
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Li, Huiqing and Thompson, Simon (2012) Automated API migration in a user-extensible refactoring
tool for Erlang programs. In: the 27th IEEE/ACM International Conference on Automated Software
Engineering, September 2012, Essen, Germany.

DOI

Link to record in KAR

https://kar.kent.ac.uk/30924/

Document Version

UNSPECIFIED

Automated API Migration in a User-Extensible Refactoring
Tool for Erlang Programs

Huiqing Li
School of Computing
University of Kent, UK
H.Li@kent.ac.uk

Simon Thompson
School of Computing
University of Kent, UK

S.J.Thompson@kent.ac.uk

ABSTRACT

Wrangler is a refactoring and code inspection tool for Erlang
programs. Apart from providing a set of built-in refactorings
and code inspection functionalities, Wrangler allows users to
define refactorings, code inspections, and general program
transformations for themselves to suit their particular needs.
These are defined using a template- and rule-based program
transformation and analysis framework built into Wrangler.

This paper reports an extension to Wrangler’s extension
framework, supporting the automatic generation of API mi-
gration refactorings from a user-defined adapter module.

Categories and Subject Descriptors

D.2.3 [SOFTWARE ENGINEERING]: Coding Tools and
Techniques; D.2.6 []: Programming Environments; D.2.7 []:
Distribution, Maintenance, and Enhancement

General Terms

Languages, Design

Keywords

Erlang, refactoring, API migration, Wrangler, software en-
gineering, template, rewrite rule.

1. INTRODUCTION
Most software will evolve, and this will often change the

API of a library, and such changes could potentially affect
all client applications of the library, both locally and re-
motely. API migration is a process of refactoring, but API
migrations are not generally supported by refactoring tools
due to the specifics of each particular migration, and so the
transformations required tend to be done manually by the
maintainers of the client code, risking incorrectness.

This paper presents our approach to automating the im-
plementation of API migration for Erlang. This work is
built on top of Wrangler, a refactoring and code inspection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3-7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$10.00.

tool for Erlang programs, but we note that the approach
applies to other languages equally well. One of the features
that distinguishes Wrangler from other refactoring tools is
its user-extensibility, given by a template- and rule-based
program analysis/transformation framework, allowing users
to express their intentions using Erlang concrete syntax.

Our approach to automatic API migration works in this
way: when an API function’s interface is changed, the au-
thor of this API function implements an adapter function,
defining calls to the old API in terms of the new. From this
definition we automatically generate the refactoring that
transforms the client code to use the new API. This refac-
toring can be supplied by the API writer to clients on library
upgrade, allowing users to upgrade their code automatically.

As a design principle, we try to limit the scope of changes
as much as possible, so that only the places where the ‘old’
API function is called are affected, and the remaining part of
the code is unaffected. One could argue that the migration
can be done by unfolding the function applications of the old
API function using the adaptor function once it is defined.
However, the code produced by this approach would be a
far cry from what a user would have written. Instead, we
aim to produce code that meets users’ expectations.

The paper is organised thus: Sec. 2 introduces a running
example, and Sec. 3 gives a brief overview of Wrangler and
its template- and rule-based framework. Automated API
migration in Wrangler is reported in Sec. 4, related work is
covered in Sec. 5, and the paper is concluded in Sec. 6.

2. EXAMPLE: REGULAR EXPRESSIONS
As a running example we take the implementation of reg-

ular expressions in Erlang; the regexp library has been dep-
recated, and users are expected to use the re library, which
has a somewhat different application programmer interface.

For instance, the function match from the regexp library
is used to find the first longest match of regular expression
RegExp in a String. If the match succeeds, the function
returns a tuple {match, Start, Length} where Start is the
starting position of the match, and Length is the length of
the matching string; if the match fails it returns nomatch.
Fig. 1 shows two examples that use the function; note that it
would be possible to rewrite the case expressions in various
different ways without changing their meaning.

Replacing uses of match in Fig. 1 with the corresponding
functions in the re library gives Fig. 2. In particular, the
replacement for match would be the run function with the
option global set. The function run is different from match

not only in the name, but also in inputs and outputs. The

secret_path(Path, [[NewDir] | Rest], Dir) ->
case regexp:match(Path, NewDir) of

{match, _Start, _Len} when Dir == to_be_found ->
secret_path(Path, Rest, NewDir);

{match, _Start, _Len} ->
secret_path(Path, Rest, Dir);

nomatch ->
secret_path(Path, Rest, Dir)

end.
Code example (a)

document_name(Path) ->
case regexp:match(Path,"[^/]*\$") of

{match, Start, Len} ->
string:substr(Path, Start, Len);

nomatch -> "(none)"
end.

Code example (b)

Figure 1: Code examples using regexp:match

secret_path(Path, [[NewDir] | Rest], Dir) ->
case re:run(Path, NewDir, [global]) of

{match, _Match} when Dir == to_be_found ->
secret_path(Path, Rest, NewDir);

{match, _Match} ->
secret_path(Path, Rest, Dir);

nomatch ->
secret_path(Path, Rest, Dir)

end.
Code example (a)

document_name(Path) ->
case re:run(Path, "[^/]*\$", [global]) of

{match, Match} ->
{Start0, Len}=lists:last(lists:ukeysort(2,Match)),
Start = Start0 + 1,
string:substr(Path, Start, Len);

nomatch -> "(none)"
end.

Code example (b)

Figure 2: Code after replacing ‘match’ with ‘run’

domain of match is a proper subset of that of run, but the
result of run upon successful matching however contains not
only the longest match, but also every sub-pattern match,
presented as a list of tuples of the form {Start,Length}. A
further difference is that string indexing begins at 1 in the
regexp library, but at 0 in re.

3. WRANGLER AND ITS API

Wrangler [1, 2, 3] is a tool that supports interactive refac-
toring and“code smell”detection for Erlang programs. Wran-
gler is integrated with Emacs and Eclipse (via ErlIDE).
Wrangler uses annotated Abstract Syntax Trees (AAST)
to represent Erlang programs, in which each AST node is
annotated with static semantic information, location, etc.
Wrangler’s extensibility is achieved in a number of ways.

Implementation. Wrangler is implemented in Erlang, a
language the users of Wrangler are familiar with.

Templates and Rules, as described in Section 3.1.
Infrastructure. A layer of commonly-used components

which handles static analyses of Erlang programs, parsing

programs into ASTs, AST traversals, rendering of new source
code after a refactoring, support of undo, preview, etc.

Integration. To integrate user-defined refactorings into
Wrangler, a workflow which refactorings should follow is de-
fined as set of Erlang callbacks (called a behaviour). User-
defined refactorings that implement the required callbacks
can be invoked from the Refactor menu in Emacs or Eclipse.

3.1 Templates and Rules
The template- and rule-based API [1] allows programmers

to express program analysis and transformation in Erlang
concrete syntax. In Wrangler, a code template is indicated
by the macro ?T whose argument is the string representation
of an Erlang code fragment that may contain meta-variables,
which are placeholders for syntax element(s) in the program.

Syntactically a meta-variable is an Erlang variable, ending
with the character ‘@’. A meta-variable ending with a single
‘@’ represents a single language element, and matches a
single subtree in the AST; a meta-variable ending with ‘@@’

is a list meta-variable that matches a sequence of elements
of the same sort. For instance, the template

?T("erlang:spawn(Args@@, Arg1@)")

matches the applications of spawn function to one or more
arguments, where Arg1@ matches the last argument, and
Args@@ will match the remaining arguments, if any.

Templates are matched at AST level, that is, the tem-
plate’s AST is pattern matched to the program’s AST using
structural pattern matching. If the pattern matching suc-
ceeds, the meta-variables/atoms in the template are bound
to AST subtrees, and the context and static semantic infor-
mation attached to the subtrees matched can be retrieved.

The template-based API is used not only to retrieve infor-
mation about a program, but also to define program trans-
formation rules. A rule defines a basic step in the trans-
formation of a program, specifying a program fragment to
transform and a new program fragment to replace the old
one, and is denoted by a macro ?RULE thus:

?RULE(Template, NewCode, Cond),

In the example Template is a template representing the code
fragment to replace; Cond is a Boolean condition; and New-

Code is an Erlang expression that returns the new code frag-
ment as a string or an AST. The meta-variables declared in
Template can be used in NewCode and Cond.

3.2 Meta-Rules
Various program transformations can be expressed using

Wrangler’s RULE macro, however the number and complexity
of the rules one has to write could increase significantly when
the transformation involves a sequence of sub-expressions
or clauses, as in case expressions or function definitions.
The main reason is that Erlang, like any other program-
ming language, allows a programmer to make a number of
– essentially arbitrary – decisions about the precise form of
an expression to implement a particular intention.

For example, a case expression in Erlang can have multi-
ple clauses, each made up of a pattern and a body: patterns
are matched in turn, and the body of the first successful
match is the result. While in some examples one clause has
to come before another to preserve the semantics of the code,
there are others in which the patterns are mutually exclu-
sive, and the order in which they are written is arbitrary.
A pattern may also have an optional boolean expression or

?META_RULE(
?T("case regexp:match(String@,RegExp@) of

{match,Start@,Len@} when Guard1@@->Body1@@;
nomatch when Guard2@@ -> Body2@@

end"),
"case re:run(String@,RegExp@,[global]) of

{match,Match} when Guard1@@ ->
{Start0,Len@} =

lists:last(lists:ukeysort(2,Match)),
Start@ = Start0 + 1,
Body1@@;

nomatch when Guard2@@ ->Body2@@
end",
api_refac:free_vars(Guard1@@) --

(api_refac:bound_vars(Len@)++
api_refac:bound_vars(Start@))==

api_refac:free_vars(Guard1@@)).

Figure 3: An example meta-rule

match(String, RegExp) ->
case re:run(String, RegExp, [global]) of
{match, Match} ->
{Start0,Len}=lists:last(lists:ukeysort(2, Match)),
Start = Start0+1,
{match, Start, Len};
nomatch -> nomatch
end.

Figure 4: Adapter function for regexp:match/2

guard which needs to be satisfied; the choice of whether or
not to use a guard also adds to the decision of whether to
use a guard expression also enlarges the design space.

To write transformation rules transforming case expres-
sions that use match (such as those shown in Fig 1) to case
expressions that use re, it is obviously going to be hard to
capture all the possible scenarios using the RULE macro. To
address this problem, we introduce the concept of a meta

rule. A meta rule is also represented by a macro:

?META_RULE(Template, NewCode, Cond)

However, a number of syntactic constraints apply:

• Template and NewCode can only be a case or try ex-
pression. The clause patterns of Template should be
mutually exclusive; as to NewCode, we only require that
clause patterns together with clause guards ensure the
mutual exclusiveness of expression clauses. Mutual ex-
clusiveness guarantees that re-ordering of clauses does
not change the semantics of the expression.

• If we index the top-level expression clauses of Tem-

plate and NewCode as T1, ..., Tn and N1, ..., Nm respec-
tively, then m ≤ n and there is a partial mapping
from T1, ..., Tn to N1, ..., Nm, that is, clause Ni(1≤i≤m)

represents the transformation result of clause Ti, and
for all Ti(i>m), no code is generated; only the meta-
variables declared in Ti can be referenced by Ni.

Unlike RULE, which pattern matches the Template code with
object code just as they are, META_RULE does a more flexible
pattern matching process. Take the case expression as an
example, given a template case expression represented as :

case Expr1 of T1; T2, ..., Tn end

and an object case expression represented as:

case Expr2 of C1; C2, ... Ct end

where Ti,Ci are of the form: Patterni when Guardi->Bodyi.
To pattern match the object case expression with the

template case expression, Expr2 is pattern matched with
Expr1, and each Ci(1<=i<=t) is pattern matched with each
Tj(1<=j<=n). The pattern matching succeeds only if:

• Expr1 and Expr2 pattern match successfully;

• For each Ci(1<=i<=t), either Patterni is a catch-all
pattern represented as an underscore ‘ ’ or an unused
bound-variable, or only one expression clause from the
template expression successfully pattern matches Ci.
The ‘only one’ condition guarantees determinism when
new object code is to be generated.

Upon a successful pattern matching and successful condition
checking, the new object code is generated in this way:

• First the expression clauses, N1, ..., Nm, in NewCode

are replaced by expression clauses, C′
1, ..., C

′
t, where

C′
i is Ci if Ci is a catch-all clause, or Nj if Ci pat-

tern matches successfully with Tj ; in the latter case,
the meta variables in Nj are replaced by their bound
object code as a result of the pattern matching.

• Second, the ‘new’ object code is tidied up by removing
declarations that are introduced by the transformation
but remain unused and prefixing unused variables with
underscore, etc, so that the transformation does not
introduce warnings from the compiler.

As an example, the meta-rule in Fig 3 defines the transfor-
mation of case expressions using regexp:match/2 to those
using re:run/3. The condition of the rule says that the
rule is applied only if none of the variables bound in the
clause pattern of the template case expression is used by
the guard expression of that clause. Applying the meta-rule
to the code in Fig 1 generates the code in Fig 2. While the
rule cannot refactor all the use cases of match into run, it
handles a substantial proportion of them.

4. AUTOMATED API MIGRATION
Our approach to API migration is reported in the section.

4.1 The Adapter Module
An adapter function is a single-clause function that im-

plements the ‘old’ API function using the ‘new’ API: the
adapter function for regexp:match/2 is shown in Fig 4.

A case expression is needed by the definition of the adapter
function if the return value of the API function is affected by
migration, and the return value is of a ‘union’ type. Within
the case expression, each clause handles one type of the re-
turn value, and the clause body defines the ‘old’ value from
the value returned by the ‘new’ API function. Guards can
be used to ensure that the generated clauses do not overlap.

For an API migration that does not affect the return value
of the function, a case expression is not needed, and the
body of the adapter function could be just a function appli-
cation of the ‘new’ function. A number of constraints should
be satisfied by adapter functions:

• The definition should have only one clause, and the
name/arity should be the same as the ‘old’ function.

• The parameters of the function should all be variables.

• If the function definition is a case expression, then the
last expression of every clause body should be a simple
expression that can be used as a pattern.

4.2 Generation of Transformation Rules
The rule generator takes an adapter function as input and

generates a number of rules and meta-rules from it (at most
3, typically). For example, three rules will be generated from
the adapter function defined in Fig 4:

A meta-rule with the template code as a case expression.

The rule shown in Fig 3 is a slightly simplified version of
the rule generated from the function in Fig 4. In this rule,
the case expression argument, i.e. regexp:match(String@,

RegExp@), is derived from the name and parameters of the
adapter function; a case expression clause is generated for
every clause in the adapter function, and the clause pattern
is inferred from the last expression of the corresponding case

clause in the adapter function; the guard expression and
clause body are meta-variables automatically generated.

The NewCode of the rule is derived from the body of the
adapter function by removing the last expression of the each
clause body, and adding the clause body/guard introduced
in the Template. The Cond of the rule is a general condition
that applies to most meta-rules, and is derived by analysing
the patterns and guards of each clause in the template code.

A rule with the template code as a match expression. The
left-hand side of the match expression is a place holder de-
noted by a meta-variable, and the right-hand side is reg-

exp:match(String@, RegExp@). i.e. a function application
of the ‘old’ API function. The NewCode of the rule is the
template match expression with its right-hand side replaced
by the body of the adapter function; and Cond is true.

A rule with the template as a function application of the

‘old’ API function. In this case NewCode is the function body
of the adapter function and Cond is true.

To avoid causing name capture/conflict when the rules
are applied, all the new object code variable names used are
fresh names automatically generated by Wrangler.

4.3 Applying an API Migration Refactoring
API migration refactorings are a special kind of refactor-

ings, whose preconditions are always met. The way in which
the refactoring rules are applied is also different from the way
in which general rule-based refactorings are applied. As a
matter of fact, the API migration process is a combination
of rule application and refactoring. The following steps are
followed when an API migration refactoring is applied.

Step 1: If there is a meta-rule, then it is applied first.
Step 2: If there is a rule with a match expression as the

Template, first apply the introduce a new variable refactor-
ing to every application of the ‘old’ API function that is a
sub-expression of another expression (not including a match

expression), so that a new match expression, which binds
the function application to the newly introduced variable, is
added before the inner-most enclosing expression statement
of the function application; then apply the rule.

Step 3: The remaining rule, i.e. the rule whose template is
a function application of the ‘old’ function, is then applied.

The purpose of the refactoring in step 2 is to avoid gen-
eration of expressions that are too complex. In order to
keep the code generated as tidy as possible, apart from the
refactoring step mentioned above, refactorings that get rid

of unused expressions or variables are also applied after a
rule has been applied, which is another difference between
API migration refactorings and general refactorings.

5. RELATED WORK
The work most related to ours is reported by Lövei in [4],

which aims to support automatic API migration for Erlang,
but is different in two ways. First, in his approach, data
flow analysis is used to trace the expressions affected by calls
to the ‘old’ API function to determine the very last points
in the data flow where the transformations can be applied,
whereas we try to limit the scope of changes as much as
possible; second, his approach requires the user to provide
the migration rules; we just require the adapter module.

The survey [5] gives a taxonomy of different aspects of API
migration: recommending replacements, deciding whether
to make a change, actually making changes, and verifying
the results. Our work fits the first and third categories.
Notable in the works surveyed is the paper by Dig and his
co-authors on the nature of API evolution [6].

Inference of refactorings in class upgrade is described in
[7]; our work depends on the library writer to describe the
API adapter, but then infers refactorings from this, to ‘fold’
the adapter into the client code. Bartolomei et al [8] describe
patters for API migration by wrapping: our work shows how
this can be extended by folding the wrapping into the code.

6. CONCLUSIONS AND FUTURE WORK
The work reported here is for Erlang, however we see that

a similar approach would be possible for other programming
languages, with different flavours depending on their partic-
ular paradigm and feature mix.

In the future, we will use the tool to generate API migra-
tion refactorings for API changes in the Erlang libraries; we
also expect to carry out case studies to see how the approach
is perceived and used by Wrangler users.

This research was supported by the EU FP7 collaborative
projects ProTest (215868) and RELEASE (287510).

7. REFERENCES
[1] Li, H., Thompson, S.: A User-extensible Refactoring

Tool for Erlang Programs. Technical Report 4-11,
School of Computing, Univ. of Kent, UK (2011)

[2] Li, H., Thompson, S.: Let’s Make Refactoring Tools
User-extensible! In Sommerlad, P., ed.: The Fifth ACM
Workshop on Refactoring Tools. (June 2012)

[3] Li, H., Thompson, S.: A Domain-Specific Language for
Scripting Refactoring In Erlang. In: FASE 2012. (2012)

[4] Lövei, L.: Automated Module Interface Upgrade. In:
8th ACM SIGPLAN workshop on Erlang. (2009)

[5] Nasser, V.H.: A Survey of Program Migration
Methods. http://pages.cpsc.ucalgary.ca/~vnasser/
pub/comparisonofprogrammigration.pdf (2010)

[6] Dig, D., Johnson, R.: How do APIs Evolve? A Story of
Refactoring. J. Softw. Maint. Evol. 18(2) (2006)

[7] Tansey, W., Tilevich, E.: Annotation Refactoring:
Inferring Upgrade Transformations for Legacy
Applications. In: OOPSLA ’08, ACM (2008)

[8] Tonelli, T., Czarnecki, K., Lämmel, R.: Swing to SWT
and back: Patterns for API migration by Wrapping. In:
ICSM ’10, IEEE Computer Society (2010) 1–10

