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Abstract

With the proliferation of digital cameras and automatic

acquisition systems, scientists can acquire vast numbers of

images for quantitative analysis. However, much image

analysis is conducted manually, which is both time consum-

ing and prone to error. As a result, valuable scientific data

from many domains sit dormant in image libraries awaiting

annotation. This work addresses one such domain: coral

reef coverage estimation. In this setting, the goal, as de-

fined by coral reef ecologists, is to determine the percent-

age of the reef surface covered by rock, sand, algae, and

corals; it is often desirable to resolve these taxa at the

genus level or below. This is challenging since the data ex-

hibit significant within class variation, the borders between

classes are complex, and the viewpoints and image quality

vary. We introduce Moorea Labeled Corals, a large multi-

year dataset with 400,000 expert annotations, to the com-

puter vision community, and argue that this type of ecologi-

cal data provides an excellent opportunity for performance

benchmarking. We also propose a novel algorithm using

texture and color descriptors over multiple scales that out-

performs commonly used techniques from the texture clas-

sification literature. We show that the proposed algorithm

accurately estimates coral coverage across locations and

years, thereby taking a significant step towards reliable au-

tomated coral reef image annotation.

1. Introduction

In many scientific disciplines experts routinely analyze

large quantities of image data. However, not only has the

capacity for acquiring digital images vastly outpaced the

resources to manually annotate those images, but there are

also issues with lack of consistency and objectivity in hu-

man labeling [18, 8]. One such domain is coral reef ecol-

ogy, which is particularly important given the crucial eco-

logical roles of coral reefs, and their current state of de-

cline in health and abundance [26]. To understand this de-

Figure 1. Moorea Labeled Corals example images: Top row im-

ages are from the Outer 10m reef habitat, bottom from the fringing

reef. Superimposed on each image is a subset of the ground truth

annotations (smaller symbols) and the estimated classifications by

the proposed algorithm (larger symbols). Circles represent coral

genera Acropora, Pavona, Montipora, Pocillopora, Porites and tri-

angles are non-coral substrates, Crustose Coralline Algae, Turf al-

gae, Macroalgae and Sand. Note the organic borders between the

substrates and complex class morphologies. The white transect

line going through the images is part of the sampling methodol-

ogy, as is the metal frame seen along the edges. This figure is best

viewed in color.

velopment, ecologists need accurate and large-scale coral

reef coverage data. As satellite images are ineffective

for this purpose [14] and low altitude photography suf-

fers from problems such as surface effects, coral ecologists

commonly do in situ studies. Recent innovations in im-

age acquisition techniques, such as autonomous underwa-

ter vehicles [24] and towed diver sleds [15] have greatly



increased the number of images available and researchers,

reef managers, and government agencies such as the Na-

tional Oceanic and Atmospheric Administration (NOAA),

routinely collect millions of images per year as part of reef

surveys. However, the lack of automated annotation meth-

ods effectively caps the monitoring effort since manual an-

notation is slow, tedious, and expert time is limited; anec-

dotally, as little as 1-2 % of captured images gets annotated.

Concurrently, there have been great advances in recog-

nition of specific objects, object classes, and scenes on

widely used benchmark data sets (e.g., Caltech 101 [11],

Pascal [10]), and there is intense competition within the re-

search community to develop new methods. Yet recogni-

tion in much of the biological image data introduces new

challenges. As noted by Adelson [1], rather than trying

to recognize things as found in most of the object recog-

nition datasets, biological datasets often require identifying

stuff. In the case of coral reef image analysis the size, color,

shape, and texture of each of the classes may vary signifi-

cantly and the boundaries are often organic and ambiguous.

Further, water turbidity can change dramatically between

sites and years due to currents, plankton, algal blooms,

etc., affecting ambient light and image colors. We argue

that this type of data pose challenges quite different from

those posed by the above mentioned datasets, and also from

benchmarks commonly used for texture based recognition,

Brodatz [25] and CUReT [9].

Due to the above mentioned challenges, standard annota-

tion techniques such as image labels, bounding boxes or full

segmentations are inappropriate. A full manual segmenta-

tion would be too time consuming to collect and neither

bounding boxes nor gross image labels provide the level

of detail needed. Instead, coral ecologists commonly rely

on random point sampling. In this process images are an-

notated by asking an expert to identify at a specific point

(pixel) in the image, which class is present (most preva-

lent) at that single location. The process is repeated for a

fixed number of randomly chosen locations in the image

(typically 10-200) and often facilitated by software such as

Coral Point Count [16]. Once annotated, coverage statis-

tics can be calculated over sets of images. A typical sur-

vey might include 1000 images with 200,000 annotations

requiring >400 person hours to label. These expert anno-

tated images are a bonanza for computer vision researchers

– a rich source of labeled and relevant data.

Related work: In a recent effort to automate coral clas-

sification, Stokes and Deane [28] devised a method that uti-

lizes the discrete cosine transform and a k-nearest neigh-

bor classifier to do patch-wise classification of benthic sub-

strates. Their work shows promising results, but their small

dataset (16 images) makes it hard to draw conclusions on

scalability. Other work includes [21, 27], that use tex-

ture and color descriptors, but presume the availability of

patches hand cropped from the image data.

There is a rich literature on object recognition and

texture-based classification in the computer vision commu-

nity. Dana et al. created the CUReT database in 1999,

and this became a popular benchmark for texture recogni-

tion [9]. Malik et al. [19] made an important contribution by

introducing the texton as a cluster center of filter responses,

and later Cula and Dana [7], were able to do robust clas-

sification from a single image. Varma and Zisserman fur-

ther improved the CUReT benchmarks by introducing the

rotational invariant Maximum Response (MR) filter bank

and reported classification accuracies of up to 98.61 % [31].

Some years later Varma and Zisserman proposed the use of

patch exemplars instead of filter responses [32]. They report

a minor improvement on the CUReT database, but in gen-

eral the classification scores seem to have saturated in the

high nineties. One of the limitations of CUReT is that all

objects are cropped and each image contains only one type

of texture. Winn et al. [33] introduced the MSRC dataset in

2005 as an alternative benchmark for texture based meth-

ods, but this suffers from other problems as pointed out

by Torralba and Efros [29]. In contrast to CURet, MSRC,

and most other datasets used for performance benchmarks,

the Moorea Labeled Corals (MLC) dataset was not created

explicitly for the purpose of developing computer vision

methods. We believe this provides a better opportunity for

benchmarking, and indicates a direction for future computer

vision challenges.

Contributions: The contribution of this paper is

twofold: (1) We introduce the analysis of coral reef sur-

vey images as a relevant and important application domain

to the computer vision community and propose a bench-

mark dataset. (2) We propose a method based on texture and

color descriptors over multiple scales that outperforms stan-

dard texture classification methods and establishes a strong

baseline on the MLC dataset. This is, to the best of our

knowledge, the first paper to address automated annotations

of coral reef survey image on a large scale.

2. Dataset

The Moorea Coral Reef Long Term Ecological Research

(MCR LTER) project has been collecting image data from

the island of Moorea (French Polynesia) since 2005. This

project monitors six sites around the island, and four habi-

tats at each site. Each year, transect lines are attached be-

tween points permanently anchored in the reef. Then, divers

move along the transect line, acquiring images using a dig-

ital SLR equipped with underwater strobes. The camera

is attached to a frame (50 cm by 50 cm) to keep the dis-

tance from the bottom constant and the camera orientation

parallel to the reef surface. Sample images are provided in

Fig. 1 where the frame is seen along the image edges, and

the white transect lines pass through the middle. The orange



Figure 2. Moorea Labeled Corals classes: Each class is represented by two example patches. First row: Acropora, Porites, Montipora.

Second row: Pocillopora, Pavona, Macroalgae. Third row: Sand, Turf algae, CCA. Each class exhibits great variability with respect to

growth form, color, scale and viewing angle. For example, note the two different growth forms of Acropora and Porites, and the difference

in color and scale of the Pocillopora patches. Macroalgae varies tremendously in shape and color, and often projects from underneath the

corals. Both CCA and Turf algae tend to overgrow dead coral, which pose a challenge for automated analysis since the coral skeleton

retains its shape, but now classifies as the the algae that overgrows it. Also, CCA and Turf are similar and are hard to discriminate from

an RGB photography. Finally, we point out that the images in this grid has been hand picked to clearly exemplify each class. A random

selection of patches would include a large amount of patches that straddles class boundaries, and where class designation is less clear.

lines are attached to the frame to help the diver align the

center of the frame with the target. Even with this careful

method of acquisition there are large differences in image

appearance as mentioned in Sec. 1. Across years things be-

come even more challenging as the ecosystem changes. On

this reef an outbreak of Crown of Thorns Sea Star (a preda-

tory sea star) in 2006, followed by Cyclone Oli in February

2010, together destroyed the majority of the corals. Data

from 2011 show signs of rapid regrowth of the reef through

recruitment. All images are labeled using the random point

sampling method mentioned in Sec. 1. In this dataset 200
points were laid over on each image at random locations

and then labeled by an expert according to an established

taxonomy (∼ 30 categories) for the site.

Moorea Labeled Corals: The MLC dataset is a sub-

set of the MCR LTER packaged for computer vision re-

search. It contains 2055 images from three habitats: fring-

ing reef, outer 10m and outer 17m, from 2008, 2009 and

2010. It also contains random point annotation (row, col,

label) for the nine most abundant labels, four non coral

labels: (1) Crustose Coralline Algae (CCA), (2) Turf al-

gae, (3) Macroalgae and (4) Sand, and five coral genera:

(5) Acropora, (6) Pavona, (7) Montipora, (8) Pocillopora,

and (9) Porites. These nine classes account for 96% of

the annotations and total to almost 400,000 points. There

is a large variation in the number of samples from each

class, Fig. 5. The MLC dataset is available at http:

//vision.ucsd.edu/data.

Labeling ambiguity: The annotations in this settings

are not ‘ground truth’ in the common sense, meaning an ab-

solute truth. Culverhouse et al. studied this phenomena for

plankton classification and reported surprisingly weak in-

ter and intra operator consistency rates [8]. The authors list

several reasons for this: short term human memory, fatigue

and boredom, recency effects (bias towards labels recently

used) and positivity bias (bias towards what one expects to

see) [8]. Further, the labels may be noisy for reasons out-

side the control of the human operator. For example, in the

present case, there might be insufficient signal in an RGB

image to discriminate Turf algae and CCA. Ninio et al. in-

vestigated some of these effects for underwater video im-

ages of the Great Barrier Reef. They report accuracies of

96% for hard corals, 92.5% for soft corals and 80.6% for

algae when compared to in situ observations. They also

report on inter- and intra-operator variabilities but only on

aggregated coverage statistics [23]. Carleton & Done ob-

http://vision.ucsd.edu/data
http://vision.ucsd.edu/data


served a “far inferior” ability to discriminate among corals

using video transects compared to in situ observations [3].

In general there is an acknowledgement within the com-

munity that errors exists in distinguishing among benthic

groups and that it can be severe in a few cases, for exam-

ple discerning between Turf algae and CCA. This notion is

supported by a recent (unpublished) NOAA study compar-

ing the annotations of a benthic expert to those of moder-

ately trained operators. Their data indicate 97% agreement

between the operators and the expert on the binary task of

discriminating between corals and non-corals, 85% agree-

ment on the task of discriminating between the 5 most abun-

dant hard corals, and 79% agreement when discriminating

between Macroalgae, Turf algae, CCA, and Sand [12]. We

are currently studying these effects for four Pacific datasets

including the MLC dataset.

3. Method

In this section we describe the proposed method. As

the objects we aim to classify are small, lack clear bound-

aries and a clear sense of shape, we represent them us-

ing texture descriptors. Varma and Zisserman [31] pro-

posed a method where textures are modeled as histograms

of textons [17], and introduce a rotational invariant filter

bank, Maximum Response (MR). Their method is straight

forward and achieves accuracy of >95% on the CUReT

database [9]. Driven by difficulties in the problem domain,

the proposed method extends [31] in two ways: the use

of multiple scales and the incorporation of color informa-

tion. As shown in Fig. 3, and further discussed in Sec. 3.3,

there is no straightforward way to choose a fixed patch size

over which to integrate image information, which led us to

a data-driven, multiple patch approach. The color exten-

sion was introduced to encode important color information.

However, this is not trivial as colors are corrupted under

water, e.g., the red colors are attenuated as a function of

depth [4]. We discuss this further in Sec. 3.2.

3.1. Preprocessing

All images are first downsized by a factor of 2. We

then apply a method, ColorChannelStretch, which, for each

color channel individually, finds the 1% and 99% intensity

percentile, subtracts the lower from all intensities in that

channel (and sets any negative pixel values to 0), and then

divides by the upper. This method slightly modifies the im-

age colors, and was found to be empirically superior to In-

tensityStretch which stretches the global image intensities

across all channels, Table 1.

3.2. Texture and Color

We use the Maximum Response (MR) filter bank intro-

duced in [31] which encodes rotational invariance by first

filtering with bar and edge filters at different orientations

L*a*b* HSV RGB Gray

Intensity - 74.6% 65.3% 71.8% 69.5%
Stretch 63.9% 58.9% 64.3% 63.6%

80.1% 79.1% 78.2% 76.4%
[72.9%] [67.8%] [71.4%] [69.8%]

Color - 74.7% 72.6% 72.5% 70.1%
Channel - 67.4% 64.9% 66.0% 64.5%

Stretch 80.1% 80.6% 80.8% 79.8%
[74.1%] [72.2%] [73.1%] [71.1%]

None 75.1% 73.2% 72.7% 70.4%
64.1% 59.3% 65.8% 63.9%
81.3% 82.3% 80.8% 79.2%
[73.5%] [71.6%] [73.1%] [71.2%]

Table 1. Color space and preprocessing method: The percent

of correctly predicted points; in each cell the first row represents

the 2008 ⇒ 2008, experiment, the second 2008 ⇒ 2009, the

third 2008 + 2009 ⇒ 2010, and the last the average across all

experiment (see Sec. 4). The best score for each experiment is

represented in bold, and the lower right cell represent base-line

performance. While the differences are subtle and noisy, we see

that the L*a*b* color space and ColorChannelStretch works best,

in particular for the across year experiments. By stretching the

image histogram we compensate for differences in water turbid-

ity and lighting. The comparison shows that color information is

useful even though absolute color references are unavailable.

and then outputting the maximum over the orientations. It

also contains a circular Gaussian and Laplacian filter. By

cross validating over different sizes we arrive at bar and

edge filters with standard deviations of 1, 3 and 8 pixels

along the short dimension, and circular filters standard de-

viation of 6 pixels, thus producing an 8 dimensional filter

output vector. The filter sizes correspond to 0.5, 1.5, 4 and

3 mm actual distance on the reef surface which is small

enough to capture the polyps characterizing the different

coral types, along with the finer coral structures. After filter-

ing, following [20, 22], we apply a contrast normalization,

F(x)← F(x)[log(1 + L(x)/0.03)]/L(x) (1)

where L(x) = ||F(x)||2 is the magnitude of the filter re-

sponse vector, F(x) at pixel x.

Color: The method as presented in [31] does not give

special care to color. While colors are not generally a ro-

bust source of information [2], particularly underwater with

artificial light sources [30], we show that color information

is useful for this task. We encode color information by ap-

plying the filters to each color channel in the L*a*b* color

space and then stack the filter response vectors. Ideally,

when using color descriptors for discrimination, color cor-

rection should be performed. We were however unable to

do this as: (1) there was no reliable color references in the

images, (2) there is a deficiency in the literature of meth-

ods for underwater color correction. This issue was left to



Figure 3. Patch size problems: Four different patches from the

dataset, each with a region of 61 by 61 pixels indicated with a red

box. In top left, the signal from the small algal patch might be

overwhelmed by the surroundings if the patch is too big. In top

right, on the other hand, a small patch would not capture the larger

textures. Also, in bottom left, the histogram of visual words would

be more stable if a larger area is used. Bottom right show a case

where the point of interest is on the edge between classes, in which

case any patch size will be problematic.

future work, and we settle for intensity normalization by

histogram stretching as discussed in Sec. 3.1. An empiri-

cal comparison on the end-to-end system shows that Col-

orChannelStretch and L*a*b* yield the most consistent re-

sults across years (Table 1). It seems that by stretching the

image histogram we are able to compensate for some dif-

ferences in water turbidity and lighting.

3.3. Descriptors

To create the texton maps, a dictionary of textons is re-

quired. For this purpose we select a subset of the 2008

images that were not used in any test sets. Filter re-

sponses from each of the nine classes were separately ag-

gregated across the images, and k-means [13] clustering

with 15 cluster centers was applied to each set of filter re-

sponses. Finally the cluster centers, or textons, from the

different classes were merged to create the dictionary with

135 words, each 24 dimensions.

To extract the texture descriptor, we first apply the filters

over the whole image. This yields a 24-dimensional feature

vector for each pixel in the image. The filter responses are

then mapped to the texton with smallest 2-norm distance,

creating an integer valued textonmap. The actual feature
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ps = 21 ps = 61 ps = 121 ps = 221 ps = multi

Figure 4. Patch size experiment: End to end performance result

using different patch sizes (ps). The ps = multi results are gen-

erated using all four integration areas as described in Sec. 3.3. For

size reference, note that the patches in Fig. 2 are all 221 by 221

pixels. All runs are evaluated on the same test set comprising 200

images from 2008. The training data comprises subsets of the re-

maining images from 2008. Note how the single patch size perfor-

mance levels out at ps = 61. From this experiment it is evident

that by concatenating the histogram counts over multiple scales, a

more discriminative descriptor is generated.

vector, or descriptor, is set to be the normalized histogram

of textons around a patch of interest. As illustrated in Fig. 3,

the selection of an appropriate patch size is not trivial. We

evaluate the performance across four different patch sizes

(21, 61, 121 and 221) pixels, and also using a concatenation

of the descriptors (bin counts) across all scales. The evalu-

ation shows that the multi-scale approach is superior to any

of the single patch sizes. This is illustrated in Fig. 4 where

we sweep over training set sizes. The complete image pro-

cessing pipeline is summarized in Algorithm 1 where I is

the input image, MR the filter bank, D the dictionary of

textons, A the row and column index of the annotated im-

age points (with a total of n points), and T the texton map.

3.4. Machine Learning

The LIBSVM implementation of Support Vector Ma-

chines (SVM), with Radial Basis Function kernel were used

throughout this work [6, 5]. For each experiment the RBF-

SVM training step is preceded by 4-fold cross validation

on the training data, where parameters γ and C are opti-

mized by a logarithmic grid search over values log(γ, C) ∈
{−5,−4, . . . , 4, 5}. The training data was subsampled so

that a maximum of 15000 samples from each class is rep-

resented; the subsampled classes get assigned a weight in-

versely proportional to the subsample rate.

4. Experiments

We evaluate end-to-end system performance by running

three experiments. In 2008 ⇒ 2008, we trained on two

thirds of the images from 2008 and tested on the last third.

In 2008 ⇒ 2009 and 2008 + 2009 ⇒ 2010 we evalu-



Algorithm 1 Extract Descriptors(I, MR, D, A)

1: I ← COLORCHANNELSTRETCH(I)
2: I ← CONVERTTOLAB(I)
3: F ← APPLYFILTERS(I,MR)
4: for each pixel, p ∈ I do

5: Tp = argminw ||Fp −Dw||2
6: end for

7: for i = 1 to n do

8: Di ← MULTISCALEHISTOGRAMS(T,An)
9: end for

ate across-year performance. The last two experiments are

of particular interest for this application as they explore the

opportunity to let the machine annotate all data from a cer-

tain year. They are also challenging since the appearance

of the reef changes between years as discussed in Sec. 2.

The training and testing data are created by the procedure

described in Algorithm 1, and then run through the SVM.

Precision is determined as the ratio of correctly classified

patches in relation to the expert annotation. We also con-

sidered using the f-score, or harmonic mean which is often

used for multi class classification performance evaluation,

but this was too noisy due to the small number of samples in

some of the classes. In addition we evaluate performance by

comparing coverage statistics extracted from the estimated

annotations to those extracted from the expert annotations.

Percent cover is calculated as the ratio of annotations of a

certain type compared to the total number of annotations.

Patchwise results: Table 2 shows results for the full ex-

periment, and three important sub classification tasks. It

also shows random classification (based on the prior prob-

abilities) scores as these get quite large in some cases due

to the abundance of CCA. Best performance on the full la-

belset is achieved on the within year experiment (74%). For

the second experiment, 2008 ⇒ 2009, performance drops

to 67%. This illustrate the difficulties encountered when

classifying across years, and is present in all across-year

classification tasks. One fundamental problem is that the

data does not comply with the IID assumption of the learn-

ing algorithm due to differences in reef appearance. The

third experiment, 2008 + 2009⇒ 2010, shows an apparent

gain in accuracy (83 %) but much of this is can be attributed

to the increase in the random classification baseline. On the

sub-classification tasks we note the excellent ability of this

method to discriminate corals vs. non-corals: 95% (ran-

dom assignment achieve up to 75%). Even stronger results

are achieved on the coral discrimination task (given that we

know it’s a coral), with up to 97% accuracy. The non-corals

discrimination task is more challenging and hence shows

more confusion, in particular among the algae classes. Fig-

ure 5 shows full confusion matrices for each experiment.

Note how the main source of confusion is between CCA

and each of the other classes respectively. Part of this con-

fusion is likely because CCA overgrows dead coral; while

the coral structure retains it shape it now classifies as CCA.

Coverage results: Keeping the application domain in

mind we also consider how well the coverage statistics can

be estimated. For this purpose we generated scatter plots

showing, for each category, the coverage based on the com-

puter generated annotations compared to the coverage based

on the expert annotations for the 2008 + 2009 ⇒ 2010 ex-

periment (Fig. 6). The first sub-plot shows coral coverage,

where we consider the binary coral vs. non-coral scenario.

The slope coefficient, p1 = 1.01, indicates a very robust

ability to estimate coral coverage even for this challeng-

ing across-years experiment. This is important since many

surveys, in particular those carried out over large spatio-

temporal scales by reef managers and government agencies,

often focus on this one metric (coral coverage) as an indi-

cator of reef health. Coverage of individual coral genera

Porites, Pocillopora, Acropora and Pavona are also accu-

rately estimated while Montipora is underestimated. This

might be related to the encrusting morphology of this genus

which makes it less visually distinctive than the branching

corals. The algal plots exhibit more variation.

2008 2008 2008, 2009

⇒ 2008 ⇒ 2009 ⇒ 2010

Full 0.74 (0.28) 0.67 (0.29) 0.83 (0.39)

Coral, non-

corals

0.92 (0.66) 0.93 (0.70) 0.95 (0.75)

Within

corals

0.97 (0.35) 0.91 (0.37) 0.97 (0.43)

Within non-

corals

0.78 (0.43) 0.70 (0.42) 0.87 (0.52)

Table 2. Result details: For each experiment we report the ac-

curacy on the full 9-class experiment, as well as three key sub

problems. The first ‘coral vs. non-corals’, considers the binary

classification task where all corals are grouped together against

non-corals. The second, ‘within corals’, considers the situation

where we know a certain point is a coral, and we need to assign a

genus level label. The third, ‘within non-corals’, consider the situ-

ation where we know a certain point is a non-coral and we need to

assign the correct label (CCA, Turf algae, Macroalgae, Sand) . The

numbers in parenthesis show the accuracy by random assignment

of labels according to the priors.

Discussion: As discussed in Sec. 2, the method accuracy

must be evaluated with respect to the inconsistent nature of

the ‘ground truth’ annotations. Compared to the CRED re-

port discussed in Sec. 2 the results in Table 2 seem very

encouraging indeed, but since the CRED effort analyzed

a different reef, used a different label set and used non-

expert annotators, one must regard this comparison with

caution. Again, we emphasize the importance of a large
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Figure 5. Confusion matrices: The rows correspond to the true class assignments, the columns to the predicted assignments. A perfect

performance would generate a matrix with ones on the diagonal, and zeros elsewhere. The numbers on the right side show how many

samples are in the test set for each category. Note that some of the coral classes are rare when compared to the larger CCA class. The main

source of confusion is between CCA and each of the other classes respectively, while there is little confusion between the coral classes

inter-operator variability study to better understand ‘how

good is good’ for this task. Other future work will include

a more careful evaluation of the challenges posed by color

correction under water, as well as an appropriate treatment

of the non-IID data situation.

5. Conclusion

We introduce coral reef image annotation as a relevant

and important application domain to the computer vision

community and propose a benchmark dataset. We argue

that an effective treatment of this problem could have an

impact on many disciplines such as landscape surveying

and remote sensing and that our data set provides an excel-

lent opportunity for the evaluation of computer vision meth-

ods. We also propose a novel method for object recogni-

tion in this setting that offers a strong baseline on the MLC

dataset. This method handles ambiguous and ‘organic’ ob-

ject boundaries by a multiple scale approach, which is su-

perior to using any single patch size, and we show that

careful treatment of color information further boosts per-

formance. The proposed method yields 83.1% accuracy on

the MLC 2008 + 2009 ⇒ 2010 experiment. We also show

that the proposed method accurately estimates coral cover-

age across reef sites and multiple years, which offers excit-

ing potential for large scale coral reef analysis.
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