \# { ν a′; Q’ }# ∪#

{Q′{ a′/a } }
#, and Sn = Sn−1 \

# {Fr(a), statep(t̃) }
# ∪# statep·1(t̃, a : fresh).

Condition 1, holds since En′+1 = En′ ∪ a′, and En = ProtoNonce(a′). Condition 6 holds since

ProtoNonce(a) ∈ Fres .

Conditions 2 and 4 hold trivially.

Case: ri = [statep(t̃), In(t1)] −[ InEvent(t1) ]→ [statep·1(t̃),Out(t2)] (for some p, t̃ and t1, t2 ∈ M).

Since the msr execution is normal, we have that Sn−2
K(t1)
−−−→MDINSn−1. Since S0

E1−→JP K . . .
En−−→JP KSn is

normal, so is S0
E1−→JP K . . .

En−1
−−−→JP KSn−1, and therefore S0

E1−→JP K . . .
En−2
−−−→JP KSn−2. Hence there is an

m < n − 2 such S0
E1−→JP K . . .

Em−−→JP KSm is a normal trace and Sm →∗
R Sn−1 for R = { MDOUT,

MDPUB, MDFRESH, MDAPPL, FRESH }.

By induction hypothesis, we have Pn′ !P Sm, and thus, since { MDOUT, MDPUB, MDFRESH,
MDAPPL }and FRESH do not add or remove state-facts, Pn′ !P Sn−2. Let Q ∈# Pn′ such that

Q !P statep(t̃). Let θ be a grounding substitution for state(x̃) ∈ prems(JP K=p) such that t̃ = x̃θ.

Then θ induces a substitution τ and a bijective renaming ρ for fresh, but not bound names (in Q) such

that P |pτρ = Q (see Definition 22).

From the form of the rule R, and since Q = P |pτρ, we can deduce that Q = out (t1, t2);Q
′ for a

process Q′ = P |p·1τρ.

From the induction hypothesis, and since Em+1, . . . , En−2 = ∅, we have that

En′ = { a ∈ FN | ProtoNonce(a) ∈E

⋃

1≤j≤n−2

Ej }.

From the induction hypothesis, and since no rule producing Out-facts is applied between step m and

step n− 2, we have that

{xσn′ | x ∈ D(σn′) }# =E {Out(t) ∈ ∪k≤n−2Sk }
#. (3)

Let r̃ = { a : fresh | RepNonce(a) ∈
⋃

1≤j≤n−2 Fj }. Since !K(t1) ∈ prems(MDINσ) for σ(x) =

t1, we have !K(t1) ∈E Sn−2. By Lemma 8 and Lemma 9, we have νEn′ , r̃.σn′ ⊢ t. Therefore, νEn′ .σn′ ⊢
t. We chose the following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)
K(t1)
−−−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′ \#{ out (t1, t2);Q
′ }#∪#{Q′ }#, σn′+1 = σn′∪{ t2/x }

and Ln′+1 = Ln′ for a fresh x.
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We define f as follows:

f(i) :=







fp(i) if i ∈ Nm

n′ if m < i < n− 1

n′ + 1 if i = n

Therefore, Conditions 1 to 7 hold for i < n− 1. It is left to show that Conditions 1 to 7 hold for n.

Condition 6 holds since hide([E1, . . . , Em]) =E [F1, . . . , n
′], and [Em+1, . . . , En−1] =E [Fn′+1],

since En−1 = K(t1).
Condition 4 holds since σn′+1 = σn′ ∪ { t2/x }, and therefore:

{xσn′+1 | x ∈ D(σn′+1) }
# ={xσn′ | x ∈ D(σn′) }# ∪# { t2 }

#

=E{Out(t) ∈ ∪k≤n−2Sk }
# ∪# { t2 }

# (by (4))

={Out(t) ∈ ∪k≤nSk }
#

By definition of JP K and JP K=p, we have that Q′
!P statep·1(t̃). Therefore, and since we have

that out (t1, t2);Q
′
!P statep(t̃), Pn′+1 = Pn′ \# { out (t1, t2);Q

′ }# ∪# {Q′ }#, and Sn =E

Sn−1 \
# { In(a), statep(t̃) }

# ∪# { statep·1(t̃),Out(t2) }, Condition 3 holds.

Conditions Condition 1, 2 hold trivially.

Case: ri = [statep(t̃), In(〈t1, t2〉)] −[ InEvent(〈t1, t2〉) ]→ [statep·1(t̃, t̃
′)] (for some p, t̃, t̃′

and t1, t2 ∈ M). Since the msr execution is normal, we have that Sn−2
K(t1)
−−−→MDINSn−1. Since

S0
E1−→JP K . . .

En−−→JP KSn is normal, so is S0
E1−→JP K . . .

En−1
−−−→JP KSn−1, and therefore we have that

S0
E1−→JP K . . .

En−2
−−−→JP KSn−2. Hence there is an m < n − 2 such S0

E1−→JP K . . .
Em−−→JP KSm is a normal

trace and Sm →∗
R Sn−1 for R = { MDOUT, MDPUB, MDFRESH, MDAPPL, FRESH }.

By induction hypothesis, we have Pn′ !P Sm. Since { MDOUT, MDPUB, MDFRESH, MDAPPL },

FRESH and MDIN do not add or remove state-facts, Pn′ !P Sn−2. Let Q ∈# Pn′ such that Q !P

statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈ prems(JP K=p) such that t̃ =E x̃θ. Then

θ induces a substitution τ and a bijective renaming ρ for fresh, but not bound names (in Q) such that

P |pτρ = Q (see Definition 22). From the form of the rule R, and since Q = P |pτρ, we can deduce

that Q = in (t1, N);Q′, for N a term that is not necessarily ground, and a process Q′ = P |p·1τρ. Since

ri ∈E ginsts(R), we have that there is a substitution τ ′ such that Nτ ′ =E t2.

From the induction hypothesis, and since Em+1, . . . , En−2 = ∅, we have that

En′ = { a | ProtoNonce(a) ∈
⋃

1≤j≤n−2

Ej }.

From the induction hypothesis, and since no rule producing Out-facts is applied between step m and

step n− 2, we have that

{xσn′ | x ∈ D(σn′) }# = {Out(t) ∈ ∪k≤n−2Sk }
#. (4)
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Let r̃ = { a : fresh | RepNonce(a) ∈
⋃

1≤j≤n−2 Fj }. Since !K(〈t1, t2〉) ∈ prems(MDINσ) for

σ(x) = 〈t1, t2〉, we have !K(〈t1, t2〉)E ∈ Sn−2. By Lemma 8 and Lemma 9, we have νEn′ , r̃.σn′ ⊢
〈t1, t2〉. Therefore, νEn′ .σn′ ⊢ 〈t1, t2〉. Using DEQ and DAPPL with the function symbols fst and snd ,

we have νEn′ .σn′ ⊢ t1 and νEn′ .σn′ ⊢ t2. Therefore, we chose the following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)
K(t1)
−−−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′ \# { in (t1, N);Q′ }# ∪# {Q′τ ′ }#, σn′+1 = σn′ and

Ln′+1 = Ln′ .

We define f as follows:

f(i) :=







fp(i) if i ∈ Nm

n′ if m < i < n− 1

n′ + 1 if i = n

Therefore, Conditions 1 to 7 hold for i < n− 1. It is left to show that Conditions 1 to 7 hold for n.

Condition 6 holds since hide([E1, . . . , Em]) = [F1, . . . , n
′], and [Em+1, . . . , En−1] = [Fn′+1], since

En−1 = K(t1).
Let θ′ such that ri = θ′R. As established before, we have τ ′ such that Nτ ′ =E t2. By definition of

JP K=p, we have that statep·1(t̃, t̃
′) ∈E ginsts(P=p·1), and that θ′ = θ · τ ′. Since τ and ρ are induced by

θ, θ′ induces τ · τ ′ and the same ρ. We have that Q′τ ′ = (P |p·1τρ)τ
′ = P |pττ

′ρ and therefore Q′τ !P

statep·1(t̃, t̃
′). Thus, and since in (t1, N);Q′

!P statep(t̃), Pn′+1 = Pn′ \# { in (t1, N);Q′ }# ∪#

{Q′τ ′ }# and Sn = Sn−1 \
# { In(〈t1, t2〉), statep(t̃) }

# ∪# { statep·1(t̃, t̃
′) }#, Condition 3 holds.

Conditions Condition 1, 2 and 4 hold trivially.

Case: ri = [statesemi
p (s̃),Ack(t1, t2)] −[]→ [statep·1(s̃)] (for some p, t̃ and t1, t2 ∈ M). Since the msr

execution is normal, we have that there p,q,x̃, ỹ, ỹ′ such that:

Sn−3−→R1Sn−2−→R2Sn−1−→R3Sn , where:

– R1 = [statep(x̃)] → [Msg(t1, t2), state
semi
p (x̃)]

– R2 = [stateq(ỹ),Msg(t1, t2)] → [stateq·1(ỹ ∪ ỹ′),Ack(t1, t2)]
– R3 = [statesemi

p (x̃),Ack(t1, t2)] → [statep·1(x̃)]

.

Since in this case, there is a fact with symbol Ack removed from Sn−1 to Sn, we have to apply a

different argument to apply the induction hypothesis.

Since ∅
E1−→JP K · · ·

En−−→JP KSn ∈ execmsr (JP K) is normal, n ≥ 2, and t1, t2 ∈ M, Ack(t1, t2) ∈

(Sn−1\
#Sn), there exists m ≤ n−3 such that Sm →∗

R Sn−3 for R = { MDOUT, MDPUB, MDFRESH,

MDAPPL } ∪ FRESH and ∅
E1−→JP K · · ·

Em−−→JP KSm ∈ execmsr (JP K) is normal. This allows us to apply

the induction hypothesis on ∅
E1−→JP K · · ·

Em−−→JP KSm ∈ execmsr (JP K). Hence there is a monotonically

increasing function from Nm → Nn′ and an execution such that Conditions 1 to 7 hold. Let fp be this

function and note that n′ = fp(m).
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In the following case distinction, we extend the previous execution by one step from (En′ ,Sn′ ,Pn′ ,
σn′ ,Ln′) to (En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1), and prove that Conditions 1 to 6 hold for n′ + 1. By

induction hypothesis, they hold for all i ≤ n′. We define a function f : Nn → Nn′+1 as follows:

f(i) :=







fp(i) if i ∈ Nm

n′ if m < i ≤ n− 3

n′ + 1 if i = n

Since, Sm →∗
R Sn for R = { MDOUT, MDPUB, MDFRESH, MDAPPL, FRESH }, only Sn \# Sm

contains only Fr-facts and !K-facts, and Sm \# Sn contains only Fr-facts and Out-facts. Therefore, 3 and

4 hold for all i ≤ n− 3. Since Em+1, . . . , En−1 = ∅, Condition 1, 2, 5 and 6 hold for all i ≤ n− 3.

Fix a bijection such that Pn′ !P Sm. We will abuse notation by writing P !P statep(t̃), if this

bijection maps P to statep(t̃). Since { MDOUT, MDPUB, MDFRESH, MDAPPL } and FRESH do not

add or remove state-facts, Pn′ !P Sn−3. Let P ∈# Pn′ such that P !P statep(s̃). Let Q ∈# Pn′

such that Q !P stateq(t̃).
Let θ′ be a grounding substitution for stateq(ỹ) ∈ prems(JP K=q) such that t̃ =E ỹθ′. Then θ′ induces

a substitution τ ′ and a bijective renaming ρ′ for fresh, but not bound names (in Q) such that P |qτ
′ρ′ = Q

(see Definition 22).

From the form of the rules R1 and R3, and since P =E P |pτρ, for τ and ρ induced by the grounding

substitution for statep(x̃), we can deduce that P =E out t1, t2; P
′ for a process P ′ = P |p·1τρ. Similarly,

from the form of R2, we can deduce Q =E in (t1, N);Q′, for N a term that is not necessarily ground,

and a process Q′ = P |q·1τ
′ρ′. Since Sn−2−→R2Sn−1, we have that there is a substitution τ∗ such that

Nτ ′ρ′τ∗ =E t2 and ((ỹ ∪ vars(N)) \ ỹ)τ∗ =E t̃′, where t̃′ such that stateq·1(t̃, t̃
′) ∈ Sn−1 \

# Sn−2.

Given that Q =E in (t1, N);Q′ and P =E out t1, t2; P
′, have that Pn′ = P ′ ∪# { out t1, t2;P

′,
in (t′1, N);Q′ }# with t1 =E t′1 and t2 =E Nτ∗. Therefore, we chose the following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)
K(t1)
−−−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = P ′ ∪# {P ′, Q′ }#, σn′+1 = σn′ and Ln′+1 = Ln′ .

Conditions 1 to 7 hold for i ≤ n− 3. It is left to show that Conditions 1 to 7 hold for n.

As established before, we have τ∗ such that Nτ ′ρ′τ∗ =E t2. Let stateq(t̃, t̃
′) be the state variable

added to Sn−1. Then, ((ỹ ∪ vars(N)) \ ỹ)τ∗ = t̃′. By definition of JP K=q, we have that stateq·1(t̃, t̃
′) ∈

prems(ginsts(P=p·1)) for a grounding substitution θq·1 = θ′ · τ∗. Since τ ′ and ρ′ are induced by θ′,
θq·1 induces τ · τ ′ and the same ρ. We have that Q′τ ′ = (P |q·1τ

′ρ′)τ∗ = P |q·1ττ
′ρ and therefore

Q′τ∗ !P stateq·1(t̃, t̃
′). Similarly, we have P ′

!P stateq·1(s̃). We conclude that Condition 3 holds.

Conditions Condition 1, 2, 4, 5 and 6 hold trivially.

Case: ri = [statep(t̃)] −[ Predpr (t1, . . . , tl) ]→ [statep·1(t̃)] (for some p, t1, . . . , tl ∈ M and t̃ ). By

induction hypothesis, we have Pn′ !P Sm, and thus, as previously established, Pn′ !P Sn−1. Let

Q ∈# Pn′ such that Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈ prems(JP K=p)

such that t̃ = x̃θ. Then θ induces a substitution τ and a bijective renaming ρ for fresh, but not bound

names (in Q) such that P |pτρ = Q (see Definition 22).

From the form of the rule R, and since Q = P |pτρ, we can deduce that Q = if pr(t1, . . . , tl) then Q1 else Q2

for a process Q′ = P |p·1τρ.
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Since [E1, . . . , En] � α, and thus [E1, . . . , Em] � αpred , σpr
{
t1/x1 , . . . ,

tl /xl

}
is satisfied. We there-

fore chose the following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′ \# { if pr(t1, . . . , tl) then Q1else Q′
2 }

# ∪# {Q1 }
#,

σn′+1 = σn′ and Ln′+1 = Ln′ .

We define f as on page 62. Therefore, Conditions 1 to 7 hold for i < n − 1. It is left to show that

Conditions 1 to 7 hold for n.

By definition of JP K and JP K=p, we have that Q1 ↔ statep·1(t̃). Therefore, and since

if pr(t1, . . . , tl) then Q1 else Q2 ↔ statep(t̃)

we have that Pn′+1 = Pn′ \# { if pr(t1, . . . , tl) then Q1 else Q2 }
# ∪# {Q1 }

#, and Sn = Sn−1 \
#

{ statep(t̃) }
# ∪# { statep·1(t̃) }

#, Condition 3 holds. Conditions 1, 2, 4, 5 and 6 hold trivially.

Case: ri = [statep(t̃)] −[ Pred_notpr (t1, . . . , tl) ]→ [statep·1(t̃)] (for some p, t̃ and t1, . . . ,
tl ∈ M). In this case, the proof is almost the same as in the previous case, except that the predicate

¬σpr
{
t1/x1 , . . . ,

tl /xl

}
is satisfied, and thus σpr

{
t1/x1 , . . . ,

tl /xl

}
is not satisfied, Q2 is chosen instead

of Q1 and and Sn = Sn−1 \
# { statep(t̃) }

# ∪# { statep·2(t̃) }
#.

Case: ri = [statep(t̃)] −[ F,Event() ]→ [statep·1(t̃)] (for some p, t̃). This is a special case of the case

where ri = [statep(t̃), l] −[ a ]→ [statep·1(t̃), r] for l = r = ∅ and a = F .

Case: ri = [statep(t̃)] −[ Insert(t1, t2) ]→ [statep·1(t̃)] (for some p, t̃ and t1, t2 ∈ M). By induction

hypothesis, we have Pn′ !P Sm, and thus, as previously established, Pn′ !P Sn−1. Let Q ∈# Pn′

such that Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈ prems(JP K=p) such that

t̃ = x̃θ. Then θ induces a substitution τ and a bijective renaming ρ for fresh, but not bound names (in Q)

such that P |pτρ = Q (see Definition 22).

From the form of the rule R, and since Q = P |pτρ, we can deduce that Q = insert t1, t2;Q
′ for a

process Q′ = P |p·1τρ.

We therefore chose the following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with En′+1 = En′ , Sn′+1 = Sn′ [t1 7→ t2], Pn′+1 = Pn′ \# { insert t1, t2;Q
′ }# ∪# {Q′ }#, σn′+1 =

σn′ and Ln′+1 = Ln′ .

We define f as on page 62. Therefore, Conditions 1 to 7 hold for i < n − 1. It is left to show that

Conditions 1 to 7 hold for n.

By definition of JP K and JP K=p, we have that Q′ ↔ statep·1(t̃). Therefore, and since insert t1, t2;Q
′ ↔

statep(t̃), Pn′+1 = Pn′ \# { insert t1, t2;Q
′ }# ∪# {Q′ }#, and Sn = Sn−1 \

# { statep(t̃) }
# ∪#

{ statep·1(t̃) }
#, Condition 3 holds.

Condition 2 holds, since En = Insert(t1, t2) is the last element of the trace.

Conditions 1, 4, 5 and 6 hold trivially.
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Case: ri = [statep(t̃)] −[ Delete(t1, t2) ]→ [statep·1(t̃)] (for some p, t̃ and t1, t2 ∈ M). By induction

hypothesis, we have Pn′ !P Sm, and thus, as previously established, Pn′ !P Sn−1. Let Q ∈# Pn′

such that Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈ prems(JP K=p) such that

t̃ = x̃θ. Then θ induces a substitution τ and a bijective renaming ρ for fresh, but not bound names (in Q)

such that P |pτρ = Q (see Definition 22).

From the form of the rule R, and since Q = P |pτρ, we can deduce that Q = delete t1;Q
′ for a

process Q′ = P |p·1τρ.

We therefore chose the following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with En′+1 = En′ , Sn′+1 = Sn′ [t1 7→ t2], Pn′+1 = Pn′ \# { delete t1;Q
′ }# ∪# {Q′ }#, σn′+1 = σn′

and Ln′+1 = Ln′ .

We define f as on page 62. Therefore, Conditions 1 to 7 hold for i < n − 1. It is left to show that

Conditions 1 to 7 hold for n.

By definition of JP K and JP K=p, we have that Q′ ↔ statep·1(t̃). Therefore, and since delete t1;Q
′ ↔

statep(t̃), Pn′+1 = Pn′ \# { delete t1;Q
′ }# ∪# {Q′ }#, and Sn = Sn−1 \# { statep(t̃) }

# ∪#

{ statep·1(t̃) }
#, Condition 3 holds.

Condition 2 holds, since En = Delete(t1, t2) is the last element of the trace.

Conditions 1, 4, 5 and 6 hold trivially.

Case: ri = [statep(t̃)] −[ IsIn(t1, t2) ]→ [statep·1(t̃, t2)] (for some p, t̃ and t1, t2 ∈ M). By induction

hypothesis, we have Pn′ !P Sm, and thus, as previously established, Pn′ !P Sn−1. Let Q ∈# Pn′

such that Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈ prems(JP K=p) such that

t̃ = x̃θ. Then θ induces a substitution τ and a bijective renaming ρ for fresh, but not bound names (in Q)

such that P |pτρ = Q (see Definition 22).

From the form of the rule R, and since Q = P |pτρ, we can deduce that Q = lookup t1 as v
in Q1 else Q2 for some variable V , and two processes Q1 = P |p·1τρ and Q2 = P |p·2τρ.

Since [E1, . . . , En] � αin , there is an i < n such that Insert(t1, t2) ∈E Ei and there is no j such that

i < j < n and Delete(t1) ∈E Ej or and Insert(t1, t2) ∈E TEj . Since Em, . . . , En = ∅, we know that

i < m. Hence, by induction hypothesis, Sn′(t1) = t2. We therefore chose the following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′\#{ lookup t1 as v inQ1 elseQ2 }
#∪#{Q1{

t2/v } }
#,

σn′+1 = σn′ and Ln′+1 = Ln′ .

We define f as on page 62. Therefore, Conditions 1 to 7 hold for i < n − 1. It is left to show that

Conditions 1 to 7 hold for n.

By definition of JP K and JP K=p, we have that Q1{
v/t2 } ↔ statep·1(t̃, t2) (for τ ′ = τ [v 7→ t2]

and ρ′ = ρ). Therefore, and since lookup t1 as v in Q1 else Q2 ↔ statep(t̃), Pn′+1 = Pn′ \#

{ lookup t1 as v inQ1 elseQ2 }
#∪#{Q′ }#, and Sn = §n−1\

#{ statep(t̃) }
#∪#{ statep·1(t̃, t2) }

#,

Condition 3 holds.

Conditions 1, 2, 4, 5 and 6 hold trivially.
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Case: ri = [statep(t̃)] −[ IsNotSet(t1) ]→ [statep·2(t̃)] (for some p, t̃ and t1 ∈ M). By induction

hypothesis, we have Pn′ !P Sm, and thus, as previously established, Pn′ !P Sn−1. Let Q ∈# Pn′

such that Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈ prems(JP K=p) such that

t̃ = x̃θ. Then θ induces a substitution τ and a bijective renaming ρ for fresh, but not bound names (in Q)

such that P |pτρ = Q (see Definition 22).

From the form of the rule R, and since Q = P |pτρ, we can deduce that Q = lookup t1 as v
in Q1 else Q2 for a variable v and two processes Q1 = P |p·1τρ and Q2 = P |p·2τρ.

Since [E1, . . . , En] � αnotin , there is no i < n such that Insert(t1, t2) ∈E Ei and there is no j such

that i < j < n and Delete(t1) ∈E Ej or and Insert(t1, t2) ∈E TEj . Since Em, . . . , En = ∅, we

know that holds j < m. Hence, by induction hypothesis, Sn′(t1) is undefined. We therefore chose the

following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′ \# { lookup t1 as v in Q1 else Q2 }
# ∪# {Q2 }

#,

σn′+1 = σn′ and Ln′+1 = Ln′ .

We define f as on page 62. Therefore, Conditions 1 to 7 hold for i < n − 1. It is left to show that

Conditions 1 to 7 hold for n.

By definition of JP K and JP K=p, we have that Q2 ↔ statep·2(t̃). Therefore, and since lookup t1 as v

in Q1 else Q2 ↔ statep(t̃), Pn′+1 = Pn′ \# { lookup t1 as v in Q1 else Q2 }
# ∪# {Q2 }

#, and

Sn = §n−1 \
# { statep(t̃) }

# ∪# { statep·2(t̃) }
#, Condition 3 holds.

Conditions 1, 2, 4, 5 and 6 hold trivially.

Case: ri = [statep(t̃),Fr(lock l)] −[ Lock(lock l, t) ]→ [statep·1(t̃, lock l)] (for some p, t̃, lock l ∈ FN

and t ∈ M). By induction hypothesis, we have Pn′ !P Sm, and thus, as previously established,

Pn′ !P Sn−1. Let Q ∈# Pn′ such that Q !P statep(t̃). Let θ be a grounding substitution for

statep(x̃) ∈ prems(JP K=p) such that t̃ = x̃θ. Then θ induces a substitution τ and a bijective renaming

ρ for fresh, but not bound names (in Q) such that P |pτρ = Q (see Definition 22).

From the form of the rule R, and since Q = P |pτρ, we can deduce that Q = lockl t; Q′ for

Q′ = P |p·1τρ.

Since [E1, . . . , En] � αlock , for every i < n such that Lock(lp, t) ∈E Ei, there a j such that i < j < n
and Unlock(lp, t) ∈E Ej , and in between i and j, there is no lock or unlock, i. e., for all k such that

i < k < j, and all li, Lock(li, t) /∈E Ek and Unlock(li, t) /∈E Ek.

Since Em, . . . , En = ∅, we know that this holds for i < m and j < m as well. By induction hypothe-

sis, Condition 5, this implies that t 6∈E Ln′ . We therefore chose the following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′ \# { lockl t; Q′ }# ∪# {Q′ }#, σn′+1 = σn′ and

Ln′+1 = Ln′ ∪ { t }.

We define f as on page 62. Therefore, Conditions 1 to 7 hold for i < n − 1. It is left to show that

Conditions 1 to 7 hold for n.

By definition of JP K and JP K=p, we have that Q′ ↔ statep·1(t̃). Therefore, and since lockl t; Q′ ↔

statep(t̃), Pn′+1 = Pn′ \# { lockl t; Q′ }#∪# {Q′ }#, and Sn = §n−1 \
# { statep(t̃),Fr(lock l) }

#∪#

{ statep·1(t̃, lock l) }
#, Condition 3 holds.
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Condition 5 holds since En = {Lock(lock l, t) }
# is added to the end of the trace.

Conditions 1, 2, 4 and 6 hold trivially.

Case: ri = [statep(t̃)] −[ Unlock(nl, t) ]→ [statep·1(t̃)] (for some p, t̃, nl ∈ FN and t ∈ M). By

induction hypothesis, we have Pn′ !P Sm, and thus, as previously established, Pn′ !P Sn−1. Let

Q ∈# Pn′ such that Q !P statep(t̃). Let θ be a grounding substitution for statep(x̃) ∈ prems(JP K=p)

such that t̃ = x̃θ. Then θ induces a substitution τ and a bijective renaming ρ for fresh, but not bound

names (in Q) such that P |pτρ = Q (see Definition 22).

From the form of the rule R, and since Q = P |pτρ, we can deduce that Q = unlockl t; Q′ for

Q′ = P |p·1τρ.

We therefore chose the following transition:

· · ·
F ′

n−−→(En′ ,Sn′ ,Pn′ , σn′ ,Ln′)−→(En′+1,Sn′+1,Pn′+1, σn′+1,Ln′+1)

with En′+1 = En′ , Sn′+1 = Sn′ , Pn′+1 = Pn′ \# { unlockl t; Q′ }# ∪# {Q′ }#, σn′+1 = σn′ and

Ln′+1 = Ln′ \ { t }.

We define f as on page 62. Therefore, Conditions 1 to 7 hold for i < n − 1. It is left to show that

Conditions 1 to 7 hold for n.

By definition of JP K and JP K=p, we have that Q′ ↔ statep·1(t̃). Therefore, and since unlockl t; Q′ ↔

statep(t̃), Pn′+1 = Pn′ \# { unlockl t; Q′ }# ∪# {Q′ }#, and Sn = §n−1 \# { statep(t̃) }
# ∪#

{ statep·1(t̃) }
#, Condition 3 holds.

We show that Condition 5 holds for Ln′+1 = Ln′ \ { t }: For all t′ 6=E t, t′ ∈E Ln′ ⇔ t′ ∈E Ln′+1 by

induction hypothesis. If t 6∈E Ln′ , then ∀j ≤ m,u.Lock(u, t) ∈E Ej → ∃j < k ≤ n.Unlock(u, t) ∈E

Ek. Since we have Em, . . . , En−1 = ∅ and En = {Unlock(nl, t) }
#, we can strengthen this to ∀j ≤

n, u.Lock(u, t) ∈E Ej → ∃j < k ≤ n.Unlock(u, t) ∈E Ek, which means that the condition holds in

this case. If t ∈E Ln′ , then ∃j ≤ n, u.Lock(u, t) ∈E Ej ∧ ∀j < k ≤ n.Unlock(u, t) 6∈E Ek and since

Em, . . . , En−1 = ∅ and En = {Unlock(nl, t) }
#, a contradiction to Condition 5 would constitute of j

and u 6=E nl such that Lock(u, t) ∈E Ej and ∀j < k ≤ n.Unlock(u, t) 6∈E Ek.

We will show that this leads to a contradiction with [E1, . . . , En] � α. Fix j and u. By definition of

JP K and well-formedness of P , there is a pl that is a prefix of p such that P |ql = locklt;Q′′ for the same

annotation l and parameter t. The form of the translation guarantees that if statep(t̃) ∈ Sn, then for some

t̃′ there is i ≤ n such that statep′(t̃
′) ∈ Si, if p′ is a prefix of p. We therefore have that there is i < n

such that Ei =E {Lock(nl, t) }
#. We proceed by case distinction:

Case 1: j < i (see Figure 24). Since ∀j < k ≤ n.Unlock(u, t) 6∈E Ek, [E1, . . . , En] 6� αlock .

j

Lock(u, t)

i

Lock(nl, t)

n

Unlock(nl, t)

Fig. 24. Visualisation of Case 1.

Case 2: i < j (see Figure 25). By definition of P , there is no parallel and no replication between pl
and p. Note that any rule in JP K that produces a state named stateq for a non-empty q is such that it

requires a fact with name stateq′ for q = q′ · 1 or q = q′ · 2 (in case of the translation of out, it might

require statesemi

q′ , which in turn requires stateq′). Therefore, there cannot be a second k 6= n such that
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i

Lock(nl, t)

j

Lock(u, t)

n

Unlock(nl, t)

Fig. 25. Visualisation of Case 2.

Unlock(nl, t) ∈E Ek (since nl was added in a Fr-fact in to Si). This means in particular that there is not

k such that i < k < n and Unlock(nl, t) ∈E Ek. Therefore, [E1, . . . , En] 6� αlock .

Conditions 1, 2, 4 and 6 hold trivially.

B.4. Proof of Lemma 1: putting the pieces together

Lemma 1. Let P be a well-formed ground process. We have that

tracespi(P ) = hide(filter(tracesmsr (JP K))).

Proof. From Lemma 10, we can conclude that

tracespi(P ) ⊆ { hide(t)|tr ∈ tracesmsr (JP K) and tr � α } = hide(filter(tracesmsr (JP K))).

From Lemma 11, we have that

hide(filter(tracesmsr (JP K))) = { tr ∈ hide(filter(tracesmsr (JP K))) | tr is normal }.

From Lemma 12, we can conclude that

{ tr ∈ hide(filter(tracesmsr (JP K))) | tr is normal } ⊆ tracespi(P ),

and hence

hide(filter(tracesmsr (JP K))) ⊆ tracespi(P ).




