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Abstract

Purpose We propose a fully automated method for detec-

tion and segmentation of the abnormal tissue associated

with brain tumour (tumour core and oedema) from Fluid-

Attenuated Inversion Recovery (FLAIR) Magnetic Reso-

nance Imaging (MRI).

Methods The method is based on superpixel technique and

classification of each superpixel. A number of novel image

features including intensity-based, Gabor textons, fractal
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analysis and curvatures are calculated from each superpixel

within the entire brain area in FLAIR MRI to ensure a robust

classification. Extremely randomized trees (ERT) classifier

is compared with support vector machine (SVM) to classify

each superpixel into tumour and non-tumour.

Results The proposed method is evaluated on two datasets:

(1) Our own clinical dataset: 19 MRI FLAIR images of

patients with gliomas of grade II to IV, and (2) BRATS 2012

dataset: 30 FLAIR images with 10 low-grade and 20 high-

grade gliomas. The experimental results demonstrate the high

detection and segmentation performance of the proposed

method using ERT classifier. For our own cohort, the average

detection sensitivity, balanced error rate and the Dice overlap

measure for the segmented tumour against the ground truth

are 89.48 %, 6 % and 0.91, respectively, while, for the BRATS

dataset, the corresponding evaluation results are 88.09 %, 6 %

and 0.88, respectively.

Conclusions This provides a close match to expert delin-

eation across all grades of glioma, leading to a faster and

more reproducible method of brain tumour detection and

delineation to aid patient management.

Keywords Brain tumour segmentation · Extremely

randomized trees · Feature selection · Magnetic resonance

imaging · Superpixels · Textons

Introduction

Despite improvements in the diagnosis and oncological treat-

ment of primary brain tumours, they remain associated with

significant morbidity and a poor overall prognosis. The

majority of primary brain tumours originate from glial cells

(termed glioma) and are classified by their histopathological

appearances using the World Health Organization (WHO)
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system into low-grade glioma (LGG) (grades I and II) and

high-grade glioma (grade III anaplastic glioma and grade

IV glioblastoma). The typical natural history of low-grade

glioma is a latent period of growth and infiltration of white

matter with subtle neuro-cognitive deficit and seizures in

some cases followed by regional change or transformation

to a more malignant variant. High-grade glioma may present

as a de novo (primary) glioblastoma or as a transformation

of a lower-grade tumour (e.g. secondary glioblastoma).

Gliomas typically originate within white matter and

exhibit irregular growth patterns along white matter fibres,

infiltrating surrounding brain. As a result, they exhibit

irregular boundaries that may be visually indistinct on con-

ventional magnetic resonance images. Delineation of the

tumour boundary and assessment of tumour size are needed

for patient management in terms of treatment planning and

monitoring treatment response, and current guidelines incor-

porate the use of both contrast-enhanced T1-weighted (CE

T1w) images and T2-weighted (T2w) / FLAIR images [1,2].

Many low- grade gliomas do not show contrast enhance-

ment; hence, T2w/FLAIR images are used to define the

tumour extent and volume. A longitudinal study has shown

that LGG volume and growth rate can be used to assess

whether patients are at risk with tumours likely to undergo

an early malignant transformation [3]. In clinical studies,

current Response Assessment in Neurooncology (RANO)

criterion simply uses a bidirectional measurement to deter-

mine tumour volume for assessing treatment response [4].

Although a full 3D volume measurement may provide a more

accurate volume assessment, there is a need for accurate and

fully automated methods since manual segmentation (region

of interest drawing) around tumour margins on a slice-by-

slice basis is time-consuming and can take 12 min or more

per tumour, with semiautomatic methods taking 3–5 min

[5,6]. T2w/FLAIR images can also be useful to help define

the target volumes for radiotherapy planning of high-grade

gliomas [2,5]; hence, an automated segmentation that is not

subject to operator subjectivity may be beneficial [5]. In this

study, we have concentrated on developing and validating

an automated method for a single MRI modality, FLAIR,

that could be readily translated for clinical use. Future auto-

mated methods are likely to incorporate information from

multimodal clinical MRI as in the Multimodal Brain Tumor

Image Segmentation Benchmark (BRATS) database studies

[7–9] and also include perfusion and diffusion imaging to

detect tumour tissue subtypes (e.g. necrosis, active tumour,

infiltrative tumour, oedema) [10].

However, automated detection and segmentation of brain

tumour is a very challenging task due to its high variation

in size, shape and appearance (e.g. image uniformity and

texture) [11]. Also, typical clinical image acquisition proto-

cols usually lead to higher intraslice resolution than interslice

resolution to achieve the balance of good apparent image res-

olution with adequate signal to noise and restricted scanning

time that causes asymmetry in partial-volume effects. High-

grade gliomas usually have irregular boundaries which, in

some cases, are unclear or discontinuous [12]. Current work

on brain tumour segmentation can be categorized into atlas-

based [13–15], unsupervised [16–19], hybrid [20–22] and

supervised- based approaches [23–26].

In Ref. [20], a hybrid method was proposed for brain tis-

sue detection in MRI images which included seeded region

growing segmentation and neural network classification.

However, the method was semiautomatic and different parts

of tumour need to be pre-selected to initiate the segmen-

tation process. Another method is proposed for detection

of multiple sclerosis (MS) lesions in brain MR images

which consisted of rule-based, level-set and support vector

machines [21]. Rajendran and Dhanasekaran [22] proposed

a hybrid method for segmenting the tumour by combining

region-based fuzzy clustering and deformable model. How-

ever, the method was only applied on a few FLAIR images

with fixed parameters.

Supervised learning-based algorithms use training data

labelled by experts for segmentation of tumours. Geremia

et al. [23] used discriminative random decision forests to

classify the voxels of 3D MRI image for segmentation of

MS. Wu et al. [24] used superpixel features in a conditional

random fields (CRF) framework to detect brain tumours.

However, the method was not satisfactory for low-grade

tumours segmentation. A method was proposed in [25] which

used extremely randomized forest classification considering

both appearance and context-based features. Another method

was proposed in [26] which used ERT for classification of

voxels based on their statistical and textural features, which

were extracted using different MRI protocols. In order to

reduce the computation time, it was suggested that features

were only extracted from a random set of voxels, but this

resulted in losing some part of data. In addition, a fixed size

neighbourhood for each voxel was used to calculate features.

A number of advanced algorithms [23,27–31] were

recently presented in [7] using the BRATS [8,9] orga-

nized in conjunction with the international conference on

Medical Image Computing and Computer-Assisted Interven-

tions (MICCAI) 2012 and 2013 conference. The methods

were based on segmentation of different tumour tissues, i.e.

tumour core, oedema, necrosis, using multiprotocol con-

taining FLAIR, T1-weighted (T1w), T1w with contrast and

T2-weighted protocols [32].

Despite much effort being devoted to the segmentation

problem, brain tumour segmentation remains an ongoing

research topic. Very few completely automatic segmentation

algorithms have been adopted in the clinic. Recently, only

one automated tool has been clinically evaluated [33].

In this study, we investigate a fully automated superpixel-

based method for detection and segmentation of the abnormal
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tissue associated with brain tumours as defined by the T2

hyperintensity from Fluid-Attenuated Inversion Recovery

(FLAIR) MRI. FLAIR images are routinely acquired as part

of standard diagnostic clinical MRI of brain tumours. Delin-

eation of the FLAIR hyperintensity is relevant for assessing

low-grade glioma growth [34], defining an abnormality

region from which imaging features for tumour classification

can be extracted [35], aiding with radiation dose planning

[36] and assessing treatment response [37]. Different from

the methods in [25] and [26], in which image features were

calculated based on each individual voxel and a fixed size

neighbour-hood was considered for the feature extraction,

in this paper, superpixel partition is firstly calculated which

provides accurate boundaries between different tissues, and

then image features are extracted from each superpixel. This

will not only improve the accuracy of feature calculation,

but also increase the speed of computation. We demonstrate

the automated method that provides a close match to expert

delineation across all grades of glioma and so could provide

a faster and more reproducible method of brain tumour delin-

eation to aid patient management. To assess the robustness

of the proposed method, the method is also evaluated on the

FLAIR protocol of BRATS 2012 annotated training dataset

[8,9].

The rest of this paper is organized as follows. The

“Method” section describes the proposed method, includ-

ing superpixel partition, feature extraction, classification

and final segmentation. The “Experimental results” section

presents the data description and experimental results for the

two datasets, followed by “Discussion” and “Conclusion”

sections.

Method

Our method consists of four main steps, which are depicted

in Fig. 1. After preprocessing, in the superpixel segmenta-

tion step, FLAIR image is partitioned into irregular patches

with approximately similar size and intensity values. For

each superpixel patch, a number of features including sta-

tistical, texton and shape features are calculated. This is then

followed by feature selection to find the most significant

features, based on which each superpixel is classified into

tumour and non-tumour using an ERT classifier.

Preprocessing

First, the skull is removed from all the MRI images using FSL

[38]. Then, histogram matching algorithm [39] is applied to

ensure that all the data have similar dynamic ranges. ITK

software [40] is used for this task, and one of the cases is

selected as the reference, and then, other MRI FLAIR scan

intensities are transformed to match the histogram of the ref-

erence image.

Fig. 1 Flowchart of the proposed method

Superpixel segmentation

The simple linear iterative clustering (SLIC) [41] method is

used to partition the image into patches with approximately

similar size. SLIC method has a few parameters which are

flexible to be tuned by controlling the trade-off between them

and boundary adherence. Furthermore, it is computational

and memory efficient. Each slice of FLAIR image is gridded

into equally sized squares with a user-defined size. The size

of grid side for these initial superpixels is considered as S.

The geometrical centre of each segment is considered as the

superpixel centre. These centre coordinates are then updated

in each iteration. The pixels are grouped based on their spa-

tial and intensity distance metrics. The spatial distance ds

between the i th pixel and the j th pixel is calculated as:

ds =

√

(

x j − xi

)2
+

(

y j − yi

)2
(1)

where x and y are the pixel location coordinates. The inten-

sity distance dc between the two pixels is defined as:
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Fig. 2 Example of superpixel segmentation with different window sizes: a original MRI FLAIR image with a grade II tumour, b superpixel

segmentation with S = 10 (initial grids 10 × 10) and m = 0.2, c superpixel segmentation with S = 20 (initial grids 20 × 20) and m = 0.2

dc =

√

(

I j − Ii

)2
(2)

where Ii and I j are the normalized intensity values of the i th

and the j th pixel, respectively.

The overall distance measure which is a combination of

spatial and intensity distances is then calculated with:

D =

√

d2
c +

(

ds

S

)2

m2 (3)

where m is a compactness coefficient which determines the

flexibility of superpixel boundaries. A higher value of m

results in more compact segments and a lower value cre-

ates more flexible boundaries. It is noted that, to obtain an

optimum compactness coefficient m, the MRI image inten-

sities used in Eq. (2) are normalized to the values of [0, 1].

This is to ensure that both the intensity and space distances

are within the same range.

Figure 2 shows MR images acquired with protocol FLAIR

containing a grade II tumour which is partitioned to superpix-

els with two different side sizes, S. The compactness factor

m is set to be 0.2 for both sizes. In Fig. 2b, c, the superpixels

are extracted with S = 10 and S = 20, respectively.

Feature extraction and selection

In order to train a robust classifier for the detection and seg-

mentation of brain tumour, different types of features are

considered, including intensity statistics, textons and curva-

ture features.

Intensity statistical features

First-order intensity statistics [42] are referred as pixel

intensity-based features. They express the distribution of grey

levels within the selected region of interest (ROIs) which are

the superpixels in our work. For each superpixel, 16 fea-

tures are calculated which are average, standard deviation,

variance, mean of the absolute deviation, median absolute

deviation, coefficient of variance, skewness, kurtosis, max-

imum, minimum, median and mode of the intensity values,

central moments, range, interquartile range and entropy.

Texton feature

Brain tissues have complex structures, so the intensity fea-

tures are not sufficient for accurate segmentation of tumour.

Texture features are used to improve the accuracy of segmen-

tation. In this study, the texture features are calculated based

on texton analysis. Textons are small elements of the image

generated by convolution of the image with a specific filter

bank, in which Gabor filter [43] defined as Eq. (4) is used:

G (x, y; θ, σ, λ, ψ, γ )

= exp

(

−
x ′2 + γ 2 y′2

2σ 2

)

exp

(

i

(

2π
x ′

λ
+ ψ

))

(4)

where σ is the filter size, λ is the wavelength of sinusoid, ψ

is the phase shift and γ is the spatial aspect ratio. In Eq. (4),

the terms x ′ and y′ are calculated from the spatial orientation

of the filter, θ , defined as:

x ′ = x cos θ + y sin θ

y′ = x cos θ + y sin θ (5)

The values which are set for these parameters will be dis-

cussed in “Texton feature parameters” section.

The FLAIR image is convolved with all the NFB filters (i.e.

NFB is the number of filters in the filter bank) and a response

vector with length of NFB is generated for each pixel. These

filter response vectors (the number of vectors is the same as

the number of the pixels in the image) are then clustered into
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Fig. 3 Procedure of texton feature extraction using Gabor filters applied to a grade II glioma

k clusters using NFB-dimensional k-means clustering. The

filter response vectors corresponding to each cluster are con-

sidered as the texton of a particular texture class. By assigning

the cluster number to each pixel, a texton map of the image is

obtained. The procedure of texton map extraction is depicted

in Fig. 3. The texton features for each superpixel are then

calculated using the histogram of texton map within each

superpixel.

Fractal features

A segmentation-based fractal texture analysis method

(SFTA) [44] is used to calculate fractal features. The image is

firstly decomposed into a set of binary images based on mul-

tilevel thresholds computed using Otsu algorithm [45]. The

desired number of thresholds nt is defined by the user (in this

paper, nt = 3). Then for each binary channel, all the image

boundaries are extracted using edge detection [46]. The frac-

tal features are calculated from these binary edge channels

which include area, intensity and fractal dimension. Area fea-

ture is the number of edge pixels in a superpixel. Intensity

feature is the mean intensity of image pixels corresponding to

the edge pixels in a superpixel. Fractal dimension represents

the complexity of the structure of the image and is calculated

from image boundary as:

D0 = lim
ε→0

log N (ε)

log ε−1
(6)

where N (ε) denotes the counting of hypercubes of dimension

E and length ε. By using box counting algorithm [47], an

approximation of fractal distance is obtained from the binary

images.

Figure 4 presents a flowchart of fractal analysis. Fig-

ure 5 shows fractal features including: area, mean intensity

and fractal dimension. Figure 6 illustrates an example of

fractal dimension and mean intensity features calculated

from healthy and tumour superpixels from one patient data

containing a grade IV glioma. It demonstrates a good sepa-

ration in feature space (mean intensity fractal dimension) for

FLAIR images.

Curvature feature

Image curvature is a shape-based feature which is computed

by the gradients along x and y directions of an image, namely

fx and fy . The image normal at pixel (x, y) is then calculated

as [48]:

N̂ (x, y) =
1

(

f 2
x + f 2

y

)1/2

(

fx

fy

)

. (7)

The two-dimensional curvature of the image is the divergence

of this normal and is calculated as:

Curv =
fxx f 2

y + fyy f 2
x − 2 fxx fx fy

(

f 2
x + f 2

y

)3/2
(8)

where fxx and fyy are the second derivatives of the image

intensity I (x, y). The curvature feature for each superpixel

is the average of the curvature values for all the pixels in the

superpixel.

In summary, there are in total 28 features calculated for

each superpixel, among which there are 5 texton histogram

features from 5 clusters and 6 fractal features obtained from

3 thresholded binary images (each binary image provides 3
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Fig. 4 The flowchart of extracting fractal features from a grade III glioma

Fig. 5 An example of fractal analysis applied to a grade III glioma to generate superpixel-based fractal feature maps: a FLAIR image, b area, c

mean intensity and d fractal dimension

fractal features). It is noted that all the features, except the

5 texton histogram features, are normalized to the range of

[0,30], and this is to ensure that all the features have similar

dynamic ranges and also are close to the textons histogram

values. Table 1 shows a list of the features. The details of

parameter setting in feature calculation will be discussed in

“Selection of parameters” section.

Feature selection

Feature selection step is used not only to increase the com-

putation speed, but also to remove redundant features which

may cause more classification error. In this paper, we employ

the Minimum Redundancy Maximum Relevance (mRMR)

feature selection technique proposed by [49]. mRMR is an

efficient technique for subset selection of features, which

selects more relevant features by removing the irrelevant

ones. Mutual information is used for identifying the simi-

larity between features. For features, fi , in feature set S, the

maximum relevance is obtained between features and class

c by maximizing the following:

max D (S, c) , D =
1

|S|

∑

fi ∈S
IM ( fi ; c) (9)

where IM is mutual information between feature fi and the

class c. Minimum redundancy is calculated from:
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Fig. 6 Fractal dimension versus mean intensity for healthy and tumour

superpixels calculated from one FLAIR MRI data with grade IV glioma

Table 1 Total number of features calculated from MRI FLAIR image

Feature name Number of features

Statistical 1st order 16

Texton histogram 5

Fractal 6

Curvature 1

Total 28

min R (s) , R =
1

|S|2

∑

fi , fi ∈S
IM

(

fi , f j

)

. (10)

The feature selection is performed on the entire feature vec-

tor, and it is based on leave-one-out cross-validation using

voting scheme. For each case, using cross-validation, the best

NFEA features were selected. It is noted that, if one feature

is selected by one case, the feature will get one vote. For

all the features voted by all the cases, the top NFEA features

with highest scores will be chosen as the final features. The

selected features will be used in the classification stage to

classify each superpixel into tumour or non-tumour.

Extremely randomized tree-based classification of

superpixels

In order to tackle the problem of extremely imbalanced data

in our dataset, ERT classifier [50] is used to categorize each

superpixel into tumour or normal brain tissue and to improve

the accuracy of the minority class (e.g. tumour). Like ran-

dom forests (RF) [51], ERT is an ensemble technique which

uses multiple decision trees. For both methods, each node of

the tree includes a set of training examples and the predic-

tor. Splitting starts from the root node and will continue at

every node. The procedure is performed based on the feature

representation and allocating the partitions to the right and

left nodes. Tree grows until a specified tree depth. During

the bagging process and at each attribute split, a random sub-

set of features is used. In RF, by generating large number of

trees, the most popular class is voted [52].

ERT is an extension of RF in which a further random-

ization stage is added for selecting the cut-points alongside

with randomized selection of attributes like in RF. In this

technique, the splits of attributes and cut-points are selected

randomly. Each tree is determined by tǫ{1. . .T } in which T is

the number of randomized trees. For a given data point x and

dataset Dtrain, a feature vector is represented by f (x, Dtrain).

To classify the class c of the data, for an n-dimensional

feature representation, each tree learns a weak predictor of

pt (c| f (x, Dtrain)).

In the testing process, for an unseen data point, x ′, the

probability of belonging to a class c is calculated by the

average of probabilities on all the trees:

p
(

c| f
(

x ′, D
))

=
1

T

T
∑

t=1

pt

(

c| f
(

x ′, D
))

(11)

The structures of randomized trees are independent of train-

ing sample outputs. The parameters should be selected and

tuned for the specific case. In our method, there are 20 extra

trees in the ensemble and five attributes, which are equal to

the number of selected features, are selected to perform the

random splits. Tree depth is chosen to be 15 and the mini-

mum number of samples for splitting a node is 2 as this is a

classification task. Setting these parameters will be discussed

in “Extremely randomized trees parameters” section.

After the ERT, each superpixel is then classified into

tumour or non-tumour candidates. For all the tumour super-

pixels, a 3D connected component analysis [53] is then used

to obtain 3D connected superpixel regions. Each small super-

pixel region in which the total number of voxels in the region

is less than a pre-defined threshold (i.e. 100) is regarded as

a false-positive (FP) region and removed from the tumour

candidates. The remaining tumour superpixel regions are the

segmented tumour.

Experimental results

Two experiments were carried out in this section. In the first

experiment, our own clinical dataset is used for training and

validation of the algorithm. In the second experiment, the

method is further validated on the publicly available MIC-

CAI BRATS 2012 dataset [7–9] to assess the robustness

of the method. The following subsections, including data

description, parameters selection and comparative experi-
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mental results are focused on our own data cohort, while the

next subsection presents the evaluation results on MICCAI

BRATS 2012 clinical training dataset.

Data description

We acquired patient data using a GE Signa Horizon LX

1.5 T MRI system (GE Healthcare, Milwaukee, WI, USA)

equipped with a maximum field gradient strength of 22 mT/m

and using a quadrature head coil. The MRI sequence used in

this study is FLAIR which is acquired in the axial plane with

a field of view (FOV) 240×240 mm2, matrix size 256×256

and 5 mm slice thickness with no slice gap. In particu-

lar, the following sequence is used: FLAIR (TE = 133 ms,

TR = 9000 ms, inversion time 2200 ms).

A cohort consisting of 19 patients entered retrospectively

into our study, each with a brain tumour, who has been

imaged with the FLAIR MRI sequences. The dataset con-

sists of 6 grade II tumours, 3 grade III tumours and 10 grade

IV tumours. Each patient has a histological gold standard

of tumour grading. Figure 7 shows some examples of the

manual segmentations for different tumour grades in FLAIR

images. Patient ages at the time of scanning ranged from 22

to 73 (mean 54) and consisted of 7 females and 12 males.

Selection of parameters

Statistical features are calculated directly from the intensity

values of the pixels within the superpixels, and they are non-

parametric. Parameter setting is required to calculate texton

and fractal features. For texton features, parameters of Gabor

filter bank and the number of clusters in k-means clustering

need to be determined. For the ERT classifier, an optimum

number of trees should be selected for an accurate and fast

classification. In this study, the parameters are determined

through the training stage, in which a total number of 6

patients’ data are randomly selected including 2 grade II, 1

grade III and 3 grade IV. In the following section, the process

of these parameters selection is explained in detail.

Superpixel parameters

To investigate the effect of compactness factor, m, defined in

Eq. (3), on the superpixels boundaries, we apply different val-

ues from 0 to 1 and inspect the results visually. The intensity

values of the FLAIR voxels within the brain are normalized

to the range of [0, 1]. A compactness factor m = 1 results in

more rigid boundaries, while m = 0 produces very flexible

boundaries but increases the variation and irregularity of the

superpixels shapes. An example of this parameter is shown

in Fig. 8. By visually inspecting the superpixel boundaries

and area, the value of m = 0.2 is chosen, which presents

coherent boundaries.

To select an appropriate superpixel size, different initial

window side sizes are considered in the partitioning stage.

The compactness factor is fixed to m = 0.2 for all the

experiments. Then, the superpixels which have more than

0.9 overlap with the manual segmentation mask are selected

Fig. 7 FLAIR images with different tumour grades in upper row and their ground-truth manual segmentation of the FLAIR hyperintensity in the

lower row. Tumour grades are: a grade II, b grade III and c grade IV
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Fig. 8 Superpixel segmentation with S = 10 and different compactness: a m = 0, b m = 0.2 and c m = 0.5

Table 2 Examples of the impact of different initial superpixel side

sizes, S, on the segmentation accuracy of the tumour in FLAIR images

with compactness factor m = 0.2

Superpixel side size 4 6 8 10 15 20

Dice overlap 0.98 0.96 0.92 0.85 0.73 0.56

and the Dice measure is used for assessing the performance of

superpixel segmentation. The experiment ran on the selected

training images from different tumour grades. The results are

presented in

Table 2, which shows that increasing the superpixel size

results in less segmentation accuracy. A superpixel size of

S = 6 is chosen which has a good performance and also

contains sufficient information within the superpixel for tex-

ture feature calculation.

Texton feature parameters

For the direction of Gabor filters, six settings from the range:

[0◦, 30◦, 45◦, 60◦, 90◦, 120◦] are chosen. These degrees

cover the whole space of the region with a reasonable step.

Although adding more orientations seems to include more

details to the features, it will also increase the computation

time and may add redundant information which may affect

the classification accuracy.

The maximum and minimum values for size and wave-

length coefficients are selected empirically in conjunction

with visual inspection. For the size values under the 0.3, fil-

tered images are very close to the original image, while for

the values above the 1.5, the images are intensively blurred.

Therefore, the kernel sizes are selected within this range with

the increment of 0.3, i.e. [0.3, 0.6, 0.9, 1.2, 1.5]. Wavelength

coefficients are selected empirically by visual inspection of

the filters in the range of [0.8, 1.0, 1.2, 1.5].

As discussed in “Texton feature” section, the texton map

is created by applying k-means clustering to different filter

responses. A key question in using k-means clustering is to

determine the cluster (texton) number k. However, it is not

straightforward to provide an accurate number of the struc-

tures presented in the image. Theoretically, for the texton

generation, with the increasing number of clusters, more spe-

cific texton differences between clusters could be extracted.

However, a large k may result in overclassification and also in

increasing computational cost. In our experiment, the number

of clusters (textons) (k = 5) is chosen empirically according

to the number of tissues that may be present in the FLAIR

images, i.e. grey matter, white matter, tumour, oedema and

other tissue types.

Fractal feature parameters

Different threshold levels for fractal feature extraction have

been examined. The accuracy of superpixel classification

using fractal features only is a measure to assess the effect

of number of threshold level. As shown in Fig. 9, after

increasing nt = 3 levels of threshold, which creates 6 binary

channels, the overlap measure does not increase significantly.

On the other hand, increasing each level will add 6 more fea-

tures (each binary channel has 3 fractal features) to the feature

vector. This makes the classification more complicated and

also increases the computation time for both fractal feature

calculation and classification. Therefore, the optimum level

of threshold nt = 3 is chosen for the segmentation of oedema

and tumour core.

Extremely randomized trees parameters

Implementation of ERT was performed in MATLAB 2015b

using the open- source code provided in [54] which is based

on the method by Geurts et al. [50]. To assess the impact

of ERT parameters on the classification performance, the

experiment ran on the selected training images with differ-

ent sizes of trees. The maximum depth of the trees for the
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Fig. 9 Effect of number of threshold levels on the classification accu-

racy

Table 3 Impact of the number of trees on ERT classifier accuracy

Number of trees 5 10 20 50 100

Classification accuracy (%) 92.35 97.86 98.22 98.28 98.28

ERT is set to 15. Minimum sample size, nmin, for splitting

a node is selected to be 2 as according to [50] nmin = 2

is an optimal value for most classification tasks. The num-

ber of attributes for random split is considered as 5 which is

equal to the number of selected features after applying the

mRMR feature reduction. As shown in Table 3, by adding

more than 20 trees to the ERT, there is no significant improve-

ment for the classifier accuracy. In addition, increasing the

number of trees will increase the computation time. There-

fore, in our experiment, the size of 20 trees is used for the ERT

classifier.

Comparative experimental results

Our automated method is compared with the manual annota-

tion provided by an expert. Dice similarity score [55], which

calculates the overlap of segmented area and manual seg-

mentation, is used to quantitatively evaluate the proposed

method. The Dice overlap measure ranges from 0 to 1. The

lower value represents lower overlap, while 1 demonstrates

a complete overlap.

In the classification stage, leave-one-out validation is per-

formed on single-channel MR FLAIR data. The brain MR

images are partitioned into superpixels based on Eq. (3) using

the initial window side size of S = 6 pixels and the compact-

ness factor m = 0.2. All the superpixels inside the brain area

are used for classification. Based on the manual annotation,

superpixels are split into two classes: normal tissue and brain

tumour including tumour core and oedema. Superpixel with

at least 50 % of tumour pixels in manual annotation is con-

sidered as a tumour superpixel. The remaining superpixels

are labelled as normal. The model is trained based on these

two labels. During the testing stage, the trained model is then

applied and labels are assigned to all the superpixels inside

the brain. The ERT classifier is compared with support vector

machine (SVM) [56] for the classification of superpixels. The

tumour area is obtained by grouping the superpixels related

to tumour class.

In total, five features are used after mRMR feature

selection, which are the normalized mean intensity, fractal

dimension, two texton channels and mean curvature within

the superpixel. It is noted that, though ERT can be directly

used as feature selection and classification, to ensure a fair

comparison between the ERT and SVM classifiers, the same

feature set is considered in this study.

Evaluations have been carried out qualitatively by visual

inspection and quantitatively using three classification mea-

sures for the detection and the Dice overlap measure for the

segmentation. It is noted that, for the standard four classifi-

cation measures (accuracy, precision, sensitivity, specificity),

both accuracy and specificity will give very high values due

to the highly imbalanced nature of our data. Therefore, to

properly evaluate the classification performance, only preci-

sion and sensitivity are considered.

Table 4 presents the evaluation measures for SVM and

ERT, respectively. It can be seen that, ERT produces a better

classification performance, compared to that of SVM, with

an overall classification precision of 87.86 %, sensitivity of

89.48 % and BER of 6 % for ERT, and of 83.59 %, 87.82 %

and 7 % for SVM, respectively.

The Dice score overlap measure of the individual patient

comparing the ground truth with the segmented tumour

masks using both SVM and ERT is plotted in Fig. 10. It can

be seen that the overlap ratio using the ERT-based method

is much better than that of SVM-based for all the three

tumour grades, with mean and standard deviation Dice score

of 0.91 ± 0.04 for ERT-based and 0.87 ± 0.05 for SVM-

based.

Figure 11 shows comparison results of Dice score overlap

measure (mean and standard deviation) for SVM versus ERT

for different tumour grade types from II to IV. The results

show that using ERT classifier increases the segmentation

accuracy for all grades of tumour type. There is an evident

difference between segmentation overlap measures for dif-

ferent tumour grades using SVM classifier. The result is not

satisfactory for grade II (with mean overlap of 0.81), com-

pared with the other two grades (with mean overlap of 0.90),

while the segmentation results based on ERT classifiers are

consistent for all tumour grade types, with mean overlap of

0.91.
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Table 4 Comparison evaluation

on superpixel classification

using SVM-based and

ERT-based classifier,

respectively, on the 5 features

selected using mRMR

Case no. Grade SVM ERT

Precision (%) Sensitivity (%) BER Precision (%) Sensitivity (%) BER

1 II 62.71 97.33 0.02 69.85 97.45 0.02

2 II 58.65 98.14 0.02 90.24 98.65 0.01

3 II 72.55 98.41 0.02 74.21 99.12 0.01

4 II 68.53 94.88 0.03 70.24 96.05 0.02

5 II 76.33 55.64 0.23 78.43 56.32 0.22

6 II 75.83 73.45 0.14 85.63 71.32 0.15

7 III 84.75 98.75 0.01 86.07 99.35 0.01

8 III 88.54 83.32 0.09 90.78 85.64 0.08

9 III 88.92 98.11 0.01 91.44 98.67 0.01

10 IV 95.22 83.25 0.09 97.44 89.03 0.06

11 IV 93.45 88.53 0.07 96.57 91.65 0.05

12 IV 81.55 73.98 0.14 84.33 75.92 0.13

13 IV 80.35 92.68 0.04 82.53 95.73 0.03

14 IV 90.12 92.51 0.04 91.32 95.87 0.03

15 IV 93.42 93.76 0.04 96.78 94.02 0.03

16 IV 87.45 83.06 0.09 90.21 84.15 0.08

17 IV 95.34 87.75 0.06 96.81 91.87 0.04

18 IV 98.33 82.56 0.09 98.43 85.33 0.08

19 IV 96.21 92.51 0.05 98.12 94.03 0.04

Mean All 83.59 87.82 0.07 87.86 89.48 0.06

STD All 11.76 11.09 0.06 9.27 11.23 0.06

BER balanced error rate

The classification is performed for tumour including oedema and active tumour core versus normal brain

tissue

Fig. 10 Comparison of Dice

score overlap measure of SVM

versus ERT for all our clinical

patient data (19 scans). Dice

score in vertical axis starts from

0.65 for better illustration
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Fig. 11 Comparison between

average and standard deviation

of Dice score overlap measure

for SVM versus ERT for

different tumour grade types II

to IV

Table 5 Statistical parameters

of the Wilcoxon signed-rank test
p Z value

Dice <0.001 −3.826

Precision <0.001 −3.823

Sensitivity 0.001 −3.340

The Wilcoxon signed-rank test is employed to determine

whether there are any differences in both the segmenta-

tion measure of Dice overlap and classification measures

of precision and sensitivity, obtained using the two differ-

ent classifiers (i.e. SVM and ERT), at 99 % confidence level,

with 19 subjects. Our analysis, based on the p and z values

of the statistical test, suggests that there is a statistically sig-

nificant improvement in the segmentation measures of Dice

overlap and in the classification measures of precision and

sensitivity, when using the ERT classifier instead of the SVM.

Table 5 shows the statistical parameters of our analysis.

Figure 12 shows examples of segmentation results for ERT

and SVM methods overlaid on the manual annotation. Both

SVM- and ERT-based methods obtained satisfactory results

for the detection and segmentation of different tumour types,

with ERT-based method providing slightly better results than

that from SVM. Figure 13 shows examples of much better

detection and segmentation results obtained from ERT-based

methods, compared to that from SVM. Most of the false-

positive superpixels from SVM (e.g. Figs. 12c4 and 13c1)

can be effectively eliminated using ERT, while some tumour

superpixels which are wrongly classified to the normal brain

tissues by using SVM (e.g. Fig. 13c2, c3) can be correctly

classified as tumour by using the ERT, demonstrating the

higher sensitivity of the ERT. Comparison examples of seg-

mentation for grade II tumour in the first row of both Figs. 12

and 13 illustrate that the segmented tumour boundary from

ERT (d1) is closer to the manual annotation, compared to

that of SVM (c1).

Evaluation on BRATS 2012 dataset

To assess the robustness of our method, we further validate

the method on a publicly available BRATS 2012 clinical

training dataset [8,9]. In this section, the data are described

and the segmentation results are presented and discussed.

BRATS 2012 dataset description

The BRATS 2012 annotated clinical training dataset is used

which consists of multicontrast MR scans of 30 glioma

patients (e.g. 10 low grade and 20 high grade) [7–9]. It should

be noted that the BRATS 2012 clinical training datasets are

similar to that of BRATS 2013. For those training set, the

ground truths are provided by a trained human expert [7].

For each patient data, T1, T2, FLAIR and post-gadolinium T1

MR images are available. Data were acquired from multicen-

tres and using different scanners with different field strengths

(1.5 T and 3T). In this study, only FLAIR images are used to

evaluate our method.

Experimental results

The majority of parameters tuned for our own clinical dataset,

including compactness coefficient for superpixel segmen-
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Fig. 12 Examples of segmentation results overlay on manual segmen-

tation (green). FLAIR image with tumour grade II (a1), grade II (a2),

grade III (a3) and grade IV (a4); b1–b4 manual segmentation; c1–

c4 results using SVM; and d1–d4 results using ERT. Both SVM- and

ERT-based methods obtained satisfactory results for the segmentation

of different tumour types, with ERT-based method providing slightly

better results than that from SVM
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Fig. 13 Examples of good detection and segmentation results obtained

from ERT-based methods. FLAIR image with tumour grade II (a1),

grade III (a2), grade IV (a3); b1–b3 manual segmentation; c1–c3 results

using SVM; and d1–d3 results using ERT. Most of the false-positive

superpixels from SVM (e.g. (c1) and (c3)) can be effectively eliminated

using ERT, while some tumour superpixels which are wrongly classified

to the normal brain tissues by using SVM (e.g. (c2)) can be correctly

classified as tumour by using the ERT

tation, fractal features, and number of clusters for texton

generation, are directly used in the BRATS dataset. All the

parameters for both ERT and SVM classifiers are the same.

However, only superpixel size and filter size used for Gabor

filter defined in Eq. (4) are slightly adjusted, e.g. for super-

pixel size, instead of using size of 6 in our own dataset, size

of 5 is used in the BRATS dataset, while a smaller range of

filter size (e.g. [0.3 0.5 0.8 1.1 1.4]) is used for the Gabor

filter bank in texton feature extraction. This is due to the dif-

ferent image sizes and resolutions between the two datasets.

All the five features selected using mRMR are also used in

BRATS dataset for the classification of each superpixel.

Table 6 presents the evaluation measures for SVM and

ERT, respectively. It can be seen that ERT produces a slightly

better classification performance, compared to that of SVM,

with an overall classification precision of 89.09 %, sensitivity

of 88.09 % and BER of 6 % for ERT and of 83.79, 82.72 and

9 % for SVM, respectively.

The Dice overlap ratio between the ground truth from

manual annotation and the segmented tumour using ERT

and SVM classifiers for the BRATS dataset is presented in

Table 7. It can be seen that the overlap ratio using the ERT-

based method is much better than that of SVM-based for all
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Table 6 Comparison evaluation on superpixel classification using

SVM-based and ERT-based classifiers, respectively, on BRATS 2012

dataset using 5 features selected by mRMR

Case

no.

Grade/ID SVM ERT

Precision

(%)

Sensitivity

(%)

BER Precision

(%)

Sensitivity

(%)

BER

1 LG-01 87.68 89.43 0.06 91.84 88.18 0.06

2 LG-02 96.98 88.60 0.06 99.02 92.63 0.04

3 LG-04 75.59 81.95 0.10 78.40 90.67 0.05

4 LG-06 84.57 87.42 0.07 92.15 90.05 0.05

5 LG-08 90.95 83.54 0.09 93.11 91.05 0.05

6 LG-11 89.91 82.67 0.09 91.41 86.78 0.07

7 LG-12 91.42 83.19 0.09 92.18 84.19 0.08

8 LG-13 74.48 79.19 0.11 79.28 85.86 0.08

9 LG-14 83.17 80.37 0.10 88.03 82.58 0.09

10 LG-15 76.15 80.60 0.10 82.64 89.29 0.06

11 HG-01 92.77 92.55 0.04 98.47 95.91 0.03

12 HG-02 83.51 82.15 0.09 90.45 88.62 0.06

13 HG-03 85.46 79.59 0.11 91.31 88.68 0.06

14 HG-04 94.08 89.30 0.06 98.69 90.96 0.05

15 HG-05 78.96 72.06 0.14 83.16 77.70 0.12

16 HG-06 81.54 74.77 0.13 93.13 90.32 0.05

17 HG-07 75.48 79.60 0.11 83.16 87.81 0.07

18 HG-08 87.87 90.58 0.05 89.21 93.88 0.04

19 HG-09 84.78 87.04 0.07 87.56 90.35 0.05

20 HG-10 67.77 65.63 0.18 73.17 71.84 0.15

21 HG-11 90.53 85.68 0.08 92.39 90.21 0.05

22 HG-12 88.58 86.82 0.07 92.08 89.36 0.06

23 HG-13 80.10 84.35 0.08 88.64 89.23 0.06

24 HG-14 84.74 87.99 0.07 88.80 91.76 0.05

25 HG-22 78.21 80.75 0.10 88.79 92.83 0.04

26 HG-24 82.50 85.14 0.08 88.87 87.98 0.07

27 HG-25 82.23 86.08 0.07 90.95 88.16 0.06

28 HG-26 84.41 82.60 0.09 91.71 89.84 0.06

29 HG-27 77.16 72.67 0.14 80.93 75.54 0.13

30 HG-22 82.10 79.19 0.11 93.09 90.42 0.05

Mean All 83.79 82.72 0.09 89.09 88.09 0.06

STD All 6.63 5.95 0.03 6.00 5.22 0.03

BER balanced error rate

The classification is performed for tumours including oedema and active

tumour core versus normal brain tissue

the three tumour grades, with mean Dice score of 0.88 for

ERT-based and 0.83 for SVM-based.

Figures 14 and 15 show examples of segmentation results

for ERT and SVM methods overlaid on the manual annota-

tions for high-grade tumour (Fig. 14) and low-grade tumour

(Fig. 15). Both SVM- and ERT-based methods obtained

satisfactory results for the detection and segmentation of

different tumour types, with ERT-based method providing

slightly better results than that from SVM. Most of the false-

positive superpixels from SVM (e.g. Figs. 14c2 and 15c3)

Table 7 Comparison results for Dice overlap ratio between manual

annotation and the automated segmentation using SVM and ERT for

BRATS 2012 dataset (30 scans)

Case no. Grade/ID Dice

SVM ERT

1 LG-01 0.85 0.89

2 LG-02 0.93 0.95

3 LG-04 0.78 0.87

4 LG-06 0.84 0.91

5 LG-08 0.88 0.92

6 LG-11 0.86 0.89

7 LG-12 0.88 0.92

8 LG-13 0.75 0.81

9 LG-14 0.80 0.84

10 LG-15 0.78 0.88

11 HG-01 0.89 0.92

12 HG-02 0.83 0.88

13 HG-03 0.82 0.91

14 HG-04 0.90 0.92

15 HG-05 0.74 0.78

16 HG-06 0.79 0.91

17 HG-07 0.78 0.85

18 HG-08 0.89 0.91

19 HG-09 0.86 0.89

20 HG-10 0.65 0.71

21 HG-11 0.87 0.92

22 HG-12 0.88 0.91

23 HG-13 0.81 0.89

24 HG-14 0.86 0.90

25 HG-15 0.78 0.91

26 HG-22 0.84 0.88

27 HG-24 0.85 0.89

28 HG-25 0.84 0.90

29 HG-26 0.75 0.79

30 HG-27 0.81 0.91

Mean All 0.83 0.88

STD All 0.06 0.05

can be effectively eliminated using ERT, while some tumour

superpixels which are wrongly classified to the normal brain

tissues by using SVM (e.g. Fig. 15c2) can be correctly clas-

sified as tumour by using the ERT, demonstrating the higher

sensitivity of the ERT. Comparison examples of segmenta-

tion for both high-grade and low-grade tumours in Figs. 14

and 15 illustrate that the segmented tumour boundary from

ERT is closer to the manual annotation compared to that of

SVM.
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Fig. 14 Examples of detection and segmentation results obtained from ERT-based methods on BRATS 2012 data. FLAIR image with high-grade

tumour Case HG-01 (a1), HG-15 (a2); b1–b2 manual segmentation; c1–c2 results using SVM; and d1–d2 results using ERT

Discussion

Discussion of applying our method to BRATS dataset

The BRATS clinical training dataset is used to further

evaluate the robustness of the method. As discussed in

“Experimental results” section, the majority of the parame-

ters are the same as those optimized for our own clinical data.

The overall average and standard deviation of Dice score

overlap measures for all our 19 patient data and 30 BRATS

2012 dataset using both ERT-based and SVM-based methods

are shown in Fig. 16. The results show that using the state-of-

the art ERT for classification of superpixels results in more

accurate and robust segmentation compared to that of SVM

classifier. For our own clinical dataset, the Dice score overlap

measure for ERT-based segmentation is 0.91 ± 0.04, while

for SVM-based method, it is 0.87 ± 0.05. For BRATS 2012

dataset, the score overlap measure for ERT-based segmenta-

tion is 0.88 ± 0.05, while for SVM-based method, it is 0.83

± 0.06. It can be seen that the mean Dice scores obtained

from BRATS training dataset are closer to that from our own

clinical dataset; this suggests robustness of the method.

A comparison of our proposed method on BRATS 2012

clinical dataset with the best scores in the challenges [7]

is presented in Table 8. As shown in Table 8, method in

Tustison et al. [27] which was the winner of on-site BRATS

2013 challenge was performed on the challenge data. Though

datasets might be different, the best on-site score could pro-

vide a comparable reference using BRATS dataset. Also,

comparing our method to the method by Reza and Iftekharud-

din [29] which has the best result for the training set of the

BRATS multiprotocol dataset (this is the same dataset used in

our evaluation; however, we only use FLAIR protocol), our

method has achieved the average Dice overlap of 0.88 which

is closer to that of 0.92 by Reza’s method. As discussed in

“Experimental results” section, to assess the robustness of

our method, the similar optimum parameters and the same

five features tuned for our own clinical dataset are directly

applied to the BRATS dataset. In particular, our algorithm is

trained on 1.5T data from a signal centre, whereas the BRATS
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Fig. 15 Examples of detection and segmentation results obtained from ERT-based methods on BRATS 2012 data. FLAIR image with low-grade

tumour Case LG-04 (a1), LG-11 (a2) and LG-12 (a3); b1–b3 manual segmentation; c1–c3 results using SVM; and d1–d3 results using ERT

data contain multicentre data from 1.5T and 3T MRI scan-

ners and will likely contain variability of image features and

contrast that would not be accounted for within our current

optimization and training phase.

Discussion of our method

FLAIR images are routinely acquired in clinical practice as

part of standard diagnostic clinical MRI of brain tumours.

Our experimental results shown in Tables 4, 5 and Fig. 10

demonstrate high performance of automated detection and

segmentation of the brain tumour oedema and core regions

in FLAIR MRI. The method was also further validated

on BRATS 2012 training dataset (FLAIR) with the similar

model parameters and features tuned for our own clinical

dataset; good results shown in Tables 6 and 7 suggest the

robustness of our method.

Selecting an appropriate superpixel size is critical for

increasing the overall segmentation accuracy within an opti-

mum calculation speed. Large superpixel size can ensure
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Fig. 16 Comparison of the

average and standard deviation

of Dice score overlap measures

for SVM versus ERT for all 19

data scans in our dataset and 30

clinical scans in BRATS 2012

dataset

Table 8 Comparison with other related methods using BRATS dataset (MICCAI 2012)

Method Description Comment Whole tumour (dice)

Tustison et al. [27] Random forests (ANTs/ANTsR package) Best MICCAI 2013 on-site 0.87

Reza and Iftekharuddin [29] Random forests + texture features Best on training MICCAI 2013 0.92

Our method ERT + supervoxels Training MICCAI 2012 0.88

Our method and Reza and Iftekharuddin [29] are performed on BRATS clinical training data and the other work (Tustison et al. [27]) is performed

on BRATS challenge data

fast computation and may provide sufficient information for

feature extraction such as stable texture features. However,

large size of superpixel may contain more than one class of

pixels which leads to inaccurate feature calculation (such

as small areas of calcification or haemorrhage), and it is

also not suitable for small-sized lesions. While small size

of superpixel has higher probability of purely containing

one class of pixels, it is preferred for small lesion seg-

mentation. However, they may not have enough pixels for

calculating stable features, and the computation time for gen-

erating the small size partitions is very high. In this study,

the size of superpixel is obtained through exhausted para-

metric searching during the training stage. An optimization

algorithm such as genetic algorithm can be explored to effec-

tively find an optimum superpixel size which provides a

good trade-off between computation time and segmentation

accuracy.

Another important parameter in superpixel segmentation

stage is the compactness factor. Higher value of this parame-

ter leads to more rigid partitions which are more stable and

usually less noisy, i.e. holes or sparse separated pixels. How-

ever, the segmentation may not follow the tissue boundaries

very well, especially in the cases where there are no sharp

or clear boundaries. While, lower compactness values result

in more flexible and accurate boundaries, but the segmen-

tation may produce more isolated and disconnected pixels.

They also may generate very narrow superpixels which are

not appropriate for texture analysis. In our current study, the

compactness factor is determined through visual inspection.

Optimization methods need to be investigated to obtain an

optimum compactness factor which provides a good trade-off

between noise and flexibility.

For the comparison of our method on BRATS data, we

refer to the work published in [7] which used these data

in MICCAI challenge. However, some of their methods are

assessed on the training dataset, while others are on the sep-

arate testing dataset. Due to the fact that our current study is

based on binary classification (i.e. tumour including oedema

and active tumour core versus normal brain tissue) using

single FLAIR protocol, it is difficult to have a direct com-

parison with the current published methods on BRATS data.

However, our results which are in the same range of other

methods and are close to the best segmentation of whole

tumour demonstrate the promise of the method.
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Although currently we have only evaluated our segmen-

tation algorithm for FLAIR images, it should be straightfor-

ward to apply the same superpixel methodology to contrast-

enhanced T1w images and determine the signal intensity

and higher-order features that best segment the contrast-

enhancing region of high-grade gliomas. In fact, we are

currently working on this direction.

In this study, we note the importance of the preprocess-

ing step, namely MRI histogram normalization. This is of

particular importance when the method is applied to BRATS

dataset, whose data are from multicentres and different scan-

ners.

In the current study, we also note in Fig. 13a2 that small

hypointense spots in the FLAIR (and corresponding T1w)

may be calcifications, and the hypointense FLAIR region,

which is excluded by the SVM method (Fig. 13c2) but

included in the ERT analysis (Fig. 13d2), is haemorrhagic

since there is hyperintensity in the T1w MRI. This is a limi-

tation of the current single modality analysis if these regions

need to be separately specified. Future studies extending our

method to multimodal data are planned. This will include

the segmentation of different tissue subtypes (e.g. necrosis,

active tumour, infiltrative tumour, oedema) by incorporating

information from multimodal clinical MRI, including perfu-

sion and diffusion imaging.

For our own clinical dataset, the ground truths were pro-

vided based on one expert’s manual annotation. There may

have some errors in the manual annotations, which may

include intratumoural bleeding or calcification in the tumour

(e.g. in Fig. 13b2). When those annotations are used to train

the model, it may lead to some errors in the final segmen-

tation. Also, our current clinical dataset mainly contains

general cases, such as different tumour grades from a wide

range of patient ages (patient ages at the time of scanning

ranged from 22 to 73). In the future, we will look into more

complicated cases, such as calcification, intratumoural bleed-

ing or elderly patients with white matter disease, which are

clinically very important to distinguish against.

Conclusion

This paper proposed a fully automated method for the detec-

tion and segmentation of brain tumour from FLAIR MRI

images, by calculating Gabor texton feature, fractal analysis,

curvature and statistical intensity features from superpixels.

ERT is then used to classify each superpixel into tumour or

healthy brain tissue. The formation of superpixel by grouping

voxels with similar properties and extracting features from

superpixels can not only improve the accuracy of feature

extraction, especially for the superpixels near the boundaries

between different tissues, but also significantly reduce the

computation time, compared to voxel-based feature calcula-

tion and classification. The experimental results demonstrate

the high detection and segmentation performance of the pro-

posed method using ERT classifier, with average sensitivity

of 89.48 %, BER of 6 % and Dice overlap ratio of 0.91. To

assess the robustness of the method, the method was further

evaluated on BRATS 2012 dataset, which results in similar

good performances of 88.09 %, 6 % and 0.88, respectively.

This provides a close match to expert delineation across all

grades of glioma, leading to a faster and more reproducible

method of brain tumour delineation to aid patient manage-

ment.
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