
AUTOMATED BUS GENERATION FOR

MULTI-PROCESSOR SOC DESIGN

A Dissertation
Presented to

The Academic Faculty

by

Kyeong Keol Ryu

In Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

June 2004

AUTOMATED BUS GENERATION FOR

MULTI-PROCESSOR SOC DESIGN

Approved by:

Dr. Vincent J. Mooney III, Adviser

Dr. Jeffrey A. Davis

Dr. Sudhakar Yalamanchili

Dr. Paul Benkeser

Dr. Thad Starner

Date Approved: June 11, 2004

Dedicated to my wife, Hyejung Hyeon, my parents,

and my parents-in-law

iii

ACKNOWLEDGMENTS

This work could have not been finished without the support and sacrifice of many

people I had to express my gratitude. First of all, I would like to deeply thank

my adviser Vincent J. Mooney III. He has supported and encouraged me to develop

my dissertation with his enthusiasm and professionalism throughout all stages of my

Ph.D. program. He has been a great source of ideas and provided me with invaluable

feedback. In addition, Dr. Mooney has been helping me improve my English skills

with his consideration. I would also like to extend my appreciation to Dr. Jeffrey

Davis, Dr. Sudhakar Yalamanchili, Dr. Paul Benkeser, and Dr. Thad Starner for

serving on the committee and offering constructive comments.

I have to thank all Hardware/Software Codesign group members for their helps

and friendship. It is obvious that, without many helps by them, my long journey at

Georgia Tech would have been much harder and lonelier. Also, I wish to thank my

friends, Dr. Chang-ho Lee, Dr. Jong-seung Moon, and Chang-hyuk Cho for their

friendship.

Finally, I must thank my parents and my parents-in-law who have provided me

with their enormous love, support and consideration for my life. I would also like to

thank my brothers and my brothers-in-law for their consideration in all aspects. Most

importantly, I cannot fail to thank my wire, Hyejung Hyeon. Without her unselfish

devotion and her endless love, it would not have been possible to get through all the

obstacles I have met during my study. I also thank my daughter Clair Seunghyun

Ryu and my son Ryan Jihun Ryu who have given me great pleasure and their precious

love.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . xi

SUMMARY . xiv

CHAPTER I INTRODUCTION . 1

1.1 Problem Statement and Motivation 1

1.2 Contributions . 2

CHAPTER II RELATED WORK . 5

2.1 SoC Bus Architectures . 5

2.1.1 CoreConnect . 5

2.1.2 AMBA . 6

2.1.3 CoreFrame . 7

2.1.4 Wishbone . 7

2.1.5 SiliconBackplane µNetwork 8

2.1.6 How We Differ . 9

2.2 SoC Bus Interfaces . 9

2.2.1 Open Core Protocol (OCP) 9

2.2.2 Virtual Component Interface (VCI) 10

2.2.3 How We Differ . 11

2.3 Commercial Tools Related to Bus Generation 11

2.3.1 CoWare N2C . 11

2.3.2 Platform Express . 12

2.3.3 CoCentric System Studio . 12

v

2.3.4 Magillem . 13

2.3.5 How We Differ . 14

2.4 Additional Prior Work Related to Bus Generation 14

2.5 Summary . 16

CHAPTER III BUS SYSTEM STRUCTURE 18

3.1 Terminology for Bus System Generation 18

3.2 Bus System Structure . 21

3.3 Summary . 24

CHAPTER IV BUS SUBSYSTEM SPECIFICATION 25

4.1 How to Specify Bus Subsystems . 25

4.2 Communication among BANs . 38

4.2.1 Our Basic Handshake Protocol 38

4.2.2 Communication in GBAVIII 40

4.2.3 Communication in BFBA . 45

4.2.4 Communication in HybridBA 48

4.3 Summary . 48

CHAPTER V BUS SYSTEM SPECIFICATION 49

5.1 Bus System Examples . 49

5.1.1 How to Generate Bus Systems 50

5.1.2 Communication among BANs 55

5.1.3 Summary . 56

CHAPTER VI METHODOLOGY FOR BUS SYSTEM GENERA-
TION . 58

6.1 Libraries for Module Repository and Wiring 58

6.2 Sequence of Bus System Generation 68

6.2.1 Overall Flow of Bus System Generation 69

6.2.2 User Inputs to BusSynth 70

6.2.3 Unit Generation . 70

vi

6.2.4 Bus Subsystem Generation 76

6.2.5 Bus System Generation . 80

6.2.6 Summary . 82

6.3 Interconnect Delay Aware Bus System Generation 82

6.3.1 Interconnect Delay Estimation 83

6.3.2 Memory Bus Interface (MBI) Module Generation 85

6.3.3 Interconnect Delay Aware Bus System Generation 91

6.4 Computational Complexity of Bus System Generation Algorithm . . 92

6.5 Summary . 97

CHAPTER VII EXPERIMENTS AND RESULTS 98

7.1 Application Examples . 98

7.1.1 OFDM Transmitter . 98

7.1.2 MPEG2 Decoder . 102

7.1.3 Database Example . 103

7.2 Experimental Setup . 104

7.3 Comparison of Results . 105

7.3.1 Performance Comparison among Bus Systems 106

7.3.2 Performance Comparison in Interconnect Delay Aware Bus
Systems . 110

7.3.3 Generation Time and Gate Counts of Each Bus System . . . 113

7.4 Summary . 114

CHAPTER VIII CONCLUSION . 115

REFERENCES . 117

PUBLICATIONS . 122

POSTER PRESENTATIONS/DEMONSTRATIONS 123

vii

LIST OF TABLES

Table 1 Interconnect Length Estimation for GGBA System 84

Table 2 Estimated Total Delay of Paths between Each PE and a Shared
Memory . 88

Table 3 Number of Clock Delays in Data Paths 89

Table 4 The Numbers Related to Computational Complexity 93

Table 5 Example of the Numbers in Table 4 93

Table 6 The Upper Bounds of UnitGen Algorithm in the Case of BAN
Generation . 94

Table 7 The Upper Bounds of BusSubSys Algorithm 95

Table 8 The Upper Bounds of BusSys Algorithm 95

Table 9 The Function Assignment in Each BAN 101

Table 10 Evaluation Results in OFDM Transmitter 106

Table 11 Evaluation Results in MPEG2 Decoder 108

Table 12 Evaluation Results in a Database Example 109

Table 13 Performance Comparison . 112

Table 14 Generation Time and Gate Count in the Generated Bus Systems . 113

viii

LIST OF FIGURES

Figure 1 A Comparison of Bus Generation Tools 17

Figure 2 Example of a Bus System . 20

Figure 3 Example of a Bus Subsystem . 21

Figure 4 Block Diagrams of Interface Logic Blocks 22

Figure 5 User Options to Configure a Custom Bus Subsystem 26

Figure 6 Diagram of BFBA . 28

Figure 7 Diagram of GBAVIII . 30

Figure 8 Diagram of HybridBA . 33

Figure 9 Different Combination of Bus Components to Generate a New Bus
Architecture . 36

Figure 10 Diagram of CCBA . 37

Figure 11 Diagram of GGBA . 37

Figure 12 Diagram of GBAVIII (repeated from Figure 7 for convenience) . . . 41

Figure 13 Communication between BANs in GBAVIII Working in a Pipelined
Parallel Fashion . 42

Figure 14 Communication between BANs in GBAVIII Working in a Functional
Parallel Fashion . 44

Figure 15 Communication between BANs in BFBA 47

Figure 16 User Options to Configure a Custom Bus System (repeated from
Figure 5 for convenience) . 49

Figure 17 Diagram of GBAVI . 50

Figure 18 Diagram of SplitBA . 52

Figure 19 Different Combination of Bus Subsystems to Generate New Bus Ar-
chitectures . 54

Figure 20 Detailed Diagram of HS REGS in Figure 17 56

Figure 21 MBI SRAM Component in Module Library 61

Figure 22 Wire Library Format . 63

Figure 23 Diagram of BFBA (repeated from Figure 6 for convenience) 64

ix

Figure 24 Wire Connection Example between SRAM A and MBI SRAM in
Figure 6 . 64

Figure 25 Wire Connection Example between BANs 66

Figure 26 The Bus System Generation Sequence 69

Figure 27 User Options to Configure a Custom Bus System (repeated from
Figure 5 for convenience) . 70

Figure 28 Top Verilog HDL Code of BAN A Generated from UnitGen . . . 75

Figure 29 Diagram of BFBA (repeated here for convenience from Figure 6) . 77

Figure 30 GGBA Estimated Layout . 84

Figure 31 Waveform of Extended Memory Access Cycle 87

Figure 32 Sequence of MBI Module Generation 89

Figure 33 MBI Module with Updated Delay Clock Parameters 90

Figure 34 Sequence of an Interconnect Delay Aware Bus System Generation . 91

Figure 35 The Block Diagram of an OFDM Transmitter 99

Figure 36 OFDM Data Format . 99

Figure 37 The Flowchart of the OFDM Transmitter 100

Figure 38 Software Programming Style in OFDM 101

Figure 39 Input Video Stream and Functional Parallel Operation 102

Figure 40 Transactions in Database Example 103

Figure 41 Data Transfer from a Server to Clients 103

Figure 42 Experimental Environment . 105

x

LIST OF ABBREVIATIONS

ABI Arbiter Bus Interface

AHB Advanced High-performance Bus

AMBA Advanced Micro-controller Bus Architecture

APB Advanced Peripheral Bus

API Application-specific Program Interface

ASB Advanced System Bus

BAN Bus Access Node

BB Bus Bridge

BFBA Bi-directional First-in-first-out Bus Architecture

BusSynth Bus Synthesis tool

CAD Computer-Aided Design

CBI CPU Bus Interface

CCBA CoreConnect Bus Architecture

DCR Device Control Register

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

FPA Functional Parallel Algorithm

GBAVI Global Bus Architecture Version I

xi

GBAVII Global Bus Architecture Version II

GBAVIII Global Bus Architecture Version III

GBI Generic Bus Interface

GGBA General Global Bus Architecture

GUI Graphic User Interface

HDL Hardware Description Language

HybridBA Hybrid Bus Architecture

IL Interface Logic

IP Intellectual Property

ISS Instruction Set Simulator

JTAG Joint Test Action Group

MBI Memory Bus Interface

OCP Open Core Protocol

OFDM Orthogonal Frequency Division Multiplexing

OPB On-chip Peripheral Bus

PE Processing Element

PLB Processor Local Bus

PPA Pipelined Parallel Algorithm

RTL Register Transfer Level

RTOS Real-Time Operating System

xii

SB Segment of Bus

SoC System-on-a-Chip

SplitBA Split Bus Architecture

SRAM Static Random Access Memory

TDMA Time Division Multiplexed Access

UART Universal Asynchronous Receiver-Transmitter

VCI Virtual Component Interface

VLSI Very Large Scale Integration

xiii

SUMMARY

The objective of this research is to provide a Computer Aided Design (CAD) tool

with which the user can quickly explore System-on-a-Chip (SoC) bus design space in

search of a high performance SoC bus system. From a straightforward description of

the numbers and types of Processing Elements (PEs), non-PEs, memories and buses

(including, for example, the address and data bus widths of the buses and memo-

ries), our Bus Synthesis tool, called BusSynth, generates a Register-Transfer Level

(RTL) Verilog Hardware Description Language (HDL) description of the specified bus

system. The user can utilize this RTL Verilog in bus-accurate simulations to more

quickly arrive at an efficient bus architecture for a multi-processor SoC.

In the design of a multi-processor SoC, the bus architecture typically comes to the

forefront because the system performance is not dependent only on the PE speed but

also on the bus architecture in the system. An efficient bus architecture with effective

arbitration for reducing contention on the bus plays an important role in maximizing

performance. Therefore, among many issues of multi-processor SoC research, we focus

on two issues related to bus architectures in this dissertation. One issue is how to

quickly and easily design an efficient bus architecture for an SoC. The second issue

is how to quickly explore the design space across performance influencing factors to

achieve a high performance bus system.

To provide a solution to such system design issues, we propose a methodology

to generate custom bus systems. The methodology was used for the implementa-

tion of BusSynth; thus, with BusSynth, designers can quickly and easily design a

custom bus system to obtain high performance. During the design of a bus system,

xiv

BusSynth enables a user to customize many characteristics of each module (e.g.,

bus, PE and memory). Based on user options, BusSynth generates the required

modules in the system using a module library, stitches the modules together to build

a bus system and finally outputs synthesizable Verilog HDL code for the specified

system. In this manner, BusSynth is capable of generating differently configured

custom bus systems such as a Bi-directional First-In-First-Out (Bi-FIFO) Bus Ar-

chitecture (BFBA), a Global Bus Architecture Version I (GBAVI), a Global Bus

Architecture Version III (GBAVIII), a Hybrid Bus Architecture (HybridBA) and a

Split Bus Architecture (SplitBA) as examples.

The methodology we propose gives designers a great benefit in fast design space

exploration of bus systems across a variety of performance influencing factors such as

bus types, PE types and software programming styles (e.g., pipelined parallel fashion

or functional parallel fashion). We also show that BusSynth can efficiently generate

bus systems in a matter of seconds as opposed to weeks of design effort to integrate

together each system component by hand. Moreover, unlike the previous related work,

BusSynth can support a wide variety of PEs, memory types and bus architectures

(including a hybrid bus architecture) in search of a high performance SoC.

xv

CHAPTER I

INTRODUCTION

State-of-the-art chip design technology enables System-on-a-Chip (SoC) to open up

new opportunities for Very Large Scale Integration (VLSI) hardware design. The

ability of the semiconductor industry to continually live up to Moore’s prediction [26]

makes it practical to put multiple Processing Elements (PEs) on a single chip. In

particular, single-chip integration allows the designer to take advantage of increased

bus speed and width. This is especially critical as the performance of a multi-

processor SoC heavily depends on the efficiency of its bus architecture. This dis-

sertation presents a methodology to generate a variety of custom bus systems using

pre-designed reusable hardware modules for a multi-processor SoC.

1.1 Problem Statement and Motivation

In a few years, we will see an SoC with one billion transistors (memory chips with over

a billion transistors already exist [58]), and we predict that the SoC will include many

PEs. In the design of such a multi-processor SoC, the bus architecture of the SoC is

an important performance factor due to multiple bus masters. Therefore, an efficient

bus architecture with fast arbitration plays an important role in maximizing system

performance. Moreover, when designing a multi-processor SoC including a bus archi-

tecture, users need to explore a diverse design space across performance-influencing

factors in search of a high performance SoC. However, high performance system design

via bus system design and design space exploration is very time-consuming since many

performance-impacting factors are involved in the design: types of bus architectures,

types of PEs, and types of memories. Thus, these issues motivate the development of

1

a design automation tool that is capable of generating customized SoC bus systems in

a Hardware Description Language (HDL) and speeding up the SoC bus design space

exploration for a high performance SoC.

1.2 Contributions

In this dissertation, we present a new methodology to generate custom bus systems.

Unlike the previous research that will be described in Section 2, our methodology

provides a more flexible bus system template to generate bus systems, and the tem-

plate supports multiple and heterogeneous bus architectures and various optimized

wrappers to attach Intellectual Property (IP) blocks to a bus so that the generated

bus system is suitable for the desired applications. Please note that “IP block” and

“IP core” are used interchangeably (i.e., with the same meaning) in this dissertation.

The following items are the contributions of this research.

• SoC Bus System Design Aid. A bus mechanism in an SoC is a significant

performance-impacting factor and gives many challenging points with regard to

performance. Based on a generic bus system architecture that we proposed, a

user can design an efficient and scalable bus system in an easy and fast man-

ner for a multi-processor SoC system. We developed five different bus systems

(GBAVI, GBAVIII, BFBA, HybridBA and SplitBA) as practical examples and

verified the efficiency of our custom bus architecture. Therefore, our methodol-

ogy as described in this dissertation can be an expert guide to design an SoC

bus system.

• Automated Bus Generation Tool. How to easily and quickly design a

multi-processor SoC bus system is an important issue in the increasing com-

plexity of on-chip bus systems and in the context of ever shortening time-to-

market demands. This dissertation presents an automated Bus Synthesis tool,

2

BusSynth, to meet this goal. Moreover, BusSynth generates a custom, ap-

plication specific, configurable bus system for an SoC composed of multiple het-

erogeneous PEs, IP blocks, bus(es) and various types of memories. Based on the

user specification, BusSynth can generate diverse custom bus systems (e.g.,

GBAVI, GBAVIII, BFBA and SplitBA), including a hybrid bus system (Hy-

bridBA), in synthesizable Verilog HDL. When compared to a typical global bus

system (e.g., GGBA), the generated bus systems show superior performance

(e.g., 41% reduction in execution time in the case of a database example, see

Section 7.3).

• Interconnect Delay Aware Bus Architecture Generation. Due to the

nature of SoC design, in which multiple IP blocks are placed together and con-

nected with buses, interconnect delay plays a significant role in system perfor-

mance as feature size is scaled down to the submicron level. In this dissertation,

we describe a methodology to generate a custom bus architecture using accurate

estimations of interconnect delay.

• Case Studies. This dissertation also delineates case studies of application

examples of SoC designs in a component-based design approach that allows

designers to explore efficient custom bus solutions with high performance. This

research automatically integrates multiple and heterogeneous PEs, various types

of buses (including a hybrid bus) and a variety of types of memories into an SoC.

Custom bus systems in synthesizable Verilog HDL generated by BusSynth are

evaluated in the context of three realistic applications: an Orthogonal Frequency

Division Multiplexing (OFDM) transmitter, an MPEG2 decoder and a database

example. We also use a Real-Time Operating System (RTOS) to run multi-

tasking user applications on the integrated SoC.

3

• Fast Design Space Exploration. The methodology describing in this dis-

sertation gives us a great benefit in fast SoC bus design space exploration

across several important performance influencing factors (e.g., types of bus ar-

chitectures, types of processing elements and types of memories) in search of a

high performance SoC. Based on the user options, a bus system generated by

BusSynth is designed in a matter of seconds instead of weeks for the hand

design of a custom bus system.

4

CHAPTER II

RELATED WORK

We now present a review of previous work pertinent to this dissertation. First, we

discuss several standard on-chip buses and standard bus interfaces, and then we depict

several state-of-the-art commercial tools related to this research. Next, we show other

related research in academia and industrial research labs.

2.1 SoC Bus Architectures

Most SoC designs are based on hardware blocks stitched together with bus signals,

which are classified into groups of data, address, and control links. Several industries

provide the following SoC bus architectures so that designers can easily integrate the

IP blocks into a single silicon chip: CoreConnect, AMBA, CoreFrame, Wishbone,

and SiliconBackplane µNetwork. Please note that all representations of commercial

buses in this section are based upon publically available information at the time of

publication of this thesis (June 2004).

2.1.1 CoreConnect

The IBM CoreConnect bus architecture [20] is an open standard and provides three

levels of bus hierarchy: a Processor Local Bus (PLB), an On-chip Peripheral Bus

(OPB), and a Device Control Register (DCR) bus. The PLB interconnects high-

bandwidth devices such as PEs and memories since the PLB is a high performance

and low latency processor bus with separate address bus, read data bus and write

data bus for each bus master. The decoupled address and data buses support split-

bus transaction capability for improved bandwidth. In contrast, the OPB provides

separate low speed address and data buses for slow peripheral input/output (I/O)

5

devices such as serial ports, parallel ports, and Universal Asynchronous Receiver-

Transmitters (UARTs). A bus bridge connects the PLB and the OPB together, and

the bus bridge supports burst reads and writes as well as Direct Memory Access

(DMA) transfers. The daisy-chained DCR bus offers a relatively low-speed data

path for passing status and configuration information between CPU and IP blocks

connected to a PLB. Since control registers in slave IP blocks that can be set from a

master PE can be configured through the DCR bus, the use of the DCR bus lessens

bus traffic on the PLB. To ease SoC design using CoreConnect, IBM provides design

toolkits which support PLB and OPB functional models, bus monitors, and a Bus

Functional Language (BFL) [20] for the control of the bus functional models.

2.1.2 AMBA

The Advanced Microcontroller Bus Architecture (AMBA) [1] from ARM provides

an on-chip communication standard for designing a high-performance SoC. AMBA

has three levels of bus hierarchy: Advanced High-performance Bus (AHB), Ad-

vanced System Bus (ASB), and Advanced Peripheral Bus (APB). The AHB is a

high-performance and high-speed bus connecting PEs, on-chip memories, and off-

chip external memory interfaces. The ASB is a general-purpose system bus and is an

older version which has been superseded by AHB. The ASB also interconnects PEs

and system peripherals. The APB is a peripheral interconnection bus and is opti-

mized for minimal power consumption. The APB can be connected to either AHB or

ASB through a bus bridge. Thus, any latencies due to low performance peripherals

connected to APB are buffered by the bridge to the high-performance buses, AHB

and ASB.

AMBA and CoreConnect share many common features. However, unlike the

CoreConnect bus, AMBA does not support features such as architecture extendability

up to 256-bits and deep address pipelining. Furthermore, as of this writing (June

6

2004), AMBA only supports a single master of a peripheral bus while CoreConnect

supports multiple masters [1] [20].

2.1.3 CoreFrame

CoreFrame [11] [34] from Palmchip is a bus architecture with two independent bus

types: PalmBus and Mbus. PalmBus is designed for connecting low-speed peripherals

and for accessing from CPU cores to peripheral blocks, while Mbus is designed for

high-speed accesses to a shared memory block from CPU cores and peripherals. A

processing node including a single CPU core, which is referred to as a CPU subsystem

in CoreFrame, may contain local memories for its own use on its native CPU bus,

links to PalmBus through a PalmBus interface, and links to MBus through a bus

bridge. Since the CPU subsystem has dedicated local memories, the CPU can access

its local memories without interaction with the rest of the system. This reduces

bandwidth constraints on the shared memory. Furthermore, the use of a specialized

“cache block” helps to minimize CPU accesses to the shared memory. To ease an

SoC design, Palmchip provides an interface generation tool, CoreFrame Connect Kit,

which assists users with the configuration of the interface modules for PalmBus and

Mbus.

2.1.4 Wishbone

The Wishbone bus architecture [43] was developed by Silicore Corporation [42]. In

August of 2002, Silicore placed the specification into the public domain via Open-

Cores [33], which is a organization that promotes the development of open IP cores.

Thus, Wishbone is not copyrighted and may be freely copied and distributed as long as

all modifications to Wishbone are also provided free for copy and distribution (please

see the GNU General Public License (GPL) terms [16] which OpenCores uses [13]).

The Wishbone bus architecture is very simple since it defines only one bus. In

a system that needs both a high-speed processor bus and a low-speed peripheral

7

bus, designers can use two Wishbones for buses, one operating at a high speed and

one operating at a low speed. Thus, all cores are connected to the Wishbone buses

by using the same bus interface. This way is simpler than using different buses for

the high-speed bus versus the low-speed bus (e.g., PLB and OPB in the case of the

CoreConnect). However, the Wishbone bus architecture supports various features

in light of desired bus operations: multiple masters, single cycle read/write, block

transfer cycles that systematically perform a set of single read cycles and/or a set of

single write cycles, configurable address/data bus widths, and big versus little endian.

Moreover, Wishbone supports various IP block interconnection methods: uni- and bi-

directional buses, multiplexer based interconnects, tri-state based interconnections,

off-chip I/O connections, and crossbar switches.

2.1.5 SiliconBackplane µNetwork

The SiliconBackplane µNetwork [45] from Sonics is an on-chip network that connects

IP blocks in a system. The µNetwork isolates system IP from the network by re-

quiring all system IP blocks to use a single bus interface protocol, the Open Core

Protocol (OCP) (please see Section 2.2.1 for details). Thus, users can design and

optimize the communication network knowing that all IP blocks which will utilize

the communication network will do so using the same protocol (namely, OCP). Each

IP block in a system communicates via a wrapper, which µNetwork calls an agent,

using OCP, and the agents communicate with each other through µNetwork. Both

OCP and the µNetwork protocol support modification of many system parameters in

real time as system requirements change (e.g., arbitration scheme and address space),

and the agents are generated by a tool called Fast Forward Development Environ-

ment provided by Sonics; therefore, designers can more easily implement an SoC that

meets application requirements. The SiliconBackplane µNetwork offers fixed band-

width by Time Division Multiplexed Access (TDMA)-based arbitration. This feature

8

is particularly suitable for real-time applications. In addition, since the µNetwork

provides fixed latency, when a data transfer is not completed in time, it is retried

later, and thus wait states are not inserted in the bus pipeline. This feature can help

maintain predictable network bandwidth.

2.1.6 How We Differ

As compared to the buses presented in Section 2.1, our custom bus architectures

(namely, GBAVI, GBAVIII, BFBA, HybridBA and SplitBA) generated based on our

methodology using user options (please see the details in Sections 4 and 5) are more

suitable for user specific applications. Therefore, we can obtain better performance

when using one of our custom buses rather than aforementioned standard buses in

an SoC. For example, in the context of a database example, SplitBA outperforms

against a general global bus architecture by 41% reduction in execution time (see

Section 7.3). The other performance evaluation results of the custom buses will also

be shown in Section 7.3.

2.2 SoC Bus Interfaces

SoC design typically requires the mix and match of IP blocks on a single chip. Using

a shared bus is one efficient way to connect the IP cores. However, because many

types of buses are considered in high performance SoC designs, and because each bus

type has different attributes, the introduction of a standard bus interface is useful so

that each IP block can avoid having several interfaces to match to all available buses.

Here, we describe two standard SoC bus interfaces as follows.

2.2.1 Open Core Protocol (OCP)

The Open Core Protocol (OCP) [44] developed by Sonics defines a bus interface for IP

cores that connects the IP cores to on-chip buses. Communication requirements for an

IP core can be described in this protocol format. The OCP interface is user-settable

9

so that designers can specify the interface’s attributes (e.g., address and data bus

widths). In OCP, there are four extensions beyond the Basic OCP version. The four

extensions are Simple Extension, Complex Extension, Sideband Extension, and De-

bug and Test Interface Extension. Basic OCP includes only data flow signals, is based

on a simple request and acknowledge protocol, and supports a unique data transfer

on every clock cycle. However, the optional extensions support more functionality

in control, verification, and test. In Simple Extension and Complex Extension, the

protocols support burst transaction and pipelined writes; in addition, Sideband Ex-

tension also supports user-defined signals and synchronous resets. Moreover, Debug

and Test Interface Extension supports Joint Test Action Group (JTAG) and clock

control. Therefore, when OCP is integrated into an SoC, the protocol enables debug-

ging and manufacturing test of IP blocks. OCP is available, potentially at no cost,

under a license agreement that is agreed to over Sonics web site [32]. Products may

use this standard without any royalty obligations.

2.2.2 Virtual Component Interface (VCI)

Like Sonics, the Virtual Socket Interface Alliance (VSIA) also supports the idea of

a single bus interface for IP blocks and has a working group devoted to specifying

such a protocol, the Virtual Component Interface (VCI) [8]. VCI defines a protocol

for cycle-based and address mapped point-to-point communication. VCI is based on

a handshake protocol in which each data transaction occurs on the rising edge of

the clock when acknowledge and valid signals are high. Unlike OCP, VCI is a data-

oriented protocol without the consideration of interrupt control and scan test signals.

VCI is composed of three standards: Peripheral VCI (PVCI), Basic VCI (BVCI), and

Advanced VCI (AVCI) protocol. PVCI is a subset of BVCI, which is also a subset

of AVCI. PVCI and BVCI are for peripherals and for a simple processor system

(e.g., a system supporting just a single read/write and DMA transfer), respectively.

10

In contrast, AVCI is for a more complex system (e.g., a system with a pipelined

structure or specialized structure for graphics).

2.2.3 How We Differ

While OCP and VCI provide a generic interface between an IP block and an on-chip

bus, in our approach we use a specialized wrapper for each specific IP block, provid-

ing a customized interface that is well matched to the IP block. For example, our

methodology supports Memory Bus Interface (MBI) for memory, CPU Bus Interface

(CBI) for a PE and Arbiter Bus Interface (ABI) for an arbiter. Use of these wrappers

in a system provides more suitable interfaces due to their custom architectures and

leads to a competitive system performance as will be shown in Section 7.3.

2.3 Commercial Tools Related to Bus Generation

We now describe several state-of-the-art commercial tools for automated bus genera-

tion for SoC designs. Since a bus provides a communication channel among IP blocks

in an SoC, the tools typically support several bus architectures to integrate IP blocks.

Please note that all representations of commercial tools in this section are based upon

publically available information at the time of publication of this thesis (June 2004).

2.3.1 CoWare N2C

CoWare Napkin-to-Chip (N2C) [7] is a design environment for designing an SoC

and a hardware platform at a system level. N2C provides a set of tools and meth-

ods for system-level design, hardware/software co-design, and IP block re-use. Co-

Ware N2C uses C/C++/SystemC as a system-level description language and sup-

ports not only HDL design but also simulation capability. Automatic generation of

glue logic and device drivers using an interface synthesis tool allows designers to inte-

grate heterogeneous hardware/software functions into a system. In addition to such

a hardware/software co-design capability, CoWare N2C provides a solution for the

11

decision of a bus architecture that is suitable for a user’s application. A user may

choose several options such as multi-layer, burst, or split transfer in two standard

buses, AMBA or CoreConnect. With the CoWare N2C bus generator and simulator,

the user can generate differently configured bus architectures and evaluate these gen-

erated buses with an application. Thus, users can explore a portion of the bus design

space and choose a suitable bus architecture for their application.

2.3.2 Platform Express

Platform Express [25] from Mentor Graphics is a tool that uses IP blocks and on-chip

buses, described in eXtensible Markup Language (XML), to automatically assemble

heterogeneous components for an SoC design. Platform Express enables designers to

quickly determine the suitability of platforms for system designs. To create a system,

a designer just drags and drops library components (e.g., PEs, memories, and periph-

erals) in a graphical editor of a Graphic User Interface (GUI), and then the designer

connects them to standard buses. After that, Platform Express automatically gener-

ates all the necessary connections among the components. Platform Express supports

common on-chip standard buses such as AMBA from ARM and CoreConnect from

IBM; these buses are used to link selected IP components. For design verification,

Platform Express additionally invokes several verification tools (e.g., Seamless CVE,

XRAY, and ModelSim from Mentor Graphics).

2.3.3 CoCentric System Studio

CoCentric System Studio from Synopsys provides a SystemC simulator and specifi-

cation environment which enables users to verify and analyze hardware architectures

and software algorithms at multiple levels of abstraction [47]. Since CoCentric System

Studio supplies a unified design environment based on SystemC, users can seamlessly

design a system from abstract algorithms to synthesizable SystemC. In a system archi-

tecture design, CoCentric System Studio works together with Synopsys DesignWare

12

SystemC AMBA IP blocks. Therefore, users can quickly integrate system IP blocks

with AMBA, which provides a shared communication channel. Up to recently, model-

ing an architecture required Register Transfer Level (RTL) hardware description that

requires great effort and tedious work to design and verify the model. CoCentric Sys-

tem Studio, on the other hand, supports Transaction-Level Modeling (TLM) where

a communication channel is modeled based on its behavior and is expressed in terms

of transactions [46]. Therefore, in the design and verification phase, simulation speed

can be much faster than the simulation of a traditional RTL-based model at the cost

of modeling-accuracy loss. For example, in communication modeling, while an RTL

model is fully pin-accurate, data accurate and cycle accurate, TLM waives such low-

level details, instead controlling inter-module communication by use of an Interface

Method Call (IMC) between modules [56]. A system verified at the transaction-level

can be synthesized to logic gates by SystemC Compiler and Design Compiler from

Synopsys.

2.3.4 Magillem

Magillem from Prosilog is a tool for importing IP blocks and graphically creating

SoC architectures [36]. For the generation of an SoC, Magillem supports two stan-

dard on-chip buses (AMBA and CoreConnect) and standard bus interfaces (OCP and

VCI). After a user loads required IP blocks in a graphic editor and connects them to-

gether graphically, the tool automatically generates transaction level (e.g., SystemC)

or RTL (e.g., Verilog) code, enabling designers to explore the system architecture. To

customize the required IP blocks, the user can specify each IP block’s options (e.g.,

data width and arbitration scheme) through a GUI. Furthermore, Prosilog provides

IP Creator, as a part of Magillem, for integration and re-use of non-VCI or non-OCP

compatible IP blocks by wrapping them in a structure compatible with OCP or VCI.

13

Thus, designers can assemble the IP blocks in an SoC that uses either the VCI or the

OCP interface.

2.3.5 How We Differ

Unlike the commercial tools discussed above in Section 2.3, our bus synthesis tool,

BusSynth (please see the details in Section 5) can generate SoC bus systems with

standard bus architectures (such as CoWare N2C and Platform Express) as well as

custom bus architectures; furthermore, based on user options, BusSynth generates a

single bus architecture as well as multiple and hybrid bus architectures. For example,

BusSynth generates GBAVI, GBAVIII, BFBA, HybridBA and SplitBA, which will

be described in Sections 4.1 and 5.1. Moreover, BusSynth enables interconnect delay

aware bus architecture generation that will be explained in Section 6.3. (However,

please note that while we did not actually implement a large array of standard bus

structures in BusSynth – please see Sections 4 and 5 for details about what we did

implement – nevertheless any of the standard bus structures discussed so far can be

integrated into BusSynth in a straightforward fashion.)

2.4 Additional Prior Work Related to Bus Gen-

eration

As additional research related to bus generation for SoC design, many papers present

communication topology generation, IP block assembly for an SoC, and component-

based SoC design as follows.

Gasteier et al. [12] describe the automatic generation of a communication topology

by using scheduling of data transfer operations to reduce the cost (e.g., area) of a bus

architecture. However, their algorithm only supports a single type of bus topology (a

single global bus topology). Our method, on the other hand, supports multiple bus

types and bus topologies.

14

Bergamaschi et al. [3] present design automation of an SoC using IP blocks con-

nected via CoreConnect. In their methodology for assembling IP cores, their algo-

rithm checks the compatibility of IP I/O ports and generates wires to connect the

IP blocks. Again, we, on the other hand, support a wider variety of bus types and

architectures than they present.

Pai Chou et al. [6] show an IP based approach to SoC building. An input descrip-

tion to their algorithm designates a bus topology that specifies how IP blocks are

connected with each other and which bus protocol is used. Communication synthe-

sis in their tool implements the bus topology together with the generation of device

drivers, message routers and communication devices, so that the IP blocks commu-

nicate with each other by using a particular network protocol (e.g., I2C or CAN)

chosen. Our methodology, on the other hand, assumes that high-performance direct

on-chip bus connections are desired rather than using a complicated network protocol

such as I2C or CAN. Thus, our methodology targets SoC designs where direct, non-

packet based connections are desired. For this reason, our methodology focuses on

generating hardware blocks of dedicated bus logic for application specific communica-

tion including handshake registers and bus arbiters for a customized bus architecture.

This contrasts with the work of Pai Chou et al., which did not generate customized

SoC bus architectures but rather assumed that such bus architectures are already

available (e.g., a CAN bus).

Several efforts [4] [5] [14] [15] [23] [30] [57] from TIMA laboratory present a

component-based design flow for a heterogeneous multi-core SoC. Their design flow

introduces a systematic method of wrapper generation for multi-core SoC design based

on architectural parameters extracted from a high-level system specification. Lyon-

nard et al. [23] introduce a design flow for the generation of an application-specific

multi-processor architecture. They used a generic multi-processor architecture tem-

plate to support two types of buses (e.g., a point-to-point connection and a shared

15

bus) and a communication coprocessor for the interface between a PE and a bus.

To interface each heterogeneous component to other parts of the target system, they

depict a generic wrapper architecture that adapts to different communication pro-

tocols based on automatic wrapper generation [14] [15] [57]. Cesário et al. [4] [5]

and Nicolescu et al. [30] described a component-based design environment to enable

an automatic wrapper generation tool to support various hardware interfaces, device

drivers and Application Program Interfaces (APIs).

Shin et al. [41] show how an efficient configuration of a parameterized on-chip

system bus could be found using a software tool they developed. They, however, do

not discuss the generation of various bus communication topologies based on user

requests; nor do they discuss any associated bus architecture generation.

Thepayasuwan et al. [52] describe layout conscious bus architecture synthesis.

They use interconnect delay from a system layout to generate a single bus architecture

operating at the maximum achievable bus speed considering worst-case interconnect

delay. We, on the other hand, consider ways to alter the bus architecture – e.g.,

by splitting the bus into several separate buses connected by bus bridges – and,

together with worst-case interconnect delay information, generate both a custom bus

architecture as well as custom bus control logic able to handle, for example, multiple

delays to different processors closer or further away in terms on interconnect delay.

The details of how we do this are described in Section 6.3. In short, our methodology

provides a more customized bus architecture that is suitable for a specific user’s set of

applications since the methodology generates the bus architecture based on various

user-input options.

2.5 Summary

In this chapter, we first looked into several popular industry bus architectures (namely,

CoreConnect, AMBA, CoreFrame, Wishbone, and SiliconBackplane µNetwork). Then,

16

Topology in
Custom Bus

Interconnect Delay
Aware Bus
Generation

Bus Type

Both

Custom
Bus

Standard
Bus

Single Bus Multiple Bus Both

Not
supported

Supported

BusSynth

CoWare N2C
Platform Express
Magillem

CoCentric System Studio

Legend

Gasteier et al.
Bergamaschi et at.
Shin et al.

Thepayasuwan et al.

Figure 1: A Comparison of Bus Generation Tools

we discussed two bus interface protocols (namely, OCP and VCI) that allow custom

IP blocks to match to the selected buses by providing a standardized protocol. Next,

we described four commercial tools (namely, CoWare N2C, Platform Express, Co-

Centric System Studio, and Magillem) that enable bus architecture generation for an

SoC design. Finally, we introduced additional prior work related to bus generation

in academia and industrial research labs. In each of the previous sections (2.1, 2.2,

2.3 and 2.4), we described key differences with the research of this thesis. Figure 1

shows a summary of the key differences. As shown in Figure 1, BusSynth generates

custom bus systems with a single bus topology as well as multiple bus topologies; fur-

thermore, BusSynth supports interconnect delay aware bus generation. In the next

section, we will describe our methodology to generate a customized bus architecture

for a multi-processor SoC.

17

CHAPTER III

BUS SYSTEM STRUCTURE

In this chapter we will begin by defining some of terms that will be used throughout

this dissertation. Then, we will describe our bus system structure to be used in our

bus system generation.

3.1 Terminology for Bus System Generation

Before proceeding to discuss our Bus Synthesis tool (BusSynth), we first explain

some of the terms we will be using to describe the different components of a bus

architecture. Example 3.1 explains some of the terminology we have defined.

(a) Processing Element (PE): a hardware unit that performs algorithmic processing

– usually a CPU, but it may also be dedicated or reconfigurable logic.

(b) Bus Bridge (BB): a hardware unit that is an on-off controllable connection

point between two buses – if the BB is enabled, the two buses are fully con-

nected; otherwise, the two buses are disconnected. Note that our BB does not

currently support different bus speeds (i.e., different bus clock frequencies) in

buses connected by the BB (see Section 5.1.1 for details).

(c) Global Bus Architecture (GBA): a type of bus architecture having a bus through

which all PEs can access shared resource(s), where BBs may be used to connect

different sections of the bus.

(d) Bi-FIFO Bus Architecture (BFBA): a type of bus architecture where bidirec-

tional FIFOs are used to transmit and receive data between adjacent PEs.

18

(e) Segment of Bus (SB): a contiguous bus (no BBs) consisting of address, data and

control (e.g., read enable, write enable, request and acknowledge) wires specific

to a particular bus type (in our case, BFBA).

(f) Bus Access Node (BAN): an integrated hardware block that is composed of at

most one PE, custom hardware blocks and/or memory hardware together with

associated bus access hardware and SB(s).

(g) Local Bus (LB): a contiguous bus (no BBs) internal to a particular BAN that

connects bus interface hardware unit(s) (in our case, CBI and/or MBI) attached

to a PE, a memory or a hardware unit (in our case, non-CPU block), where the

bus is composed of address, data and control wires.

(h) Module: a hardware unit such as PE, BB, SB, an arbiter, SRAM or interface

logic blocks, where the specific interface logic blocks will be explained in more

detail in Section 3.2. Note that it is possible to extend the definition of module

to include newly designed hardware units that carry out specific functions. For

this dissertation, however, the definition given for module suffices.

(i) Bus Subsystem: one or more BANs connected together using the same bus or

a combination of different bus architectures without a bus bridge (in our case,

either GBA, BFBA or the combination of GBA and BFBA).

(j) Bus System: a system that consists of one or more Bus Subsystems connected

together by using one or more bus bridges.

Example 3.1 Terminology

Figure 2 shows an SoC consisting of four PEs, Motorola PowerPC (MPC) 755s [28], each

with an L1 cache. Each MPC755 is an example of a PE. In the bottom right of Figure 2,

the SB of BAN J is a segment of bus for Bi-FIFO Bus Architecture (BFBA). The SB is

19

MPC755_B
L1

IL2
SRAM

IL3

MPC755_A
L1 IL2

SRAM
IL3

Arbiter
IL1

SRAM

IL2

IL2

IL4

IL4

MPC755_J
L1

SRAM

MPC755_I
L1

SRAM

Bus Subsystem 1 Bus Subsystem 2

Bus System
BB

BAN G

BAN A

BAN B BAN J

BAN I

BAN: Bus Access Node, IL: Interface Logic, BB: Bus Bridge, SBFBA: an example of SB
for BFBA

SB
(SBFBA)

SB
(SBFBA)

BUS1
(GBA)

BUS2
(BFBA)

Figure 2: Example of a Bus System

used to connect BAN J to BAN I. The SB of BAN I is also another segment of bus for

Bi-FIFO Bus Architecture (BFBA). Both SBs make a bus type, BFBA, by being connected

each other. Note the use of Interface Logic blocks (IL2 and IL4) to connect MPC755 J to

the SB. The bottom right of Figure 2 also shows MPC755 J connected to local SRAM and

an SB to form Bus Access Node J (BAN J). In BANs A and B of Figure 2, LBs connecting

ILs are shown between IL2 and IL3 of each BAN; similarly, in BANs I and J, LBs are shown

between IL2 and IL4 of each of BAN. In BAN J, each block such as SRAM, IL2, IL4 or

SB is a module. BAN J is adjacent to BAN I, and the BANs I and J together form a Bus

Subsystem using bus type BFBA for communication. On the left-hand side of Figure 2,

BANs A, B and G form another Bus Subsystem in which GBA is used for communication.

A BB connects the two Bus Subsystems as shown in the top middle of Figure 2. On the

whole, Figure 2 shows an example of a Bus System composed of two Bus Subsystems. 2

20

3.2 Bus System Structure

In this section, we show a hierarchical structure in each Bus System to be generated.

Figure 2 shows an example of a hierarchically structured multi-processor Bus System

that has two Bus Subsystems with two and three BANs, respectively. A Bus System

is composed of one or more Bus Subsystems, and each Bus Subsystem includes one

or more BANs, each of which is composed of PEs, hardware modules and/or memo-

ries together with associated control logic. Here, the Bus Subsystems are connected

through bus bridges. This kind of hierarchical definition allows a Bus System to have

a flexible and scalable bus architecture in a multi-processor SoC Bus System design.

Figure 3 depicts a more detailed version of the Bus Subsystem shown on the

left-hand side of Figure 2. In addition to PEs (e.g., MPC755) and memories (e.g.,

SRAM) in the BANs of Figure 3, additional modules are specified as Interface Logic

ABI

(Global Resource)

CBI

MBI

MBI

MEM: Memory, MBI: Memory-Bus Interface, CBI: CPU-Bus Interface,
GBI: Generic Bus Interface, ABI: Arbiter-Bus Interface, ARB: Arbiter,
BAN: Bus Access Node, IL: Interface Logic, GBA: Global Bus
Architecture

GBI

GBI

CBI

MBI

BAN G

Bus Subsystem

MPC755_A
L1

SRAM

MPC755_B
L1

SRAM

ARB

SRAM

BAN A

BAN B

GBI

IL1

IL2

IL2 IL3

IL3

BUS
(GBA)

Figure 3: Example of a Bus Subsystem

21

(IL): CPU (or PE) to Bus Interface (CBI), Memory to Bus Interface (MBI), Generic

Bus Interface (GBI) and Arbiter to Bus Interface (ABI).

With these ILs, each BAN can have different types of PEs, hardware modules

and/or memories because the ILs enable the heterogeneous modules to adapt to one

another. For example, BAN A can have MPC755 and SRAM while BAN B can have

ARM9TDMI and DRAM. Similarly, GBI also provides flexibility in selecting various

types of buses for a Bus Subsystem (e.g., GBAVIII and BFBA). Each BAN can access

any other BAN’s memory through a bus integrated with several SBs. Based on the

Bus System structure, by simply repeating generated BANs, a Bus Subsystem can

be a scalable structure, and a multi-processor Bus System can be implemented in an

easy manner.

Address
Decoder

Regeneration of
Control Signals

Read/write
Control

cpu_addr

cpu_data

cpu_control_out_a
cpu_control_in_a

bus_addr

bus_control_out_b

bus_chip_enable

bus_data

bus_control_in_b

bus_wr_enable

bus_rd_enable

(a) CPU to Bus Interface (CBI)

Address
Generation
for Memory

bus_chip_enable mem_chip_enable

mem_addr

mem_databus_data

bus_rd_enable

bus_wr_enable

mem_rd_enable

mem_wr_enable

(b) Memory to Bus Interface (MBI)

bus_data_b

Regeneration of
Control Signals

bus_control_out_a
bus_control_in_a

bus_control_out_b
bus_control_in_b

bus_addr_a bus_addr_b

bus_data_a

bus_rd_enable

bus_wr_enable

(c) Generic Bus Interface (GBI)

Regeneration
of Control

Signals

bus_request_a

bus_busy_a

arbiter_request_b

arbiter_busy_b

bus_ack_a arbiter_ack_b

(d) Arbiter to Bus Interface (ABI)

bus_addr

Figure 4: Block Diagrams of Interface Logic Blocks

22

Figure 4(a) shows the CBI block that adapts between a CPU (or PE) and a bus

and that is composed of an address decoder, bi-directional data buffer, a block for

regeneration of control signals (e.g., AACK BAR and TA BAR in PowerPC) and

a block for generation of read/write enable signals. In Figure 4(a), for the CBI

for MPC755, gate counts to implement each block are as follows: 128 NAND2 gate

equivalents for the address decoder, 133 NAND2 gate equivalents for the bi-directional

data buffer, 1027 NAND2 gate equivalents for the block for regeneration of control

signals and 29 NAND2 gate equivalents for the block for generation of read/write

enable signals (please note that we use TSMC 0.25µm technology to estimate the gate

counts by using Synopsys Design Compiler [49]). The MBI block shown in Figure 4(b)

adapts between a memory and a bus and is composed of a memory address generator,

a bi-directional data buffer and buffers for read/write enable signals. For the MBI

for SRAM shown in Figure 4(b), gate counts to implement each block are as follows:

21 NAND2 gate equivalents for the memory address generator and 133 NAND2 gate

equivalents for the bi-directional data buffer. The GBI block shown in Figure 4(c) is

composed of address bus buffer, a bi-direction data buffer and a block for regeneration

of control signals (e.g., bus request and bus busy signals). Gate counts to implement

the GBI for a global bus shown in Figure 4(c) are 133 NAND2 gate equivalents for the

bi-direction data buffer and 46 NAND2 gate equivalents for the block for regeneration

of control signals. Finally, the ABI block interface between an arbiter and a bus is

shown in Figure 4(d), where the block regenerates arbiter control signals (e.g., arbiter

request and arbiter acknowledge signals). In Figure 4(d), the ABI for a First-Come-

First-Serve (FCFS) arbiter is implemented with 10 NAND2 gate equivalents.

Our current tool supports only two types of GBIs (namely, GBI GBA and GBI BFBA);

however, more GBI types could easily be added to our tool after being defined. In the

tool, the GBI GBA can be used in a Bus System that use a Global Bus Architecture

(GBA) to connect BANs in each Bus Subsystem while the GBI BFBA can be used in

23

a Bus System with Bi-FIFO blocks to connect BANs in each Bus Subsystem. Thus,

they have different functions to adapt to either a GBA or a Bi-FIFO bus architecture.

Our tool currently supports two SB types: SB GBA and SB BFBA. However, more

SB types could be added to the tool after being defined. SB GBA is used to form a

GBA that connects BANs in each Bus Subsystem while SB BFBA is for a Bi-FIFO

architecture connecting BANs in each Bus Subsystem.

When a Bus Subsystem has a global resource such as a large global memory to be

accessed from all BANs, the resource is also defined as a BAN: for example, BAN G in

Figure 3. On the other hand, the Bus System structure shown Figure 2 and the Bus

Subsystem structure shown in Figure 3 allows a user to adapt a standard commercial

bus architecture (e.g., AMBA). As shown in Figure 3, ILs adapt hardware units (e.g.,

arbiter, SRAM and MPC755) to specific buses (e.g., GBA). Thus, if our Module

Library that will be described in Section 6.1 provides the wrappers (i.e., ILs) for the

various possible buses (e.g., a global bus or an AMBA bus), our approach enables the

user to choose a custom bus topology as a Bus System. In support of the choices of

a user, BusSynth will generate custom Verilog HDL at the Register-Transfer Level

(RTL) as will be described in Chapter 5.

3.3 Summary

In this chapter, we have defined some of the terms that we will use to describe

Bus Systems throughout this dissertation. We have explained a basic Bus System

structure used to generate Bus Systems with our tool BusSynth. In the next chapter

(Chapter 4), based on a user-specified bus structure, we will show how to specify a

wide variety of Bus Subsystems and our method to communicate among PEs in the

specified Bus Subsystems. In the chapter after next (i.e., in Chapter 5), we will

show how to specify Bus Systems (as opposed to just Bus Subsystems) using our

methodology.

24

CHAPTER IV

BUS SUBSYSTEM SPECIFICATION

In this chapter, we show Bus Subsystem specification based on user input, where

the specified Bus Subsystems can have various bus architectures. We target the

ability to generate a wide variety of Bus Subsystems by using our bus synthesis tool,

BusSynth. Then, we show how to communicate among PEs in the generated Bus

Subsystems.

4.1 How to Specify Bus Subsystems

Before we describe in a later chapter (Chapter 6) our detailed methodology for Bus

Subsystem generation, this chapter shows how to specify various Bus Subsystems,

based on user options that are user inputs to BusSynth.

Several categories in user options are as follows:

(1) Bus System Property: number of Bus Subsystems in a Bus System.

(2) Bus Subsystem Property: number of BANs, address bus width and data bus

width. Note that any Local Bus on a particular BAN is assumed to have the

same address and data widths as the non-Local Bus(es) in the Bus Subsystem.

Obviously, all buses in a Bus Subsystem have the same address and data widths.

(3) BAN Property: CPU type, Non-CPU type, number of global memories and

number of local memories for each BAN, where the CPU type is one of NONE,

MPC750, MPC755, MPC7410 or ARM9TDMI, and the Non-CPU type is one

of NONE, DCT or MPEG2 decoder. Note that this can be easily extended to

include new CPUs or additional predesigned reusable components (Non-CPUs).

25

1. Bus System
- Number of Bus Subsystems

2. Bus Subsystem
- For Each Bus Subsystem

-2.1 Number of BANs
-2.2 Address bus width
-2.3 Data bus width

3. BAN Property
- For Each BAN

-3.1 CPU type: NONE, MPC750, MPC755, MPC7410 or ARM9TDMI
-3.2 Non-CPU type: NONE, DCT or MPEG2 decoder
-3.3 Number of global memories
-3.4 Number of local memories

4. Memory Property
- For Each Memory

-4.1 Type: NONE, SRAM, DRAM, DPRAM, Bi-FIFO or Register
-4.2 Address bus width for SRAM, DRAM or DPRAM
-4.3 Data bus width for SRAM, DRAM, DPRAM, Bi-FIFO or Register
-4.4 Bi-FIFO depth for Bi-FIFO

5. Global Arbiter Property
- Type: FCFS for a global memory specified in option 3.3

Figure 5: User Options to Configure a Custom Bus Subsystem

(4) Memory Property: memory type, address bus width, data bus width and Bi-

FIFO depth, where the memory type is one of NONE, SRAM, DRAM, DPRAM,

Bi-FIFO or Register, the address bus width is an option for SRAM, DRAM or

DPRAM, and the Bi-FIFO depth is an option for Bi-FIFO. Note that this can

easily be extended to include additional memory types.

(5) Global Arbiter Property: arbiter type. Currently, the type is only First-Come-

First-Serve (FCFS); however, the type can easily be extended to include addi-

tional arbiter type (e.g., priority based arbiter). This property is selected only

when a global memory is specified in the BAN property.

Figure 5 shows a summary of the user options (1) through (5) described above.

The input sequence of the user options is as follows. First, the user enters the number

of Bus Subsystems for a Bus System. Next, the user specifies the number of BANs,

address bus width and data bus width for each Bus Subsystem (please note that

a BAN has only one non-Local Bus that connects the BAN to the rest of the Bus

26

Subsystem). Then, for each BAN specified in Bus Subsystem Property 2.1, the user

inputs CPU type, Non-CPU type, number of global memories and number of local

memories in the BAN Property option if the user wants to have these resources in

a BAN. Finally, in the BAN Property option, the user inputs Memory Property

(namely, memory type, address bus width, data bus width and Bi-FIFO depth) for

each selected memory if any memory is required in a BAN. How to use these options

to generate various Bus Subsystems is shown in Examples 4.1, 4.2 and 4.3.

All Bus Subsystem examples shown in Figures 6, 7 and 8 have four PEs and a

total of 256KB (64KB per PE) of L1 cache memory. Non-L1 cache memory size is

40MB for the examples shown in Figure 7 and 8 and 32MB for the example shown in

Figure 6. The reason that Figure 6 has only 32MB is that Figure 6 does not have any

global memory; in a Bi-FIFO based system, we found that a global memory tends

to not increase performance at all in the applications we considered (see Chapter 7).

Please note that, as defined in Chapter 3, a single Bus Subsystem can also be a Bus

System, if the Bus Subsystem is not connected via bus bridge(s) to any other Bus

Subsystem(s). While BusSynth can generate a Bus Subsystem having any number of

PEs according to the user options, the examples presented in detail in this section all

have the same number of PEs in order to provide a basis for fair comparisons later in

Section 7.3 (please note that the examples shown in Figure 7 and Figure 8 have 40MB

total of non-L1 cache memory; nevertheless, the bus examples of Figures 7 and 8 do

not result in the best performance as shown in Table 10 of Chapter 7 Experiments

and Results). In all examples in this thesis, we use the Motorola PowerPC (MPC755)

for the PE core, which, however, can be changed to any other core simply by adding

a CBI module for the new PE core (e.g., ARM9TDMI) to be operated in the Bus

System.

27

Example 4.1 User Options to Generate BFBA

A user input sequence which specifies a Bus Subsystem we call the Bi-directional First-

in-first-out Bus Architecture (BFBA) is as follows. The user first specifies the number of

Bus Subsystems by entering a “1” in Bus System Property (user option 1 in Figure 5).

Then, the user inputs “4” for the number of BANs (user option 2.1), “32” for address bus

width (user option 2.2) and “64” for data bus width (user option 2.3) in the Bus Subsystem

property. Please note that the address and data bus widths in Figure 6 are all the exact

same for all Local Buses (e.g., CPU Bus A) as well as buses to Bi-FIFOs; we could, if desired,

easily update our current tool to specify particular widths for each Local Bus in each BAN

separately. Next, the user inputs the fields of BAN Property for each BAN : “MPC755” for

HS_REGS BI-FIFO_A

(B)

CPU Bus A

CPU Bus B

CPU Bus C

CPU Bus D

BAN A

BAN B

BAN C

BAN D

MPC755_A
L1

CBI
MPC755

SRAM_A

MBI
SRAM

MPC755_B
L1

CBI
MPC755

SRAM_B

MBI
SRAM

MPC755_C
L1

CBI
MPC755

SRAM_C

MBI
SRAM

MPC755_D
L1

CBI
MPC755

SRAM_D

MBI
SRAM

HS_REGS: handshake registers

GBI_BFBA

GBI_BFBA

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA

(A)

(B)(A)

Figure 6: Diagram of BFBA

28

the CPU Type (user option 3.1), “NONE” for the Non-CPU Type (user option 3.2), “0” for

the number of global memories (user option 3.3) and “3” for the number of local memories

(user option 3.4). Finally, the user inputs the Memory Property for three local memories

chosen for each BAN. For the first local memory, the options are as follows: “SRAM” for

the memory type (user option 4.1), “20” for the address bus width (user option 4.2) and

“64” for the data bus width (user option 4.3) for 8MB SRAM in each BAN. For the second

local memory, the user inputs “Bi-FIFO” for the memory type (user option 4.1), “64” for

the data bus width (user option 4.3), “1024” for the Bi-FIFO depth (user option 4.4). After

that, the user enters the third local memory property: “Register” for the memory type

(user option 4.1) and “32” for the data bus width (user option 4.3). With these options,

the generated Bus Subsystem BFBA is shown in Figure 6 where there are four equivalent

BANs, each of which has an MPC755, an 8MB SRAM, a single 32-bit register, a 1024-entry

Bi-FIFO and GBI BFBAs as a Generic Bus Interfaces (GBI) for the Bi-FIFO block. In

this example, since a Bi-FIFO is specified in each BAN, our tool automatically extracts

GBI BFBA from a library (namely, Module Library that will be described in Chapter 6

in detail) for the Bi-FIFO block connecting BANs. Here, we assume that any Bi-FIFOs

specified by the user are intended to provide a path between BANs. 2

As shown in Figure 6, Bi-directional First-in-first-out Bus Architecture (BFBA)

has a Bi-FIFO between adjacent BANs. This design is similar to some commer-

cially available multi-processor Printed Circuit Boards (PCBs) such as the Quad

TMS320C6701 Processor VME Board from Pentek [35]. One BAN can push data

into a Bi-FIFO while an adjacent BAN can read the data from the Bi-FIFO. In this

way, the PEs can carry on successive functions for a pipelined operation. A specific

way to communicate over the PEs in Figure 6 will be presented in Section 4.2. Note

that BFBA works well in a pipelined style of operation.

Example 4.2 User Options to Generate GBAVIII

User inputs to generate a Bus Subsystem we call Global Bus Architecture Version III

29

CPU Bus A

MPC755_A
L1

CBI
MPC755

SRAM_A

MBI
SRAM

GBI_GBA

Global
Arbiter

CPU Bus B

MPC755_B
L1

CBI
MPC755

SRAM_B

MBI
SRAM

GBI_GBA

CPU Bus C

MPC755_C
L1

CBI
MPC755

SRAM_C

MBI
SRAM

GBI_GBA

CPU Bus D

MPC755_D
L1

CBI
MPC755

SRAM_D

MBI
SRAM

GBI_GBA

BAN G

BAN A

BAN B

BAN C

BAN D

Global
SRAM

MBI
SRAM

Global Bus

Figure 7: Diagram of GBAVIII

(GBAVIII) are as follows. The user first specifies the number of Bus Subsystems by entering

a “1” in Bus System Property (user option 1 in Figure 5). Then, the user inputs “5” for the

number of BANs (user option 2.1), “32” for address bus width (user option 2.2) and “64”

for data bus width (user option 2.3) in the Bus Subsystem property. Next, the user inputs

the fields of BAN Property for four BANs (the bottom four BANs in Figure 7): “MPC755”

for the CPU Type (user option 3.1), “NONE” for the Non-CPU Type (user option 3.2),

“0” for the number of global memories (user option 3.3) and “1” for the number of local

memories (user option 3.4). Next, the Memory Property is input for a memory in each of

the four BANs (the bottom for BANs in Figure 7): “SRAM” for the memory type (user

option 4.1), “20” for the address bus width (user option 4.2) and “64” for the data bus width

30

(user option 4.3) for resulting in an 8MB memory size in each BAN. With these options,

the bottom four BANs shown in Figure 7 are generated: each BAN has an MPC755 and

an 8MB SRAM each with associated interface logic blocks CBI MPC755, MBI SRAM and

GBI GBA for the interface to the global bus. Please note that in our current tool, speci-

fied bus address and data widths (in user options 2.2 and 2.3) for a Bus Subsystem (e.g.,

GBAVIII, HybridBA or each Bus Subsystem in SplitBA shown in Figures 7, 8 and 18) are

assumed to apply to all Local Buses as well as non-Local Buses. In this specific example,

since no Bi-FIFOs are specified, the tool automatically extracts GBI GBA from a library

(namely, Module Library that will be described in Chapter 6 in detail) for the bus between

BANs; however, as we explained in Example 4.1, the tool extracts GBI BFBA from the

library as a GBI for BFBA when a Bi-FIFO is specified; we assume that any Bi-FIFOs

specified by the user are intended to provide a path between BANs.

Then, continuing with the generation of Figure 7, the user inputs the fields of BAN

Property for one additional BAN (the top BAN in Figure 7) as a global memory block:

“NONE” for the CPU Type (user option 3.1), “NONE” for the Non-CPU Type (user

option 3.2), “1” for the number of global memories (user option 3.3) and “0” for the number

of local memories (user option 3.4). Finally, the Memory Property is input for the global

memory in the remaining BAN: “SRAM” for the memory type (user option 4.1), “20” for

the address bus width (user option 4.2) and “64” for the data bus width (user option 4.3)

for resulting in an 8MB memory size in the BAN. With these options, the top BAN in

Figure 7, BAN G, is generated: an 8MB SRAM with a Global Arbiter. Please note that

any BAN specified to contain only memory automatically infers a First-Come First-Serve

(FCFS) arbiter for the number of masters (in Figure 7 there are four masters) specified in

the Bus Subsystem. 2

GBAVIII shown in Figure 7 is a Global Bus Architecture (GBA) with a global

arbiter and a global memory (please note that in BusSynth, the FCFS Global

Arbiter is generated when a user wants to have a global memory). When any BAN

31

tries to access the global memory through the global bus in Figure 7, the global

arbiter resolves the case of multiple memory requests from the BANs. Currently,

the only choice is an arbiter using a FIFO to implement a First-Come-First-Serve

(FCFS) scheduling scheme; however, an arbiter having a different policy such as a

priority-based protocol could easily be added to BusSynth (and, correspondingly,

to the user options of Figure 5, e.g., as option 6). The Global SRAM in Figure 7

can also be replaced with another memory type (see option 4.1 in Figure 5) by using

its corresponding MBI, which adapts the interface between the memory and the bus.

The local memory in each BAN can be used for relatively faster memory access than

the global memory due to arbitration time. How to communicate among BANs in

Figure 7 will be shown in Section 4.2.

Please note that Global Bus Architecture Version I (GBAVI) is a Bus System

with bus bridges and so will be presented in the next chapter. Also, please note

that Global Bus Architecture Version II (GBAVII) was presented in [38] but was

not chosen for automated generation in this dissertation because its bus architecture

is almost the same (in both structure and achievable performance) as GBAVIII; in

addition, GBAVII shows only a tiny (<1%) performance improvement over GBAVI

to be presented in Section 5.1.1. However, if desired, the GBAVII bus could easily be

added to our tool.

According to the user options shown in Figure 5, the user can customize any

Bus Subsystem in our bus synthesis tool BusSynth. As one of the customized Bus

Subsystems, the user might want to generate a bus mixing together both Bi-FIFO-

based and GBA-based communication. Example 4.3 describes how to generate such

a customized Bus Subsystem by the user options.

Example 4.3 User Options to Generate HybridBA

Suppose a user wants to generate a specialized bus using several of the custom buses ex-

plained earlier: specifically, a bus combining both the Bi-FIFO blocks from BFBA and the

32

(A)

CPU Bus A

CPU Bus B

CPU Bus C

CPU Bus D

BAN A

BAN B

BAN C

BAN D

MPC755_A
L1

CBI
MPC750

SRAM_A

MBI
SRAM

MPC755_B
L1

CBI
MPC750

SRAM_B

MBI
SRAM

MPC755_C
L1

CBI
MPC750

SRAM_C

MBI
SRAM

MPC755_D
L1

CBI
MPC750

SRAM_D

MBI
SRAM

Global
Arbiter

BAN GGlobal
SRAM

MBI
SRAM

GBI_GBA

GBI_GBA

GBI_GBA

GBI_GBA
(A)

Global Bus

HS_REGS: handshake registers

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA
(B)

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA

(B)

Figure 8: Diagram of HybridBA

global bus from GBAVIII. We call the Bus Subsystem having this combined bus type as

Hybrid Bus Architecture (HybridBA). To generate such a combined bus, the user needs to

input the user options shown in Figure 5 as follows.

First, the user enters “1” for the number of Bus Subsystems (user option 1 in Figure 5).

Then, in the Bus Subsystem property, the user inputs “5” for the number of BANs (user

option 2.1), “32” for address bus width (user option 2.2) and “64” for data bus width (user

option 2.3). Next, the user inputs the fields of BAN Property for four BANs (the bottom

four BANs in Figure 8): “MPC755” for the CPU Type (user option 3.1), “NONE” for the

Non-CPU Type (user option 3.2), “0” for the number of global memories (user option 3.3)

33

and “3” for the number of local memories (user option 3.4). Next, the user inputs the

Memory Property for the three local memories chosen to be in each of four BANs (BANs A

through D). For the first local memory, the options are as follows: “SRAM” for the memory

type (user option 4.1), “20” for the address bus width (user option 4.2) and “64” for the

data bus width (user option 4.3) resulting in an 8MB SRAM. For the second local memory,

the user inputs “Bi-FIFO” for the memory type (user option 4.1), “64” for the data bus

width (user option 4.3), “1024” for the Bi-FIFO depth (user option 4.4). After that, the user

enters the Memory Property for the third local memory: “Register” for the memory type

(user option 4.1) and “32” for the data bus width (user option 4.3). With these options,

each of the bottom four BANs in Figure 8 has MPC755 and three local memories, namely,

8MB SRAM, 1024-depth Bi-FIFO block and 32-bit handshake registers HS REGS.

Then, the user inputs the fields of BAN Property for a remaining BAN (the top BAN

in Figure 8) as a global memory block: “NONE” for the CPU Type (user option 3.1),

“NONE” for the Non-CPU Type (user option 3.2), “1” for the number of global memories

(user option 3.3) and “0” for the number of local memories (user option 3.4). Finally, the

user inputs the Memory Property for the global memory in the remaining BAN as follows:

“SRAM” for the memory type (user option 4.1), “20” for the address bus width (user

option 4.2) and “64” for the data bus width (user option 4.3) resulting in an 8MB memory

size in BAN G.

With these options, the generated Bus Subsystem HybridBA is shown in Figure 8, where

each BAN has an 8MB SRAM, and a global arbiter in BAN G arbitrates global memory

requests from the bottom four BANs and is generated since the user wants to have a global

memory in BAN G. Handshake register blocks HS REGSs in the bottom four BANs are for

communication among MPC755s, and Bi-FIFOs in the bottom four BANs provide a fast

data path between neighboring BANs. 2

The Bus Subsystem we call HybridBA shown in Figure 8 is a combination of BFBA

and GBAVIII. This combination allows the bus architecture to exploit the advantages

of both BFBA and GBAVIII (i) by supplying a Bi-FIFO data transfer method between

34

adjacent BANs and (ii) by having a global memory area that can be accessed from

all BANs. This combination of features gives flexibility in communication and thus

results in a higher performance, although a penalty is paid in increased chip area (see

Table 14 in Section 7.3 for details).

Different combination of bus components by the user options shown in Figure 5 is

one way to make another Bus Subsystem as shown on the next page in Figure 9: (a)

different combination of BAN components and (b) different combination of BANs.

The detailed user options are introduced in Example 4.4.

Example 4.4 User Options for Different Combination of Bus Components

Figure 9(a) shows different combinations of BAN components. To generate BAN1, the

user inputs “NONE” for CPU type (user option 3.1 in Figure 5), “NONE” for Non-CPU

type (user option 3.2), “1” for the number of global memories (user option 3.3) and “0”

for the number of local memories (user option 3.4). Please note that SB in BAN1 inherits

bus properties specified for the Bus Subsystem containing BAN1. Thus, in this case, the

address and data bus widths of the SB were specified as follows: “32” for address bus width

(user option 2.2) and “64” for data bus width (user option 2.3). For BAN2, the user inputs

“MPC755” for CPU type (user option 3.1), “NONE” for Non-CPU type (user option 3.2),

“0” for the number of global memories (user option 3.3) and “0” for the number of local

memories (user option 3.4). SB in BAN2 is a segment of a bus with address bus width

of “32” and data bus width of “64.” Next, for BAN3, the user inputs “NONE” for CPU

type (user option 3.1), “MPEG2 decoder” for Non-CPU type (user option 3.2), “0” for the

number of global memories (user option 3.3) and “0” for the number of local memories (user

option 3.4). SB in BAN3 is a segment of a bus specified as follows: “32” for address bus

width (user option 2.2) and “64” for data bus width (user option 2.3). To generate BAN4

in Figure 9(a), the user inputs “MPC755” for CPU type (user option 3.1), “NONE” for

Non-CPU type (user option 3.2), “0” for the number of global memories (user option 3.3)

and “1” for the number of local memories (user option 3.4). SB in BAN4 is a segment

of a bus with address bus width of “32” and data bus width of “64.” GBI in BAN4 is

35

SRAM MBI SB

BAN1

MPC
755

CBI SB

BAN2

MPEG2
Decoder IL SB

BAN3
MPC
755

CBI

SB

BAN4

GBI

SRAM MBI

BAN1 BAN2 BAN3

Bus Subsystem1

BAN4 BAN1 BAN2 BAN2

Bus Subsystem2

BAN1 BAN4 BAN4

Bus Subsystem3

BAN4

(a) Different Combination of BAN Components

(b) Different Combination of BANs
Note BAN: Bus Access Node, MBI: Memory Bus Interface, CBI: CPU Bus Interface,

GBI: Generic Bus Interface, SB: Segment of Bus, IL: Interface Logic

Figure 9: Different Combination of Bus Components to Generate a New Bus Ar-
chitecture

GBI GBA – a GBI for a Global Bus Architecture (GBA) – that is put into BAN4 in order

to interface the Local Bus connecting BAN4’s MPC755 and SRAM to the non-Local Bus

(i.e., a “global” bus) connecting BAN4 to other BANs.

Next, different combinations of BANs make different Bus Subsystems as shown in Fig-

ure 9(b). To generate Bus Subsystem1, the user enters “4” for the number of BANs (user

option 2.1 in Figure 5), where the Bus Subsystem is composed of BAN1, BAN2, BAN3

and BAN4. As for Bus Subsystem2, the user inputs “3” for the number of BANs (user

option 2.1), where the BANs are BAN1, BAN2 and BAN2. For Bus Subsystem3, the user

inputs “4” for the number of BANs (user option 2.1), where the BANs are BAN1, BAN4,

BAN4 and BAN4. 2

We now introduce two other Bus Subsystem examples as shown in Figures 10

and 11: CoreConnect Bus Architecture (CCBA) from IBM and General Global Bus

Architecture (GGBA). These Bus Subsystems are designed by hand rather than gen-

erated; CCBA and GGBA are used for the purpose of performance comparisons with

the generated Bus Subsystems. In other words, we take CCBA and GGBA as exam-

ples of what a bus designer would typically do without a tool such as BusSynth. We

36

PLB
Arbiter Processor Local Bus (PLB)

MPC755_A
L1

MPC755_B
L1

MPC755_C
L1

MPC755_D
L1

SRAM_A SRAM_B SRAM_C SRAM_D

BAN A BAN B BAN C BAN D

Figure 10: Diagram of CCBA

MPC755_A
L1

CBI
MPC755

MPC755_B
L1

CBI
MPC755

BAN A BAN B
MPC755_C

L1

CBI
MPC755

MPC755_D
L1

CBI
MPC755

BAN C BAN D

Global
Arbiter SRAM MBI

SRAM

Figure 11: Diagram of GGBA

will show results of the performance evaluation between CCBA, GGBA and custom

generated Bus Systems in Section 7.3. CoreConnect Bus Architecture (CCBA) shown

in Figure 10 has a Processor Local Bus (PLB) that connects four MPC755s and four

SRAMs (a total of 32MB size – 8MB per SRAM), where a PLB Arbiter arbitrates

memory requests from the four MPC755s. General Global Bus Architecture (GGBA)

shown in Figure 11 has a single global bus that provides a data path between four

MPC755s and a single 32MB global memory SRAM. A Global Arbiter in Figure 11

arbitrates memory requests to the global SRAM from four MPC755s. While we use a

total of 32MB of non-L1 cache memory in BFBA, CCBA and GGBA, GBAVIII and

HybridBA have a total of 40MB memory; however, since each of our sample applica-

tions, which will be shown in Chapter 7, have instruction and data which completely

37

fit in the 32MB memory size, the memory size increase to 40MB for GBAVIII and

HybridBA has no significant effect in the application performance (see Chapter 7 for

details).

4.2 Communication among BANs

In a multi-processor SoC, applications are typically partitioned across multiple PEs

for parallel processing. As a consequence, the communication method among the PEs

considerably influences on the system performance. If all PEs in the system could

cooperate without any conflict in communication, which is what we desire, the overall

system performance would be significantly increased in the parallel processing. In this

section, we introduce a communication method that calls for minimal conflicts in bus-

based communication. Specifically, we introduce a handshake protocol for the bus-

based communication because the protocol is simple in operation and straightforward

in implementation. We first describe our basic handshake protocol and then show the

adaptation of the protocol to each specific Bus Subsystem in following sections (see

Examples 4.7 and 4.8).

4.2.1 Our Basic Handshake Protocol

Our handshake protocol uses only two control signals. These signals are generated

from two communicating PEs, a sender and a receiver. The protocol is different

from a typical handshake protocol in that the typical handshake protocol needs three

signals to control communication [17]. The typical handshake protocol uses three

signals to keep track of the following three conditions or states: (1) read request,

(2) data ready and (3) acknowledge. Here, condition (1) indicates a read request

from a receiver to a sender; condition (2) specifies that data is now ready to be

accessed; and condition (3) is used to acknowledge conditions (1) and (2) of the

other party. Our protocol, on the other hand, only needs to keep track of two of

the conditions or states: (2) and (3). The reason is that we exploit a particular

38

characteristic in parallel processing. That is, application functions running on all

PEs have data dependencies among the functions when the application functions are

partitioned across multiple PEs for parallel operation. Due to the data dependencies,

a receiver does not need to use condition (1) because a receiver needs to wait anyway

until a sender has done its processing and saves data to a buffer for the receiver (please

note that the receiver reads new raw data from the buffer after consuming old data

so that old data in the receiver cannot be overwritten with the new data). Therefore,

we eliminate condition (1), “read request,” and thus use only two control signals

for the conditions (2) and (3). The conditions are checked by the status (namely,

“1” or “0”) of each control signal, as shown in Example 4.5. Please note that in

cases where condition (1) is needed, then obviously the handshake protocol can be

altered to include condition (1) or indeed any other additional conditions that may

be necessary, and our generated bus architectures can support any such handshake

protocols. However, in this dissertation we only show examples using the described

protocol using only conditions (2) and (3).

Example 4.5 Handshake Control Registers

We denote two control registers as DONE OP and DONE RV, which output signals that

correspond to condition (2) and condition (3), respectively. Each of the two registers has

only one bit. The values of the registers have following meaning. While a value “1” of

DONE OP indicates that the sender has done its operation and thus is ready to send

the processed data, a value “0” indicates that the sender is not ready yet. In the case

of DONE RV, a value “1” of DONE RV shows that a receiver has received data from a

sender, and a value “0” indicates that the data has not yet been received. After checking

each condition, data is transferred from a sender to a receiver through a specific bus in each

Bus Subsystem. 2

For the sake of easy programming and program reliability, we developed APIs

that are responsible for the communication procedure in software. The APIs (e.g.,

39

mem read(), see Example 4.6 in Section 4.2.2) read an exact amount of data (specified

by the user) from the user specified source area of the sender memory and store the

data to the user-specified target area of the receiver memory. To handle this kind of

data transfer, the APIs have several parameters such as size of data, source address

and target address.

In Bus Subsystems containing a global bus style (e.g., GBAVIII, GGBA and

CCBA), since we use control registers to generate the handshake control signals de-

scribed before, and since multiple PEs can access the control registers at the same

time, possible bus conflicts may occur. However, these possible conflicts can be re-

solved by exploiting an arbiter in the Bus Subsystem. The detailed communication

procedures for each Bus Subsystem are shown in Examples 4.8 and 4.7. Please note

that the specific handshaking protocol presented here can easily be replaced by a

typical handshake protocol [17] or any other two-state or four-state handshake pro-

tocol with no effect whatsoever on the rest of the methodology presented in this

dissertation.

4.2.2 Communication in GBAVIII

We introduce our handshake protocol for the communication in GBAVIII shown in

Figure 7, repeated on the next page (for convenience) as Figure 12. GBAVIII is

appropriate for both pipelined and functional parallel operation since a global mem-

ory, Global SRAM in BAN G, is employed as a communication buffer, which can be

accessed from all PEs.

In a pipelined parallel operation, output data from a PE is passed to the next PE

for the subsequent operation in the application being executed. For the handshake

protocol operation between BANs, GBAVIII shown in Figure 12 exploits global con-

trol variables saved in a specific region of a shared memory (e.g., Global SRAM in

BAN G of Figure 12). Note that these variables work in a way similar to the control

40

CPU Bus A

MPC755_A
L1

CBI
MPC755

SRAM_A

MBI
SRAM

GBI_GBA

Global
Arbiter

CPU Bus B

MPC755_B
L1

CBI
MPC755

SRAM_B

MBI
SRAM

GBI_GBA

CPU Bus C

MPC755_C
L1

CBI
MPC755

SRAM_C

MBI
SRAM

GBI_GBA

CPU Bus D

MPC755_D
L1

CBI
MPC755

SRAM_D

MBI
SRAM

GBI_GBA

BAN G

BAN A

BAN B

BAN C

BAN D

Global
SRAM

MBI
SRAM

Global Bus

Figure 12: Diagram of GBAVIII (repeated from Figure 7 for convenience)

registers (e.g., DONE RV and DONE OP) introduced in Example 4.5. In this Bus

Subsystem, the shared memory is used as a buffer not only for raw data from the

input source but also for processed data from each BAN shown in Figure 12. Ex-

ample 4.6 shows passing processed data between BAN B and BAN C in GBAVIII

working in a pipelined fashion. The other BANs in Figure 12 communicate in the

same manner as shown in Example 4.6.

Example 4.6 Communication in GBAVIII Working in a Pipelined Parallel Fashion

We assume that BAN B and BAN C in GBAVIII, shown in Figure 12, execute an algorithm

(e.g., OFDM transmitter that will be introduced in Section 7.1) in a pipelined fashion;

41

(1)
Process data from BAN A;

Write the processed
data to Global SRAM;

(2)
Assert DONE_OP;

(3)
Deassert DONE_OP;

Read data from
Global SRAM;

(4)
Assert DONE_RV;

(6)
Process data;

DONE_OP=“1”

MPC755_B in BAN B

DONE_RV

DONE_OP

DONE_OP=“0”

(1)
(2) (3)

(4) (5)

(6) (1)

time
(5)

Deassert DONE_RV;

DONE_RV=“0”

DONE_RV=“1”

[Note] DONE_OP=“0” and DONE_RV=“0”
at the initial stage

Wait DONE_OP;

Wait DONE_RV;

MPC755_C in BAN C
(Sender) (Receiver)

Figure 13: Communication between BANs in GBAVIII Working in a Pipelined
Parallel Fashion

the result data from BAN B passes to BAN C through a shared memory Global SRAM

in BAN G. To support our handshake protocol, handshake control variables saved in the

shared memory work in a way similar to the the handshake control registers (e.g., DONE RV

and DONE OP shown in Example 4.5). The control variables specified as DONE RV and

DONE OP in this case can be accessed from both BAN B and BAN C. Note that the

variables are initialized to “0,” and the step numbers in the following procedure correspond

to the numbers in Figure 13, which shows a communication state diagram. The procedure

for data transfer from BAN B to BAN C is as follows.

(1) After MPC755 B processes BAN A’s result data which was obtained using handshake

control registers not shown in this example, MPC755 B writes 64 processed data

words to Global SRAM (shown in Figure 12) starting from address 0x00000.

(2) MPC755 B sets DONE OP to “1.”

(3) MPC755 C resets DONE OP to “0” after reading value “1” from DONE OP. Using

an API “mem read(64, 0x000000, 0x400000),” MPC755 C reads the 64 words of data

42

from Global SRAM starting from address 0x000000 and stores the data to SRAM C

(shown in Figure 12) starting from address 0x400000.

(4) MPC755 C sets DONE RV to “1.”

(5) After MPC755 B reads “1” in DONE RV, the MPC755 B resets DONE OP to “0.”

(6) MPC755 C processes stored data in SRAM C in step (3).

2

By a functional parallel operation of GBAVIII shown in Figure 12, we refer to a

parallel operation in which all PEs execute the same code for a complete algorithm

but have different raw data to be processed. In this case, one of the PEs reads a

chunk of raw data from the input source and writes the data to the global memory so

that each PE can process its own assigned portion of the raw data. Please note that

a Direct Memory Access (DMA) device can also work for such reading and writing

functions, and the device can be supported in GBAVIII. In GBAVIII as presented in

this dissertation, however, one of the PEs performs such functions rather than using

DMA. In this functional parallel operation, there exists a dependency between one

PE distributing the raw data and the other PEs receiving the data. Example 4.7

depicts the details of the communication procedure between BAN A and BAN B.

The other BANs in Figure 7 can be handled in a similar fashion with additional

handshake registers by extending the handshake algorithm presented in Example 4.7

in a straightforward fashion.

Example 4.7 Communication in GBAVIII Working in a Functional Parallel Fashion

We execute an MPEG2 decoder algorithm, which will be introduced in Section 7.1, in

GBAVIII shown in Figure 7. We first focus on describing the communication between

BAN A and BAN B. We assume that the BANs execute the algorithm in the functional

parallel operation style rather than in a pipelined operation; however, we still use data

43

(1)
1.1 Read raw data;
1.2 Write the data to

Global SRAM
in BAN G;

1.3 Assert
DONE_RV

(3)
3.1 Read raw data

from Global
SRAM in BAN G;

3.2 Deassert
DONE_RV

3.3 Process the data;

(4)
Assert DONE_OP

DONE_RV=“1” DONE_RV

DONE_OP

DONE_RV=“0”

(1)

time

(5)
Deassert DONE_OP

DONE_OP=“0”

DONE_OP=“1”

[Note] DONE_RV=“0” and DONE_OP=“0”at the initial stage

(1.3)

(4)

(3.3)
(2)

(2)
Process the data

(5)

(1)

Wait DONE_RV

Wait DONE_OP

(3.2)

MPC755_A in BAN A MPC755_B in BAN B
(Sender) (Receiver)

Figure 14: Communication between BANs in GBAVIII Working in a Functional
Parallel Fashion

dependency in the handshake protocol to communicate between BAN A and BAN B since

BAN B starts its data processing only after receiving raw data from BAN A, which works

for raw data I/O as well as data processing, through a global memory Global SRAM in

BAN G shown in Figure 4.2.2. BAN A reads a 1.47KB MPEG2 raw video stream, which

is composed of Sequence Headers (SHs) and Groups Of Pictures (GOPs), from an external

source and writes the stream data to an input buffer which is located in the global memory

Global SRAM in BAN G shown in Figure 7. After such I/O processing, BAN A decodes

the first SH and GOP while BAN B processes the second SH and GOP after reading the

appropriate part of stream from the Global SRAM. In this manner, the video stream can be

processed in parallel in each BAN (BAN A and BAN B). The step numbers in the following

procedure correspond to the numbers in Figure 14. Note that the variables DONE RV and

DONE OP in the Global SRAM are all initially set to “0.” The variables are located in the

variable area of the Global SRAM in BAN G of Figure 7. As shown in Figure 14, which

44

depicts communication state diagram, the communication procedure between BAN A and

BAN B is as follows.

(1) In BAN A, MPC755 A reads an MPEG2 video stream from a file, writes the stream

to an “input buffer” (in the global memory Global SRAM of BAN G in Figure 14)

for itself and for MPC755 B, and then sets the variable DONE RV to “1.”

(2) MPC755 A processes the first SH and GOP and writes the processed data to an

“output buffer” in Global SRAM (in BAN G).

(3) While MPC755 A computes as described in step (2), MPC755 B reads the second

SH and GOP from the Global SRAM after reading a value “1” from DONE RV, and

then MPC755 B sets the variable DONE RV to “0.” After that, MPC755 B starts

processing its video stream.

(4) MPC755 B sets variable DONE OP to “1” after finishing the data processing and

writes the processed data to the output buffer in Global SRAM.

(5) MPC755 A resets DONE OP to “0” after reading value “1” in variable DONE OP.

2

Please note that in this example only BAN A and BAN B in Figure 14 per-

form MPEG2 decoding. While the above description was for the communication

between BAN A and BAN B, additional handshaking (potentially requiring addi-

tional memory-mapped handshake registers in global memory) could be added in a

straightforward fashion to include processing in BAN C and BAN D as well.

4.2.3 Communication in BFBA

PEs in BFBA shown in Figure 6 communicate using another adaptation of our hand-

shake protocol in order to take advantage of an interrupt function. The handshake

operation is implemented with an interrupt function and with two control registers

DONE OP and DONE RV to generate the handshake control signals. These two

45

registers are contained in handshake registers’ block “HS REGS” in Figure 6, and a

threshold register in each Bi-FIFO controller specifies the size of data to be transferred

and is set by a sender. Here, the Bi-FIFO controller is a hardware unit that controls

Bi-FIFO memory in each Bi-FIFO block (e.g., Bi-FIFO A, B, C or D) shown in

each BAN of Figure 6. As a sender pushes data into a Bi-FIFO memory in a receiver

BAN, a Bi-FIFO counter in the controller of the receiving Bi-FIFO is increased in

hardware automatically, and then an interrupt signal is generated when the counter

value is equal to the threshold register’s value. The interrupt signal stimulates the

receiver PE so that an interrupt handler in the receiver PE is executed. Functions

in the interrupt handler are as follows: resetting DONE OP to “0,” popping received

data from Bi-FIFO memory and setting DONE RV to “1.” In the communication be-

tween non-adjacent PEs, the PEs between the sender and the receiver have to relay

the data to the destination PE sequentially (i.e., using all intermediate PEs). In this

case, the communication will incur some extra overhead; however, note that this Bus

Subsystem also is suitable for a pipelined parallel style of operation, which usually

has adjacent PEs communicating to each other. How to communicate between sender

BAN B and receiver BAN C in Figure 6 is shown in Example 4.8. The other BANs’

communication in Figure 6 works in the same manner as the procedure shown in

Example 4.8.

Example 4.8 Communication in BFBA

We assume that BAN B and BAN C in BFBA, shown in Figure 6, execute an algorithm

(e.g., OFDM transmitter that will be introduced in Section 7.1) in a pipelined fashion; the

result data from BAN B passes to BAN C through Bi-FIFO C in BAN C shown in Figure 6.

Note that at the initial time, register DONE OP is set to “1” while DONE RV is set to “0”

(these registers are in the “HS REGS” block in BAN B of Figure 6). We also assume that

the sender initially sets the threshold register in the Bi-FIFO controller to “64” to transfer

sixty-four words of data at a time. The step numbers in the following procedure correspond

46

(1)
Process data
from BAN A;

(4)
Deassert DONE_RV

(5)
Process data

(6)
Assert DONE_OP

(3) Interrupt API in BAN C
3.1 Deassert DONE_OP;
3.2 pop data from Bi-FIFO;
3.3 assert DONE_RV

DONE_RV=“1” DONE_RV

DONE_OP

DONE_RV=“0”

(1) (2) (5)

time

(2)
Push result data
into Bi-FIFO_B

DONE_OP=“0”

DONE_OP=“1”

[Note] 1. DONE_OP=“1” and DONE_RV=“0” at the initial stage
2. Pushing data to Bi-FIFO in (2) leads to the set (namely, “1”) of DONE_RV (please see (2) and (3) steps)

(3.3) (4)

(6)

Wait DONE_RV

Wait DONE_OP

MPC755_B in BAN B MPC755_C in BAN C
(Sender) (Receiver)

Interrupt

(3)

(1)

Figure 15: Communication between BANs in BFBA

to the numbers in Figure 15, which shows a communication state diagram. As shown in

Figure 15, the communication procedure between the BANs is as follows.

(1) MPC755 B in BAN B processes BAN A’s result data which was obtained using hand-

shake control registers not shown in this example.

(2) MPC755 B pushes 64 words of processed data into Bi-FIFO C in BAN C after reading

“1” in register DONE OP. Please note that MPC755 B’s pushing of 64 words into Bi-

FIFO C leads to the setting (namely, “1”) of DONE RV (see the following step (3)).

(3) An interrupt handler API in MPC755 C runs based on Bi-FIFO C filling up after

MPC755 B has finished pushing the output data. As shown in the interrupt API in

Figure 15, the API resets DONE OP to “0,” pops the sixty-four words of data from

the Bi-FIFO C and then sets DONE RV to “1.”

(4) MPC755 C resets DONE RV to “0” after reading “1” in register DONE RV.

(5) MPC755 C processes the popped data.

(6) MPC755 C sets DONE OP to “1.”

2

47

4.2.4 Communication in HybridBA

As introduced earlier, HybridBA shown in Figure 8 is a combined Bus Subsystem of

BFBA (see Figure 6) and GBAVIII (see Figure 7); in other words, HybridBA has

both the Bi-FIFO blocks and the global bus. Therefore, in the case of using the

Bi-FIFO blocks in the HybridBA Bus Subsystem, the communication procedure is

the same as the procedure shown in Example 4.8. On the other hand, when using the

global bus in the HybridBA, the procedure is the same as that of GBAVIII as shown

in Example 4.7.

4.3 Summary

In this chapter, based on the user options, we have shown how to specify various Bus

Subsystems together with their detailed examples. We have also explained several

ways to communicate among PEs in the generated Bus Subsystems. In the next

chapter, we will show our specification method for Bus Systems together with several

examples. Then, we will explain communication methods among PEs in the specified

Bus Systems.

48

CHAPTER V

BUS SYSTEM SPECIFICATION

A Bus System is composed of one or more Bus Subsystems connected together with

one or more bus bridges. Thus, a Bus Subsystem is a subset of a Bus System, but not

vice versa. In this chapter, we show the specification of various Bus Systems, based

on the user options described in Section 4.1, in detail.

5.1 Bus System Examples

We show two Bus System examples in this section: GBAVI and SplitBA, where we

describe how to specify the Bus Systems by using the user options shown in Figure 16

(repeated here from Figure 5 of Section 4.1 for convenience).

1. Bus System
- Number of Bus Subsystems

2. Bus Subsystem
- For Each Bus Subsystem

-2.1 Number of BANs
-2.2 Address bus width
-2.3 Data bus width

3. BAN Property
- For Each BAN

-3.1 CPU type: NONE, MPC750, MPC755, MPC7410 or ARM9TDMI
-3.2 Non-CPU type: NONE, DCT or MPEG2 decoder
-3.3 Number of global memories
-3.4 Number of local memories

4. Memory Property
- For Each Memory

-4.1 Type: NONE, SRAM, DRAM, DPRAM, Bi-FIFO or Register
-4.2 Address bus width for SRAM, DRAM or DPRAM
-4.3 Data bus width for SRAM, DRAM, DPRAM, Bi-FIFO or Register
-4.4 Bi-FIFO depth for Bi-FIFO

5. Global Arbiter Property
- Type: FCFS for a global memory specified in option 3.3

Figure 16: User Options to Configure a Custom Bus System (repeated from Figure 5
for convenience)

49

5.1.1 How to Generate Bus Systems

Here we generate a Bus System we call Global Bus Architecture Version I (GBAVI).

Example 5.1 shows how to input the user options to generate GBAVI.

Example 5.1 User Options for the Generation of GBAVI

In this example, we generate a Bus System we call Global Bus Architecture Version I

(GBAVI); to accomplish this, we specify the user options as follows. First, the user specifies

the number of Bus Subsystems by entering an “8” in Bus System Property (user option 1 in

Figure 5). Next, for each of the eight Bus Subsystems, the user inputs “1” for the number

of BANs (user option 2.1), “32” for address bus width (user option 2.2) and “64” for data

bus width (user option 2.3). Please note that all Local Buses and all non-Local Buses in

HS_REGS

HS_REGS

HS_REGS

HS_REGS

CPU Bus A

CPU Bus B

CPU Bus C

CPU Bus D

BB

BB

BB

BB

BB

BB

BB

BB

(A)

(A)

(B)

(B)

BB: bus bridge HS_REGS: handshake registers

BAN B

BAN C

BAN D

BAN A
MPC755_A

L1

CBI
MPC755

SRAM_A

MBI
SRAM

MPC755_B
L1

CBI
MPC755

SRAM_B

MBI
SRAM

MPC755_C
L1

CBI
MPC755

SRAM_C

MBI
SRAM

MPC755_D
L1

CBI
MPC755

SRAM_D

MBI
SRAM

BAN F

BAN G

BAN H

BAN E

Figure 17: Diagram of GBAVI

50

Figure 17 have the same address and data widths; as mentioned earlier in Example 4.1,

this could be easily changed if desired. Next, the user inputs the following BAN Property

fields for each single BAN in four of the eight Bus Subsystems: “MPC755” for the CPU

Type (user option 3.1), “NONE” for the Non-CPU Type (user option 3.2), “0” for the

number of global memories (user option 3.3) and “1” for the number of local memories

(user option 3.4). Next, the user inputs the Memory Property for the local memory chosen

for each BAN as follows: “Register” for the memory type (user option 4.1) and “1” for the

data bus width (user option 4.3). With these options, BANs A, B, C and D in Figure 17

are generated, where each BAN is composed of MPC755, CBI MPC755 as an interface logic

block and HS REGS as a register block (please note that CBI MPC755 is integrated into

each BAN as a result of the selection of MPC755 for each BAN).

Then, the user again inputs the fields of BAN Property for each single BAN in the

remaining four Bus Subsystems: “NONE” for the CPU Type (user option 3.1), “NONE”

for the Non-CPU Type (user option 3.2), “0” for the number of global memories (user

option 3.3) and “1” for the number of local memories (user option 3.4). Next, the user

inputs the Memory Property for the local memory chosen for each BAN as follows: “SRAM”

for the memory type (user option 4.1), “20” for the address bus width (user option 4.2) and

“64” for the data bus width (user option 4.3) for 8MB SRAM in each BAN. With these

options, BANs E, F, G and H in Figure 17 are generated, where each of the four BANs has

an 8MB SRAM (please note that MBI SRAM in each of BANs E, F, G and H shown in

Figure 17 is integrated into each BAN when the user specifies SRAM for the BAN).

Each Bus Subsystem in this example has a single BAN, and the Bus Subsystems need

to be integrated to form a Bus System we call GBAVI. In this case, to connect each Bus

Subsystem, our tool automatically inserts Bus Bridges (BBs) (e.g., the BB shown between

BAN A and BAN E in Figure 17) between the Bus Subsystems. 2

GBAVI shown in Figure 17 has a kind of global bus architecture (GBA), but the

global bus is segmented by BBs separating each BAN, where the number of BANs

is specified by the user. Each BAN has an SRAM block (e.g., SRAM A, SRAM B,

51

SRAM C or SRAM D). One BB in each BAN controls a possible bus connection

between the PE side bus and the SRAM side bus in each BAN: BB 1 between CBI

MPC755 and MBI SRAM in BAN A. Thus, in GBAVI, a group of two adjacent

BANs can exchange data without any bus conflict with the other BANs in the SoC at

the same time thanks to separation provided by the BBs. For example, in Figure 17,

while BAN A and BAN B communicate with each other, BAN C and BAN D also can

communicate at the same time without any bus conflict. Each group of two BANs in

Figure 17 is synchronized by handshaking using shared registers (HS REGS) between

BANs (see Section 4.2 for a description of the handshake protocol). Note that GBAVI

tends to work well in a pipelined style operation; for example, the output of a PE

(e.g., MPC755 A) is passed to the next PE (e.g., MPC755 B).

As another custom Bus System, a user might want to have in a Bus System two

Bus Subsystems, where each Bus Subsystem has PEs and a single global memory

that are connected with a single global bus. We call this Bus System “SplitBA” (for

Split Bus Architecture). Example 5.2 shows how to input the user options to generate

SplitBA.

Example 5.2 User Options to Generate SplitBA

A user input sequence which specifies Split Bus Architecture (SplitBA) is as follows. The

MPC755_A
L1

CBI
MPC755

MPC755_B
L1

CBI
MPC755

Bus
Bridge

MPC755_D
L1

CBI
MPC755

MPC755_E
L1

CBI
MPC755

Global
Arbiter

SRAM_C

MBI
SRAM

Global
Arbiter

SRAM_F

MBI
SRAM

BAN A BAN B BAN D BAN E

Bus
Subsystem1

Bus
Subsystem2

BAN C BAN F

Figure 18: Diagram of SplitBA

52

user first specifies the number of Bus Subsystems by entering a “2” in Bus System Property

(user option 1 in Figure 5). Then, for each of the two Bus Subsystems, the user inputs

“3” for the number of BANs (user option 2.1), “32” for address bus width (user option 2.2)

and “64” for data bus width (user option 2.3). Please note that all Local Buses and all

non-Local Buses in Figure 18 have the same address and data widths; as mentioned earlier

in Example 4.1, this could be easily changed if desired. Next, the user inputs the following

fields of BAN Property for two BANs in each Bus Subsystem: “MPC755” for the CPU

Type (user option 3.1), “NONE” for the Non-CPU Type (user option 3.2), “0” for the

number of global memories (user option 3.3) and “0” for the number of local memories

(user option 3.4). This results in BANs A, B, D and E in Figure 18. For the last remaining

BAN in each Bus Subsystem, the user inputs “NONE” for the CPU Type (user option 3.1),

“NONE” for the Non-CPU Type (user option 3.2), “1” for the number of global memories

(user option 3.3) and “0” for the number of local memories (user option 3.4); the Memory

Property for this global memory BAN is input as “SRAM” for the memory type (user

option 4.1), “21” for the address bus width (user option 4.2) and “64” for the data bus

width (user option 4.3). The results are two BANs each with 16MB SRAM as seen in

BANs C and F in Figure 18. The total amount of non-cache memory is 32MB. With these

options, the generated Bus System which we call SplitBA is shown in Figure 18. 2

SplitBA shown in Figure 18 is composed of two Bus Subsystems each of which

has two MPC755s and a 16MB memory. The two Bus Subsystems of Figure 18

are connected through a bus bridge to exchange data between them. Both Bus

Subsystems in Figure 18 can operate at the same time without bus contention so

that system performance is increased. In addition, in each Bus Subsystem, a bus

length shorter relative to using a single GBA may allow the use of a faster bus clock,

thus speeding up computation in the system; furthermore the shorter buses may

even consume lower power due to lower parasitic resistance and capacitance in the

buses in the SoC (please note that the power consumption in a bus bridge cannot

53

Bus
Subsystem1

Bus
Subsystem2

Bus
Subsystem3

BB1 BB2

BB3
Bus

Subsystem1
Bus

Subsystem2
BB1

Bus System1

Bus System2

Note BB: Bus Bridge

Figure 19: Different Combination of Bus Subsystems to Generate New Bus Archi-
tectures

be ignored) [19]. Due to its divided bus, SplitBA also relieves bus traffic congestion

caused by shared memory requests from each BAN.

A different combination of Bus Subsystems by the user options shown in Figure 16

(repeated from Figure 5) results in a different (and possibly brand new) Bus System

as shown in Figure 19. Example 5.3 shows how to generate another Bus Architecture

based on the user options.

Example 5.3 User Options for Different Combinations of Bus Subsystems

Figure 19 shows examples where different combination of Bus Subsystems makes new Bus

Systems. Bus System1 in Figure 19 has user option where the number of Bus Subsystems

is “3” (user option 1 in Figure 5), and the Bus System is composed of Bus Subsystems 1,

2 and 3. The BBs (namely, BBs 1, 2 and 3) can be automatically selected in our tool

according to the type of non-Local Bus architecture (e.g., GBA or BFBA) using each Bus

Subsystem. To generate Bus System2, the number of Bus Subsystems is set to “2” (user

option 1), where the system is composed of Bus Subsystems 1 and 2. Please note that

while our current tool supports only one BB type (namely, BB GBA), more BB types to

support specific Bus Systems shown in Figure 19 could easily be added to our tool after

being defined. 2

As shown in Examples 5.1 and 5.2, If a Bus System has more than one Bus

Subsystem, the Bus Subsystems need to be integrated to form a Bus System. In

54

that case, our tool BusSynth inserts a Bus Bridge (BB) between Bus Subsystems.

Currently, BusSynth does not supports BBs that enable different bus speeds, which

can be caused by different bus clocks, in buses connected by the BBs; however, this

issue can be solved by integrating a memory (e.g., FIFO) into the BBs in order to

adapt the different bus speeds, and such a BB could easily be added to Module

Library, which will be described in Chapter 6 in detail.

5.1.2 Communication among BANs

Since user applications running on a multi-processor SoC are typically partitioned

across multiple PEs for parallel processing, the system performance is heavily af-

fected by method of communication among the PEs. In this section, we show a

communication method among PEs in a Bus System, based on our basic handshake

protocol described in Section 4.2.

5.1.2.1 Communication in GBAVI

We show how our specific handshake protocol used to communicate between PEs in

the GBAVI Bus System shown in Figure 17. To support our protocol (i.e., to gener-

ate the handshake control signals), two control registers, DONE OP and DONE RV

shown in Figure 20, reside in the handshake registers’ block (HS REGS) shown in

each BAN of Figure 17. Each pair of neighboring PEs shares the registers (i.e., both

a sender and a receiver can access the registers). When non-adjacent PEs have to

communicate with each other (e.g., transferring data from MPC755 A to MPC755 C

in Figure 17), currently we only support the case where all PEs (e.g., MPC755 B)

between a sender (e.g., MPC755 A) and a receiver (e.g., MPC755 C) relay the data to

the destination PE sequentially. However, our implementation could be extended to

support direct communication through bus bridges (e.g., the BBs between MPC755 A

and MPC755 C). Note that GBAVI, as implemented, tends to work well in a pipelined

parallel style of operation that has a pattern in which output data from a PE is passed

55

to the next PE for the following operation. The communication procedure among PEs

in GBAVI working in a pipelined fashion can be implemented in the same manner as

the handshake protocol shown in Example 4.6 in Chapter 4. In GBAVI, two control

registers (e.g., DONE RV and DONE OP) work in a way similar to handshake control

variables (shown in Example 4.6) saved in the shared memory Global SRAM shown

in Figure 7.

DONE_RV

DONE_OP

HS_REGS

(CPU Bus A) (CPU Bus B)

Figure 20: Detailed Diagram of HS REGS in Figure 17

5.1.2.2 Communication in SplitBA

SplitBA shown in Figure 18 has shared memory blocks (e.g., SRAM in each Bus Sub-

system) that can be accessed from all PEs (e.g., MPC755 A, MPC755 B, MPC755 C

and MPC755 D in Figure 18). Through the shared memory, the communication pro-

cedure among PEs can be implemented in the same manner as shown in Examples 4.6

and 4.7 in Section 4.2.

5.1.3 Summary

Based on the user options, we have shown how to specify a Bus System; furthermore,

we have included some detailed examples. We have also briefly described how to

communicate among PEs in a generated Bus System. In the following chapter, we

will depict detailed methodology of how to generate a user-specified Bus System,

56

where we will show our algorithm used in the methodology, our way of interconnect

delay aware bus generation, and computational complexity of the algorithm.

57

CHAPTER VI

METHODOLOGY FOR BUS SYSTEM

GENERATION

Based on the Bus System structure described in Chapter 3 and user inputs described

in Chapters 4 and 5, our bus synthesis tool BusSynth generates a user-specific

Bus System. We use two kinds of libraries which we refer to as Module Library

and Wire Library. In this chapter, we show the methodology behind our approach to

generate a custom user-specified Bus System. In Section 6.1, we show how the Module

Library and the Wire Library are made and work in the tool. Then, in Section 6.2, we

explain how to generate Bus Systems using the Libraries. Thus, Section 6.2 covers the

main point of this chapter: detailed methodology and pseudo code for Bus System

generation. Section 6.3 describes interconnect delay aware Bus System generation

based on the methodology described in Sections 6.1 and 6.2. Finally, Section 6.4

ends with an analysis of the computational complexity of the algorithms shown in

Section 6.2.

6.1 Libraries for Module Repository and Wiring

BusSynth uses two libraries to generate a Bus System. One is a Module Library

that contains all modules currently supported for use inside a BAN, a Bus Subsystem

and/or a Bus System. The other library is a Wire Library that contains many dif-

ferent specific wires for connecting the modules inside BANs, Bus Subsystems and a

Bus System. The Module Library contains not only Input/Output (I/O) port infor-

mation and behaviour of each module in RTL Verilog code but also many templates

to generate specific modules (e.g., ARBITERs). Here, the templates have parameters

58

to configure each of the specific modules that the user wants through the user options

that will be introduced in Section 6.2 in detail, and the modules are generated by as-

signing specific values to the parameters whose values are from the user input options,

based on the user requests. Each library component is described in text in a file and

starts and ends with a specific keyword, respectively: “%module <library name>”

and “%endmodule <library name>.” The parameters to be configured in a library

component are specified with another specific keyword “@parameter@.” These key-

words are shown in Example 6.1 in detail. The Module Library contains the following

components:

(a) <PE>: a processing element, where <PE> is one of MPC750, MPC755, MPC7410

or ARM9TDMI (note that more PE types could easily be added if desired)

(b) CBI <PE>: an interface module between a PE (or CPU) and a bus

(c) <memory> comp: a memory template to be used to generate any size of behav-

ioral memory, where <memory> is one of SRAM, DRAM, DPRAM, Bi-FIFO

or Register

(d) MBI <memory>: an interface module between a <memory> and bus, where

<memory> is one of SRAM, DRAM, DPRAM, Bi-FIFO or Register

(e) BB <bb type>: a bus bridge, where <bb type> is GBA (please note that more

BB types – e.g., BBs to support specific Bus Systems shown in Figure 19 – could

easily be added after being defined)

(f) ARBITER <arb type>: an arbiter module, where <arb type> is FCFS (please

note that more ARBITER types could easily be added after being defined)

(g) ABI: an interface module between an arbiter and a bus, where the Module

Library currently has only ABI FCFS (please note that more ABI types could

easily be added after being defined)

59

(h) GBI: a generic bus interface module, where the Module Library currently has

only GBI GBA and GBI BFBA (please note that more GBI types could easily

be added after being defined)

(i) SB: a module for Segment of Bus (SB), where the Module Library currently has

only SB GBA and SB BFBA, where SB GBA is for GBAVI, GBAVIII and a

global bus architecture in HybridBA, and SB BFBA is for BFBA and a Bi-FIFO

bus architecture in HybridBA (please note that more SB types could easily be

added after being defined)

In our current tool, GBI GBA can be used for GBAVIII, HybridBA and SplitBA

since these Bus Systems use a Global Bus Architecture (GBA) to connect BANs in

each Bus Subsystem, GBI BFBA is for BFBA as well as the Bi-FIFOs in HybridBA,

and GBAVI does not need a GBI since the Bus Subsystem has a single BAN. If a

user wants to generate a new Bus System (shown in Figure 19) without using a global

bus architecture or a Bi-FIFO bus architecture, the user needs to add new compo-

nents (e.g., a new GBI and/or a new SB) required to the Module Library. However,

currently our tool works well to generate a Bus System with a global bus architec-

ture, a Bi-FIFO bus architecture, a combined bus architecture with the global bus

architecture and the Bi-FIFO bus architecture (e.g., HybridBA), or a combined bus

architecture having more than one global bus (e.g., SplitBA). Actually, Bus Systems

with one or more than one Global Bus Architecture (GBA) to connect BANs are a

popular in industry today; thus we are able to address current needs quite well.

Example 6.1 shows an example of the Module Library including how the different

parameters in each library component are taken into consideration when performing

adaptation between heterogeneous hardware components (e.g., between a bus and an

SRAM). Here, the different parameter values are based on the user input options.

60

%module MBI_SRAM
module mbi_sram(hrst_bar, abb_bar, cs_bar, sram_web,
 // Skip I/Os
 sram_oeb, sram_addr, sram_dq);

// Parameter definitions
parameter MEM_A_WIDTH = @parameter@;
parameter MEM_D_WIDTH = @parameter@;
parameter DLY_PE1 = @parameter@;
parameter DLY_PE2 = @parameter@;
parameter DLY_PE3 = @parameter@;
parameter DLY_PE4 = @parameter@;

// I/O definitions
input HRST_BAR;
input [0:3] ABB_BAR;
input [0:7] CS_BAR;
output sram_web;
output sram_oeb;
output [MEM_A_WIDTH-1:0] sram_addr;
inout [MEM_D_WIDTH-1:0] sram_dq;
// Skip I/O definitions

// Register definitions
reg [0:3] RnumRdDelay;
// Skip register definitions
// Assign delay values
 always @(cs_bar or hrst_bar)
 begin
 if (~hrst_bar)
 RnumRdDelay <= 4'h0;
 else if (~cs_bar)
 if(~abb_bar[0])
 RnumRdDelay <= DLY_PE1;
 else if (~abb_bar[1])
 RnumRdDelay <= DLY_PE2;
 else if (~abb_bar[2])
 RnumRdDelay <= DLY_PE3;
 else if (~abb_bar[3])
 RnumRdDelay <= DLY_PE4;
 else
 RnumRdDelay <= 4'h0;
 end

 // Skip verilog description

endmodule
%endmodule MBI_SRAM

Figure 21: MBI SRAM Component in Module Library

Example 6.1 Module Library

As an example of a Module Library component, MBI SRAM is shown in Figure 14. This

component is for the interface between an SRAM and a bus as shown in Figures 6, 7, 8,

17 and 18 when a user wants to attach an SRAM to a bus through the user options in

Section 4.1. In Figure 21, the library component name is shown in the first line, “%module

<library name>,” where <library name> is MBI SRAM. To specify the library’s property,

there are six different parameters: physical memory address width, memory data width and

four interconnect delay parameters for PEs 1 to 4. These parameters are set in a module

61

generation procedure based on the user options and interconnect delay inputs, where the

module generation procedure using the Module Library and interconnect delay aware mod-

ule generation with interconnect delay input will be described in Section 6.2 and Section 6.3

in detail, respectively. For the interface between CPU bus A and the 8MB SRAM in BAN A

of Figure 6, the first two parameters (namely, “MEM A WIDTH” and “MEM D WIDTH”)

shown in Figure 21 are set to “20” and “64”, respectively. The parameter values are from

the Memory Property (e.g., MEM A WIDTH: 20 and MEM D WIDTH: 64) in the user

options 4.2 and 4.3 shown in Figure 16. The other four parameters (namely, DLY PE1

to DLY PE4)) are set to 3, 3, 4 and 5, repectively, when interconnect delay clocks to be

inserted to memory access cycles are 3, 3, 4 and 5 cycles from PE1 to PE4 (see Section 6.3

for the detailed calculation of interconnect delay clocks). Please note that we assume that

all addresses which appear on a bus are physical addresses. Any virtual address used by a

program must be translated to a physical address prior to placement on a bus. 2

The Wire Library contains all possible combinations of legal connections between

hardware blocks (e.g., between modules in each BAN, between BANs in each Bus

Subsystem) or between Bus Subsystems in a Bus System. This library is written in

ASCII format as shown in Figure 22, and there are several fields to specify connection

information:

(a) wire name (w name)

(b) wire width (w width)

(c) module name (mx name), where x indicates the module number, 1 or 2

(d) port name in module x (mx pname)

(e) most significant bit (MSB) of wire connected to a module x (mx wmsb)

(f) least significant bit (LSB) of wire connected to a module x (mx wlsb)

62

%wire <library name>

w_name w_width m1_name m1_pname m1_wmsb m1_wlsb m2_name m2_pname m2_wmsb m2_wlsb

%endwire

Figure 22: Wire Library Format

In the Wire Library format shown in Figure 22, two modules are connected by

the wire, namely, module m1 name and module m2 name. To specify a single wire

connecting three or more distinct ports, an additional wire entry is needed for each

additional port beyond two. Please note that the m1 pname field specifies the port to

which the wire connects in module m1 name, while the m2 pname specifies the port

to which the wire connects in module m2 name. Thus, in a sense, two “ports” are

specified in each Wire Library entry! These two ports are not, strictly speaking, “part

of” the wire; nonetheless, since the wire connects the two ports, the two ports are

part of the Wire Library format. Example 6.2 shows wire connections between two

modules within the same BAN. Note that the m1 name and m2 name fields may be

the same when a connection specifies either (1) a single wire between more than two

ports on different modules (or BANs) or (2) a set of similarly-named wires (except

for a suffix) forming a torus among more than two ports on different modules (or

BANs). Example 6.3 shows such wire connections between different BANs. Please

note that to specify a wire between/among BANs that have the same I/O ports in

their pin names in a Bus Subsystem (e.g., the connection between BAN A and BAN B

in Figure 6), m1 name and m2 name in Figure 22 need to be the same. This case

is described in Example 6.3 in detail, where Figure 25(b) shows detailed blocks and

I/O pins that are related to each BAN’s I/O ports shown in Figure 25(a).

Example 6.2 Wire Connections in a BAN

As an example of a wire connection in a BAN, consider the wires between MBI SRAM and

SRAM A in BAN A of Figure 23 (repeated here from Figure 6 for convenience). Figure 24

63

HS_REGS BI-FIFO_A

(B)

CPU Bus A

CPU Bus B

CPU Bus C

CPU Bus D

BAN A

BAN B

BAN C

BAN D

MPC755_A
L1

CBI
MPC755

SRAM_A

MBI
SRAM

MPC755_B
L1

CBI
MPC755

SRAM_B

MBI
SRAM

MPC755_C
L1

CBI
MPC755

SRAM_C

MBI
SRAM

MPC755_D
L1

CBI
MPC755

SRAM_D

MBI
SRAM

HS_REGS: handshake registers

GBI_BFBA

GBI_BFBA

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA

(A)

(B)(A)

Figure 23: Diagram of BFBA (repeated from Figure 6 for convenience)

sram_addr[19:0]

sram_web

sram_reb

sram_csb[7:0]

sram_dq[63:0]

addr[19:0]

web

reb

csb[7:0]

dq[63:0]

w_addr[19:0]

w_web

w_reb

w_csb[7:0]

w_dq[63:0]

SRAM_A MBI_SRAM

Figure 24: Wire Connection Example between SRAM A and MBI SRAM in Fig-
ure 6

64

shows the detailed wires connecting SRAM A to MBI SRAM: w addr for address bus, w web

for write enable, w reb for read enable, w csb for chip selection and w dq for data bus. To

specify the wires in Figure 24, the wire information in the Wire Library is as follows:

%wire ban bfba

w addr 20 SRAM A sram addr 19 0 MBI SRAM addr 19 0

w web 1 SRAM A sram web 0 0 MBI SRAM web 0 0

w reb 1 SRAM A sram reb 0 0 MBI SRAM reb 0 0

w csb 8 SRAM A sram csb 7 0 MBI SRAM csb 7 0

w dq 64 SRAM A sram dq 63 0 MBI SRAM dq 63 0

%endwire 2

Example 6.3 Wire Connections between BANs in a Bus System

This example shows how to form wire connections between multiple (more than two) BANs

in the Wire Library. BANs A, B, C and D are linked as in a chain as shown in Figure 25(a),

and the connections of the I/O ports shown in the left box (with solid lines) of Figure 25(b)

are repeated between the BANs. In this kind of wire connection, the names of the wires

connecting the BANs have the same names but with different suffixes as shown Figure 25(a),

except for one case: w reset. The w reset wire does not have a suffix, and w reset is the

only wire that connects to all the BANs with a single contiguous wire, as opposed to just

connecting one BAN to another. In the example of Figure 25, it is not necessary that

we specify all wires individually. Thus, although the Wire Library format technically only

supports the specification of a wire connecting two ports (from up to two different BANs),

nevertheless our tool supports wire specifications such as shown in this example. The

wire specifications shown in this example result in the serial connections (wires) linking

the specified BANs by generation of wires suffixed by an enumerated number as shown

in Figure 25(a). For this purpose, wire connections between more than two BANs can be

specified by the same module names in the m1 name field and the m2 name field in the Wire

Library format as shown in Figure 22; in this example, the names are just “BAN[A,B,C,D]”

as shown in the wire listing “wire subsystem bfba” at the end of this example (on page 67).

65

BANs A,B,C and D

HS_REGS

BI-FIFO

CPU Bus

CBI
MPC755MPC755

L1

done_op_cs_dn
done_rv_cs_dn

web_dn

reb_dn

fifo_cs_cs_dn

data_dn[63:0]

done_op_cs_up
done_rv_cs_up

web_up

reb_up

fifo_cs_cs_up

data_up[63:0]

BAN FFT

addr_b[11:0]
data_b[63:0]

web_b
reb_b

ack_b
srt_b

(A)

Only for BAN B

FFT

reset

(a) Connection among BANs

(b) I/O pins and blocks in each BAN in detail

BAN A BAN D

w_done_

w_data_4[63:0]
w_data_4[63:0]
w_fifo_cs_4
w_ban_reb_4

w_done_rv_cs_4
w_done_op_cs_4

BAN
C

BAN
B

addr_fft[11:0]
data_fft[63:0]
reb_fft
web_fft
srt_fft
ack_fft
reset

BAN FFT

w_fft_addr[11:0]
w_fft_da[63:0]
w_fft_reb
w_fft_web
w_fft_srt
w_fft_ack

(A)reset

w_reset

op_cs_1

w_ban_
reb_1

w_done_
rv_cs_1
w_ban_
web_1

w_data_1
[63:0]

w_fifo_
cs_1

w_done_
op_cs_2

w_ban_
reb_2

w_done_
rv_cs_2
w_ban_
web_2

w_data_2
[63:0]

w_fifo_
cs_2

w_done_
op_cs_3

w_ban_
reb_3

w_done_
rv_cs_3
w_ban_
web_3

w_data_3
[63:0]

w_fifo_
cs_3

done_op_
cs_dn
done_rv_
cs_dn

web_dn

reb_dn

fifo_cs_dn

data_dn
[63:0]

done_op_
cs_up
done_rv_
cs_up

web_up

reb_up

fifo_cs_up

data_up
[63:0]

done_op_
cs_dn
done_rv_
cs_dn

web_dn

reb_dn

fifo_cs_dn

data_dn
[63:0]

done_op_
cs_up
done_rv_
cs_up

web_up

reb_up

fifo_cs_up

data_up
[63:0]

reset

addr_fft[11:0]
data_fft[63:0]
reb_fft
web_fft
srt_fft
ack_fft
reset

Figure 25: Wire Connection Example between BANs

66

A set of wires having the same module names in the m1 name field and the m2 name field

and different port names in the the m1 pname field and the m2 pname field describe a

torus network. Here, “BAN[A,B,C,D]” means that the specified wire connecting the named

ports is applied for BANs A, B, C and D. On the other hand, the wires between BANs

having connections other than a simple contiguous wire or a torus network have to be

specified separately in the Wire Library; for example, as shown below, single explicit wires

are specified connecting BAN B and BAN FFT. The connections between BAN B and

BAN FFT in Figure 25(a) show the case where we assume that BAN B has another bus to

BAN FFT in addition to the buses connecting BANs A, B, C and D. Here, BAN FFT is a

BAN having a hardware Fast Fourier Transform (FFT) core.

Detailed wire connections between a pair of BANs A, B, C and D in Figure 25(a) are as

follows: w done op cs or w done rv cs for handshake register selection, w ban web for write

enable, w ban reb for read enable, w fifo cs for FIFO chip selection and w data for data bus

as shown in Figure 25(a). In the connections between BAN B and BAN FFT, the wires

are as follows: w fft ad for FFT buffer address, w fft data for the data bus, w fft reb for

read enable, w fft web for write enable, w fft srt for FFT start control and w fft ack for

acknowledge of FFT end. The wire connections among the BANs shown in Figure25(a) are

specified in the Wire Library as follows:

%wire subsys bfba

w done op cs 2 BAN[A,B,C,D] done op cs dn 1 0 BAN[A,B,C,D] done op cs up 1 0

w done rv cs 2 BAN[A,B,C,D] done rv cs dn 1 0 BAN[A,B,C,D] done rv cs up 1 0

w ban web 1 BAN[A,B,C,D] web dn 0 0 BAN[A,B,C,D] web up 0 0

w ban reb 1 BAN[A,B,C,D] reb dn 0 0 BAN[A,B,C,D] reb up 0 0

w fifo cs 1 BAN[A,B,C,D] fifo cs dn 0 0 BAN[A,B,C,D] fifo cs up 0 0

w data 64 BAN[A,B,C,D] data dn 63 0 BAN[A,B,C,D] data up 63 0

w reset 1 BAN[A,B,C,D] reset 0 0 BAN[A,B,C,D] reset 0 0

w fft ad 12 BAN[B] addr b 11 0 BAN[FFT] addr fft 11 0

w fft data 64 BAN[B] data b 63 0 BAN[FFT] data fft 63 0

67

w fft reb 1 BAN[B] reb b 0 0 BAN[FFT] reb fft 0 0

w fft web 1 BAN[B] web b 0 0 BAN[FFT] web fft 0 0

w fft srt 1 BAN[B] srt b 0 0 BAN[FFT] srt fft 0 0

w fft ack 1 BAN[B] ack b 0 0 BAN[FFT] ack fft 0 0

w reset BAN[B] reset 0 0 BAN[FFT] reset 0 0

%endwire 2

As stated earlier, please note that the wire library contains at a minimum all

legal connections among Modules (e.g., PEs, BBs, SBs, arbiters, memories and ILs

including GBI), where by a “legal” connection we mean a connection which makes

clear functional sense, e.g., between two 32-bit address ports. However, in a case

where a specialized non-“legal” connection, e.g., from bit 3 of an address port in GBI

to a clock input, is desired, such a case can be supported by manually entering the

wire into the Wire Library.

To specify a port in a module, we use port direction (namely, input, output or

inout), port name, MSB and LSB of the port width for each port of the module. Thus,

a record of port information contains the four properties port direction, port name,

MSB and LSB in a data structure. In order to specify the ports in the module, a record

for each port is required. Example 6.4 shows an example of the port information.

Example 6.4 A Record of Port Information

Suppose that we want to describe a port “addr fft[11:0]” of BAN FFT shown in Figure 25(b).

A record for the port information contains “input,” “addr fft,” “11” and “0” in a port data

structure. 2

6.2 Sequence of Bus System Generation

We now show how to generate a Bus System. First, we describe the overall flow of

bus synthesis as shown in Figure 26. Next, we explain the user options to configure

68

the Bus System to be generated from our bus synthesis tool BusSynth. Third, we

describe how to generate the wires to interconnect the modules of a specific hardware

unit (e.g., a BAN or a Bus Subsystem) that is to be part of the specified Bus System.

Fourth, we present our algorithm for Bus Subsystem generation. Finally, we describe

our algorithm for Bus System generation.

6.2.1 Overall Flow of Bus System Generation

The flowchart shown in Figure 26 shows the Bus System generation sequence. First,

BusSynth takes user input options for a Bus System to be generated, and then,

based on the options, BusSynth generates the required BANs and assembles them

into the required Bus Subsystems. After that, if the Bus System the user wants has

more than one Bus Subsystem, the generated Bus Subsystems are integrated into

the resulting Bus System. Otherwise, the generated single Bus Subsystem becomes

Bus Access Node (BAN)
Generation

Synthesizable
Verilog HDL code

Wire
Library

Bus System Generation

User Options

BusSynth

Bus Subsystem Generation

For each Bus Subsystem

of Bus Subsystem > 1

Y

N

Module
Library

For each BAN

Figure 26: The Bus System Generation Sequence

69

1. Bus System
- Number of Bus Subsystems

2. Bus Subsystem
- For Each Bus Subsystem

-2.1 Number of BANs
-2.2 Address bus width
-2.3 Data bus width

3. BAN Property
- For Each BAN

-3.1 CPU type: NONE, MPC750, MPC755, MPC7410 or ARM9TDMI
-3.2 Non-CPU type: NONE, DCT or MPEG2 decoder
-3.3 Number of global memories
-3.4 Number of local memories

4. Memory Property
- For Each Memory

-4.1 Type: NONE, SRAM, DRAM, DPRAM, Bi-FIFO or Register
-4.2 Address bus width for SRAM, DRAM or DPRAM
-4.3 Data bus width for SRAM, DRAM, DPRAM, Bi-FIFO or Register
-4.4 Bi-FIFO depth for Bi-FIFO

5. Global Arbiter Property
- Type: FCFS for a global memory specified in option 3.3

Figure 27: User Options to Configure a Custom Bus System (repeated from Figure 5
for convenience)

the Bus System. Finally, BusSynth writes synthesizable Verilog HDL code for the

generated Bus System.

6.2.2 User Inputs to BusSynth

As the first step of the flowchart shown in Figure 26, to configure the custom Bus

System, the user enters input options. These options are input constraints used to

generate a custom Bus System. We already described in detail the user options in

Chapter 4; the user options are summarized in Figure 27. Section 5.1 shows the input

sequence of the user options and detailed examples of how to generate Bus Systems

based on the user options.

6.2.3 Unit Generation

We introduce here an algorithm, UnitGen, which is a part of BusSynth’s algo-

rithms and is used to generate in HDL a hardware unit that is specified to be part of

the Bus System desired by the user. In particular, given a list of modules as input,

70

UnitGen generates the wires needed to connect all the modules together appropri-

ately. Depending on the input list (array) of module names, UnitGen can generate

a BAN, a Bus Subsystem or a Bus System. UnitGen (short for “Unit Generator”) is

used by (called from) algorithms that will be introduced in Sections 6.2.4 and 6.2.5.

Listings 1 and 2 show the pseudo code of UnitGen. The input arguments are

an array of module names, the name of the top hardware unit to be generated and a

pointer to the Wire Library; the output is HDL code of the top hardware unit. The

input array of module names contains all the names of all modules in a top hardware

unit to be generated. Since UnitGen integrates modules specified in the module

name array M, which is input (see Listing 1), such modules to be integrated are

provided as separate HDL files (extracted from the Module Library shown as available

in Figure 26). However, while UnitGen does not use the Module Library explicitly,

UnitGen does use the Module Library implicitly by use of the Wire Library to

generate wires for the specified design.

Example 6.5 An Array of Module Names Input to UnitGen

Consider the case where we generate a hardware unit, BAN A of BFBA shown in Figure 6.

UnitGen, shown in Listing 1, takes as input an array of module names that contains

MPC755, MBI SRAM, HS REGS, CBI MPC755, SRAM A and Bi-FIFO since these six

modules are the components of BAN A. 2

In lines 1 to 10 of Listing 1, to connect modules specified in an array of module

names, UnitGen first extracts specific wires to connect between modules from a

Wire Library file; this wire information is placed in a data structure LW1. Here,

each record of LW1 is composed of the same fields as the fields shown in the Wire

Library Format of Figure 22. In lines 14 to 21, port information of each module to

be integrated is read from separate HDL files that were generated for each module in

71

Listing 1 UnitGen(): Unit Generation.
Input: module name array M, top unit name to be gen U and wire library file *W
Output: HDL code of an unit named U

begin

/* lines 1 to 10: read wires from W that connect modules specified in M */
1: LW1 = φ; /* LW1 is a set Listing Wire information obtained from W ; initially, LW1 is empty */
2: nm = size(M); /* nm is the number of modules stored in M */
3: while(!end of line in W) do /* each line of W contains a record of wire information */

/* for one wire */
4: for(i=1 to nm, i=i+1) do

/* the format of wire information has module name fields as shown in Figure 22 */
5: if(current line pointed to by W contains M [i]) then

6: LW1 = LW1 ∪ wire information in current line;
7: end if

8: end for

9: go to next line in W ;
10: end while

/* lines 11 to 34: generate sets (LWPM and LP2) required for HDL generation */
11: LWPM = φ; /* LWPM is a set Listing information of Wire-Port Mapping for U ; */

/* here, the set is composed of five fields (wire name, wire LSB, wire MSB, */
/* port name and module name; initially, LWPM is empty */

12: LP2 = φ; /* LP2 is a set Listing Port information that is composed of port name, */
/* port direction and port width for U ; initially, LP2 is empty */

13: for(j=1 to nm, j=j+1) do

/* lines 14 to 21: read port information from M [j] module specified in M */
14: LP1 = φ; /* LP1 is a set Listing Port information for M [j] module, and each record */

/* of LP1 is composed of port direction, port name and port width */
15: fpm = open a file for M [j]; /* M [j] module written in HDL is provided in a file */

/* in advance, and the file is opened and read based on a file pointer fpm */
16: while(!end of line in fpm) do

17: if (current line pointed by fpm contains HDL port syntax) then

18: LP1 = LP1 ∪ {port name, port direction and port width in current line};
19: end if

20: go to next line in fpm;
21: end while

/* lines 22 to 33: compare between LW1 and LP1 and generate sets LWPM and LP2 */
22: for each record of port information ∈ LP1 do

23: flag = FALSE;
24: for each record of wire information ∈ LW1 do

25: if ((M [j] equals module name in current record of LW1) and (port name in current
record of LP1 equals port name in current record of LW1)) then

26: LWPM = LWPM ∪ {wire name, wire LSB and wire MSB of current record
in LW1, port name of current record in LP1, and M [j]};

27: flag =TRUE;
28: end if

29: end for

/* continued in Listing 2 */

72

Listing 2 UnitGen(): Unit Generation (continued from Listing 1)
/* LP2 contains ports not currently connected to a wire (e.g., clock ports may */
/* be wired up later) */

30: if (flag equals FALSE) then

31: LP2 = LP2 ∪ current record of port information in LP1;
32: end if

33: end for

34: end for

/* lines 35 to 50: write HDL code by instantiating the nm modules and using sets */
/* listing wires and ports */

35: for each record of port information ∈ LP2 do

36: write ports in LP2 to U ;
37: end for

38: for each record of wire information ∈ LW1 do

39: write wires in LW1 to U ;
40: end for

41: for (i=1 to nm, i=i+1) do

42: write the instantiation code for M [i] module to U ;
43: end for

44: for (i=1 to nm, i=i+1) do

45: for each record of the information of wire-port mapping ∈ LWPM do

46: if (module name in current record of LWPM equals M [i]) then

47: write code for wire-port mapping in LWPM to U ;
48: end if

49: end for

50: end for

end

advance; the resulting port information extracted is placed in a data structure LP1.

Here, each record of LP1 is composed of the following fields: port name, port direction

and port width. Lines 22 to 33 of Listings 1 and 2 compare, for each module, (i) the

port name of each wire contained in LW1 with (ii) each port name (corresponding to

a specific port of a specific module) contained in LP1. Thus, UnitGen can decide

required wire connections among the modules specified in the array of module names

utilizing port information of the modules. With the comparison performed in the

lines 22 to 33, UnitGen saves the wire-port mapping information for the specified

modules to a linked list LWPM in line 26, where LWPM is composed of five fields:

wire name, wire Least Significant Bit (LSB), wire Most Significant Bit (MSB), port

name and module name. Ports with no internal connections – and thus definitely

external ports for the hardware unit to be generated – are saved to a linked list LP2

73

in line 31 of Listing 2. Here, the fields of LP2 are the same as the ones of LP1. Finally,

in lines 35 to 50 of Listing 2, UnitGen writes synthesizable Verilog HDL code by

generating in a declarative fashion the instantiation code of the modules including

all wires between modules. Example 6.6 shows how UnitGen generates a hardware

unit in an HDL file.

Example 6.6 Unit Generation

Consider the generation of a hardware unit, BAN A of BFBA shown in Figure 6. As shown

in Example 6.5, UnitGen first takes an array of module names that contains MPC755,

MBI SRAM, HS REGS, CBI MPC755, SRAM A and Bi-FIFO. In lines 1 to 10 of List-

ing 1, UnitGen extracts specific wire data to connect between modules (e.g., one wire

datum is w name “w addr,” m1 name “SRAM A” and m1 pname “sram addr” in the for-

mat of Figure 22) from the Wire Library and saves the wire record (e.g., w name “w addr”,

m1 name “SRAM A” and m1 pname “sram addr”) to LW1. In lines 14 to 21 of Listing 1,

UnitGen obtains port information (e.g., port name “sram addr”) from the current module

(e.g., “SRAM A”) and saves the port name to LP1. Next, in lines 22 to 33, to decide a spe-

cific wire that connects between modules, UnitGen compares, for the current module (e.g.,

“SRAM A”), an associated port name (e.g., “sram addr”) field in LP1 with a port name

(e.g., “sram addr”) field of LW1. If both the fields are equal, they need to be connected

(by design, the Module and Wire Libraries are constructed to assign the same name to

ports which can be connected), and UnitGen takes the wire information (e.g., “w addr”)

in LW1, port information (e.g., “sram addr”) and current module name (e.g., “SRAM A”),

and saves them to LWPM in line 26. LWPM will be used later to generate wires in Verilog

HDL. This procedure (from line 22 to line 33) is repeated for all ports in LP1. Finally,

74

module BAN_A(sysrstb, sysclk,
 // skip some I/O
 reb_dn, web_dn
);

// I/O definitions
input sysrstb;
input sysclk;
// skip some I/O definitions
output reb_dn;
output web_dn;

// Wire definitions
wire sysrstb;
wire [31:0] w_addr_cpu;
wire [63:0] w_dl_i;
wire [31:0] w_addr_cpu_o;
wire [20:0] w_addr;
// skip some wire definitions
wire [63:0] w_dq_sram;
wire w_reb_sram;
wire w_up_isr0_ctl_o;
wire [63:0] w_dl_o;
wire w_rv_done_csb_o;

// Wire-port mapping
MPC755 mpc755_0(.sysrstb(sysrstb),
 .A(w_addr_cpu),
 // skip
 .DL(w_dl_i));

CBI_MPC755 cbi_mpc755_0(.ADDR(w_addr_cpu),
 .dl_i(w_dl_i),
 // skip
 .addr_o(w_addr_cpu_o));

SRAM_A sram_a_0(.sram_addr(w_addr),
 .sram_dq(w_dq_sram),
 // skip
 .sram_oeb(w_reb_sram));

MBI_SRAM mbi_sram_0(.addr_local(w_addr_cpu_o),
 .osram_addr(w_addr),
 // skip
 .sram_dq(w_dq_sram));

Bi-FIFO bi-fifo_0(.sysrstb(sysrstb),
 // skip
 .up_isr0_ctl_o(w_up_isr0_ctl_o));

HS_REGS hs_regs_0(.cpu_dl_i(w_dl_o),
 // skip
 .rv_done_csb_o(w_rv_done_csb_o));
endmodule

Figure 28: Top Verilog HDL Code of BAN A Generated from UnitGen

75

in lines 35 to 50, UnitGen generates the instantiation code for each module, including all

wires, in the form of Verilog HDL code describing BAN A as shown in Figure 28.

The generated BAN A code shown in Figure 28 is composed of six modules: MPC755,

CBI MPC755, MBI SRAM, Bi-FIFO and HS REGS as shown in the array of module names,

which is an input to UnitGen. The Verilog code is described in following order: I/O

definitions, wire definitions and wire-port mappings for each instantiated hardware module.

In the wire definitions, we can see the wire “w addr,” which was saved in LWPM earlier

in this example. In the wire-port mapping shown in Figure 28, we also see the wire-

port mappings related to the wire “w addr,” which connects between an SRAM A port

“sram addr” and an MBI SRAM port “osram addr.” 2

6.2.4 Bus Subsystem Generation

As the second step of the flowchart in Figure 26 (shaded area), BusSynth generates

required Bus Subsystems. Here, we explain the Bus Subsystem generation in which

we use the algorithm BusSubSys shown in Listing 3 on page 78. Input arguments

of the algorithm are an array of module names in each BAN of each Bus Subsystem,

an array of BAN names in each Bus Subsystem, the number of Bus Subsystems, an

array of number of modules in each BAN of each Bus Subsystem, an array of number

of BANs in each Bus Subsystem, an array of parameters that specify the properties

of each module, and, finally, a pointer to the Module Library. Example 6.7 shows an

example of arguments in the pseudo code shown in Listing 3.

Example 6.7 Input Arguments in BusSubSys Algorithm

Consider the case where we generate BFBA Bus Subsystem in Figure 29 (repeated here for

convenience from Figure 6). Please note that BFBA is called as a Bus System which

is composed of a single Bus Subsystem. An array of module names for each BAN is

76

HS_REGS BI-FIFO_A

(B)

CPU Bus A

CPU Bus B

CPU Bus C

CPU Bus D

BAN A

BAN B

BAN C

BAN D

MPC755_A
L1

CBI
MPC755

SRAM_A

MBI
SRAM

MPC755_B
L1

CBI
MPC755

SRAM_B

MBI
SRAM

MPC755_C
L1

CBI
MPC755

SRAM_C

MBI
SRAM

MPC755_D
L1

CBI
MPC755

SRAM_D

MBI
SRAM

HS_REGS: handshake registers

GBI_BFBA

GBI_BFBA

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA

HS_REGS BI-FIFO_A

GBI_BFBA

GBI_BFBA

(A)

(B)(A)

Figure 29: Diagram of BFBA (repeated here for convenience from Figure 6)

as follows: { {“MPC755 A”, “CBI MPC755”, “SRAM A”, “MBI SRAM”, “HS REGS”,

“BI-FIFO A”}, {“MPC755 B”, “CBI MPC755”, “SRAM B”, “MBI SRAM”, “HS REGS”,

“BI-FIFO B”}, {“MPC755 C”, “CBI MPC755”, “SRAM C”, “MBI SRAM”, “HS REGS”,

“BI-FIFO C”}, {“MPC755 D”, “CBI MPC755”, “SRAM D”, “MBI SRAM”, “HS REGS”,

“BI-FIFO D”} }. An array of BAN names is {“BAN A”, “BAN B”, “BAN C”, “BAN D”},

nsub is “1,” an array of the number of modules is {“6”, “6”, “6”, “6”}, an array of the num-

ber of BANs is {“4”}. To specify 32MB total of SRAM and a BI-FIFO with 1024-depth

and 64-bit width, an array of parameters is { { {“20”, “64”}, {“10”, “64”} }, { {“20”,

“64”}, {“10”, “64”} }, { {“20”, “64”}, {“10”, “64”} }, { {“20”, “64”}, {“10”, “64”} } }.

77

Here {“20”, “64”} specifies the widths of address and data buses in an SRAM in each BAN,

respectively, and {“10”, “64”} specifies the depth and data bus width of the BI-FIFO in

each BAN, respectively. 2

First, modules in each BAN are extracted from the Module Library as shown in

lines 4 to 14. Next, BANs in Bus Subsystem(s) are generated by calling UnitGen

in line 15 of Listing 3. After this, the Bus Subsystem(s) are generated by connecting

(choosing the appropriate wires for) the generated BANs via a call to UnitGen in

line 17. Example 6.8 shows the generation of a sample BAN, and Example 6.9 shows

how a Bus Subsystem is generated by BusSubSys shown in Listing 3.

Listing 3 BusSubSys(): Bus Subsystem Generation.
Input: module name array MNA, ban name array BN, bus subsystem number nsub,

module number array NM, ban number array NB, parameter array P,
wire library file *WL, module library file *ML

Output: HDL code of Bus Subsystems
begin

1: for (i=1 to nsub, i=i+1) do /* nsub is the number of Bus Subsystems in a Bus System */
/* lines 2 to 16: BAN generation */

2: nb = NB [i]; /* nb is the number of BANs in each Bus Subsystem */
3: for (j=1 to nb, j=j+1) do

/* lines 4 to 14: look for modules specified in MNA in Module Library ML and */
/* extract the corresponding RTL code for the module to a file */

4: nm = NM [i][j]; /* nm is the number of modules in the current BAN of the */
/* current Bus Subsystem under consideration */

5: for (k=1 to nm, k=k+1) do

6: l = 0;
7: for each line of module MNA[i][j][k] in ML do /* to search a module in ML, */

/* we have a look up table that specifies start and end lines for a module in ML */
8: if (current line contains “@parameter@”) then

9: replace “@parameter@” in current line with P [i][j][k][l];
10: l=l+1;
11: end if

12: save the line to a file named MNA[i][j][k]
13: end for

14: end for

15: Call UnitGen (&MNA[i][j], “ban i j”, WL); /* BAN generation */
16: end for

17: Call UnitGen (&BN [i], bus subsystem i WL); /* Bus Subsystem generation */
18: end for

end

78

Example 6.8 BAN Generation

BusSubSys first takes arguments as shown in Example 6.7. For BAN A of BFBA shown in

Figure 29, the required list of modules, which is an input (module name array) to BusSub-

Sys shown in Listing 3, are as follows: MPC755, MBI SRAM, HS REGS, CBI MPC755,

SRAM A and BI-FIFO (please see Example 6.7). In lines 4 to 14 in Listing 3, BusSubSys

extracts four modules (MPC755, MBI SRAM, HS REGS and CBI MPC755) from the Mod-

ule Library, and in lines 7 to 13, the last two modules (SRAM A and BI-FIFO) are generated

with parameters in an array of parameters that is one of the input arguments. In other

words, SRAM A is generated with a 20-bit address bus width and a 64-bit data bus width,

and BI-FIFO is generated with a 10-bit address bus width and a 64-bit data bus width.

(Note that we assume standard tools from companies such as Synopsys [48], Artisan [2] and

Virage Logic [55] are available.) Then, in line 15, BusSubSys calls UnitGen together with

a pointer to Wire Library, a hardware unit name “BAN A” to be generated and an array

of module names that contains MPC755, MBI SRAM, HS REGS, CBI MPC755, SRAM A

and BI-FIFO. After the procedure shown in Example 6.6, UnitGen finally writes Verilog

HDL code describing BAN A. 2

Example 6.9 Bus Subsystem Generation

To generate BFBA Bus Subsystem shown in Figure 29 (repeated here for convenience from

Figure 6; note that BFBA is also a Bus System), BusSubSys takes input arguments shown

in Example 6.7. As shown in the input arguments in Example 6.7, BFBA has four BANs

as specified in an array of the number of BANs, and required module names in each BAN

are specified in an array of module names. Thus, in lines 2 to 16 of Listing 3, four BANs

79

(“BAN A”, “BAN B”, “BAN C” and “BAN D” as shown in an array of BAN names in

Example 6.7) are generated in the same fashion as shown in Example 6.8. Then, with the

BAN name array having the four generated BAN names, top module name “BFBA” and a

pointer to Wire Library, BusSubSys calls UnitGen in line 17 of Listing 3 to integrate the

four generated BANs, and UnitGen outputs Verilog HDL code of BFBA Bus Subsystem

in a manner similar to Example 6.6. 2

6.2.5 Bus System Generation

As the final step of the flowchart in Figure 26, we now describe the generation of a

Bus System. The generation is carried out after the generation of any necessary Bus

Subsystem(s) as shown in Section 6.2.4 since the generated Bus Subsystem(s) is (are)

integrated into a Bus System. Listing 4 shows the pseudo code (BusSys) for Bus

System generation. First, BusSys takes three arguments: an array of Bus Subsystem

names that specify Bus Subsystems in a Bus System, an array of the names of Bus

Bridges (BBs) that connect the Bus Subsystems, and a pointer to the Module Library.

As shown in line 2, BusSys is performed only if a Bus System has multiple Bus

Subsystems. The reason is that a Bus Subsystem becomes a Bus System if the user

does not want to use Bus Bridges (BBs) anywhere in the bus architecture of the

SoC. A Bus System is also formed by connecting generated Bus Subsystems through

Bus Bridges (BBs). The module(s) (e.g., a BB or a FIFO) to connect multiple Bus

Subsystems are extracted from the Module Library in lines 3 to 8 of Listing 4; then,

in line 11, BusSys calls UnitGen to integrate the Bus Subsystems and modules to

connect the Bus Subsystems. Example 6.10 shows the generation of a sample Bus

System by BusSys shown in Listing 4.

Example 6.10 Bus System Generation

We generate a Bus System we call SplitBA shown in Figure 18. Following Listing 4, BusSys

80

Listing 4 BusSys(): Bus System Generation.
Input: subsystem name array SS, bus bridge name array MS, wire library file *WL,

module library file *ML

Output: HDL code of a Bus System
begin

1: nsub = size(SS); /* nsub is the number of Bus Subsystems in a Bus System */
2: if (nsub > 1) then

/* lines 3 to 8: look for MS [i] (e.g., bus bridge) in Module Library ML and */
/* extract the corresponding RTL code */

3: nms = size(MS);
4: for (i=1 to nms, i=i+1) do

5: for each line of module MS [j] in ML /* to search a module in ML, we have */
/* a look up table that specifies start and end lines for a module in ML */

6: save current line to a file named with MS [j];
7: end for

8: end for

9: SSMN = φ; /* SSMN is a character type array to save Bus Subsystem names */
/* and bus bridge names; initially, SSMN is empty */

10: SSMN = {SS} ∪ {MS};
11: Call UnitGen (&SSMN, bus system, WL);
12:end if

end

first takes as input arguments the following: {“Bus Subsystem1”, “Bus Subsystem2”} for

the subsystem name array, {“Bus Bridge”} for the Bus Bridge (BB) name array, a pointer

to Wire Library and a pointer to Module Library. Please note that the input of the Bus

Subsystem name array was formed by suffixing “Bus Subsystem” with enumerated numbers

(from 1 to the number of Bus Subsystems in the user options shown in Figure 27) – e.g.,

“Bus Subsystem1” and “Bus Subsystem2.” In line 1 of Listing 4, the size of the subsystem

name array is two, and thus a Bus Bridge (namely, Bus Bridge in Figure 18) is generated

using Module Library in lines 2 to 8. Next, in line 11, BusSys call UnitGen together

with a pointer to Wire Library, a hardware unit name “SplitBA” to be generated and an

array of modules that contains Bus Subsystem1 and Bus Subsystem2. Finally, UnitGen

integrates the two Bus Subsystems (namely, Bus Subsystem1 and Bus Subsystem2) and the

81

Bus Bridge (BB) using Wire Library and generates Verilog HDL code describing SplitBA.

2

As we have explained throughout this section, BusSynth can generate modules

as well as do a syntactic translation from high-level input descriptions based on the

user options to output synthesizable Verilog HDL code for a multi-processor SoC.

6.2.6 Summary

In Sections 6.1 and 6.2, we have shown our bus synthesis methodology in detail. At

first, we described two libraries used in our bus synthesis tool BusSynth and the

sequence of Bus System generation step by step in the methodology. Then, we have

explained algorithms, UnitGen, BusSubSys and BusSys, together with detailed

examples, where the algorithms are used in each generation step in the methodology.

Our current tool supports only one BB type (namely, BB GBA) and two GBI types

(e.g., GBI GBA and GBI BFBA) in the Module Library; however, in the case of the

generation of a new Bus System (e.g., a Bus System shown in Figure 19), more BB

and GBI types to support the new Bus Systems could easily be added to the Module

Library after being defined by hand.

6.3 Interconnect Delay Aware Bus System Gen-

eration

As feature size is scaled down to the submicron level, interconnect delay in the design

of a high-speed System-on-a-Chip (SoC) becomes a major concern. This concern is

especially acute for on-chip buses. In this section we describe interconnect delay aware

bus system generation based on the methodology presented in Sections 6.1 and 6.2.

Interconnect delay information is provided from an estimated chip layout. The delay

estimates for the on-chip buses are used early in the design phase with a corresponding

impact on system correctness and performance. As an example, this section shows

82

interconnect delay aware generation of an SoC bus system called General Global Bus

Architecture (GGBA) and previously shown in Figure 11. Section 6.3.1 presents how

to estimate interconnect delay in a system. Section 6.3.2 describes generation of a

Memory Bus Interface module that efficiently takes into account the interconnect

delay in system operation. Finally, Section 6.3.3 explains our interconnect delay

aware bus system generation.

6.3.1 Interconnect Delay Estimation

The method used to estimate bus delay is to construct an estimated floorplan for

the system, extract interconnect lengths from the floorplan, and model the respective

global buses using circuit simulations tools.

6.3.1.1 General Global Bus Architecture Floorplan

The construction of an estimated floorplan for the GGBA is facilitated by obtaining

die area estimates for four PowerPC processing elements (PEs) used in this system.

This information is available from the Motorola [28] website. Another element used

in the floorplan is the memory module. The area estimate for the SRAM module

in the GGBA system is found using the UMC chip-sizer [53] available on the UMC

website. The UMC chip-sizer tool outputs die size based on the input of either

memory size or gate count. Thus, we estimate each die size of our bus components

– e.g., arbiter, CPU Bus Interface (CBI) and Memory Bus Interface (MBI) – with

gate counts (NAND2 gate equivalents) inputs after synthesizing the bus components

using Synopsys Design Compiler [49].

An estimated floorplan of the GGBA architecture is shown in Figure 30. This

floorplan was manually created with designer input, but could have been automated

by a core placement tool such as MOCSYN [10]. Figure 30 illustrates the floorplan of

a global bus connecting the four processing elements and a single memory element.

83

MPC755
PE3

SRAM

MPC755
PE1

MPC755
PE 2

MPC755
PE4

Memory Bus
Interface (MBI)

Bus Arbitrer

Bus Interconnect
Legend

CPU Bus Interface
(CBI)

MPC755
PE3

SRAMSRAM

MPC755
PE1

MPC755
PE 2

MPC755
PE4

Memory Bus
Interface (MBI)

Bus Arbitrer

Bus Interconnect
Legend

CPU Bus Interface
(CBI)

Figure 30: GGBA Estimated Layout

The GGBA floorplan was used to estimate PE-to-SRAM interconnect lengths; the

results are listed in Table 1.

6.3.1.2 Bus Interconnect Physical Models

Bus interconnect physical models are designed by Alexandru Talpasanu [39], and this

section presents a brief summary about the models in order to completely describe our

methodology for interconnect delay aware bus generation. The details are available

in a technical report [51].

Table 1: Interconnect Length Estimation for GGBA System

SRAM memory Processing
Element (PE) Length [mm] Delay [ns]

PE1 2.521 0.2848
PE2 6.143 0.5727
PE3 12.753 2.2882
PE4 19.363 3.0472

84

The bus interconnect shown in Figure 30 represents address and data buses con-

necting the four processing elements to the memory. The address and data bus widths

for this GGBA system are 32 bits and 64 bits, respectively. Repeaters are not used

in this design because it was found that they take up significant area while offering

minuscule reductions in delay and crosstalk.

HSPICE simulations are performed on this bi-directional bus to calculate intercon-

nect delay. The HSPICE wire models include resistance, capacitance and inductance

values extracted from a MOSIS run [27] for the chosen TSMC 0.25µm technology

as well as bus interconnect lengths from the GGBA system floorplan. A set of se-

ries connected RLC L-models is used to model each bus wire, with the total resis-

tance [54], inductance and capacitance [22] [40] being derived from the total length of

the bus. The interconnect length and HSPICE delay estimations between each pro-

cessing element and the memory are shown in Table 1. The method used to estimate

interconnect delay is automated by the use of shell-scripting and a C program [51].

6.3.2 Memory Bus Interface (MBI) Module Generation

One of the effects of interconnect delay insertion in an SoC is in the memory access

cycle count of each PE. In this section, we describe an interconnect delay aware

memory controller (an MBI module) for a system in its operation, and we also show

automatic generation of the MBI module.

6.3.2.1 The Operation of an MBI Module

An MBI module in a system is an interface module operating as a memory controller

which is located between a bus and a memory. The module generates PE control sig-

nals (e.g., aack bar and ta bar in PowerPC) related to memory access cycles and also

generates memory control signals (e.g., cs bar, addr, we bar and oe bar in PowerPC).

Since moving data to or from memory in a system is affected by interconnect delay,

suitable memory controller design for the system is required to account for the bus

85

delay so that the system operates without failure and with maximum performance.

A method to ensure suitable memory control is to extend every memory access cycle

according to the length of the bus interconnect delay. For example, we control two

pins of the PowerPC MPC755 for the purpose of memory cycle extension: address

acknowledge (aack bar) and transfer acknowledge (ta bar). Here, the aack bar signal

terminates an address bus cycle while the ta bar terminates a data bus cycle. To

extend each memory cycle, we delay the control signals in a memory access cycle by

inserting dummy clock cycles in the memory controller. Example 6.11 shows how to

extend memory access cycles in the case of PowerPC.

Example 6.11 Memory Access Cycle Extension

When four PEs (PowerPC MPC755s) sequentially access a shared memory SRAM in GGBA

(shown in Figure 11) working at a 300MHz bus clock, we suppose that a burst memory

access cycle (not involving interconnect delay) normally takes five bus clock cycles. In

fact, a conservative approach would be to increase all memory access cycles in GGBA to

include the global worst-case interconnect delay to guarantee correct operation in a real chip.

As shown in Table 1, interconnect delays are 0.2848ns between PE1 and SRAM, 0.5727ns

between PE2 and SRAM, 2.2882ns between PE3 and SRAM and 3.0472ns between PE4 and

SRAM, and interconnect delays taken in order that memory access signals of each PE go to

SRAM and return (i.e., roundtrip) are 0.5696ns between PE1 and SRAM, 1.1454ns between

PE2 and SRAM, 4.5764ns between PE3 and SRAM and 6.0944ns between PE4 and SRAM.

Access time of a 2MB SRAM in GGBA shown in Figure 11 is 8.0ns as estimated for 0.25µm

technology by CACTI 3.0 [18], which is a cache modeling tool. Thus, total memory access

delays are 8.5696ns between PE1 and SRAM, 9.1454ns between PE2 and SRAM, 12.5764ns

for PE3 and SRAM and 14.0944ns for PE4 and SRAM. Since the bus clock (300MHz) period

is 3.33ns, clock delays to access memory are 3 cycles for MPC755 A, 3 cycles for MPC755 B,

86

4 cycles for MPC755 C and 5 cycles for MPC755 D (actual calculated fractional values for

the number of cycles needed are 2.5735, 2.7464, 3.7767 and 4.2326).

Figure 31: Waveform of Extended Memory Access Cycle

To do the cycle extension, the memory controller in the system outputs aack bars and

ta bars to MPC755s A, B, C and D, where the signals are deferred by 3, 3, 4 and 5 clocks,

respectively. Therefore, total number of cycles for the memory accesses becomes 8, 8, 9

and 10 cycles from MPC755 A to MPC755 D, respectively. Figure 31 shows these memory

access cycles of MPC755s A to D from the left side of the waveform, respectively. Two

signals in the bottom of Figure 31 are aack bar, and ta bar, which are PE control signals in

the memory access. 2

6.3.2.2 The Generation of an MBI Module

Before generating the MBI module, with regard to the estimated interconnect delays

shown in Section 6.3.1, we calculate total delay including the time taken to move

controls and data on the bus in two directions (e.g., from a PE to a memory and vice

versa) and the time taken to access memory in a read operation. However, noticing

that transmitting the signals for controls and data on the bus to a shared memory

87

has the same direction to the memory in a write operation, we only show here the

effect of bus interconnect delay in a read operation since the read operation always

requires a roundtrip (send address then receive data) thus typically requiring as much

or more time than a write operation.

Table 2: Estimated Total Delay of Paths between Each PE and a Shared Memory

PE

Estimated bus
delay between

a PE and
SRAM [ns]

Delay in a read
operation

(bus roundtrip)
[ns]

SRAM
(2Mbyte)

access time
[ns]

Total delay in a
read operation

[ns]

PE 1 0.2848 0.5696 8.00 8.5696

PE 2 0.5727 1.1454 8.00 9.1454

PE 3 2.2882 4.5764 8.00 12.5764

PE 4 3.0472 6.0944 8.00 14.0944

Note: The access time of a shared SRAM (2Mbytes) is estimated by CACTI 3.0 [18]

Table 2 shows estimated delays for the GGBA estimated layout shown in Fig-

ure 30. The second column shows estimated interconnect delays described in Sec-

tion 6.3.1, and the third column shows bidirectional delays for a read operation. The

fourth column shows memory access time for a 2MB SRAM, where the access time

is estimated by using CACTI 3.0 [18], which is an integrated cache access time, cycle

time, area, aspect ratio and power model. Finally, the fifth column is the summation

of the previous two columns, that is, total delay for in a read operation.

Table 3 shows the number of clock delay cycles that will be inserted into a memory

cycle for the cases that a GGBA system has three different bus clocks, respectively.

The total delays shown in Table 2 are divided by each bus clock period in order to

obtain the number of clock delays shown in Table 3.

Figure 32 describes the sequence of MBI module generation, which is a module

generation procedure of our bus synthesis tool (BusSynth) that will be described

in Section 6.3.3. With the input of interconnect delay shown in Table 1, the number

of clock cycles required to be inserted for a memory access cycle is calculated in the

88

Table 3: Number of Clock Delays in Data Paths

Number of clock delays in each PE for a read opera tion [clock]
PE 100 MHz (10.00ns)

 system clock
200 MHz (5.00ns)

system clock
300 MHz (3.33ns)

system clock

PE 1 1 (0.8570) 2 (1.7139) 3 (2.57345)

PE 2 1 (0.9145) 2 (1.8291) 3 (2.74636)

PE 3 2 (1.2576) 3 (2.5153) 4 (3.77669)

PE 4 2 (1.4094) 3 (2.8189) 5 (4.23255)

Input
interconnect delays

Calculate the number
of clocks to be inserted

Extract MBI module
from Module Library

Update delay parameters
of memory access cycle
in extracted MBI module

Figure 32: Sequence of MBI Module Generation

second step. Then, based on the user input options (please, see Section 6.2.2) that

configure an SoC bus system with a shared memory, an MBI module is extracted

from a Module Library that contains the respective module as a library component

(see Section 6.1). The module is described in Verilog HDL and has pre-defined de-

lay parameters which model corresponding clock delays and memory access cycles.

Finally, the delay parameters are updated with the number of clocks calculated as

described earlier and shown in Table 3.

89

module mbi_sram(hrst_bar, abb_bar, cs_bar, sram_web,
 // Skip I/Os
 sram_oeb, sram_addr, sram_dq);

// Parameter definitions
parameter MEM_A_WIDTH = 20;
parameter MEM_D_WIDTH = 64;
parameter DLY_PE1 = 4’h3;
parameter DLY_PE2 = 4’h3;
parameter DLY_PE3 = 4’h4;
parameter DLY_PE4 = 4’h5;

// I/O definitions
input HRST_BAR;
input [0:3] ABB_BAR;
input [0:7] CS_BAR;
output sram_web;
output sram_oeb;
output [MEM_A_WIDTH-1:0] sram_addr;
inout [MEM_D_WIDTH-1:0] sram_dq;
// Skip I/O definitions

// Register definitions
reg [0:3] RnumRdDelay;
// Skip register definitions
// Assign delay values
 always @(cs_bar or hrst_bar)
 begin
 if (~hrst_bar)
 RnumRdDelay <= 4'h0;
 else if (~cs_bar)
 if(~abb_bar[0])
 RnumRdDelay <= DLY_PE1;
 else if (~abb_bar[1])
 RnumRdDelay <= DLY_PE2;
 else if (~abb_bar[2])
 RnumRdDelay <= DLY_PE3;
 else if (~abb_bar[3])
 RnumRdDelay <= DLY_PE4;
 else
 RnumRdDelay <= 4'h0;
 end

 // Skip verilog description

endmodule

Figure 33: MBI Module with Updated Delay Clock Parameters

Example 6.12 Interconnect Delay Aware MBI Module Generation

MBI SRAM in GGBA shown in Figure 11 interfaces between SRAM and a Global Bus

Architecture (GBA). As shown in Example 6.1, The MBI SRAM module has interconnect

delay parameters that correspond to delay clocks to be inserted to memory access cycles in

the GGBA. We generate the MBI SRAM module with updated parameters of delay clock,

based on the sequence of the MBI module generation shown in Figure 32. As shown in

Example 6.11, the first two steps shown in Figure 32 calculate clock delays to access memory:

90

3 cycles for MPC755 A, 3 cycles for MPC755 B, 4 cycles for MPC755 C and 5 cycles for

MPC755 D. Then, based on the user option that selects SRAM, MBI SRAM is extracted

from the Module Library in step 3, where the MBI module has clock delay parameters that

correspond to clock delay to be inserted into memory access cycles of each PE. Finally,

in step 4, the parameters are replaced with the delay clock (namely, 3, 3, 4 and 5 cycles)

calculated in step 2 in our tool. Figure 33 shows the generated the MBI SRAM module

with the updated parameters (e.g., “DLY PE1 = 4’h3” in delay parameter definitions). 2

6.3.3 Interconnect Delay Aware Bus System Generation

BAN Integration

Synthesizable
Verilog HDL code

Wire
Library

Bus System Generation

BusSynth

Bus Subsystem Generation

For each Bus Subsystem

of Bus Subsystem > 1

Y

N

Module
Library

For each BAN

Module Generation

User Option Input Interconnect Delay

Bus Access Node (BAN) Generation

Figure 34: Sequence of an Interconnect Delay Aware Bus System Generation

The flowchart in Figure 34 shows the sequence for interconnect delay aware Bus

System generation in our bus synthesis tool (BusSynth). First, BusSynth takes

user input options and estimated interconnect delay for each PE to memory for a Bus

91

System to be generated (please note that we only implemented the case for a single

memory and multiple PEs together in a single Bus Subsystem; however, we could

extended our tool to support multiple memories in the interconnect delay aware Bus

System generation). Based on these inputs, BusSynth generates the required Bus

Access Nodes (BANs) after generating required modules for the BANs. The MBI

module described in Section 6.3.2 is generated in the stage of the required module

generation based on the user options. BusSynth subsequently assembles the BANs

into required Bus Subsystems, each of which consists of one or more BANs connected

together using bus components. After that, if the Bus System the user wants has

more than one Bus Subsystem, the generated Bus Subsystems are integrated into a

resulting Bus System. Otherwise, the generated single Bus Subsystem becomes a Bus

System. Finally, BusSynth writes synthesizable Verilog HDL code for the generated

Bus System.

6.4 Computational Complexity of Bus System Gen-

eration Algorithm

Now, we consider the computational complexity of our bus synthesis algorithm, which

shows how it scales with increasing numbers of Bus Subsystems, BANs, modules,

ports and wires. The BusSynth algorithm is shown in Figure 26 and consists of

calls to UnitGen for BAN generation, BusSubSys for Bus Subsystem generation

and BusSys for Bus System generation. We define several variables in Table 4 that

are related to the computational complexity, and Table 5 shows an example of the

numbers shown in Table 4 in our case. The values in Table 5 are based on our current

two libraries (namely, Wire Library and Module Library) that support the generation

of Bus Systems described in Sections 4.1 and 5.1; the values can be changed if the

libraries are updated to support more varieties of bus components.

92

Table 4: The Numbers Related to Computational Complexity

Items Number Items Max.
Number

Bus Subsystems in a Bus
System

nsub
Ports of a module in a

BAN
npb

Bus bridges (BBs) that
connect Bus Subsystems

in a Bus System
nms HDL lines of a BAN nlb1

Wires that connect Bus
Subsystems and BBs

in a Bus System
nws

Lines of a library
component

in Module Library file
nlml1

Ports of a Bus Subsystem
in a Bus System

nps
Characters of a line of

Module Library file
nclml

Maximum number of BANs
in any Bus Subsystem

nb Lines in Wire Library file nlwl

Wires that connect BANs
in a Bus Subsystem

nwsub
Characters of a parameter

for a module
ncpml

Ports of a BAN
in a Bus Subsystem

npsub
Characters of a line of

Wire Library file
nclwl

HDL lines of a Bus
Subsystem

nlss1 Characters of a unit name ncun

Modules in a BAN nm Characters of HDL port
keyword

ncport

Wires that connect modules
in a BAN

nwb
Character of port name

in a module
ncportn

We first consider the computational complexity of the UnitGen algorithm shown

in Listings 1 and 2 for each case of BAN, Bus Subsystem and Bus System generation.

In the case of BAN generation, the upper bounds of each routine in the algorithm

are shown in Table 6, and the complexity of the algorithm will be the worst case

of cases 3 and 9 of Table 6 since both cases are performed sequentially. Therefore,

as shown case 10 in Table 6, UnitGen has O(max[(nlwl * nm * nclwl * ncun), nm *

Table 5: Example of the Numbers in Table 4

Variable Value Variable Value Variable Value Variable Value
nsub 2 nwsub 33 npb 41 ncpml 4
nms 1 npsub 46 nlb1 399 nclwl 81
nws 79 nlss1 361 nlml1 364 ncun 32
nps 29 nm 7 nclml 131 ncport 6
nb 5 nwb 88 nlwl 86 ncportn 16

93

Table 6: The Upper Bounds of UnitGen Algorithm in the Case of BAN Generation

Case Line Upper Bound Case Line Upper Bound
1 5 to 6 O(nclwl*ncun) 8 16 to 33 O(max[case 5, case 7])

2 4 to8 O(nm*nclwl*ncun) 9 11 to 34 O(nm*max[case 5,
 case 7])

3 1 to 10 O(nlwl*nm*nclwl*ncun) 10 1 to 34 O(max[case 3, case 9])
4 17 to 18 O(nclml*ncport) 11 35 to 37 O(npb)
5 16 to 21 O(nlml1*nclml*ncport) 12 38 to 40 O(nwb)
6 24 to 29 O(nwb*ncportn

2) 13 41 to 43 O(nm)
7 22 to 33 O(nwb*npb) 14 44 to 50 O(nm*npb*ncun

2)

max[(nlml1 * nclml * ncport), (nwb * npb)]]) in computational complexity in the case

of BAN generation. Similarly, UnitGen has O(max[(nlwl * nb * nclwl * ncun), nb

* max[(nlb1 * nclml * ncport), (nwsub * npsub)]]) and O(max[(nlwl * (nsub+nms) * nclwl

* ncun), (nsub+nms) * max[(nlss1 * nclml * ncport), (nws * nps)]]) in the case of Bus

Subsystem and Bus System generation, respectively.

We now consider the computational complexity of BusSynth where BusSubSys

(Listing 3) and BusSys (Listing 4) are executed sequentially as shown in the flowchart

of Figure 26. Table 7 shows the upper bounds of each routine in the BusSubSys

algorithm shown in Listing 3. Case 9 of the table shows the upper bound of the

algorithm; that is, the computational complexity is O(nsub * max[(nb * max[(nm *

nlml1 * nclml * ncpml), (max[(nlwl * nm * nclwl * ncun), nm * max[(nlml1 * nclml * ncport),

(nwb * npb)]])]), (max[(nlwl * nb * nclwl * ncun), nb * max[(nlb1 * nclml * ncport), (nwsub

* npsub)]])]).

The upper bounds of each routine in the BusSys algorithm shown in Listing 4 are

shown in Table 8. The upper bound of the BusSys algorithm is Case 4 in Table 8;

that is, the computational complexity is O(max[(nms * nlml1), (max[(nlwl * (nsub+nms)

* nclwl * ncun), (nsub+nms) * max[(nlss1 * nclml * ncport), (nws * nps)]])]).

As we discussed before, Case 9 of Table 7 and Case 4 of Table 8 show the up-

per bounds of BusSubSys and BusSys algorithms, respectively. Therefore, since

those algorithms are executed sequentially, the overall complexity of BusSynth is

94

Table 7: The Upper Bounds of BusSubSys Algorithm

Case Line Upper Bound Case Line Upper Bound

1 9 O(nclml*ncpml) 6 3 to 16 O(nb*max[case3,
 case 4])

2 7 to 13 O(nlml1*nclml*ncpml) 7 17
O(max[(nlwl*nb*nclwl*ncun),
 nb*max[(nlb1*nclml*
 ncport), (nwsub*npsub)]])

3 5 to14 O(nm* nlml1*nclml*ncpml) 8 3 to 17 O(max[case 6, case 7])

4 15

O(max[(nlwl*nm*nclwl*
 ncun), nm*max[(nlml1*
 nclml* ncport), (nwb*npb)
]])

9 1 to 18 O(nsub*max[case 6,
 case 7])

5 5 to 15 O(max[case 3, case 4])

Table 8: The Upper Bounds of BusSys Algorithm

Case Line Upper Bound Case Line Upper Bound

1 5 to 7 O(nlml1) 3 11

O(max[(nlwl*(nsub+nms)*
 nclwl*ncun), (nsub+nms)*
 max[(nlss1*nclml*ncport),
 (nws*nps)]])

2 4 to 8 O(nms*nlml1) 4 1 to 12 O(max[case 2, case 3])

O(max[Case 9 in Table 7, Case 4 in Table 8]). That is to say, the computational

complexity of the BusSynth algorithm is O(max[(nsub * max[(nb * max[(nm * nlml1

* nclml * ncpml), (max[(nlwl * nm * nclwl * ncun), nm * max[(nlml1 * nclml * ncport),

(nwb * npb)]])]), (max[(nlwl * nb * nclwl * ncun), nb * max[(nlb1 * nclml * ncport), (nwsub

* npsub)]])]), (max[(nms * nlml1), (max[(nlwl * (nsub+nms) * nclwl * ncun), (nsub+nms)

* max[(nlss1 * nclml * ncport), (nws * nps)]])])]). Here, the computational complexity

seems to be quite complex and high. However, please note that the numbers spec-

ified in the variables above are highly constrained in realistic problems as shown in

Table 5. For that reason, as shown in Table 14 of Section 7.3, BusSynth takes only

a second or less to generate our examples in our experimental environment shown in

Section 7.2.

95

Example 6.13 Upper Bound of BusSynth algorithm

We calculate computational complexity of BusSynth algorithm described Listings 1, 2,

3 and 4 in Sections 6.2.3, 6.2.4 and 6.2.5. Based on the real values of our case shown in

Table 5, an upper computational bound of BusSynth algorithm, which is the worst-case

complexity, is described as follows: max[(2 * max[(5 * max[(7 * 364 * 131 * 4), (max[(86 *

7 * 81 * 32), 7 * max[(364 * 131 * 6), (88 * 41)]])]), (max[(86 * 5 * 81 * 32), 5 * max[(399

* 131 * 6), (33 * 46)]])]), (max[(1 * 364), (max[(86 * (2 + 1) * 81 * 32), (2 + 1) * max[(361

* 131 * 6), (79 * 29)]])])]. Then, we can rewrite the upper bound: max[(2 * max[(5 *

max[1335152, (max[1560384, 7 * max[286104, 3608]])]), (max[1114560, 5 * max[313614,

1518]])]), (max[364, (max[668736, 3 * max[283746, 2291]])])]. After the calculation, the

upper bound of the running time in BusSynth in our case is 20,027,280 [operations] (please

note that we assume straight-line code in which each line uses an “operation” without any

method call). 2

The main point of note is that while our algorithms have nontrivial polynomial

time complexities, our algorithms are applied to situations with integers in the ten to

one thousand range (as opposed to billions or more). For example, in implementing

our practical case described in Section 7, we found that the number of “legal” wires is

686 for a Wire Library with 35 modules, 445 for a Wire Library with 23 modules and

369 for a Wire Library with 17 modules. While all possible wires between all modules,

including all “legal” and “illegal” combinations, would clearly scale exponentially as

the number of modules increases, as we can see the actual numbers of “legal” wires

and modules scale somewhat linearly with each other. Thus, we posit that in most

practical cases, the number of required “legal” wires scales in such a way that the

96

described algorithms of this section complete in seconds or less, as shown in all cases

in Table 14 of Section 7.3.

6.5 Summary

In this chapter, we have explained our methodology to generate Bus Systems in

detail. For the explanation of the methodology, we have described two libraries used

in BusSynth and have shown our algorithm for BusSynth step by step. Then,

we have shown our method of interconnect delay aware bus generation and have

described the computational complexity of the algorithm. In the following chapter,

we will evaluate the generated Bus Systems with three user applications and will show

the evaluation results.

97

CHAPTER VII

EXPERIMENTS AND RESULTS

7.1 Application Examples

Five kinds of bus architectures for a multi-processor SoC were generated using BusSynth

and then simulated to evaluate performance with three applications: an Orthogonal

Frequency Division Multiplexing (OFDM) transmitter [21], which is used in wireless

communications; an MPEG2 decoder [29] [37]; and a database example [31].

7.1.1 OFDM Transmitter

OFDM employs several parallel channels with low bit rates whose main lobes of car-

riers are orthogonal and side lobes of carriers are overlapping one another. This is an

efficient way of carrying several subchannels in a fixed bandwidth. The subcarriers are

not separated by bandwidth but rather overlap their side lobes with each other. The

frequency spacing between the subcarriers is arranged such that they become orthogo-

nal, and a Fast Fourier Transform (FFT) is used for digital modulation/demodulation

of each subchannel. Figure 35 shows a simplified block diagram of an OFDM trans-

mitter. First, the subchannels are modulated by an Inverse FFT (IFFT), and then

a cyclic extension is added to avoid inter symbol interference caused by the physical

channel. Here, the cyclic extension makes a packet of data be symmetric by attaching

a block of head data to the data tail as shown in Figure 36.

Figure 36 shows the OFDM data format being transmitted. The OFDM data

stream starts with a train pulse block, which allows a receiver to perform channel

estimation and data synchronization, and guard and data packets follow the train

pulse block. One packet of OFDM data we simulated here contains a 2048-complex

98

I
F
F
T

Cyclic
Extension

Physical
Channel

X0
X1
X2
.
.
.

XN-3
XN-2
XN-1

Figure 35: The Block Diagram of an OFDM Transmitter

Train Pulse Guard + Data …. Guard + Data

1536512 512

3*(Guard+Data)
e.g., 3*(512+2048)=7680 samples

of packet to be transmitted
e.g., 8 packets

1 packet data
e.g., 512+2048=2560 samples

Figure 36: OFDM Data Format

valued sample and a 512-complex valued guard signal, where the size of guard data

is usually a quarter of the data block. Figure 37 shows the flow chart of the OFDM

transmitter, which, in our example, is written in C code having 922 lines. The

first three blocks (Initialization, Train Pulse Generation, and Symbol Generation) in

Figure 37 are excluded in calculating throughput since these routines are executed

only once at the startup. The End of Packet (EOP) loop controls data generation

or data reading from an external device, which generates data to be transmitted.

This EOP loop is repeated as many times as the size of the data packet; meanwhile,

the outer loop is also repeated as many times as there are new data packets to be

transmitted. The generated data is fed into the modulation block, which executes

bit reversal, IFFT, normalization of IFFT output and insertion of the guard signal,

sequentially.

99

Start

Initialization
; channel parameter
; clean data buffer

Train Pulse
Generation

“Transmit”

Symbol
Generation

EOT ?

EOP ?

; EOT= End of Transmission
; EOP= End of Packet

Data
Generation

No

Yes

Modulation
- Bit Reversal
- IFFT
- Normalizing
- Insert Guard

No
End

Yes

Figure 37: The Flowchart of the OFDM Transmitter

In the OFDM transmitter, the function assignment to be processed in each BAN is

decided after careful analysis of each function’s computational load because a balanced

load among BANs results in the fastest possible execution time.

Table 9 shows a list of functions in the OFDM transmitter and outlines the func-

tion assignment in each BAN. The functions assigned to BAN A may seem to require

a lot of computation, but in fact BAN A is not the bottleneck of system performance

because the first three functions listed for BAN A (italicized in Table 9) are executed

only once. Only data generation, symbol mapping and bit reversal functions are iter-

ated in BAN A. The function in BAN B, IFFT, unfortunately is difficult to split up

due to the structure of the IFFT.

100

Table 9: The Function Assignment in Each BAN

Function Group &
Assigned BAN Functions in OFDM Transmitter

E (BAN A)

Initialization (channel parameters, etc)
Train Pulse Generation
Symbol Generation
Data Generation and Symbol Mapping
Bit Reverse for Inverse FFT

F (BAN B) Inverse FFT
G (BAN C) Normalizing Inverse FFT

H (BAN D)

Normalization
Insertion of Guard Signal
Data Output

Note: Italicized functions are executed only once when starting OFDM system.

Figure 38 describes the computation performed by each PE according to pro-

gramming styles: Pipelined Parallel Algorithm (PPA) and Functional Parallel Al-

gorithm (FPA). Here E, F, G and H in Figure 38 indicate function groups shown

in Table 9. We programmed the OFDM transmitter algorithm in both PPA style

and FPA style to see how the software programming styles affect performance. The

FPA style proved to be faster in most cases because of a more balanced load on each

BAN. One packet of OFDM data here contains 2048 complex valued samples and 512

complex valued guard signals.

EA

B

C

D

Time

BAN

…..F

E

F

E

G

F

E

G

H

G

H

F

G

H H

A

B

C

D

Time

BAN

…..
EFGH

(a) Pipelined Parallel Algorithm (b) Functional Parallel Algorithm

EFGH

EFGH

EFGH

EFGH

EFGH

EFGH

EFGH

Figure 38: Software Programming Style in OFDM

101

7.1.2 MPEG2 Decoder

MPEG2 video is an ISO/IEC standard that specifies the syntax and the semantics

of encoded video bit streams [37]. The data streams include parameters such as bit

rates, picture sizes and resolutions. We modified an MPEG2 decoder program from

the MPEG Software Simulation Group [29], resulting in C code having 8788 lines, in

order to evaluate the generated Bus Systems.

Figure 39(a) shows input video frames, and Figure 39(b) shows the functional par-

allel processing of the frames on each BAN. In the video stream data it is assumed

that each Intra frame (I) is followed by Predictive frame (P) as shown in Figure 39(a),

and a Group Of Pictures (GOP) is composed of two frames (I and P). In our simu-

lation, each frame size is specified with a very small picture, 16 pixels by 16 pixels,

because of the limitation of simulation speed.

I
P

I
P

……

P
I

I

SH GOP1

16X16

SH GOP2

A

B

C

D

Time

BAN

…..GOP2

GOP1

GOP3

GOP4

GOP6

GOP5

GOP7

GOP8

SH GOP3 …..

(a) Video Stream (b) Functional Parallel Operation

SH: Sequence Header
I: Intra frame, P: Predictive frame

Figure 39: Input Video Stream and Functional Parallel Operation

For the MPEG2 decoder, we exclusively used the FPA style because it yielded

significantly faster results. As shown in Figure 39(b), each GOP is assigned to a

particular BAN for functional parallel operation. All video frames fed to BAN A

from an input source are distributed to each BAN, and each decoded frame is handed

over to BAN D at the end. Here BAN A and BAN D (all of our SoC examples have

102

four BANs) perform not only MPEG2 decoding but also raw data input and decoded

data output, respectively.

7.1.3 Database Example

As for the last application example to show the performance achievable with a custom

Bus System, we have developed a database example having many tasks. This example

is written in C code having 1700 lines. As shown in Figure 40, a database system

may use several transactions to access objects in the other tasks. For example, in

Figure 40, task1 requests object O2 in task2 and accesses O2 after obtaining a lock.

The lock is used to synchronize mutually exclusive accesses of the database objects

in a multi-processor system.

O1

Task1

O2

Task2

O3

Task3

O4

Task4

Req. Object O2

Access Object O2

Req. Object O4

Access Object O4

Req.
Object O3

Access
Object O3

Req.
Object O4

Access
Object O4

Figure 40: Transactions in Database Example

Client1Server

Shared Memory

Client1
Client1

Client1

Shared Data

Figure 41: Data Transfer from a Server to Clients

103

As for the Real-Time Operating System (RTOS), we use Atalanta RTOS Ver-

sion 0.4 developed at Georgia Tech [9]. We have installed the RTOS on each BAN,

and tasks assigned to each BAN are executed on top of the RTOS. We simulated

this database example in a variety of Bus Systems each with four PEs. A total of

forty-one tasks that form a subset of the database example run: eleven on the PE in

BAN A and ten on each PE in each of other BANs in the examples of Bus Systems

shown in Sections 4.1 and 5.1. As shown in Figure 41, for the data transfer from

a server to clients, a task in a server writes data requested from clients to a shared

memory, and then tasks in the clients read the data from the shared memory and

write the data to their local memories. Here, each task writes (reads) one-hundred

32-bit words to (from) the shared memory. With this database example, each Bus

System has intensive bus traffic on its bus due to shared memory requests from each

BAN, and thus we are able to observe a significant performance contrast among the

Bus Systems.

7.2 Experimental Setup

As shown in Figure 42, BusSynth takes the user input as described in Section 6.2 and

interconnect delay described in Section 6.3, and outputs synthesizable Verilog HDL

code for the specified custom Bus System. For the Bus System simulation, we use

Seamless CVE, a hardware/software co-verification tool, and X-Ray debugger from

Mentor Graphics [24] together with VCS, a Verilog HDL simulator from Synopsys [50].

In order to synthesize the Verilog HDL code to logic gates, we use the Synopsys

Design Compiler. For this environment, we use a Sun workstation Ultra 60 having

two 450MHz UltraSPARC II processors and 2GB of memory.

In this experiment, we set up four MPC755s in Seamless CVE; each BAN has

one MPC755 with up to 300MHz external clock, sysclk. The maximum frequency of

sysclk dictates the maximum bus speed (note that the internal MPC755 clock speed

104

- Modules
- Wires

Libraries

Synthesizable
Verilog HDL

Code

User options

Bus Synthesis

VCS Seamless
CVE

X-RAY

GCC User
C-code

BUS SYNTHESIS TOOL (BusSyn) SIMULATION ENVIRONMENT

SYNTHESIS ENVIRONMENT

Design
Compiler

Interconnect
Delay Estimation

Floorplan
Design

Figure 42: Experimental Environment

can be much faster, e.g., 500MHz) [28]. However, our results are equally applicable to

much faster bus clock speeds. Note that the MPC755 Instruction Set Simulator (ISS)

provided by Seamless CVE is instruction accurate, not cycle-accurate; nonetheless,

external (non-cache) memory accesses are cycle accurate. In short, we have a bus

functional simulation setup with cycle accuracy for all bus transactions.

7.3 Comparison of Results

Generated Bus Systems are evaluated by their performance in the context of the three

applications described in Section 7.1 and in the experimental environment shown

in Section 7.2. First, we compare performance among the generated Bus Systems.

Next, we present the impact of interconnect delay prediction in the design phase by

comparing the performance of Bus Systems generated without versus with each PE to

memory delay customized to the exact interconnect delay of the particular distance.

Finally, we show generation time of each Bus System from BusSynth and the gate

counts of the generated Bus Systems.

105

7.3.1 Performance Comparison among Bus Systems

With the generated Bus Systems (shown in Figures 6, 7, 8, 17 and 18) and hand-

designed examples of CCBA and GGBA (shown in Figures 10 and 11), we evaluate the

performance and verify the operation of each Bus System with an OFDM transmitter,

an MPEG2 decoder and a database example. Please note that many partitions of

tasks to PEs were tried; we report only the best results obtained (i.e., the best possible

partition found by hand for the given bus architecture). The Bus Systems except

GBAVIII and HybridBA have 32MB total of non-L1 cache memory, respectively, and

GBAVIII and HybridBA have 40MB total of non-L1 cache memory; however, since

all the application code including instruction and data fits in 32MB memory size, the

memory size increase to 40MB has no or tiny effect in our application performance.

Each PE (MPC755) embedded in each Bus System has 32KB of L1 I-cache and 32KB

of L1 D-cache.

Table 10: Evaluation Results in OFDM Transmitter

Case Bus
System Throughput [Mbps] Software

Programming Style
1 BFBA 2.6504 PPA
2 GBAVI 2.1087 PPA
3 4.5599 FPA
4

GBAVIII
2.2567 PPA

5 4.5599 FPA
6

HybridBA
2.6504 PPA

7 SplitBA 5.1132 FPA
8 4.3913 FPA
9

GGBA
2.1880 PPA

NNote:1. PPA: Pipelined Parallel Algorithm, FPA: Functional Parallel Algorithm
 2. Data: 2048 complex samples and 512 guard complex samples per packet
 3. Each Bus System having four PowerPCs supports instruction and data cache
operations

Table 10 shows the results of our evaluation using an OFDM transmitter that in

our example has 922 lines of C code for the algorithm implementation (7,909 lines

of assembly code for the algorithm implementation) and 696 lines of assembly code

106

for PE runtime initialization and APIs. The operation of BFBA and GBAVI is

well matched to the PPA style because BFBA and GBAVI only have data transfer

mechanisms between BANs instead of having a memory shared among all BANs.

SplitBA is composed of two Bus Subsystems connected with a Bus Bridge (BB),

and the two Bus Subsystems operate independently. Therefore, in SplitBA, it is

more reasonable to use the FPA style. SplitBA (Case 7 in Table 10) using the FPA

style shows the best performance among the Bus Systems in our example: OFDM

transmission reaches a rate of 5.1132Mbps, 16.44% faster than GGBA, which we

take as representative of a typical commercial bus. We can see in Table 10 that the

throughput of each Bus System is significantly affected by the bus types we described

and programming style (PPA vs. FPA):

(a) In software programming style, FPA outperforms PPA in the OFDM transmit-

ter application (e.g., Case 3 vs. 4, Case 5 vs. 6 and Case 8 vs. 9 in Table 10).

The reason is that, for OFDM, FPA balances the computational load better

than PPA does.

(b) Bus Systems using a shared memory for program and local data (e.g., GGBA)

require more memory arbitration time than do Bus Systems having separate

local memories for program and local data for each BAN (e.g., GBAVIII). This

arbitration time difference explains why GBAVIII outperforms GGBA.

(c) SplitBA relieves bus traffic congestion due to shared memory requests from

each BAN. The reason is the Bus System has split its bus architecture into two

Bus Subsystems, and thus each arbiter in each Bus Subsystem deals with only

half the number of total memory requests of the application. With this reason,

SplitBA outperforms GGBA in our example (Case 7 vs. 8).

(d) A fast data transfer method between BANs such as Bi-FIFOs used in BFBA

and Bi-FIFOs used in HybridBA contributes to the performance improvement

107

observed for the PPA style (e.g., Case 1 = Case 6 > Case 4 > Case 9 > Case 2,

in throughput).

Table 11: Evaluation Results in MPEG2 Decoder

Case Bus
System

Application
Throughput [Mbps]

Software
Programming Style

10 BFBA 0.8594 FPA
11 GBAVI 0.8271 FPA
12 GBAVIII 1.1444 FPA
13 HybridBA 1.1650 FPA
14 CCBA 1.0083 FPA

Note: Picture size: 16 x 16

Our MPEG2 decoder application has 8,788 lines of C code for its algorithm (26,430

lines of assembly code for the MPEG2 decoder algorithm) and 697 lines of assembly

code for initialization routines and APIs. Due to the requirement of significant global

memory interaction due to a large number of global variables in our MPEG decoder

program, we could only use FPA effectively; thus, Table 11 reports results only for

the FPA software programming style. In the results shown in Table 11, HybridBA

(Case 13) shows the best performance because HybridBA exploits both BFBA’s and

GBAVIII’s bus features such as (i) fast data transactions between adjacent BANs

using Bi-FIFOs and (ii) global data accesses to global memory from all BANs. The

results also show that HybridBA and GBAVIII outperform CCBA due to faster arbi-

tration time in data read operations. In Table 11, BFBA and GBAVI perform poorly

because the data to be processed in each BAN has to be passed from BAN A to

each BAN sequentially. Note that HybridBA, generated by BusSynth, outperforms

CCBA by 15.54% in this example.

In the database application example, for multi-threaded operation, we employ the

Atalanta RTOS [9], which requires a shared memory. We can support the use of

the RTOS in GBAVI and BFBA; however, in this dissertation, we do not simulate

these Bus Systems with this application because the current versions of these Bus

108

Table 12: Evaluation Results in a Database Example

Case Bus
System Execution Time [ns] Software

Programming Style
15 GGBA 2,241,100 FPA
16 SplitBA 1,317,804 FPA

Note: 1. Each Bus System is composed of 1 server task and 40 client tasks
 2. Each task accesses one-hundred data to or from a shared memory

Systems do not have such a shared memory. Furthermore, the database application

is an example using only a shared memory without using local memories for data

transactions between the server and the clients. Therefore, when we assume that,

in this example, we do not use Bi-FIFO block(s) nor local memories, Bus Systems

having a global memory and single global bus (e.g., GBAVIII, HybridBA and GGBA)

have almost exactly (within 0.1%) the same performance in this example due to the

same bus components. For that reason, we use one of these Bus Systems, GGBA (see

Figure 11), as a baseline of performance comparison and compare the performance

only with SplitBA (see Figure 18) in this application.

This example has total of 1700 lines of C code for the database algorithm (14,597

lines of assembly code for the database algorithm) and runs on top of the Atalanta

RTOS. A total of forty-one tasks are executed for clients and a server; BAN A in

Figure 18 has one server task and ten client tasks, and the other BANs in the figure

each have ten client tasks, where each task accesses one-hundred words (32 bits per

data word) to or from a shared memory in each Bus System. In the experiment of

the database example shown in Table 12, SplitBA (Case 16 in Table 12) outperforms

GGBA (Case 15 in Table 12) with a 41% reduction in application execution time. The

performance of SplitBA is improved over GGBA because of following two reasons. The

first one is that SplitBA has a better bus topology (e.g., split global bus connected

by a BB) than GGBA, and thus bus traffic due to the shared memory requests is

lessened. The second one is that SplitBA has a Global Bus Architecture (GBA) in

109

each Bus Subsystem so that all clients can easily access object data from the server.

Please note that even though two of the clients (BANs D and E shown in Figure 18)

in SplitBA are a BB away from the server (BAN A shown in Figure 18), apparently

the two advantages listed above more than compensate.

7.3.2 Performance Comparison in Interconnect Delay Aware Bus Sys-
tems

To demonstrate possible impact of interconnect delay prediction in the design phase,

we show three different configurations of a GGBA system: GGBA I, GGBA II and

GGBA III. These three configurations have the same bus architecture, which is shown

in Figure 11; nevertheless, the configurations vary in that each have different memory

controllers. The first GGBA system, GGBA I, has a memory controller working

with no regard to interconnect delay on the bus between each PE and the shared

memory (thus, GGBA I may fail if implemented in a real SoC; nonetheless, GGBA I

represents a typical initial simulation with communication across wires occurring

instantaneously). The second GGBA system, GGBA II, is generated by BusSynth

based on the methodology introduced in Section 6.3 and has a memory controller

that works with different estimated interconnect delays on the shared bus. Here, the

delays are provided from an estimated chip layout as introduced in Section 6.3.1, and

the delay values are shown in Table 2. Finally, the third system, GGBA III, has a

memory controller that operates with a maximum estimated delay on all connections

between the PEs and the shared memory. In light of memory access, the third system

is a non-optimized system that can be designed if we only use worst-case interconnect

delay information in the design phase.

Table 13 shows execution times for an OFDM packet in GGBAs I, II and III,

and their percentage comparison. Here, an OFDM packet consists of 128 real and

imaginary data samples and 32 guard data samples. Note that in Table 13 simulations

are performed with the bus clocked at 300MHz, 200MHz and 100MHz. For GGBA II

110

and III, both of which account for interconnect delay, the memory controller waits for

an appropriate number of bus cycles based on the required delay and the bus cycle

time; e.g., a 10ns delay requires only one bus cycle at 100MHz but requires three bus

cycles at 300MHz.

7.3.2.1 Comparison I

In Comparison I of Table 13, GGBA I is used as a baseline for performance degrada-

tion according to altering the memory controller (MBI) to account for interconnect

delay. In the case of (a) 300MHz bus clock in Table 13, the execution time shown in

Comparison I increases up to 161.0% in GGBA III against the result of GGBA I. This

increase is due to the fact that GGBA III uses overall worst-case interconnect delay.

Here, the performance degradation results from inserting delay clocks into memory

access cycles so that the system can operate without failure. In other words, while

GGBA I would fail in a real SoC, GGBA III would work fine but with all bus delays

set to accomodate the worst-case interconnect delay.

7.3.2.2 Comparison II

In Comparison II of Table 13, GGBA III is chosen as the baseline for performance

improvement against the execution time of GGBA II. The impact of detailed intercon-

nection delay estimation in the design phase results in a 35.3% reduction in execution

time when we compare GGBA II, an interconnect delay aware GGBA system, with

GGBA III, a non-optimized system with regard to memory access cycles. As shown

in the cases of (a) 300MHz, (b) 200MHz and (c) 100MHz bus clocks in Table 13,

different bus clocks result in different memory access patterns due to interconnect

delays. Therefore, as the bus clock increases, the effect of detailed interconnect delay

in a system is bigger as shown in Comparison II (and Comparison I) of Table 13. In

short, comparing the two Bus Systems (GGBA II and GGBA III) which would work

111

Table 13: Performance Comparison

GGBA System
Execution

Time
[ns/packet]

Comparison I
[increase in

execution time]

Comparison II
[decrease in

execution time]

1. GGBA I
 (no interconnect delay, unrealistic)

1,218,455 0.0% -

2. GGBA II
 (3, 3, 4 and 5 clock delays in each
 data path from PE 1 to PE 4)

2,057,487 68.9% 35.3%

3. GGBA III
 (5 clock delays in all data paths)

3,180,220 161.0% 0.0%

GGBA System
Execution

Time
[ns/packet]

Comparison I
[increase in

execution time]

Comparison II
[decrease in

execution time]

1. GGBA I
 (no interconnect delay, unrealistic)

1,825,751 0.0% -

2. GGBA II
 (2, 2, 3 and 3 clock delays in each

data path from PE 1 to PE 4)
2,323,670 27.3% 27.4%

3. GGBA III
 (3 clock delays in all data paths)

3,198,620 75.2% 0.0%

GGBA System
Execution

Time
[ns/packet]

Comparison I
[increase in

execution time]

Comparison II
[decrease in

execution time]

1. GGBA I
 (no interconnect delay, unrealistic)

3,644,003 0.0% -

2. GGBA II
 (1, 1, 2 and 2 clock delays in each

data path from PE 3 to PE 4)
3,862,686 6.0% 10.1%

3. GGBA III
 (2 clock delays in all data paths)

4,297,056 17.9% 0.0%

(a) 300 MHz Bus Clock

(b) 200 MHz Bus Clock

(c) 100 MHz Bus Clock

112

Table 14: Generation Time and Gate Count in the Generated Bus Systems

1
processor

8
processors

16
processors

24
processors Bus

System Time
[ms]

Gate
count

Time
[ms]

Gate
count

Time
[ms]

Gate
count

Time
[ms]

Gate
count

BFBA 509 800 534 6,401 546 12,793 578 19,188
GBAVI 417 872 432 6,899 457 13,751 506 21,256
GBAVIII 513 2,070 542 14,746 563 30,798 590 48,395

HybridBA 763 2,973 859 21,869 928 44,847 983 69,697
SplitBA N/A N/A 413 4,297 440 8,605 491 16,110

Note: Time: Bus generation time, N/A: Not Applicable
 Gate count: NAND2 gate count in TSMC 0.25µm standard cell library

if implemented in reality, our bus controllers optimized for interconnect delay reduce

application execution time by up to 35.3%.

7.3.3 Generation Time and Gate Counts of Each Bus System

Table 14 shows the generation time for the Bus Systems generated using BusSynth.

Table 14 also shows the gate counts (in NAND2 gate equivalents) of the Bus System

logic after synthesizing the logic using the LEDA TSMC 0.25 µm standard cell library

with Synopsys Design Compiler. BusSynth can generate a Bus System having any

number of PEs, but the table shows Bus Systems having a maximum of 24 PEs. In

the generation time column, each Bus System shown in Table 14 takes less than one

second to generate using BusSynth. Our experience is that porting GGBA or CCBA

to our application examples, on the other hand, took about one week. The week

was spent understanding signal functions of the PEs and the modeling of required

modules and their interfaces. Note that BusSynth achieves performance superior

to the hand design of GGBA and CCBA; furthermore, the user specified custom

bus architecture is designed in a matter of seconds instead of weeks. This means

we have a major benefit that is fast design space exploration of bus architectures

across performance influencing factors such as bus types, PE types and software

programming style resulting in a system having higher performance. This goal is

113

accomplished through BusSynth, which allows the user to easily design a custom

Bus System in a matter of seconds.

7.4 Summary

In this chapter, we have explained three user applications to evaluate the generated

Bus Systems, and then we have described our experimental setup for the evaluation.

After that, we have shown the evaluation results, the generation time of each Bus

System from BusSynth and gate counts of each Bus System.

114

CHAPTER VIII

CONCLUSION

In this dissertation, we have described a methodology to generate custom Bus Systems

for a multi-processor SoC design. We designed a bus synthesis tool BusSynth by

exploiting this methodology. Using BusSynth, we have generated five different

Bus Systems as examples: BFBA, GBAVI, GBAVIII, HybridBA and SplitBA. The

BusSynth algorithms have been described in significant detail and have been shown

to finish in reasonable time (under a second) in the practical cases shown. In Section 7,

the Bus Systems are evaluated according to their performance and are verified in

operation with three applications: an OFDM transmitter, an MPEG2 decoder and

a database example. We showed that BusSynth achieves performance superior to

the hand design of a simple GGBA and CCBA, but in a matter of seconds instead

of weeks for the hand design. In particular, we showed up to 41% reduction in

application execution time with a customized bus architecture.

In the design of a high-speed SoC, interconnect delay becomes a major concern.

we have described a methodology to generate a custom bus architecture based on

accurate estimations of interconnect delay. The interconnect delay is provided from

an accurate delay modeling established from an estimated chip floorplan. Our bus

synthesis tool (BusSynth) generates a custom bus system (e.g., GGBA) that adapts

to detailed interconnect delay predictions, and the generated systems are evaluated

with a user application, an OFDM transmitter, in order to illustrate the impact of

interconnect delay during the design phase. The results of our case study show that

there is performance improvement due to suitable memory access control that adapts

115

predicted interconnect delay. In particular, we showed up to 35.3% reduction in

application execution time for a customized bus architecture.

Finally, our methodology gives us a great benefit as follows: fast design space ex-

ploration of bus architectures across performance influencing factors (e.g., bus types,

processing element types and software programming style), performance improvement

due to the bus system generation by the user options that are suitable for the user

application, and shortening SoC design time by quick bus architecture generation.

116

REFERENCES

[1] ARM, “AMBA Specification,” Available HTTP: http://www.arm.com/ prod-
ucts/solutions/AMBAHomePage.html, 2004.

[2] Artisan, “Memory Generator,” Available HTTP: http://www.artisan.com/
products/memory.html, 2004.

[3] Bergamaschi, R. A. and Lee, W., “Designing Systems-on-Chip Using Cores,”
Proceedings of the 38th Design Automation Conference (DAC’00), pp. 420–425,
June 2000.

[4] Cesário, W., Baghdadi, A., Gauthier, L., Lyonnard, D., Nicolescu,

G., Paviot, Y., Yoo, S., Jerraya, A., and Diaz-Nava, M., “Component-
Based Design Approach for Multicore SoCs,” Proceedings of the 40th Design
Automation Conference (DAC’02), pp. 789–794, June 2002.

[5] Cesário, W., Lyonnard, D., Nicolescu, G., Paviot, Y., Yoo, S., Jer-

raya, A., Gauthier, L., and Diaz-Nava, D., “Multiprocessor SoC Platforms:
A Component-Based Design Approach,” IEEE Design & Test of Computers,
Vol. 19, pp. 62–63, November 2002.

[6] Chou, P., Ortega, R., and Borriello, G., “IPCHINOOK: An Integrated
IP-based Design Framework for Distributed Embedded Systems,” Proceedings of
the 37th Design Automation Conference (DAC’99), June 1999.

[7] CoWare, “CoWare N2C: Design Automation Technology for System-Level De-
sign,” Available HTTP: http://www.coware.com, 2004.

[8] Cyr, G., Bois, G., and Aboulhamid, M., “Syntehesis of Communication
Interfaces for SoC using VSIA Recommendations,” Proceedings of Design, Au-
tomation and Test in Europe (DATE’01), pp. 155–159, March 2001.

[9] Di-Shi, S., Blough, D., and Mooney, V., “Atalanta: A New Multipro-
cessor RTOS Kernel for System-on-a-Chip Applications,” [Online]. Available:
http://www.cc.gatech.edu/tech reports, Georgia Institute of Technology, At-
lanta, GA, Technical Report GIT-CC-02-19, 2002.

[10] Dick, R. and Jha, N., “MOCSYN: Multiobjective Core-Based Single-Chip
System Synthesis,” Proceedings of Design, Automation and Test in Europe
(DATE’99), pp. 263–270, March 1999.

[11] Dittenhofer, B., “Connecting Multi-source IP to a Standard On-Chip Archi-
tecture,” Available HTTP: http://www.palmchip.com/pdf/CP-9248P.pdf, 2000.

117

[12] Gasteier, M. and Glesner, M., “Bus-Based Communication Synthesis on
System-Level,” Proceedings of 9th International Symposium on System Synthesis,
pp. 65–70, November 1996.

[13] General Public License (GPL) in OpenCores. Available HTTP: http://www.
opencores.org/faq.cgi/section/1/1.1#1.1.

[14] Gharsalli, F., Lyonnard, D., Meftali, S., Rousseau, F., and Jerraya,

A., “Unifying Memory and Processor Wrapper Architecture in Multiprocessor
SoC Design,” Proceedings of the International Symposium on System Synthesis
(ISSS’02), pp. 26–31, October 2002.

[15] Gharsalli, F., Meftali, S., Rousseau, F., and Jerraya, A., “Automatic
Generation of Embedded Memory Wrapper for Multiprocessor SoC,” Proceedings
of the 40th Design Automation Conference (DAC’02), pp. 596–601, June 2002.

[16] GNU General Public License (GPL). Available HTTP: http://www.gnu.org/
copyleft/gpl.html.

[17] Hennessy, J. L. and Patterson, D. A., Computer Organization and Design,
the Hardware and Software Interface. San Francisco, CA: Morgan Kaufmann
Publishers, Inc., 1994.

[18] Hewlett-Packard, “CACTI,” Available HTTP: http://research.compaq.
com/wrl/people/jouppi/CACTI.html, 2004.

[19] Hsieh, C. and Pedram, M., “Architectural Energy Optimization by Bus Split-
ting,” IEEE Transaction on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 21, pp. 408–414, April 2002.

[20] IBM, “The CoreConnect Bus Architecture,” Available HTTP:
http://www.chips. ibm.com/products/coreconnect, 2004.

[21] Kim, D. and Stuber, G., “Performance of Multiresolution OFDM on
Frequency-selective Fading Channels,” IEEE Transaction on Vehicular Tech-
nology, Vol. 48, pp. 1740–1746, September 1999.

[22] Lee, M., “A Fringing and Coupling interconnect Line Capacitance Model for
VLSI On-Chip Wiring Delay and Crosstalk,” IEEE International Symposium On
Circuits and Systems (ISCAS’96), Vol. 4, pp. 233–236, May 1996.

[23] Lyonnard, D., Yoo, S., Baghdadi, A., and Jerraya, A., “Automatic
Generation of Application-Specific Architectures for Heterogeneous Multipro-
cessor System-on-Chip,” Proceedings of the 39th Design Automation Conference
(DAC’01), pp. 518–523, June 2001.

[24] Mento Graphics, Seamless Hardware/Software Co-Verification. Available HTTP:
http://www.mentor.com/seamless/datasheets/seamless ds.pdf, 2002.

118

[25] Mentor Graphics Platform Express. Available HTTP: http://www.mentor.
com/platform ex, 2004.

[26] Moore, G., “Cramming More Components Onto Integrated Circuits,” Elec-
tronics, Vol. 38, pp. 114–117, April 1965.

[27] The MOSIS Service, TSMC 0.25 Micron Process. Available HTTP:
http://www.mosis.org/products/fab/vendors/tsmc/tsmc025/index.html, May
2003.

[28] Motorola, “MPC755A RISC Microprocessor Hardware Specification,”
Available HTTP: http://e-www.motorola.com/webapp/sps/site/prod summary,
2004.

[29] MSSG, “Mpeg2encoder/moeg2decoder,” Available HTTP: http://www.mpeg.
org/MPEG/MSSG/Codec/readme.txt, 1996.

[30] Nicolescu, G., Yoo, S., Bouchhima, A., and Jerraya, A., “Validation
in a Component-Based Design Flow for Multicore SoCs,” Proceedings of the
International Symposium on System Synthesis (ISSS’02), pp. 162–167, October
2002.

[31] Olson, M. A., “Selecting and Implementing and Embedded Database System,”
IEEE Computer, pp. 27–34, September 2000.

[32] Open Core Protocol (OCP) Research License. Available HTTP: http://www.
ocpip.org/socket/ocpspec/licensesignup.

[33] OpenCores. Available HTTP: http://www.opencores.org.

[34] Parmchip, “Overview of the CoreFrame Architecture,” Available HTTP:
http://www.palmchip.com/pdf/CP-9152W-1.01.pdf, 2004.

[35] Pentek, “Operating Manual for Model 4290 and 4291,” Available HTTP:
http://www.pentek.com, 2004.

[36] Prosilog, “Magillem Technical Feature,” Available HTTP: http://www.
prosilog.com, 2004.

[37] Rao, K. R. and Hwang, J. J., Technique & Standards for Image Video &
Audio Coding. Upper Saddle River, New Jersey: Prentice Hall PTR, 1996.

[38] Ryu, K., Shin, E., and Mooney, V., “A comparison of Five Different Multi-
processor SoC Bus Architectures,” Proceedings of the EUROMICRO Symposium
on Digital Systems Design (EUROMICRO’01), pp. 202–209, September 2001.

[39] Ryu, K., Talpasanu, A., Mooney, V., and Davis, J., “Interconnect Delay
Aware RTL Verilog Bus Architecture Generation for an SoC,” Advanced System
Integrated Circuits (AP-ASIC’04), August 2004.

119

[40] Sakurai, T., “Closed-Form Expressions for Interconnection Delay, Coupling,
and Crosstalk in VLSI’s,” IEEE Transaction on Electron Devices, Vol. 40,
pp. 118–124, January 1993.

[41] Shin, C., Kim, Y., Chung, E., Choi, K., Kong, J., and Eo, S., “Fast
Exploration of Parameterized Bus Architecture for Communication-Centric SoC
Design,” Proceedings of Design, Automation and Test in Europe (DATE’04),
pp. 352–357, February 2004.

[42] Silicore, “Electronic Design – Sensors – IP Cores,” Available HTTP:
http://www.silicore.net, 2004.

[43] Silicore, “WISHBONE System-on-Chip(SoC) Interconnection Architec-
ture for Portable IP Cores,” Available HTTP: http://www.silicore.net/
pdfiles/wishbone/specs/wbspec b2.pdf, 2004.

[44] Sonics, “Open Core Protocol,” Available HTTP: http://www.sonicsinc.com/
sonics/products/opencoreprotocol, 2004.

[45] Sonics, “Sonics µnetwork technical overview,” Available HTTP: http://
www.sonicsinc.com/sonics/support/documentation/whitepapers/data/Overview.
pdf, 2004.

[46] Synopsys, “Cocentric System Studio Enables Verification at Multiple Lev-
els of Abstraction with SystemC,” Available HTTP: http://www.synopsys.
com/products/cocentric studio/cocentric studio.html, 2004.

[47] Synopsys, “Data Sheet: CoCentric System Studio,” Available HTTP:
http://www.synopsys.com/products/cocentric studio/cocentric studio ds.pdf,
2004.

[48] Synopsys, “DesignWare Library,” Available HTTP: http://www.synopsys.
com/products/designware/dwlibrary.html, 2004.

[49] Synopsys, “Synopsys Design Compiler,” Available HTTP: http://
www.synopsys.com/products/logic/design compiler.html, 2004.

[50] Synopsys, “VCS Data Sheet,” Available HTTP: http://www.synopsys.
com/products/simulation/vcs ds.html, 2004.

[51] Talpasanu, A. and Davis, J., “Bus interconnect structure for
a system-on-a-chip multiprocessor system,” [Online]. Available:
http://www.cc.gatech.edu/tech reports, Georgia Institute of Technology,
Atlanta, GA, Technical Report GIT-CC-04-03, December 2003.

[52] Thepayasuwan, N. and Doboli, A., “Layout Conscious Bus Architecture
Synthesis for Deep Submicron Systems-on-Chip,” Proceedings of Design, Au-
tomation and Test in Europe (DATE’04), pp. 108–113, February 2004.

120

[53] UMC, “Chip sizer,” Available HTTP: http://eproject.umc.com/dse, 2004.

[54] Uyemura, J., Introduction to VLSI Circuits and Systems. New York: John
Wiley & Sons, 2002.

[55] Virage Logic, Memory Compiler. Available HTTP: http://www.viragelogic.com/
products/compilers, 2004.

[56] Wieferink, A., Kogel, T., Braun, G., and Nohl, A., “A System Level Pro-
cessor/Communication Co-exploration Methodology for Multi-processor System-
on-Chip Platforms,” Proceedings of Design, Automation and Test in Europe
(DATE’04), pp. 1256–1261, February 2004.

[57] Yoo, S., Nicolescu, G., Lyonnard, D., Baghdadi, A., and Jerraya, A.,
“A Generic Wrapper Architecture for Multi-Processor SoC Cosimulation and De-
sign,” Proceedings of the Tenth International Symposium on Hardware/Software
Codesign (CODES’01), pp. 195–200, April 2001.

[58] Yoon, H., Yoon, J., Lee, H., Lim, K., and Hwang, C., “A 4Gb DDR
SDRAM with Gain-Controlled Pre-Sensing and Reference Bitline Calibration
Schemes in the Twisted Open Bitline Architecture,” Proceedings of IEEE Inter-
national Solid-State Circuits Conference (ISSCC’01), pp. 378–379, 467, February
2001.

121

PUBLICATIONS

This dissertation is based on and extends the work and results presented in the
following publications:

[1] Ryu, K. and Mooney, V., “Automated Bus Generation for Multiprocessor
SoC Design,” IEEE Transaction on Computer-Aided Design of Integrated Cir-
cuits and Systems (TCAD’04), 2004.

[2] Ryu, K., Talpasanu, A., Mooney, V., and Davis, J., “Interconnect De-
lay Aware RTL Verilog Bus Architecture Generation for an SoC,” IEEE Asia-
Pacific Conference on Advanced System Integrated Circuits (AP-ASIC’04), Au-
gust 2004.

[3] Ryu, K. and Mooney, V., “Automated Bus Generation for Multiproces-
sor SoC Design,” Proceedings of the Design Automation and Test in Europe
(DATE’03), pp. 282–287, March 2003.

[4] Ryu, K. and Mooney, V., “Automated Bus Generation for Multiproces-
sor SoC Design,” [Online]. Available: http://www.cc.gatech.edu/tech reports,
Georgia Institute of Technology, Atlanta, GA, Technical Report GIT-CC-02-64,
December 2002.

[5] Ryu, K., Shin, E., and Mooney, V., “A Comparison of Five Different Multi-
processor SoC Bus Architectures,” Proceedings of the EUROMICRO Symposium
on Digital Systems Design (EUROMICRO’01), pp. 202–209, September 2001.

The following publication is related but not covered in this dissertation.

[1] Lee, J., Ryu, K., and Mooney, V., “A Framework for Automatic Generation
of Configuration Files for a Custom Hardware/Software RTOS,” Proceedings
of the International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA’02), pp. 31–37, June 2002.

122

POSTER

PRESENTATIONS/DEMONSTRATIONS

This dissertation is based on and extends the work and results presented in the
following posters and demonstration:

[1] Ryu, K. and Mooney, V., “Automated Bus Generation for Multiproces-
sor SoC design,” Ph.D. Forum at the 40th Design Automation Conference
(DAC’03), June 2003.

[2] Ryu, K., Shin, E., Lee, J., and Mooney, V., “A Framework for Automatic
Generation of Bus Systems and a HW/SW RTOS for Multiprocessor SoC,”
University Booth at the 39th Design Automation Conference (DAC’02), June
2002.

123

