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Automated and Interactive Lesion Detection and

Segmentation in Uterine Cervix Images
Amir Alush, Hayit Greenspan, Jacob Goldberger

Abstract—This paper presents a procedure for automatic
extraction and segmentation of a class-specific object (or region)
by learning class-specific boundaries. We describe and evaluate
the method with a specific focus on the detection of lesion regions
in uterine cervix images. The watershed segmentation map of the
input image is modeled using an MRF in which watershed regions
correspond to binary random variables indicating whether the
region is part of the lesion tissue or not. The local pairwise
factors on the arcs of the watershed map indicate whether the
arc is part of the object boundary. The factors are based on
supervised learning of a visual word distribution. The final lesion
region segmentation is obtained using a loopy belief propagation
applied to the watershed arc-level MRF. Experimental results on
real data show state-of-the-art segmentation results on this very
challenging task that if necessary, can be interactively enhanced.

Index Terms—MRF, watershed map, uterine cervix, cervi-
grams, visual words, lesion segmentation, lesion detection.

I. INTRODUCTION

Cervical cancer, one of the most common cancers affecting

women worldwide and the most common in developing coun-

tries (Parkin et al. [28], Eluf-Neto and Nascimento [7]) can

be cured in almost all patients, if detected and treated in time.

However, the incidence of cervical cancer and mortality rates

remain high in resource-poor regions, where high quality Pap

(cytology) screening programs often cannot be sustained be-

cause of inherent complexity and cost. An alternative method

of cervical cancer screening, known as visual inspection with

acetic acid, is based on the color change of cervix tissues

when exposed to acetic acid. This inexpensive method helps

to detect abnormal cells that turn white (acetowhite) following

the application of 3%-5% acetic acid (Wright [19]). An

analogous photographic method that permits archiving and

study is cervicography. Cervicography was first described by

Stafl in 1981 [39]. In this method the uterine cervix is pho-

tographed with a special fixed-focus 35mm camera equipped

with a ring flash used to provide enhanced illumination of the

target region. Fig. 1 shows an example of a cervicographic

image. During the image acquisition process the photographer

manually moves the camera back and forth to get the image

in focus. The fixed focus of the camera preserves a constant
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distance between the camera and the cervix, which makes it

possible to have comparable pictures of the cervices of all

patients and to measure areas within the cervix. Immediately

before the pictures are taken the cervix is washed with 3%-

5% acetic acid for one minute. The acetic acid facilitates the

removal of any remaining mucus and highlights any abnormal

epithelium.

Later, an expert in cervical pathology projects these pictures

onto a screen to obtain a magnified image of the cervix

and inspects the infected or precancerous epithelium. Visual

methods like cervicography may be used prior to colposcopic

and/or Pap smear screening if available on patients with

indicators of concern. If required the patient is then referred

for medical treatment.

The National Cancer Institute (NCI) and the National Insti-

tutes of Health (NIH) have collected a substantial amount of

biomedical information related to the occurrence and evolution

of uterine cervical cancer in longitudinal multi-year studies

carried out in Guanacaste, Costa Rica, and in the United States.

100,000 cervicographic images in the form of 35mm color

slides, as well as medical classifications for the cervigrams

into diagnostic categories were collected (Herrero et al. [14],

[15], Schiffman and Castle [35]).

A major long-term objective is to develop a unique Web-

accessible database of digitized cervix images to investigate

the role of human papillomavirus (HPV) that infects the

epidermis and mucous membranes of humans in the devel-

opment of cervical cancer and its intraepithelial precursor

lesions in women [25]. The cervigrams in the NIH archive

are unlabeled and have no attached annotation that describes

their visual features. Manual extraction of important regions

within the cervix by medical experts is not feasible due to the

enormous number of images in the archive. Hence automated

analysis of the cervigram images by computerized tools is

highly desirable. Automatically extracting visual features from

different regions in the cervigrams, e.g. size, color, texture,

shape and relative position within the cervix can be used for

cervical cancer research, to assist in the training of experts

and to enable future computerized cancer screening.

This study focuses on the extraction and segmentation of

a specific tissue within the cervix, known as the acetowhite

tissue (AW). The AW is a major indicator of cervical cancer.

A. Challenges to automated cervigram analysis

A typical cervigram is presented in Fig. 1. The cervix region,

which is the main region of interest within the cervigram, is

located in the central part of the image with the surrounding
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vaginal walls and parts of the clinical equipment, such as the

speculum or swab intruding in the image. A dark surrounding

frame can be seen containing lines and text that are overlaid

on the image at the time of the photographic development. The

cervix region is defined by the cervix boundary. Automated

detection of the cervix boundary defines the region of medical

and anatomical interest within the cervigram and enables

further analysis to focus on the cervix region itself.

The main tissues of interest as defined by NCI experts are:

1) The Squamous Epithelium (SE) - the normal cervix tissue.

It appears as a homogenous pinkish-tan region and consists of

multiple layers of cells (Sellors and Sankaranarayanan [37]);

2) The Columnar Epithelium (CE), which everts out of the Os

(the opening of the cervix) when the cervix grows rapidly and

enlarges under the influence of estrogen (after menarche and

during pregnancy). This tissue is characterized by its bright red

color and a rough textured appearance. The CE region is not

always visible within a cervigram image; 3) The acetowhite
(AW) region, the main focus of this work, is epithelium that

turns white and is visible for a period of time following the

application of acetic acid and is a major visual indicator of

cervical cancer. Invasive squamous-cell cervical cancers are

preceded by a long phase of preinvasive disease, collectively

referred to as cervical intraepithelial neoplasia (CIN). CIN

may be categorized into grades 1, 2 and 3 depending upon

the proportion of the thickness of the epithelium showing

mature and differentiated cells (Reid and Scalzi [34]). Areas

of CIN in the AW region undergo maximal coagulation due to

their higher content of nuclear protein and prevent light from

passing through the epithelium. As a result, the subepithelial

vessel pattern is obliterated and less easy to see and the

epithelium appears white. This reaction produces a noticeable

effect compared to the normal pinkish color of the surrounding

normal squamous epithelium.

Several other regions may appear within the cervix image

including mucus, blood stains and Squamous Metaplasia (SM).

The SM refers to the physiological replacement of the everted

columnar epithelium on the external cervix by a newly formed

squamous epithelium. This healthy tissue may appear as white

regions that can be confused with AW lesions. The region of

the cervix where squamous metaplasia occurs is referred to as

the transformation zone.

The automated extraction of the AW region is a very

complex and challenging task due to a variety of factors:

Several artifacts are generated during the acquisition process.

Due to the powerful flash of the camera and the convex shape

of the cervix the image tends to be brighter around the cervix

center and the illumination decreases gradually towards the

cervix boundary. This results in an inhomogeneous appearance

within and across the tissues, which automatic segmentation

algorithms fail to differentiate correctly. In particular, bright

regions may be misclassified as AW lesions, whereas AW le-

sions located in the shaded regions are not detected. Additional

artifacts that interfere with tissue segmentation are known as

specular reflections (SR). These artifacts are seen as small

and bright regions on the cervix surface, which are generated

during the image acquisition process due to the presence of

fluids (see Fig. 1). Another factor is that fact that the cervigram

Fig. 1. A typical cervigram: marked are the cervix region, the columnar
epithelium (CE), the squamous epithelium (SE), the acetowhite (AW), the
entrance to the endocervical canal (Os) and the specular reflection artifacts.

archive varies considerably in that the image acquisition setup

is not constant. The viewing angle varies significantly across

images causing the cervix region to differ in intensity and

shape from one image to another. In addition, the physical

scene that is imaged has intrinsic variability. For example, in

different patients the cervix is not the same size and additional

non-cervical tissues or medical instruments may be present.

One key difficulty is the variability of cervix tissue content

within the images, as not all defined tissue types are present

in each cervigram image. Fig. 2 shows examples of cervigrams

that illustrate the content variability of the images within the

archive. Note the variability in tissue color, texture, cervix size

and relative position of the cervix in the image.

Due to the large variation in image appearance in the

archive, features such as intensity, color and texture of a

certain tissue type in one image often overlap with that of

a different tissue type in another image. This makes reliable

tissue segmentation in a large number of images a very

challenging problem. In addition, intensity modeling within

a single image is problematic: Although AW lesions tend to

be brighter than their immediate surroundings they are not

necessarily the brighter area in the image. As a result, it has

been concluded that the features mentioned above, also known

as region-based features, are not significant enough for the AW

lesion segmentation task [12].

To overcome this problem our detection method is based

on boundary cues. Relevant boundaries are learned in a super-

vised manner using a training set of labeled images where the

object’s boundaries are manually drawn. The ability to detect

an object using only its boundaries can be highly advantageous

when it is impossible to differentiate between object regions

and non-object regions as in the case of cervigram images.

Our approach is based on three components. The first is the

watershed transform that converts the image into an edge map

that contains the lesion boundary. The second is a feature-free

boundary representation method that is based on visual words

and a visual dictionary. The third is viewing the watershed

map as a Markov Random Field (MRF) [20] in which each

watershed superpixel corresponds to a binary random variable
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Fig. 2. Examples of cervigrams images in our dataset illustrating the existing variability among the AW regions.

indicating whether the superpixel is part of the lesion. The

final segmentation is obtained by applying a belief-propagation

algorithm on the loopy MRF. The methodology presented is

fully automatic. If desired, user input can be incorporated in

an interactive mode, with user cues incorporated within the

MRF representation.

The organization of this article is as follows. Section II

provides an overview of related work. Section III describes

the parameter learning phase based on labeled images. Section

IV presents an overview of the object detection/segmentation

algorithm. The experimental validation is described in Section

V. In Section VI the algorithm is extended to interactively

incorporate user markers.

II. RELATED WORK

A. Cervigrams: related previous work

Previous work on the analysis of cervigram images has dealt

primarily with automated landmark extraction, including the

extraction of the cervix boundary, detection of the Os, and

detection (and elimination) of specular reflections [43] [12].

The task of tissue segmentation, and in particular, the clinically

important task of AW lesion detection and segmentation,

remains, as yet, unsolved. Initial studies can be found on the

analysis of individual cervigram images, or higher-resolution

colposcopic images. Most of these studies are semi-automated,

requiring the user to mark regions of interest on various cervix

tissues (Cristoforoni et al. [5], Ji et al. [18], Pogue et al.
[30]). Features such as color [30] texture [18] and shape

[5] are then extracted. Based on these features the manually

extracted regions are associated with different cervix tissues

using various classifiers, such as neural networks [5] or the

minimum distance classifier [18]. Other works have started to

address the task of fully-automated colposcopic image analysis

(Lange [23], Van-Raad et al. [32]). The data in these works

were collected under controlled illumination conditions; thus

variations in illumination are minimal.

Preliminary attempts at segmentation of the cervigrams in

the NIH database were recently reported. Works todate have

mainly focused on one or two specific analysis tasks (e.g.

specularity removal and region of interest detection [11], [41]).

Initial results on AW segmentation, which is the focus of this

work have been reported by a few groups: Srinivasan et al.

[38] used texture features to represent vascular patterns inside

the acetowhite regions. In [11] textured vs smooth regions

in the image are separated by using a multi-scale texture-

contrast feature per pixel, followed by clustering of the texture

feature. Following the textured region separation, the smooth

regions are modeled as a mixture of four Gaussians in the CIE-

Lab color feature space. The cluster with the highest mean

intensity is identified as a candidate AW lesion cluster. The

methodology suggested is preliminary and is shown not to

be robust to the large inherent variability in the data. Due

to illumination effects the AW and SE tissues often possess

very similar colors, and AW lesions are wrongly detected.

Furthermore, AW lesions located in shaded areas of the image

are not detected at all. In [16], SVM is used to perform

color-based tissue classification in order to segment different

tissue types, in particular focusing on the AW region. The

segmentation performance is optimized with respect to the

color space and granularity, with color spaces including RGB,

HSV and CIE-Lab. Varying granularity in the representation

includes individual pixel level colors, and colors of clustered

regions (using mean-shift clustering). The work focuses on

a comparison between the color space representations, and

the granularity level, in terms of training time and memory

usage, as well as defining an appropriate SVM kernel for the

task. Qualitative segmentation results on a small image set are

shown. The authors conclude that although SVM performs

better than other classifiers used, the performance does not

scale to large training sets. Large image sets are therefore not

used and no quantitative segmentation results are provided.

The studies to date usually concentrate on one specific

analysis task (e.g. single landmark or tissue) and report initial

(qualitative) results with a small number of image examples.

The large tissue overlap in feature space has hindered such

attempts. Moreover, pixel based classification leads to numer-
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(a) (b) (c) (d)

Fig. 3. Example of the watershed transform when applied to a cervigram image: (a) Original image; (b) Color gradients image; (b) Superpixels boundaries
imposed on original image; (d) Expert’s AW marking superimposed on superpixels map.

ous fragmented regions, many of which are false-positives.

In the current study, we shift from region-based classification

approaches to a boundary-based approach. The boundary is

an important element in human expert lesion segmentation

and can provide a great amount of unexplored information.

In particular it can supply strong evidence for the presence of

a lesion region, in particular in cases in which the lesion tissue

characteristics and surrounding tissue characteristics are non-

distinct (i.e. brightness, color and texture cues show consider-

able overlap). This is the case in the AW lesion segmentation

task studied here. It is also a common underlying difficulty

in other challenging tasks involving tissue segmentation and

lesion segmentation in general.

B. Object detection using boundary knowledge- related work

A substantial body of work in general scenery images

uses boundaries for object detection [36], [17], [9], [2]. A

boundary is a contour in the image plane which represents

a change between separate surfaces or objects. Recent ap-

proaches [6], [26], [21] have developed a boundary learning

paradigm applied to large natural image datasets in which

the boundaries are manually annotated. Salient boundaries are

classified against a background by combining local gradient

cues, and a probabilistic edge map is produced. The approach

described by [31], [1] is perhaps the most relevant to our study.

It deals with the task of detecting object boundaries by first

selecting candidate boundary pixels extracted by a standard

edge detector (e.g. Canny [4]) and then applying the OBJ CUT

segmentation algorithm [31], [22].

One promising approach to object segmentation is to use

class specific object boundary learning with a higher level

of knowledge of the image; i.e. an over-segmentation map.

The watershed transform [40], a well established technique

that partitions images into homogenous regions, can serve as

a suitable platform for such a task [24], [10], [27]. A vast

amount of work exists in the area of image segmentation and

object detection using the watershed transform e.g. [13], [3],

[10]. In the current work we use watershed segmentation for

specific object boundary detection because it not only reduces

the variability of negative examples, but can also lessen the

computational cost considerably.

III. LEARNING A BOUNDARY PROBABILISTIC MODEL

In this section we describe the pre-processing steps which

translate an image into a probabilistic graphical model. We

also describe the learning process of the parameters of the

graphical model based on a training set of labeled images. We

start the object boundary search from the watershed edge map.

The next step is representing the edge pixels using patches

centered at the pixel. In the last training step we use labeled

data to build visual word histograms for edge pixels that

correspond to the objects’ contour, and for edge pixels in the

complementary group. These pre-processing and training steps

are described in detail below. Note that throughout this paper

we refer to the acetowhite lesion as an “object”, since we

believe that the framework described here can also be adapted

to the task of general object detection, even though this is

beyond the scope of this work.

A. Extracting watershed edge maps

Each image is first over-segmented into superpixels by

applying the watershed transform [40]. The watershed trans-

form is a morphological segmentation tool that is applied to

gray-scale images to solve a variety of image segmentation

problems. The transform can be viewed as the flooding of

a topographic surface (the input image), that extends from

its regional minima while waters from different sources are

prevented from merging. The final result is a set of seg-

ments or superpixels, separated by crest lines, or watershed

arcs. The superpixels possess coherent region features and

their boundaries are perpendicular to the image gradients.

The underlying assumption is that the most important object

boundaries are captured in the watershed edge map [24], [27].

This property of the watershed transform is crucial; otherwise

attempts to achieve accurate object segmentation using its

boundaries would be meaningless. The proposed framework

thus considers only watershed edge pixels as the object bound-

ary candidates. A classification scheme determines which of

the candidate pixels are in fact located on the object boundary.

The use of watershed edge pixels as candidates reduces
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considerably both the variability of negative examples and the

computational burden.

The watershed algorithm is illustrated in Fig. 3. Fig. 3(b)

shows the normalized gradient map of the cervigram shown

in Fig. 3(a). Fig. 3(c) presents the boundaries of the generated

superpixels, imposed on the original cervigram. Note that

the watershed edges do not cross any important tissues. In

particular, there is an overlap with the expert-marked AW

boundaries as shown in Fig. 3(d).

B. Building a visual word dictionary

The next step is feature extraction for each pixel in the

watershed edge map. We apply a pixel-level variant of the

“visual words” paradigm on the watershed edge pixels, to

obtain a probabilistic model (histogram) for boundary and non-

boundary pixels. The “visual words” paradigm is a recently

introduced concept that has been successfully applied to

scenery image classification tasks (see e.g. [8]). It is based

on transforming the image into a set of visual words and

representing the image (or objects in the image) using the

statistics of the occurrence of each word as feature vectors.

These visual words are image patches (small sub images) that

are clustered to form a dictionary consisting of a small set

of representative patches. This approach eliminates the need

for explicitly specified boundary detection features. Instead,

the features are implicitly found as part of the learning step

composed of building the visual dictionary.

The process is done by extracting patches of size n × n

for each pixel on the watershed edge map. The patches are

rotated such that the watershed edge line passes horizontally

through the patch’s center. This makes the features rotationally

invariant up to a flip factor [31]. The patches are then repre-

sented as one dimensional vectors of size n2. Each vector is

normalized by subtracting its mean. The normalization step

further increases the algorithm’s robustness by making the

features invariant to global gray-level differences.

We collect these edge patches from a set of training images.

To reduce both the algorithm’s computational complexity and

the level of noise, we apply a principal component analysis

procedure (PCA) to reduce the dimensionality of the data. The

K-means algorithm clusters the data vectors in the projected

space into K groups. Finally, the centroid of each group

is taken to form a dictionary with K visual words. These

visual words can be viewed as the average patches, hopefully

representing all possible watershed edge patches in the training

dataset. Note that this dictionary learning step is conducted

in an unsupervised mode without any reference to the label

(boundary/non-boundary) of each patch. A sample dictionary

containing 100 visual words based on ten images is shown in

Fig. 4. In the visual word approach, patches are assigned to the

nearest cluster center, the residuals are discarded. Preserving

all patches and using continuous measures is more information

preserving than building a discrete dictionary. One of the

interesting discoveries in this domain, as shown in large

scale general object recognition, is that a discretized patch

representation (binning) is sufficient [8], and the correspond-

ing computational efficiency is unbeatable. Thus, in medical

Fig. 4. A sample dictionary with 100 visual words representing all possible
watershed edge patches, in the training dataset.

imaging in general, and in this paper, we follow the current

state-of-the-art and utilize discrete distribution to model the

patch behavior. The benefit of binning is the ability to utilize

a discrete distribution (histogram) that can be easily trained

and used. Without binning we have to deal with multimodal

continuous distributions that are much more complicated for

statistical learning and inference.

C. Building boundary histograms

Based on the labeled training set, the object’ boundary and

non-object-boundary edge pixels are statistically modeled as

frequency occurrence histograms of the dictionary words. We

take the same patches that were used to compile the visual

dictionary. We assign each patch to the nearest dictionary

word (using the Euclidean distance). Since in the training

images the object boundaries are given, we have a binary label

(boundary/non-boundary) for each patch on the watershed

edge map. If the object boundary does not fall exactly on

the watershed edge map we label the nearest edge map as a

boundary pixel. We next build two word frequency histograms,

one for boundary pixels and one for non-boundary pixels. The

first histogram represents the number of times each word from

the dictionary is used in watershed edge pixels that are part

of the object boundary and the second histogram is similarly

defined for non-object boundary. Normalizing the histograms

we can view them as discrete distributions pboundary(·) and

pnon-boundary(·) of the visual words in the object boundary

and non-boundary watershed pixels. As a result of the training

step, we obtain two probabilistic models for pixels on the

watershed edge map. The first model describes the statistics

of boundary pixels and the second one describes the statistics

of non-boundary pixels. The training step is summarized in

the following algorithm box.

Building Boundary and Non-Boundary Histograms:

1) Apply the watershed algorithm on the training im-

ages to obtain superpixels edge maps.

2) Extract a patch for each watershed edge pixel, rotate

it and normalize it.

3) Apply the PCA algorithm on the patch vectors.

4) Apply the K-means clustering algorithm on the PCA

projected space to obtain a visual dictionary and

assign each edge pixel to a dictionary word.

5) Build a word frequency histogram for boundary

pixels and for non-boundary pixels.
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(a) (b) (c)

Fig. 5. MRF construction (2 examples): (a) Input image cropped to region of interest. (b) The watershed map overlaid on image. (c) The arc-level MRF.
Ground truth lesion delineation shown in gray.

IV. THE LESION SEGMENTATION ALGORITHM

In the previous step we described the parameter learning

phase which was based on a training set of labeled images. In

this section we describe the object (lesion) detection algorithm

when applied to a test image.

A. A probabilistic arc-level boundary in a new image

Given a new image, our goal is to detect and segment the

object of interest. First, we utilize the watershed transform

to divide the image into superpixels. Next, each one of the

watershed edge pixels is translated into one of the visual words

from the dictionary that was learned in the training step. This

is done by rotating the patch vector centered at the edge pixel,

normalizing it, and applying the PCA transformation that was

learned in the training step. Then, every transformed vector is

assigned to its nearest word from the dictionary (based on the

Euclidean distance).

Given an arbitrary edge pixel, the probability that this pixel

was taken from an object boundary can be computed using

Bayes’ rule:

p(boundary|u) =
pboundary(u)

pboundary(u) + pnon-boundary(u)
(1)

where u is a word index of the patch centered at the given

pixel. Hence, we can compute the posterior probability for

each patch to be on the object boundary. The result is a

boundary/no-boundary separate decision for each watershed

edge pixel.

However, one of our main claims is that being a part of a

boundary is not an attribute of a single pixel. Assuming that

the object boundary is a part of the watershed edge map, either

all the pixels in a given watershed arc are on the boundary or

none of them are. Hence we need to convert the local pixel-

level probabilities into arc-level ones. There are several ways

to transform pixel-level boundary probabilities into arc-level

probabilities. We can, for example, define the arc probability

given that it is a part of the object boundary to be the product

of all the probabilities of the pixels on that arc. This approach,

however, was found to be too aggressive and makes it almost

impossible to overcome erroneous local boundary decisions.

Instead, we define the probability of an arc to be a part of

the object boundary as the average of all the probabilities

of the pixels on that arc. The mathematical interpretation of

this averaging is based on considering each pixel on the arc

as evidence of the boundary/no-boundary attribute of the arc,

based on independently sampled noise. Formally, the arc-level

probability is:

p(arc|boundary) =
1

|arc|

∑

u

pboundary(u) (2)

where the sum is over all the pixels on the arc and |arc|
is the number of pixels that form the arc. We define

p(arc|no-boundary) is a similar way.

B. The arc-level watershed MRF

Next we use the watershed arc-level probability map for

object segmentation. Our goal is to segment the image into

object (lesion) and background. To accomplish this we classify

each watershed superpixel either as a part of the object or as a

part of the background. We use the arcs of the watershed edge

map as indicators to whether two adjacent superpixels have

the same object/background label. An arc which according to

the extracted features, is more likely to be a boundary is an

indication of neighboring superpixels with different labels. An

arc which is more likely to be a non-boundary is an indication

of neighboring superpixels with the same labels. To translate

this intuition into a rigorous mathematical model we view the

watershed superpixels as an MRF [20] such that each arc
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(a) (b) (c) (d)

Fig. 6. Examples of the main algorithm steps (Corresponding original cervigram image is shown in Fig. 5): (a) Pixel-level AW/non-AW probabilities. (b)
Results of the pixel-level MRF optimization. (c) Arc-level AW/non-AW probabilities; (d) Final segmentation results.

contributes a two-variable factor. We next provide a formal

description of this MRF.

Let x = {x1, ..., xn} be a set of jointly distributed binary

random variables associated with the watershed superpixels

where n is the number of superpixels induced by the watershed

transform. The assignment xi = 1 means that the i-th

superpixel is part of the object and xi = 0 means that i-th

superpixel is outside the object. Hence, each assignment of bi-

nary values to x1, ..., xn corresponds to an object/background

segmentation of the underlying image. From the previous step

of the algorithm we obtain local information on each arc. For

an arc between adjacent superpixel i and superpixel j we use

the following notation for the corresponding factor:

φij(xi, xj) =







p(arcij |no-boundary) if xi = xj

p(arcij |boundary) if xi 6= xj

(3)

where arcij is the arc between the two superpixels and

p(arcij |boundary) is defined in Eq. (2). The joint probability

function is:

p(x1, ..., xn) =
1

Z

∏

{i,j}∈E

φij(xi, xj) (4)

where E is the set of all the arcs in the watershed edge map

and Z is a normalization scalar. The preferred binary configu-

ration is the one that guarantees that adjacent superpixels with

the same label will not be separated by an arc with a strong

probability of being part of the object boundary. The optimal

segmentation is the most likely configuration:

x̂ = arg max
x∈{0,1}n

p(x) (5)

C. Arc-level gradient information

Even though the boundary information can separate the

image into two distinct parts, it still lacks the ability to decide

which part is the foreground and which is the background. For

each pair of superpixels i, j we have φij(xi, xj) = φij(1−
xi, 1−xj) and therefore for each possible object segmentation

x1, ..., xn it can be easily verified that p(x1, ..., xn) = p(1−
x1, ..., 1−xn). Hence, there is a global degree of freedom

in the model that affects the meaning of the binary values.

This degree of freedom can cause a severe problem when

it turns into a local one where in some image areas ’1’

corresponds to the object and in other areas ’1’ corresponds to

the background. To overcome this difficulty more knowledge

must be introduced. We observed that most gradients along the

acetowhite boundaries point inward, since for the most part the

acetowhite, as its name indicates is brighter than its immediate

surroundings. Note that it is not true that globally the lesions

are the brightest area in the image; this is only a local feature.

Using the cervigram labeled train set, we compute the mean

and variance of the gradients in a local environment of 3 × 3
around each watershed pixel. To get arc-level information we

average all the gradients associated with the pixels on a given

arc of the watershed edge map. We model the watershed map

arc-level gradient information using three normal distributions

depending on whether the gradient is inside the object, on the

boundary or outside the object:

gradient inside object ∼ N (0, σ2
11) (6)

gradient on the background ∼ N (0, σ2
00)

gradient from object to background ∼ N (µ01, σ
2
01)

The model parameters are learned using the labeled training

images. Note that the average of the gradients inside the object

is zero since we use gradients in both directions. The same

argument applies for gradients outside the object. We show

in the experiment section that only using gradient information

yields poor results. However, combined with the visual-word
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boundary information it breaks the object/background symme-

try of the arc-level model.

We now return to the problem of segmenting a test image.

For each arc of the watershed edge map we compute a gradient

feature in the same way as described above. We incorporate

the gradient information into the global probabilistic model via

an additional pairwise factor. For each arc of the watershed

map,

ψij(xi, xj) =















N (gradij ; 0, σ
2
00) if xi = 0, xj = 0

N (gradij ;µ01, σ
2
01) if xi = 0, xj = 1

N (gradij ;−µ01, σ
2
01) if xi = 1, xj = 0

N (gradij ; 0, σ
2
11) if xi = 1, xj = 1

(7)

where gradij is the value of the gradient from superpixel i to

superpixel j. Note that unlike the boundary factor φ(xi, xj),
the gradient factor is not symmetric; i.e. ψij(xi, xj) 6= ψij(1−
xi, 1−xj). This removes the object/background symmetry of

the arc-level model. Therefore, the optimal segmentation is the

most likely configuration of the following MRF:
∏

{i,j}∈E

(φij(xi, xj)ψij(xi, xj)) (8)

D. The BP optimization

The marginal probabilities of the MRF variables (super-

pixels) correspond to the posterior probabilities to be a part

of the object. Since the MRF graph has loops, it is not

feasible to compute the exact marginal. The problem is known

to be NP hard. Instead, we utilize the belief propagation

(BP) approximation algorithm [29] which is an efficient way

to solve inference problems in graphical models. The BP

algorithm propagates information through the MRF via a series

of messages sent between neighboring superpixels. There are

two variants of BP, the sum-product and the max-product. In

a loop-free MRF graph the max-product message update rule

finds the most likely pattern (which corresponds here to the

optimal segmentation). In our case of loopy MRF the max-

product is an approximation algorithm and we can views the

sum-product as a soft version of the max-product. The max-

product message from superpixel i to a neighbour superpixel

j is:

mi→j(xj) = max
xi

φij(xi, xj)ψij(xi, xj)
∏

k∈N(i)\j

mk→i(xi)

(9)

where N(i) is the set of all the superpixels that share a

common arc with superpixel i. In the sum-product variant

of the BP algorithm the maximization in Eq. (9) is replaced

by a summation. In the experiment section we show that for

our task the sum-product segmentation performance is slightly

better. The approximate marginal distribution of xi, the belief

of xi, is:

beliefi(xi) =
∏

k∈N(i)

mk→i(xi) (10)

We iterate until the messages converge or until a predefined

number of iterations is reached. As a final step we threshold

the belief to obtain a hard-decision label for each superpixel.

The variables correspond to the superpixels and each arc

contributes a factor.

The algorithm is robust to the message initialization method,

thus a random initialization of all messages is sufficient. As

pointed out earlier, erroneous boundary fragments are detected

in the proximity of the cervix outer boundaries. This is caused

by the presence of the vaginal walls which were not excluded

in the expert’ region of interest selection. The vaginal walls

boundaries resemble the AW lesion boundaries. In order to

avoid this artifact all messages from outside the region of

interest are initialized as “background” with high probability.

Fig. 5 shows the watershed map and the manual expert

segmentation of two image examples. Fig. 6 provides a visual

demonstration of the steps of the automatic segmentation

algorithm for these two examples. The proposed algorithm is

summarized in the following algorithm box.

The Object Segmentation Algorithm:

1) Apply the watershed algorithm to obtain the superpix-

els and the edge map.

2) Compute a patch for each watershed edge pixel and

assign it to a dictionary word.

3) Compute the probability of each watershed arc as a

boundary element and as a non-boundary element.

4) Perform arc-level belief propagation and threshold the

result to obtain an object segmentation:

• Initialize messages and iterate until convergence:

mi→j(xj) =
∑

xi

φij(xi, xj)ψij(xi, xj)×

∏

k∈N(i)\j

mk→i(xi)

• Compute the beliefs:

beliefi(xi) =
∏

k∈N(i)

mk→i(xi)

• Final segmentation:

xi ∈

{

object beliefi(xi) ≥ 0.5
backgrouond otherwise

V. EXPERIMENTAL VALIDATION

The implementation of our method to the lesion detection

task starts by applying the watershed transform. The pixels

on the watershed edge map in the training images were

taken as centers of patches of size 11 × 11 each. Applying

PCA, the dimensionality was reduced to 10. The K-means

algorithm was utilized to cluster the patches into a dictionary

of K = 100 words. We found that these parameters work well

in terms of both computational complexity and performance

(see Section V-C for a discussion on the algorithm’s parameter

sensitivity). Next, using the AW and non-AW boundary pixels

that were defined on the training images, the frequencies of

every word in the dictionary for AW and non-AW boundaries

were computed. In the training step, positive examples were
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considered to be the watershed pixels within a distance of at

most three pixels from the ground truth annotation. Negative

examples were the watershed edges that were at least 15 pixels

away from the ground truth annotation. Pixels that were within

these two thresholds were not used for the histograms learning

process. To obtain a decision map for a new image, the same

pre-processing as on the training images was applied. Each

image then went through four major algorithmic steps.
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Fig. 9. A scatter plot of Dice BEL versus Dice arc-level BP.

The first step was to assign a visual word from the dictionary

to each patch on the watershed edge map, which yielded the

first step probabilistic map. Next, pixel-level MRF optimiza-

tion was applied to obtain a smooth local map. Then, the pixel-

level information was converted into arc level probabilities.

Finally, in the fourth step the belief propagation algorithm

was applied to the watershed arc-graph. Since the object

segmentation was carried out on superpixels instead of pixels,

the algorithm is very efficient. It takes less than a second to

detect and segment the lesion region in a cervigram image.

Times were measured on dual quad-core Intel Xeon 2.33 GHz.

The annotated data set we used contains 211 cervigram

images. In all the experiments described below, a single set

of 11 images was used for training the system and finding its

parameters. The other 200 images were used for testing. The

gold standard for the automated segmentation results is expert

manual segmentation.

The discussion of the algorithm’s performance is divided

into two parts: the first deals with the supervised boundary

extraction which yields in the arc level probabilities. The

second, and more important part, is the final object (lesion)

segmentation based on the arc-level belief propagation, which

produces the superpixel classification. We begin our evaluation

by examining the boundary extraction performance followed

by an examination of the object segmentation performance.

A. Evaluating boundary extraction

A standard method for evaluating boundary extraction per-

formance is the precision vs. recall framework described in

[26].

We used a set of 20 threshold values. For each threshold

the boundary points above the threshold were matched to the

ground truth experts’ annotations and the precision vs. recall

results were recorded. We compared the boundary extraction

performance to the “Boosted Edge Learning” (BEL) [6] which

is a classifier built on top of a probabilistic boosting tree (PBT)

that uses approximately 5000 features across different scales,

including canny edge results, Haar filter responses, gradients

and curvature. We explored different parameters settings and

found that the default parameters suggested by the authors

provide the best results.

Fig. 7 shows precision-recall curves for boundary detection

using the proposed approach and the BEL approach. Results

using pixel-only and arc-based probabilities are included in

the plot and demonstrate the improvement in the algorithm’s

performance in each of the proposed algorithm steps. The

results as shown in Fig. 7 demonstrate that for the edge

detection task the proposed methodology is comparable to

the state-of-the-art BEL approach. We also tried to smooth

the pixels probabilities before averaging them, by applying

a BP along the pixels of watershed edge map in such a

way that adjacent pixels were encouraged to have the same

boundary/non boundary label. We show in Fig. 7 that this

operation slightly improves the final results.

B. Evaluating object (lesion) segmentation

We next evaluated the lesion region segmentation results of

the proposed algorithm. The overlap segmentation measures

between two possible segmentations are described next.

Let S be the area of the automatically segmented region,

R the expert segmentation and R̂ its complement (the area

outside the expert marked boundary). The following overlap

measures were used for evaluation of the segmentation quality

of a single object/region: the Dice measure: 2 |S∩R|
|S|+|R| , the Sen-

sitivity measure:
|S∩R|
|R| and the False Positives (FP) measure:

|S∩R̂|

|R̂|
. We also used the Rand index [33]. which is a standard

non-parametric measure of clustering quality. The Rand Index
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lies between 0 and 1. When the two partitions agree perfectly

the Rand index is 1.

In the spirit of [42] the comparison was with a region-

based classification variant of the BEL algorithm, which was

trained using pixels on/off the object as true/false examples.

The BEL was trained and tested using the exact same dataset

we used to train/test our algorithm. Different BEL parameters

settings were tested, including different patch size, tree depth

and color variants, and all yielded similar results. The results

we describe here are with the BEL default parameters. The

automatic segmentation results of both our algorithm and

BEL are summarized in Table I. Fig. 9 shows a scatter plot

of comparative segmentation results of our method and the

BEL algorithm for all the 200 images in the test set. Several

examples of our segmentation results, the BEL results and the

expert’s annotations are shown in Fig. 8.

C. Parameters sensitivity analysis

We tested the algorithm’s sensitivity to the following set of

parameters (the selected values for each appear in brackets):

1) Number of dictionary words (K = 100).

2) PCA dimension (d = 10).

3) Patch size (N = 11).

4) Training set size (T = 11).

5) Patch preprocessing method (mean substraction, patch

rotation).

6) With/without pixel-level belief propagation (with).

7) Arc-level belief propagation using sum-product or max-

product (sum-product).

Experiments were run per parameter. In the case of the

training set size, the experiment was repeated 10 times with

a random selection of the training images per run. Fig. 10

presents the results for the PCA size, dictionary size, patch

size and training set size parameters. Table II presents the

results for patch preprocessing methods and Table III shows

sensitivity for arc-level BP variations. The main conclusions

are as follows:

1) Patch size: when using a patch size larger than 7 × 7
similar results were obtained (sensitivity 0.55) , while

using a smaller patch size yielded slightly inferior re-

sults (sensitivity 0.52). If the patch size is too small

(e.g. 5 × 5) not enough information surrounding the

boundary is captured. Using larger patches increases the

computational complexity without notable performance

improvement. If the patch size it too large this can even

impair performance since each patch is more unique

and less similar to other patches in the image. This can

be viewed as building a dictionary based on sentences

rather than words.

2) Dictionary size: using 10 visual words yields a sensitiv-

ity of 0.48, while using more than 60 words a similar

sensitivity of 0.55 was obtained. Using a small amount

of visual words (e.g. 10 words), prevents the data from

being accurately represented, while using more words

does not significantly enhance the results but increases

the computational complexity.

TABLE I
SEGMENTATION RESULTS OF THE ARC-LEVEL BP ALGORITHM AND BEL

ALGORITHM.

Dice Sensitivity Rand False-Positive

arc-level BP 0.57 0.60 0.83 0.04

BEL(region) 0.37 0.23 0.65 0.21

TABLE II
ALGORITHM SENSITIVITY FOR THE PATCH PREPROCESSING METHOD.

Mean Patch RAND Dice Sensitivity FP
Subtraction Rotation

No No 0.8 0.49 0.49 0.1

No Yes 0.69 0.37 0.5 0.1

Yes No 0.82 0.5 0.5 0.04

Yes Yes 0.83 0.57 0.6 0.04

3) PCA size: Using fewer than 3 dimensions after the

PCA reduction yields a dramatically inferior sensitivity

of 0.1. When considering more dimensions a plateau

(0.55) is reached. Using fewer than 3 dimensions is not

sufficient and clearly the classifier cannot distinguish

between background and foreground boundaries. In-

creasing the number of dimensions yields no noticeable

improvement.

4) Training Size: Using an overly small train size (e.g.

1 training image) shows a sensitivity of 0.4, but

using more train images clearly results in improvement.

The algorithm shows robustness to train size, and no

improvement is noticeable when further increasing the

amount of training images. This is probably due to the

nature of the data which present considerable variability

even within the same image. Hence introducing more

images does not lead to significant enhancement.

VI. INCORPORATING USER MARKERS

A. An interactive segmentation algorithm

So far we have described a completely automated segmen-

tation procedure which can produce state-of-the-art results for

the task of AW segmentation in cervigrams. In this section

we extend the algorithm to incorporate user interaction. As

shown in Fig. 11, in some cases the automatic segmentation

is either lacking or erroneous especially in parts of the image

that resemble the AW; this is one of the main challenges in this

task. In such cases user knowledge can be utilized to improve

the segmentation by incorporating user markers for the object

and/or background. Using a simple user interface, see Fig.

12, the markers can be entered either by mouse strokes or

mouse clicks. These markers are interpreted by the system as

a user indication on the true label (hidden to the user) of the

watershed superpixels that contain the markers.

The only change in the arc-level BP algorithm is related

to the messages from marked superpixels which now take the

TABLE III
ALGORITHM SENSITIVITY FOR ARC-LEVEL BP VARIATIONS

arc-level bp RAND Dice Sensitivity FP

sum product 0.83 0.57 0.60 0.04

max product 0.83 0.56 0.58 0.04
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Fig. 10. Sensitivity analysis of the proposed algorithm’s to different changes
in the parameter settings. A set of parameters (K = 100, d = 10, N = 11,
T = 11) is kept fixed while on each parameter examination, only the relevant
parameter varied and the segmentation performance on the test set is evaluated.

following form:

mi→j(xj) = φij(xi, xj)ψij(xi, xj) (11)

where xi is the object/background information (markers)

provided by the user on superpixel i. All other messages

related to superpixels that were not marked by the user remain

as defined in Eq. (9). Note that the final ’belief’ of superpixels

marked by the user is set to be the value specified by the user

instead of using Eq. (10).

If the user is still not satisfied with the quality of the

segmentation he/she can input additional markers. From our

experience it usually takes at most two interactive iterations

to obtain the desired segmentation. Once the user provides

(objcte/background) markers it takes the system just few

milliseconds to compute the updated segmentation.

B. Evaluating the algorithm’s interactivity

To test whether the interactive segmentation algorithm im-

proves the automated segmentation when correct markers are

entered, we ran a quantitative evaluation on our entire test set

using a simulation that automatically found all discrepancies

between the expert’s segmentation and our automated segmen-

tation for both background and foreground. It then randomly

chose an increasing number of background/foreground seed

points from each image. The results for each step were

then recorded. An illustration of the disagreement superpixels

and the appropriate background/foreground seed points is

presented in Fig. 13. An example of the simulated interactive

segmentation process is shown in Fig. 14. Note how the final

interactive segmentation result in 14(f) closely resembles the

expert’s segmentation shown in Fig. 13(b). Note that not all

available seed points (shown in Fig. 13) are used to obtain the

final segmentation result.

A statistical summary of the interactive segmentation simu-

lation results when applied to our entire test set is presented in

Fig. 12. The user interface for interactive segmentation. A preview of the
automated segmentation is shown in the top right corner; the user is then
able to set object markers (green) and/or background markers (white). The
markers can be either mouse strokes as shown in the figure, or mouse clicks.

Table IV. We used the same parameter set in the beginning of

this section. It is clear from the results that the interactive

segmentation further improves the algorithm’s performance

with each click introduced. We also show several examples

of interactive segmentation performed manually using mouse

strokes in Fig. 11.

TABLE IV
INTERACTIVE SIMULATION RESULTS. THE MEAN RESULTS FOR OUR

ENTIRE TEST SET, USING AN INCREASING NUMBER OF RANDOMLY

CHOSEN OBJECT/BACKGROUND SEED POINTS (MARKERS).

♯ seeds Dice Sensitivity Rand False-Positive

0 (automatic) 0.57 0.60 0.83 0.04

1 0.58 0.66 0.84 0.05

2 0.60 0.68 0.85 0.05

3 0.62 0.70 0.86 0.06

4 0.63 0.72 0.86 0.06

5 0.65 0.73 0.86 0.06

(a) (b) (c)

(d) (e) (f)

Fig. 14. The progression of the simulated interactive segmentation process.
(a) is the automated segmentation and (f) is the final interactive segmentation
after using 5 seed points.
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(a) (b) (c) (d)

Fig. 8. Automatic segmentation results, a threshold of 0.5 is used for both algorithms. Segmentations delineated in black: (a) Input image. Region of interest
marked in green. (b) BEL segmentation. (c) Our segmentation. (d) Expert’s segmentation. The Dice performance measure is written below the segmentation
results in (b) and (c).
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(a) (b) (c) (d)

Fig. 11. Interactive segmentation results: (a) Input image. Region of interest marked in red. (b) Automatic segmentation (black line). User markers are
colored: green (object), white (background). (c) The final segmentation result (black line). (d) Expert segmentation (black line).

(a) (b) (c)

Fig. 13. The discrepant superpixels between the expert’s segmentation and our automated segmentation. (a) Input image. (b) In white the expert’s segmentation
and in green our automated segmentation. (c) Both segmentations imposed on one another. The green circles represent a simulated seed points for the foreground
and the blue diagonals represent seed points for the background.
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VII. DISCUSSION

In this study we presented an automatic extraction and

segmentation methodology (with an interactive extension)

for lesion regions in uterine cervix images. The cervigram

segmentation challenge has received attention from several

research teams in the last decade. Publications to date show

substantial results on various landmarks within the cervigram

image, with a few qualitative AW segmentations, that are

significantly discrepant from the expert ground truth. Seg-

menting out the lesion region remains the main motivation

and challenge with minimal results published up to now. As

far as we know, this is the first large-scale work ever to

be published on extracting lesion regions automatically in

cervigram images. The results in the current work constitute a

major step forward in automated segmentation capabilities and

are a direct result of incorporating the boundary cues within

the segmentation process, in particular in cases in which the

region information is not sufficient. Based on the data-set we

have checked, we can say that the automatic segmentation

is usually very similar to the expert marking. In case the

user is not satisfied with the automatic results, the interactive

phase of our algorithm can be utilized to obtain the desired

segmentation. The interactive phase is very fast and user

friendly. Overall, based on our experience with the system,

we can say that the AW tissue is extracted with a high degree

of accuracy (as compared to a human expert). As such, it

is now possible to automatically detect the presence of AW

regions and to quantify their size. The AW tissue is a major

indicator of cervical cancer. With the ability to extract the AW

region, various screening tools can be developed for screening

of the disease. Moreover, the capabilities shown in the work

can facilitate access to the database of digitized cervix images

which, as mentioned in the Introduction, is seen as a critical

component by NCI and NIH, in training and in cervical cancer

research.

Several issues can be explored further: 1) In the current

work, boundary information is used with no added region-

based input. In cases in which region-based information is

available and of value, it can easily be incorporated into the

MRF as additional single-variable factors. 2) Currently, in the

building of the visual word dictionary (Section III-B), the

features are made rotationally invariant up to a flip factor.

A question arises as to the possibility of making the patch

feature completely rotation-invariant. This choice is currently

not taken due to the fact that in the feature extraction step we

do not want to make any hard decision regarding the boundary

orientation. Moreover, most of the patches in the watershed

edge map are not on the lesion boundary. For those patches,

inside/outside direction is meaningless. At the preprocessing

feature extraction step we don’t know if the patch is on the

boundary, hence we cannot flip it to the ’correct’ side at

this step. An interesting alternative is to use the flip factor

information at the MRF constructing step by rotating the patch

such that the object side will be always, for example, on the

left. We can then build a frequency histogram based on the

training data. This alternative will be investigated at a future

version of the system. 3) In the current study the training was

based on a single expert boundary marking for each training

image. A generalizing to the case of multiple expert markings

is of interest.

The method presented is a general one. We are currently

testing its application to additional complex medical image

segmentation tasks such as lesion segmentation in the liver

and brain.
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