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Introduction

Many primary cell lines derived from animals must attach 

to a substrate to maintain viability and phenotype.1,2 

Consequently, drug toxicity tests, vaccine development, 

and cell therapies rely significantly on well-developed and 

robust adherent cell culture processes. However, the signifi-

cant advances in process control of the past two decades in 

biotechnology mostly occurred for suspension culture sys-

tems, for example, for the production of recombinant thera-

peutics.3 The ability to continuously monitor key process 

variables was paramount in the development of these robust 

processes. Thus, the development of novel approaches 

enabling monitoring capabilities comparable to that of sus-

pension culture systems may facilitate further growth in the 

applications relying on adherent cell culture.

Monitoring adherent cell cultures poses numerous chal-

lenges. Unlike with suspension cultures, the notion of a repre-

sentative sample is rarely applicable to adherent cultures due to 

their inherent inhomogeneity. There is also a general lack of 

instrumentation as adherent cultures are usually carried out in 

disposable plastic vessels. As a consequence, most assays are 

based on techniques developed for suspension cultures that 

require the detachment of the cells prior to analysis and are 

thus limited to end-point analysis. This limitation not only pre-

vents the determination of key characteristics that are only 

observable while cells are attached (e.g., confluency, morphol-

ogy, distribution, expression patterns) but also precludes the 

generation of time-course data needed to quantify growth 

kinetics.

In contrast, light microscopy methods require neither cell 

detachment nor sampling. Indeed, visual inspection of cul-

ture vessels using phase contrast microscopy (PCM) enables 

the qualitative assessment of both growth and cell phenotype. 
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Abstract

Adherent cell lines are widely used across all fields of biology, including drug discovery, toxicity studies, and regenerative 

medicine. However, adherent cell processes are often limited by a lack of advances in cell culture systems. While suspension 

culture processes benefit from decades of development of instrumented bioreactors, adherent cultures are typically 

performed in static, noninstrumented flasks and well-plates. We previously described a microfabricated bioreactor that 

enables a high degree of control on the microenvironment of the cells while remaining compatible with standard cell culture 

protocols. In this report, we describe its integration with automated image-processing capabilities, allowing the continuous 

monitoring of key cell culture characteristics. A machine learning–based algorithm enabled the specific detection of one 

cell type within a co-culture setting, such as human embryonic stem cells against the background of fibroblast cells. In 

addition, the algorithm did not confuse image artifacts resulting from microfabrication, such as scratches on surfaces, or 

dust particles, with cellular features. We demonstrate how the automation of flow control, environmental control, and 

image acquisition can be employed to image the whole culture area and obtain time-course data of mouse embryonic stem 

cell cultures, for example, for confluency.
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When combined with automated image-processing methods, 

PCM was shown to enable the quantification of adherent cell 

culture characteristics such as confluency and morphology.4–7 

Due to the nature of the image-processing algorithms 

employed, these methods are best suited to simple experi-

mental setups where the phenotype and visual features of the 

studied cells remain relatively unchanged during the course 

of an experiment. Trainable segmentation methods, based on 

machine learning classifiers, are often better suited for com-

plex experimental scenarios such as co-cultures.8 In addition, 

such methods were previously shown to offer a high degree 

of flexibility and are expected to enable the monitoring of 

cell phenotypes that undergo significant variations during 

culture.9

For any application, the accuracy and precision of the 

image-processing data will be influenced by the fraction of 

the culture area that can be imaged with reasonable effort 

(i.e., how much of the culture can essentially be sampled). 

The higher this fraction is, the less error will be inherent in 

the resulting measurements.4 For this reason, performing 

adherent cell culture at the microscale offers a significant 

advantage. The small size of culture chambers in microcul-

ture systems enables the imaging of the whole culture area 

in a minimum period of time. Moreover, the combination of 

microfluidic concepts with adherent cell culture enables the 

automation of essential culturing steps such as medium 

exchange and fine control over the microenvironment of the 

cells.8,10–16 Finally, microculture systems generally require 

fewer resources for a given process, allowing experimenta-

tion at a reduced cost.

In this contribution, we present the integration of a previ-

ously described microfabricated device8 with automated 

image acquisition and processing routines. Requirements 

and strategies for intermittent and continuous imaging are 

described. In addition to previously reported human embry-

onic stem cell colony monitoring capabilities, the image-

processing algorithm was further improved to enable the 

monitoring of long-term on-chip mouse embryonic stem 

cell cultures. In both cases, cell proliferation was character-

ized at a population level using confluency while cellular 

object tracking helped gain an insight into the response of 

colonies to continuous perfusion.

Material and Methods

Microfabricated Culture Device

The previously described microfabricated culture device8 is 

a modular design assembled from a combination of dispos-

able and reusable components. Rigid polycarbonate frames 

compress a poly(dimethylsiloxane) (PDMS) chip against a 

microscope slide, forming a reversible seal. The PDMS 

chip contains microfluidic channels to perfuse media uni-

formly through a culture chamber. Cells are grown directly 

on the microscope slide. The growth area of the culture 

chamber was 0.52 cm2. The culture chamber is directly 

accessible by removal of a polycarbonate lid. The polycar-

bonate lid defines the height of the culture chamber as 450 

µm and seals the chamber by compression of a PDMS gas-

ket. For the human embryonic stem cell (hESC) culture 

experiments, the microscope slide used was made of Tissue 

Culture Polystyrene (16004; Nunc, Roskilde, Denmark). 

Perfusion of media was achieved using a syringe pump as 

previously described.8 For the mouse embryonic stem cell 

(mESC) cultures, the microscope slide used was made of 

glass. Perfusion was achieved using the pressure driven sys-

tem previously described.13

Human Embryonic Stem Cell Cultures

Human embryonic stem cells Shef-3 (< passage 70) were 

grown on a layer of mouse embryonic fibroblast (MEFs) 

feeder cells (< passage 5) following a protocol previously 

described.8 The sterile microfabricated bioreactor was assem-

bled in a biosafety cabinet and seeded with MEFs (~15,000) 

before being transferred in a humidified CO
2
 (5%) incubator 

at 37 °C and incubated for 24 h to let the feeder cells settle 

down and attach. Then, medium was changed, and dissected 

hESCs colonies were seeded on top of the feeder layer and let 

to adhere for an additional 24 h in the incubator. The follow-

ing day, a syringe pump was connected to the device and con-

tinuous perfusion at 300 µL/h was started for 2 days. Images 

of the culture chamber were manually taken each day by 

removing the device from the incubator and placing it on an 

inverted microscope (Inverted Microscope System TE2000; 

Nikon Ltd, Kingston upon Thames, UK). Images were 

acquired at a 10× magnification using a Fi-1 color camera 

(Nikon Ltd) and had a resolution of 1280 × 960 pixels (equiv-

alent to a field of view ~1.2 mm2).

Mouse Embryonic Stem Cell Cultures

E14tg2A mouse embryonic stem cells (< passage 50) were 

maintained in knock-out Dulbecco’s modified Eagle’s 

medium (DMEM) (10829; Gibco, Carlsbad, CA) supple-

mented with 15% (v/v) fetal bovine serum (FBS) (26140; 

Gibco), 1% (v/v) modified Eagle’s medium nonessential 

amino acids (11140; Gibco), 10% (v/v) Glutamax (35050; 

Gibco), 0.1 mM β-mercaptoethanol (31350; Gibco), and 

10-6 U.L-1 Leukemia Inhibition Factor (LIF) (ESG1106; 

Millipore, Watford, UK).

The microfabricated bioreactor parts, perfusion reser-

voir, and tubing were autoclaved before being assembled in 

a biosafety cabinet. The chamber bottom was coated with 

gelatin (G1890; Sigma-Aldrich, Gillingham, UK), and the 

system was primed with growth medium. The device was 

then placed on the stage of an automated inverted micro-

scope (Inverted Microscope System Ti-E; Nikon Ltd) inside 
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a temperature-controlled cage incubator (H201; Okolab, 

Pozzuoli, Italy).

Cells were enzymatically harvested (Trypsin-EDTA T4049; 

Sigma-Aldrich) from T-25 flasks (Nunc EasyFlask 156367; 

ThermoScientific, Waltham, MA), spun down at 300 g for 3 

min (Heraeus MultiFuge X3R; ThermoScientific), and resus-

pended in fresh growth medium. They were then manually 

counted using a hemocytometer and diluted in medium to 

reach the desired seeding density of 5 × 105 cells/cm–2. The 

inoculum was seeded directly in the device chamber through 

the open lid and let in static culture for 3 h, to ensure that the 

cells properly adhered to the substrate. During that time, stage 

positions for phase contrast imaging of the whole culture area 

were manually recorded with a custom LabVIEW (National 

Instruments, Austin, TX) routine. Perfusion at 300 µL/h con-

trolled by a pressure regulator (ITV0011-2BL-Q; SMC, Milton 

Keynes, UK) and automated imaging were then started. The 

course of the culture was monitored for 6 days and the system 

manually checked daily to detect any faults. Images were 

acquired at a 10× magnification using a Fi-1 color camera 

(Nikon Ltd) and had a resolution of 1280 × 960 pixels (equiva-

lent to a field of view ~1.2 mm2).

Automated Detection of Cellular Objects on 

PCM Images

Image processing was carried out using MATLAB 

(MathWorks, Natick, MA) to automate the detection and sub-

sequent characterization of cellular objects on PCM images. A 

previously described machine learning–based approach was 

employed.8 In short, images were first converted to a gray-

scale representation using the built-in rgb2gray function. Each 

pixel image was then classified as one of seven basic image 

features (BIFs) based on local symmetries.17 BIFs were com-

puted at four scales (0.7, 1.4, 2.8, and 5.6). For each scale, local 

histograms of BIFs were computed in overlapping 25 × 25 

windows so that each pixel was associated with a histogram. 

Histograms across the four scales for a given pixel were then 

concatenated. Each pixel of the original image was thus 

encoded as a feature vector containing 28 elements (seven-bin 

histograms at four scales). A random forest classifier18 was 

used to classify pixels as either background or cell based on 

their feature vectors. The classifier was both trained and vali-

dated using manually processed PCM images.

Results and Discussion

Integration of Image Acquisition and Processing 

with a Microfabricated Platform

The use of a microfabricated device as both a culture and 

imaging chamber requires the following key components (Fig. 

1A): flow control for culture medium exchange, environmen-

tal control to maintain optimal temperature for growth, and an 

imaging system for monitoring. The implementation of these 

three components depends on the monitoring strategy. 

Intermittent monitoring allows the transport of the microfabri-

cated device from its controlled environment (e.g., incubator) 

to the microscope for image acquisition. In contrast, online 

monitoring is achieved by having the device permanently posi-

tioned on top of a microscope stage and thus requires a suitable 

setup to maintain optimal growth conditions. Online monitor-

ing offers obvious advantages, such as high image sampling 

rates, flexible monitoring schedules, reduced contamination 

Figure 1. Schematic of the key components required for automated culture and monitoring of adherent cells in a microfabricated 
bioreactor. (A) Flow is controlled either by modulating the head pressure in a bottle containing the culture media or via a syringe 
drive. Temperature control is achieved using an on-stage incubator that houses the microfabricated bioreactor as well as the fluidics. 
A motorized stage is used together with a piezo focus system for imaging. (B) Schematic of a typical monitoring loop for the system. 
Automation of the fluidics and the imaging system is achieved using a LabVIEW routine while automated image processing was done 
using MATLAB.
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risks (no need to transfer to and from an incubator), and a 

higher degree of automation (and thus reduced user interac-

tion). Its main limitation lies in the number of devices that can 

be monitored at once with one microscope. To demonstrate the 

applicability of our imaging and automation routines, we tested 

both monitoring concepts.

For intermittent monitoring, the microfabricated device 

was kept in a standard cell culture incubator where both the 

temperature and gas atmosphere were controlled. A syringe 

pump was used to drive culture medium through the device. 

In contrast, for online monitoring experiments, the device 

was placed in an on-stage incubator for temperature control 

and the flow rate was controlled by varying the head pres-

sure of a glass bottle containing the culture medium. This 

enabled the saturation of the liquid phase with oxygen and 

carbon dioxide, which were supplied using an external gas 

bottle. In addition, pressure-driven flow had a lower pulsa-

tility compared with the flow generated using a syringe 

pump.13

Imaging was carried out using an automated microscope. 

As high-magnification objectives have a relatively small 

field of view compared with the area of the culture chamber 

(~1.20 mm2 for the 10× objective used in this study and 50 

mm2, respectively), it is necessary to scan the culture cham-

ber and acquire multiple images. This was accomplished 

using an encoded motorized x-y stage. If necessary, adjust-

ment of a piezo z stage could be used to maintain accurate 

focus across multiple fields of view and over time.

Automation of the monitoring loop was achieved using 

LabVIEW (Fig. 1B). Virtual instruments controlling the 

individual functions of the microscope (e.g., motorized 

stage, objective turret) as well as the digital camera were 

interfaced with dynamic linked libraries made available by 

the manufacturer. A graphical user interface (GUI) allowed 

full manual control of the microscope and displayed a con-

tinuous live stream from the digital camera. The GUI also 

enabled the creation of user-defined time-lapse imaging 

sequences. Each step of a sequence had independent set-

tings for stage position, objective type, and illumination 

intensity. The chosen sequence would then be repeated at 

user-defined intervals during the course of an experiment. 

For example, imaging of the entire growth area was 

achieved by creating a sequence where the stage position (x, 

y, z) was varied by a constant factor at each step while all 

other settings were kept constant. The ability to define dif-

ferent settings for each step of a sequence gave the user high 

flexibility. For instance, the monitoring sequence could 

include steps with the objective set to a higher magnifica-

tion for regions of interests in the culture.

Images acquired during time-lapse sequences are either 

stored for offline analysis or processed online using an 

embedded MATLAB script node. By using MATLAB for 

image processing, it gives access to state-of-the-art algo-

rithms, both built in or from the large MATLAB user 

community. In addition, because the control routine and the 

image-processing algorithms are separate and compartmen-

talized, specialists can work on them separately. By embed-

ding MATLAB code directly into LabVIEW, it enables 

two-way communication between the two and could poten-

tially be used for feedback control of key systems (e.g., flu-

idics) based on data extracted from imaging. This separation 

also allows the use of a separate and remote server for 

image processing so that computationally intensive algo-

rithms do not negatively affect the performance of the 

LabVIEW control routine.

Image-Processing Approach

Automated processing of images of cells cultured in the 

microfabricated bioreactor is made challenging by the 

nature of the device and the fabrication process but also by 

biological factors that manifest because of its unique capa-

bilities. The range of cells that are typically observed during a 

long-term culture is very high and makes it challenging to 

devise a unique image-processing approach that can accom-

modate highly varying cell visual features. Moreover, conven-

tional image-processing methods cannot readily accommodate 

certain experimental scenarios, such as co-culture, which 

remains the method of choice for the expansion of human 

embryonic stem cells (hESCs). Fabrication artifacts can also 

potentially interfere with imaging, for example, scratches on 

hard polymers (e.g., on the polycarbonate lid of the device). 

Using conventional image-processing approaches, these arti-

facts would be detected as cells and would therefore produce 

inaccurate data.

We previously developed an image-processing approach 

to alleviate these issues to rapidly produce accurate and reli-

able data, suitable for the monitoring of adherent cell cul-

ture in our microfabricated bioreactor.8 First, instead of 

detecting cells based on pixel intensity, we employed BIFs 

that can be used to classify pixels according to local sym-

metries.17 For example, one of the features was sensitive to 

dark circular objects on brighter backgrounds and thus often 

indicated cells’ nuclei. Similarly, the “flat” feature often 

indicated background regions of the image with a less 

marked texture. Local histograms of BIFs were constructed 

for each pixel of the raw PCM image (Fig. 2A). A machine 

learning classifier was then used to classify each pixel of an 

image based on its associated histogram. To do so, it was 

first trained by manually annotating regions of the image as 

either of interest or not (hESC colonies and image back-

ground/fibroblast cells, respectively, in Fig. 2B). This pro-

cess is very quick as it is not required to annotate the whole 

image; instead, ambiguous regions can be left unannotated. 

This is a key advantage of the method, as image-processing 

methods often require extensive and tedious parameter 

tweaking. In this case, the algorithm can be taught how to 

recognize new cell types in a matter of minutes.



Jaccard et al. 441

Random forest was chosen as the classifier due to its 

ability to accommodate very large and noisy data sets such 

as microscopy images.9 In short, it works by building a 

series of classification trees using a random subset of the 

training data. At each node of the tree, a random subset of 

the features available (in our case, bins of the BIF histo-

gram) is used to split the data into one of the classes (in our 

case, object of interest or rest). Traversing a tree is thus 

essentially a series of binary tests until the last node (termed 

leaf) is reached and a class is predicted. This is done for a 

certain number of trees (usually at least 20), and the major-

ity vote is used to decide the final classification (Fig. 2C). 

This process is repeated for each pixel to produce a binary 

image with the objects of interest in white (value of 1) and 

the rest (i.e., background and fibroblasts) in black (value of 

0) (Fig. 2D). This process is quick and robust and, as such, 

is suitable for monitoring applications.

Data Derived from Image Processing

The ability to detect hESC colonies was first demonstrated 

using in vitro fertilization (IVF) plates. Due to the rela-

tively large growth area (2.9 cm2), only the central area 

where most of the colonies were seeded could be consid-

ered (Fig. 3A). By comparing images from day 3 of cul-

tures with those acquired 24 h after seeding, it was possible 

to assess the growth of the colonies and create striking 

visual representations of this very dynamic system. The 

same principle was applied to hESCs growing in the 

microfabricated bioreactor (Fig. 3B). In contrast to the 

IVF case, the small dimensions of the culture chamber 

made it possible to monitor growth based on images of the 

whole culture area. This enabled determining the response 

of cells to perfusion: colonies were found to migrate, 

merge, or even wash out on rare occasions. These results 

were obtained using intermittent imaging. This approach 

was next applied to fully automated imaging of mESCs 

cultured in the reactor for long periods (5 days). The 

results showed that the image-processing method was able 

to detect mESC colonies accurately despite the prevalence 

of artifacts (Fig. 3C). Based on this detection, the conflu-

ency of the culture (i.e., the fraction of the culture area 

occupied by cells) was determined for the duration of the 

culture. Interestingly, the mean and standard deviation 

across three trials were relatively low (26%), demonstrat-

ing good reproducibility (Fig. 3D).

Figure 2. Automated image-processing approach. (A) Basic image features (BIFs) of the phase contrast microscopy (PCM) image are 
first computed. For each pixel, a local histogram of the occurrence of the different BIFs is built. These histograms are the features that 
are used to classify pixels as background or cells. (B) Example of a user-defined training set for the machine learning classifier. Using a 
conventional image-editing tool, the user indicates portions of an image that are definitely a human embryonic stem cell (hESC) colony 
and definitely not a colony. It is not necessary to annotate the whole image as regions can be left as not specified. (C) Schematic of 
the random forest classification approach. Local BIF histograms are used as inputs for decision trees. At each node, a binary test based 
on these features determined whether to traverse to the left or right child node next. A particular tree will classify the histogram as 
either cell or pixel. The majority vote of multiple trees will decide on the final class assigned to the pixel. (D) Example of processing 
output. (i) Binary mask after processing, showing the stem cell colony in white and the background and fibroblasts in black. (ii) Overlay 
of the processing results with the original PCM image.
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In conclusion, we have described the integration of a previ-

ously described microfabricated cell culture device with an 

automated image acquisition and processing platform. This 

was achieved by automating the functions of a microscope and 

those of a digital camera using custom-developed LabVIEW 

virtual instruments. A GUI allowed users to easily set up com-

plex time-lapse imaging sequences, for example, to sequen-

tially image the growth area of the microfabricated device. 

Approaches for offline or online imaging processing using 

novel machine learning approaches were also presented. The 

algorithm described enabled the efficient detection of mESCs 

on unlabeled PCM images. Similarly, the proposed method 

was able to discriminate between hESC colonies and back-

ground fibroblast cells so that the growth of the former could 

be quantified. Moreover, it was found to be insensitive to com-

mon fabrication artifacts and debris. Population growth over 

the entire culture area was characterized using confluency 

while tracking of individual cellular objects enabled the detec-

tion of growth, death, and migration kinetics.
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