Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 1

Automated Bus Generation
for Multiprocessor SoC Design

Kyeong Keol Ryu and Vincent J. Mooney |11
Georgia Ingtitute of Technology
School of Electrical and Computer Engineering, Atlanta, GA 30332, USA
{ kkryu, mooney} @ece.gatech.edu

Abstract—T he perfor mance of a multiprocessor system heavily depends upon the efficiency of itsbusarchitedure. This
paper presents a methodology to generate a custom bus gystem for a multiprocessor System-on-a-Chip (SoC). Our bus
synthesis tod, which we all BusSyn, uses this methodology to gener ate five different bus g/stems as examples: Bi-FIFO
Bus Architecture (BFBA), Global Bus Architedure Version | (GBAVI), Global Bus Architedure Version I11 (GBAVIII),
Hybrid bus architecture (Hybrid) and Split Bus Architedure (SplitBA). We verify and evaluate the perfor mance of each
bus gstem in the mntext of three applications: an Orthogonal Frequency Division Multiplexing (OFDM) wireless
transmitter, an MPEG2 deader and a database example. This methodology dves the designer a great benefit in fast
design space eploration of bus architectures across a variety of performance impacting factors such as bus types,
processor types and software programming style. In this paper, we show that BusSyn can generate buses that, when
compared to atypical General Global Bus Architecture (GGBA), achieve superior performance (e.g., 41% reduction in
exeaution timein the ase of a database example). In addition, the bus architedure generated by BusSyn isdesigned in a
matter of secondsinstead of weeks for the hand design of a custom bus s/stem.

Index Terms—Bus ar chitedure, bus generation, design space exploration, Intellecual Property (1P), System-on-a-Chip

(SoC), synthesis.

I. INTRODUCTION

State-of-the-art chip design technology enables System-on-a-Chip (SoC) to open up new opportunities for Very
Large Scale Integration (VLSI) hardware design. For example, SoC allows the designer to overcome some
performance drawbacks of Printed Circuit Boards (PCBs) by implementing on a single chip many or most of the chips
previously on a PCB. In particular, single-chip integration allows the designer to take advantage of increased bus
speeds and widths. Another trend that SoC enablesisfor the designer to integrate multiple Processing Elements (PES)
onasingle chip. Thus, an effective bus architecture with efficient arbitration for reducing contention among multiple
PEs plays an important role in maximizing the performance of an SoC.

In the design of an SoC, one obviousissue for an SoC designer to consider is how to exchange data among multiple

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 2

PEs in the SoC. For instance, should there be one bus or multiple buses and where should memory elements be
placal? Another issue for an SoC designer to consider is how to easily and quickly design a bus system considering
theincreasing complexity of on-chip bus systemsand in the context of ever shorteningtime to market demands. These
i ssues motivate the introduction of a design automation toal that is cgpable of generating customized SoC bus systems
in Hardware Description Language (HDL) code to speed up a user’s design space aploration in search of a high
performance bus system.

This paper presents a methoddogy to generate custom bus systems using Intellecual Property (IP) for a
multi procesor SoC. Using this methoddogy, five different bus systems [1][2] are generated as examples in
synthesizeble Verilog HDL: Bidiredional First-In-First-Out (Bi-FIFO) Bus Architecture (BFBA), Global Bus
Architedure Version | (GBAVI), Global Bus Architecure Version Il (GBAVIII), Hybrid bus architecure (Hybrid)
that combines BFBA and GBAVIII, and Split Bus Architecture (SplitBA). Eadc bus s/stem performanceis eval uated
using three appli cations: an Orthogonal Frequency Division Multiplexing (OFDM) wirelesstransmitter, an MPEG2
demder and a database example. We also show that our Bus Synthesis (BusSyn) tod can efficiently generate alarge
variety of bus systemsin a matter of seconds (as oppased to weeks of design effort to put together each bus system by
hand). Furthermore, we compare the performance of ead bus system with asimple General Global Bus Architecure
(GGBA) or an industry standard on-chip bus (CoreConred from IBM [3]), showing up to 41% reduction in
appli cation exeaution time with a austomized bus architedure.

This paper isorganized asfollows. Sedion Il showsrelated work, and Sedion Il explains sme of the terminology
applied to describe our approach. Sedion IV depictsabus g/stem structure, several custom bus system examples and
bus-based data communi cation among multi ple PEsfor eat example. Sedion V presents adetail ed description of the
methoddogy. In Sedion VI, we eplain the gplicaions used to evaluate the generated bus systems and then show

experimental results. Finally, we conclude this paper in Sedion VII.

Il. RELATED WORK

The aility to design a VLS| multiprocessor SoC is required in order for the design to be adapted to foll owing
severa constraints. shorter time to market, ease of design, corredness of design, huge gate counts and high

performance Spedficdly, shorter time to market, ease of design and corredness of design have been hot issues,

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 3

which have been approached through design automation using computer-aided design (CAD) tools.

Most SoC bus designs are based on 1Ps stitched together with various forms of data, address and control links.
Several efforts from industry provide platforms to connect the IP blocks used in an SoC. For example, CoreConnect
has three levels of hierarchy: Processor Local Bus (PLB), On-chip Peripheral Bus (OPB) and Device Control Register
bus (DCR) [3]. PLB provides a high performance and low latency processor bus with separate read and write
transactions, while OPB provides alow speed bus with separate read and write data buses to reduce bottleneck effects
caused by slow 1/O devices such as serial ports, parallel portsand UARTSs. The daisy-chained DCR offersarelatively
low-speed data path for passing status and configuration information. The Advanced Micro-controller Bus
Architecture (AMBA) from ARM hastwo levels of hierarchy: the Advanced High-performance Bus (AHB), whichiis
similar to PLB, and the Advanced Peripheral Bus (APB), which is similar to OPB [4]. CoreConnect and AMBA,
which are pipelined buses, both require bridges between the high performance bus and the low speed bus for data
transfer between the buses. CoreFrame from Palmchip Company is currently advertised as a non-pipelined bus
architecture that has two independent bus types: Mbus for memory transfer and Palmbus for 1/O devices [5]. The
SiliconBackplane from Sonic Inc. attempts to guarantee fixed bandwidth and latency by Time Division Multiplexed
Access (TDMA) based arbitration [6]. These buses and their additional CAD tools such as FastForward for
SiliconBackplane and Connection Kit [7] for CoreFrame allow a designer to integrate |P modules in an easy way and
thereby result in reduced design time for an SoC. We take the IBM CoreConnect bus architecture as a representative
example of these industry buses. We will show in Section VI1.C how our tool outperforms CoreConnect by 15.54% in
the case of an MPEG2 decoder running on a four-PowerPC SoC.

Asanother related research for bus system generation for an SoC, several papers represent communication topology
generation, | P assembling for an SoC and component-based SoC design as follows.

Gasteier et al. [8] described the automatic generation of a communication topology by using scheduling of data
transfer operations to reduce the cost (e.g., area) of a bus architecture. However, their algorithm only supports for a
single type of bus topology (a single global bus topology). Our method, on the other hand, supports multiple bus
types.

Bergamaschi et al. [9] presented design automation of an SoC using | P cores connected via CoreConnect. In their
methodology for assembling IP, their algorithm checks the compatibility of |P input/output ports and generates wires

to connect the IP cores. Again, we, on the other hand, support awider variety of bustypes and architectures than they

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 4

presented.

Pai Chou et al. [10] showed an IP based approach to SoC building. An input description to their algorithm
designates a bus topdogy that spedfies how IPs are conneded with each other and which bus protocal is used.
Communication synthesis in their tod implements the bus topdogy together with the generation of device drivers,
message routers and communication devices, so that the | Ps communicate with ead other by using a network protocol
(e.g., I°C or CAN) that they assume. BusSyn, on the other hand, assumes that high-performance direa on-chip bus
connedions are desired rather than using a cmplicated network protocol such as 12C or CAN. Thus, BusSyn targets
SoC designs where dired, non-padket based connedions are desired. For this reason, BusSyn focuses on generating
hardware blocks of dedicated buslogic for appli cation speafic communication including handshake registers and bus
arbiters for a austomized bus architedure. This contrasts with the work of Pai Chou et al., which did not generate
customized SoC bus architectures but rather assumed that such bus architecures are dready avail able (e.g., a CAN
bus).

Several efforts [11][12][13][14][15][16][17] from TIMA Lab presented a component-based design flow for a
heterogeneous multi-core SoC. Their design flow introduces a systematic method d wrapper generation for
multi-core SoC design based on architedural parameters extraced from ahigh-level system spedficaion. Lyonnard
et al. [11] introduced adesign flow for the generation of appli cation-spedfic multi procesor architedure. They used a
generic multiprocessor architedure template to suppart two types of buses (e.g., point-to-point connedion and shared
bus) and acommunication coprocesr for the interfacebetween processor and bus. To interfaceead heterogeneous
component to the other part of system, they depicted a generic wrapper architecure that adapts to different
communicaion protocols and abstradion based on automatic wrapper generation [11, 12, 13]. W. Cesario et al. [14,
15] and Nicolescu et al. [17] described a component-based design environment to enable an automatic wrapper
generation toal to suppart for hardware interfaces, devicedrivers and Appli cation-spedfic Program Interfaces (APIS).

We, on the contrary, focus on bus architecture in the component-based SoC design and provide more flexible bus
architedure template to generate bus systems. The template supparts multiple and heterogeneous bus architectures
(e.g., GBAVI, GBAVIII, BFBA, Hybrid and SplitBA) in a system and various optimized wrappers (e.g., CPU-,

memory- and generic-bus interface.

III. TERMINOLOGY

Before procealing to discuss our Bus Synthesistool (BusSyn), we first explain some of the terms we will be using

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 5

to describe the diff erent components of a bus architedure. Example 1 explains the terminology we have defined.

Definitions

(A) Processing Element (PE): a hardware unit that performs algorithmic processng — usually a CPU but may also
be dedicated o reconfigurable logic.

(B) Bus Bridge (BB): a hardware unit that is an on-off controllable mnnedion point between two buses— if the BB
isenabled, the two buses are fully conneded; otherwise the two buses are disconneded. Note that our BB does
not currently suppart different bus geedsin buses conneded by the BB.

(C) Global Bus Architecture (GBA): atype of busarchitedure having abusthroughwhich all PEscan acess $ared
resource(s), where BBs may be used to conned diff erent sections of the bus.

(D) Bi-FIFO Bus Architecture (BFBA): a type of bus architedure where bidiredional FIFOs are used to transmit
and receve data between adjacent PEs.

(E) Segment of Bus (SB): a aontiguous bus (no BBs) consisting of address data and control (e.g., read enable, write
enable, request and adknowledge) wires pedfic to a particular bus type (in our case, GBA or BFBA).

(F) Bus Access Node (BAN): An integrated hardware block that is compased of at most one PE, custom IP blocks
and/or memory hardware together with associated bus acaess hardware and SB(s).

(G) Module: ahardware unit such asBB, SB, an arbiter, SRAM or IL (in thispaper, aPE isnot aModule but instead
isan IP core), where IL isaspedfic Interfacel ogic that will be explained in more detail in Sedion IV.A. Note
that it is posdgble to extend the definition of Modue to include newly designed hardware units that carry out
spedfic functions. For this paper, however, the definition gven for Module suffices.

(H) Bus Subsystem: a subsystem that consists of one or more BANSs conneded together using the same bus or the
combination of different bus architedures (in our case, either GBA, BFBA or the mmbination d GBA and
BFBA).

() Bus System: a system that consists of one or more Bus Subsystems connected together.

Example 1: Terminology
Figure 1 shows an SoC consisting of four PEs (MPC755s), each with an L1 cache. Each MPC755 is an example of
a PE. In the bottom left of Figure 1 can be seen an SB-SB1-used to connect BAN B to the rest of the SoC. Note the

use of an Interface Logic blocks (ILs) to connect MPC755_B to the Bus System. The bottom left of Figure 1 also shows

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 6

MPC755_B connected to local SRAM and an SB-SB1-to form Bus Access Node B (BAN B). In BAN B, each block
such as SRAM, IL2, IL3 and SB1 is a Module. BAN B is adjacent to BAN A which is adjacent to BAN G. BANs A, B and
G together form a Bus Subsystem using bus type GBA for communication. On the right hand side of Figure 1, BANs |
and J form another Bus Subsystem in which BFBA is used for communication. A BB connects the two Bus Subsystems
as shown in the top middle of Figure 1. On the whole, Figure 1 shows an example of a Bus System composed of two

Bus Subsystems.

Bus System

Bus Subsystem 1 Bus Subsystem 2
1 BANI :
| Authiter "—’ !
! IL1 !
't sram i
[y e :
i 1
! MPCTSS_4) e MPCT35_1| |
i !
! IL2 ﬂ L2 i
| smam - SRAM | !
[. A R A A, A et 1
i — BANJ — |
! - MPCT35 1|
| 1
| L2 4—» L2

| SRAM i SRAM | |
|

| — i
i

IL : Interface Logic, 3B: Segment of Bus, BB: Bus Bridge, SGB A and S3BFBA: the specific
example of 3B for GBA and BFBA

Figurel. Bus System Example

IV. BUSSYSTEM STRUCTURE AND EXAMPLES

We now first describe a Bus System structure as a basement to generate several Bus Systems, which are exemplified

in the following subsection, and then, we discuss communication among BANsin each of the Bus System example.

A. Bus System Structure

Figure 1 shows a hierarchical structure example of a multiprocessor Bus System that has two Bus Subsystems
having two and three BANS, respectively. A Bus System is composed of one or more Bus Subsystems, and each Bus
Subsystem includes one or more BANSs, each of which is composed of PEs, IPs and/or memories together with
associated hardware logic. The Bus Subsystems are connected through Bus Bridges. This kind of hierarchical
definition allows a Bus System to have a flexible and scalable bus architecture in multiprocessor SoC Bus System
design. Figure 2 depictsthe Bus Subsystem shown on the left-hand-side of Figure 1 in more detail. Inadditionto PES
(e.g., MPC755) and memories (e.g., SRAMs) in the BANs of Figure 2, there are more Modules specified as Interface

Logic (IL): CPU (or PE) to Bus Interface (CBI), Memory to Bus Interface (MBI) and Generic Bus Interface (GBI).

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 7

With these ILs, each BAN can have different types of PEs, IPs and/or memories because the ILs enables the
heterogeneous modules to adapt to each other. For example, BAN A can have MPC755 and SRAM while BAN B can
have ARM9TDMI and DRAM. Similarly, GBI also provides flexibility in selecting various types of buses for aBus
Subsystem (e.g., GBA-GBAVI or GBAVIII to bedescribed in Section 1V.B—and BFBA). Each BAN can acassany
other BAN’s memory through a bus integrated with several SBs. Based on the Bus System structure, by simply
repeding generated BANS, a Bus Subsystem can be a scalable structure, and a multi processor Bus System can be
implemented in an easy manner.

When a Bus Subsystem has a global resource such as a large global memory to be accesed from all BANSs, the

resourceis also defined asa BAN: for example, BAN Gin Figure 2.

EBus Subsystem

[Mote] MEDRD: IMemnory, MBI MMemory-Bus Interface, CBL: CPUVPE-Bus Interface
GBI: Generic Bus Interface, SB: Segment of Bus, ABL Arhiter-Bus Interface,
AR B Arbiter, BAR: Bus Access MNode, IL: Interface Logic

Figure2. Example of a Bus Subsystem

B. Bus System Examples

In this dion, we show five aistom bus systems generated by BusSyn automaticdly: BFBA, GBAVI, GBAVIII,
Hybrid and SplitBA. All Bus System examples shown in Figures 3, 4, 5, 6, 7, 8 and 9 have four PEs and total 32MB
of memory (all examples have approximately the same chip areabecause the aeaof the bus logic and wires is much
smaller than PE and memory areg. Ordinarily, BusSyn can generate aBus System having any number of PEsand any

sizes of memories acardingto the user options (in Sedion V.B, we will describe how the user inputsthe options). In

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 8

these examples, we use the M otorola PowerPC (MPC755) for the PE core, which, however, can be changed to ather
cores smply by adding a CBI Module for the new PE core (e.g., ARM9TDMI) to be operated in the Bus System.
First, we give adetail ed explanation of the five sample custom bus architecures generated by BusSyn in this paper
(BusSyn can generate avery large number of custom bus architecures). GBAVI shownin Figure 3isakind of global
bus architecure (GBA), but the global bus is ssgmented by BBs(e.g., BB_2, 4, 6and _8 separating each BAN,
where the number of BANs is gedfied by the user. Each BAN has a SRAM block (e.g., SRAM_A, SRAM_B,
SRAM_C or SRAM_D). One BB in eath BAN controls possble bus connection between the PE side bus and the
SRAM side busin each BAN: BB_1 between CBI MPC755and MBI SRAM in BAN A. Thus, in GBAVI, agroup of
two adjacaent BANSs can exchange data without any bus confli ct with the other BANs in the SoC at the same time due
to separation by BBs. For example, in Figure 3, while BAN A and BAN B communicate with ead other, BAN C and
BAN D also can doat the same time without any bus conflict. Each group of two BANsin Figure 3issynchronized by
handshaking using shared registers' block (HS_REGS) between BANs (seeSedion I1V.C). Notethat GBAVI tend to

work well in a pipelined style operation; for example, output of a.PE (e.g., MPC755_A) is pas=d to the next PE (e.g.,

MPC755 B).

3] BAN &

0 '
! '
H ‘ RIPC755_4 SEAM_ & ‘ 1
'] H
' 1
1 # # 1
' '
' | TET | | TAEL ‘ HE_EREGE | ‘ EI-FIFO_4 | '
! MPCISS SEaA M H
A 3 i 1,
' ot -

' CPU Eus & !

! BAN B

! MPC755 B

.

' $ $

.

: BT TS ‘HS_R_EGS | ‘BI-F‘IFD_B|

H MPIZIS5 SEAM

: 3 t

| .
i .

.

]

SRAM_E ‘

oo EEUEBmsE_ ...}
! ‘ ‘ ‘ - BAN C |
' MPCTIS5_C SRAM !
[H] 1
: =BT M¢BI ‘ Hi_REGS | ‘ BI-FIFO_C | :
: MECT5S SERAM T ¢ :
Lo CPUBwsC____ _________________ >
' BAN D |
‘ MPC755_ D ‘ SRAM_D ‘ "‘f’ '
H 1
' C¢BI | | M‘;I | ‘ Hi_REGS | ‘ EI-FIFO_Lv | i
' MPCTSS SRAM 1
I - 3 ! 3 ;
i CP Bus D '
! (s H
[IMote] BB: bus bridge and HS_FEG3: handshalce registers [IMote] HS_REGS: handshalke registers

Figure 3. Diagram of GBAVI Figure 4. Diagram of BFBA

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 9

Asshown in Figure 4, BFBA has a Bi-FIFO between adjacent BANs. Thisdesign is similar to some commercially
available multiprocessor PCBs such as the Quad TM S320C6701 Processor VME Board from Pentek [18]. One BAN
can push data into a Bi-FIFO while an adjacent BAN can read the data from the Bi-FIFO. In this way, the PES can
carry on successive functions for a pipelined operation. A specific way to communicate over the PEsin Figure 4 will

be presented in Section IV.C. Notethat BFBA aso works well in a pipelined style operation.

v -
BAN G ! BaW G i
! Global ! 1 Glohal i
: SRAM ' : SRAM '
: ! '
1 1 1]
1 ! 1]
' glg‘;al TAEL Global Bus | H Glohal i Ciobal Bus |
! il SEAD 3 | 1 Arhiter F
1 !]
: 3 % - : - $ [GEI_GEZ |w E
mT T T T T T T s s m e mmmm e mm—m e —— o] F—-—- L i ——/——] |
E BAN 4 H v L&) BAN 4 1;
: MPCISS SRAM_4 ! Vo |MPoTssa| | sraM_A :
H g ' ' I
i ;
: ; ; 3 3 :
i
H CBI MBI ! : [eiz) TIEL HE_REGE BI-FIFD_4 !
! mss IRAM : ! MECTS0 SRAM 1
: : ! ¢ ¢ ;
i CPU Eus »| GBI GBS : [» GBI_GB3 ;
LR E ———J, Lo CBUBwsA P T] |
: BAN B ' ! BAN B |
' MPCT55_B SRAM_E ! N SRAM_E :
: = : - !
i
i ! H I
i CBI MBI : | | CBI | MBI ‘ HE_FEGE ‘ | BI‘F'“—'O—B| .
: MPC7SS SRAM ! H MPC’.-‘SD SR_AM !
:
' ¥ cpunes s | ! by ool |
. - » ! »| GEI_GE3
L e+ SELGES] CPUBusB :
__ | |
! BAN C

'
:

' BAN C

' |MPC?55 C ‘ SRAM_C | i |MPC?S | SRAM_C ‘
'

H] ' @]

H

H CBI MBI : : CBI MBI HS _REGS BI FIFD_ !
E ca'ss SEAM ; - LPC7E SRAM i |
' CET Bus ' : - GBI_GE |um] |

: »| GBLGES] . I *TPummc
!

i B4AM D : : MPCTSS SRAM_D BAND :
: |I-.IPC‘I-‘55_D ‘ SRAM_D | : : o :
E ! i Tt T HS_REGS BI-F'IFO_D| E
' CBI MBI ; ! i
i C?SS SRAM : i \ﬂ%‘ \%‘Uﬂ_‘ ¢ :
CPUBwD ¥ [GE1 GE jwe) ! i “Crume oD 1 * @F
U YPYTT//E H [A T |
Mote] HE_REGE: handshake registers Mote] HE REGE: handshake registers
Figure5. Diagram of GBAVIII Figure 6. Diagram of Hybrid

GBAVIII shownin Figure 5 isaglobal bus architecture (GBA) having aglobal arbiter and aglobal memory. While
any BAN tries to access the global memory through the global bus, the globa arbiter resolves multiple memory
requests from the BANs. The arbiter has a first-come-first-serve (FCFS) scheduling scheme using a FIFO, but the
arbiter can have a different policy such as a priority-based protocol. The Globa SRAM in Figure5 also can be
replaced with another memory type by using its corresponding MBI that adapts the interface between the memory and
the bus. Thelocal memory in each BAN can be used for relatively faster memory access than the global memory due
to arbitration time. How to communicate among BANsin Figure 5 will be shown in Section IV.C. Also, please note

that Global Bus Architecture Version 11 (GBAVI1) was presented in [1] but was not chosen for automated generation

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 10

in this paper due to space constraints; however, if desired, the GBAVII bus could easily be added to our tool.

Another possible Bus System, Hybrid, is the combination of BFBA and GBAVIII, as shown in Figure 6. This
combination allows the bus architecture to exploit advantages of both BFBA and GBAV 11 (i) by supplying aBi-FIFO
data transfer method between adjacent BANs and (ii) by having a global memory area that can be accessed from all
BANSs. This combination of features gives flexibility in communication and thus results in a higher performance,
although a penalty is paid in increased chip area (see Table V in Section VI.C for details).

Figure 7 shows SplitBA that is composed of two Bus Subsystems that have two MPC755s and a global memory
respectively. Two Bus Subsystems are connected through a bus bridge to exchange data between them. Both Bus
Subsystems in Figure 7 can operate at the same time without bus contention so that system performance is increased.
In addition, in each Bus Subsystem, a bus length relatively shorter than using a single GBA makes the system be
speedy and even consume lower power due to lower parasitic resistance and capacitance in the busesin the SoC [19].

SplitBA also relieves bus traffic congestion caused by shared memory requests from each BAN due to divided bus.

: 20| N} ¥
1 1
Glokal MET || | [Glekal TET
Arbiter SFAM ! ! Arhiter SFAM
v ’ v
1 1
1 1
1 1
Ens SFAM H | Bus SFEAR
Subsystem 1 H | Subsystem 2

| . 1 BANA BAN B BAN C BAND !
! BANA BANB BAN C BAND 1 i !
: : : MPC755_A MPC755_ B MPC755_C MPC735_D :
: MPC755 A [|MPCT755 B (| MPC755 C||MPC755 D : : Ll Ll Ll Ll 1
i Lt Ll Ll o T 4 4 4 4 '
! A A A A ' ' 4 4 \L 4 !
: PLR Y Y Y A 4 : : CBRI CBRI CBRI CBI :
! . Processor Local Bus (PLB) 1| MPCYSS MPCT55 MPC755 MPC755 I
1| Arbiter i ! ! ¢ |
1 1
| 4 A v y L1 . !
1 1 : d Ll |
1
| SRAM A || SRAM B || SRAM C || SRAMD |1 ¢ I
1 1
! v Global MBI i
1 -

| i 1| Arbiter SRAM SRAM |
1 1
1 1 1

Figure 8. Diagram of CCBA Figure9. Diagram of GGBA

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 11

CCBA from IBM and GGBA are shown in Figures 8 and 9, respedively. These bus architedures are designed by

hand and are used as a baseline for performance mmparisons with our generated Bus Systems.

C. Communication among BANs

In a multiprocessor SoC, applicaions are typicdly partitioned aadoss multiple PEs for paralel processng. Asa
consequence, the communicaion method among the PEs considerably influences on the system performance. If all
PEs in the system could cooperate together without any conflict in communicaion, which is what we desire, the
overall system performancewould be significantly increased in the parall el processng.

In this subsedion, we introduce a communicaion method that cdls for minimal conflicts in bus-based
communicéion. Spedficdly, we introduce a handshake protocol for the bus-based communication becaise the
protocol issimplein operation and straightforward in implementation. We first describe our basic handshake protocol
and then show the alaptation of the protocol to ead spedfic Bus System in foll owing subsedions (seeExamples 3, 4
and 5).

Our handshake protocol usesonly two control registers. Theseregistersare acessed by two communicating PEs, a
sender and arecever. The protocol is different from atypical handshake protocol in a sense that the typicd protocol
needs threeregisters to control communication [21]. The typicd handshake protocol keeps tradk of the foll owing
three onditions or states: (1) read request, (2) dataready and (3) adknowledge. Here, condtion (1) indicates aread
request from arecever to a sender; condition (2) spedfiesthat datais now realy to be accessed; and condition (3) is
used to adknowledge mnditions (1) and (2) of the other party. Our protocol, on the other hand, only needs to kegp
tradk of two of the conditions or states: (2) and (3). The reasonisthat we exploit a particular charaderistic in parall el
processng. That is, applicaion functions running on al PEs have data dependencies among the functions when the
appli cation functions are partiti oned aaossmultiple PEs for parall el operation. Due to the data dependencies, it is not
necessary for a recever to use cndition (1) becaise a receiver neals to wait anyway until a sender has done its
processng and emits data to be used in the recaver. Therefore, we eliminate condition (1), “read request,” and thus
use only two control registers to chedk the conditions (2) and (3). The aonditions are chedked by the value of eath
control register as siown in Example 2. Please note that in cases where condition (1) is needed, then obvioudly the

handshake protocol can be dtered to include condition (1) or indeed any other additional conditions which may be

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 12

necessary, and our generated bus architedures can suppart any such handshake protocols. However, in this paper we

only show examples using the described protocol using only conditions (2) and (3).

Example 2: Handshake Control Registers

We denote two control registers as DONE_OP and DONE_RYV, which correspond to condition (2) and condition (3),
respectively. Each of two registers is one-bit width. The values of the registers have following meaning. While a value
“1” of DONE_OP indicates that the sender has done its operation and thus is ready to send the processed data, a value
“0” indicates that the sender is not ready yet. In the case of DONE_RYV, a value “1” of DONE_RYV shows that a receiver
has received data from a sender, and a value “0” indicates that the data has not received yet. After checking each

condition, data is transferred from a sender to a receiver through a specific bus in each Bus System shown in

Subsection IV.B. O

For the sake of easy programming and program reliability, we developed APIs that are responsible for the
communicdion procedure in software. The APIs (e.g., mem_real(), see Example 3) read an exad amount of data
(speafied by the user) from the user spedfied source areaof the sender memory and store the datato the user spedfied
target areaof therecaever memory. To handle thiskind of datatransfer, the APIs have several parameters such assize
of data, source addressand target address

In Bus Systems containing a global bus style (e.g., GBAVIII, SplitBA, GGBA and CCBA), possble bus conflicts
may occur since multi ple PEs can accessthe antrol registers at the sametime. However, these possble oonflicts can
be resolved by exploiting an arbiter in the Bus System. The detailed communication procedures for ead Bus System
are shown in Examples 3, 4 and 5. Please note that the spedfic handshaking protocol presented here can easily be
replaced by a typicd handshake protocol [21] or any other 2-state or 4-state handshake protocol with no effect

whatsoever on the rest of the methoddogy presented in this paper.

C.1 Communication in GBAVI

We now show how our handshake protocol to adapt for the communication between PEsin the GBAV | Bus System
shown in Figure3. To suppat the protocol, two control registers, DONE_OP and DONE_RV introduced in
Example 2, reside in the handshake registers’ block (HS REGS) shown in each BAN of Figure3. Each pair of
neighboring PEs shares the registers (i.e., both a sender and arecever can accessthe registers). When it is necessary

for non-adjacent PEs to communicae with each other (e.g., transferring data from MPC755_A to MPC755 C in

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 13

Figure 3), currently we only support the case where al PEs (e.g., MPC755_B) between a sender (e.g., MPC755_A)
and a receiver (e.g.,, MPC755_C) relay the data to the destination PE sequentially. However, our implementation
could be extended to support direct communication through bus bridges (e.g., BB_2 and BB_4 between MPC755_A
and MPC755 _C). Note that GBAVI, as implemented, tends to work well in a pipelined style operation that has a
pattern in which output data from a PE is passed to the next PE for the following operation. Example 3 shows how
BAN A and BAN B communicate with each other in GBAVI. The other BANsin Figure 3 communicate in the same

manner as shown in Example 3.

Example 3: Communication in GBAVI

We assume that BAN A and BAN B in GBAVI shown in Figure 3 execute an algorithm (e.g., OFDM transmitter that
will be introduced in Section VI.A) in a pipelined operation fashion; the result data from BAN A passes to BAN B through
a shared memory, which in this case is SRAM_A in BAN A. Figure 10 shows detailed handshake control registers
(DONE_RV and DONE_OP) inside the “HS_REGS” block shown in BAN B of Figure 3. The registers can be accessed
from both BAN A and BAN B. Note that the registers DONE_RV and DONE_OP are initialized to “0”, and the step
numbers in the following procedure correspond to the numbers in Figure 11, which shows a communication state
diagram. The procedure for data transfer from BAN A to BAN B is as follows.

HS REGS

»DONE RV|«

(CPUBus 4) (CPU Bus B)

DONE_OP

Figure 10. Detailed Diagram of HS_REGS in Figure 3
(2) Initial raw data from input source is read.
(2) After MPC755_A processes the data, the PE writes 64 processed data words to SRAM_A starting from address
0x00000 and sets DONE_OP to “1".

(3) MPC755_B resets register DONE_OP to “0” after reading value “1” in the register. Using an APl “mem_read(64,
0x000000, 0x400000)”, MPC755_B reads the 64 words of data from SRAM_A starting from address 0x000000
and stores the data to SRAM_B starting from address 0x400000.

(4) MPC755_B sets register DONE_RV to “1".

(5) After MPC755_A reads “1” in register DONE_RYV, the PE resets the register to “0”.

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002

(6) MPC755_B processes the transferred data after step (4).

MPC755_AinBAN A

MPC755_B in BAN B

(Sender) {Receiver)
DONE_OP="0®
(1
Read raw data Wait DONE,_OP
(O]
) DONE_OP="1] DCONE_RV s

Process the data;
write the processed
data into SRAM_A;
assert DONE OP

3
Deassert DONE_OP;
transfer data from M

BAN A to BAN B ©)

eh]

14

@) 3)
DONE_OP
“@

Assert DONE RV time

DONE_RV="0° v

Wait DONE_RV

DONE_RV="1",

®
Deassert DONE BV

®)

Process data

[Note] DONE_OP=*0" and DONE_RV=0°
at the initial stage

Figure11. Communication between BANsin GBAVI

C.2 Communication in BFBA

PEs in BFBA Bus System shown in Figure 4 communicae using another adaptation of our handshake protocol
since this communication takes advantage of an interrupt function. The handshake operation isimplemented with an
interrupt function and with two control registers DONE_OP and DONE_RV introduced ealier. These two registers
are ontained in handshake registers' block “HS REGS’ in Figure4, and a threshold register in ead Bi-FIFO
controll er spedfiesthe sizeof datato betransferred and is st by asender. Here, the Bi-FIFO controller is ahardware
unit that controls Bi-FIFO memory in each Bi-FIFO block (e.g., Bi-FIFO_A, B, Cor _D) shown in eat BAN of
Figure 4. Asasender pushes datainto a Bi-FIFO memory in arecaver BAN, aBi-FIFO counter in the cntroller is
increased in hardware automaticaly, and then an interrupt signal is generated when the counter value is equal to the
threshold register's value. The interrupt signal stimulates the recaver so that an interrupt handler in the recaver is
exeauted. Functionsin the interrupt handler are & follows: resetting DONE_OP to “0”, popping receved data from
Bi-FIFO memory and setting DONE_RV to “1”. In the communication between non-adjacent PEs, the PEs between
the sender and the recaver have to relay the data to the destination PE sequentially. In this case, the cmmmunicéaion
might have alittl e overhead in time; however, note that thisBus System also is alitable for a pipelined style operation,

which usually has adjacent PES communication. How to communicate between sender BAN A and recéver BAN B

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 15

in Figure 4 is shown in Example 4. The other BANS communication in Figure 4 works in the same manner as the

procedure shown in Example 4.

Example 4: Communication in BFBA
We assume that BAN A and BAN B in BFBA shown in Figure 4 execute an algorithm (e.g., OFDM transmitter that will
be introduced in Section VI.A) in a pipelined fashion; the result data from BAN A passes to BAN B through Bi-FIFO_B in
BAN B shown in Figure 4. Note that at the initial time, register DONE_OP is set to “1” while DONE_RYV is set to “0”
(these registers are in the “HS_REGS” block in BAN B of Figure 4). We also assume that the sender initially sets the
threshold register in the Bi-FIFO controller to “64” to transfer sixty-four words of data at a time. The step numbers in the
following procedure correspond to the numbers in Figure 12, which shows a communication state diagram. As shown
in Figure 12, the communication procedure between the BANSs is as follows.
(1) Initial raw data from input source is read and processed in BAN A.
(2) MPC755_A pushes 64 words of processed data into Bi-FIFO_B in BAN B after reading “1” in register DONE_OP.
(3) An interrupt handler APl in MPC755_B runs after MPC755_A has finished pushing the output data; as shown in
Figure 12, the interrupt API resets DONE_OP to “0”, pops the sixty-four words of data from the Bi-FIFO_B and
then sets DONE_RV to “1".
(4) MPC755_B resets DONE_RV to “0” after reading “1” in register DONE_RV.
(5) MPC755_B processes the popped data.

(6) MPC755_B sets DONE_OP to “1”.

MPC755 AinBAN A MPC755 B in BANB
(Sender) (Receiver)
DONE_RV="0’

45

Read d::ltat; Wait DONE RV
process data 33

DONE_OP=0° il DONE_RV="1} DONE_RV 1

@

Wait DONE_OP o
Deassert DONE_RV HE O &) o &
Jnitial value \55) 3.1)
DONE_OP="17, !
DONE_OP |
@ P d
Push result data rOCE;; ata 3)
mto BI-FIFO_B Assert DONE OP_ [enot
(3) Interrupt APT .

3.1 Deassert DONE_OP;
3.2 pop data from Bi-FIFO

[Note] DONE_OP="1" and DONE_RV=-0° | 2P ©8° ONE. RV

at the initial stage

Figure 12. Communication between BANsin BFBA

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 16

C.3 Communication in GBAVIII

We introduce another adaptation of our handshake protocol for the communication in GBAVIII shown in Figure 5.
GBAVIII is appropriate for both pipelined and functional parallel operation since a global memory, Global SRAM in
BAN G, isemployed as acommunication buffer, which can be accessed fromall PEs. By functional parallel operation,
we refer to aparallel operation in which all PEs execute the same code for acomplete al gorithm but have different raw
datato be processed. Inthiscase, one of the PEs reads a chunk of raw data from the input source and writesthe datato
the global memory so that each PE can process its own assigned portion of the raw data. Please note that a Direct
Memory Access (DMA) device can also work for such reading and writing functions, and the device can be supported
in GBAVIII. In GBAVIII as presented in this paper, however, one of the PEs performs such functions rather than
using DMA. Inthisfunctional parallel operation, there exists a dependency between one PE distributing the raw data
and the other PEs receiving the data. This dependency enables our handshake protocol to adapt to GBAVIII for such
afunctional paralel operation.

For the handshake protocol operation, the GBAV 111 Bus System shown in Figure 5 exploits global control variables
saved in a specific region of a shared memory (e.g., Global SRAM in BAN G of Figure 5). Note that these variables
work in away similar to the control registers (e.g.,, DONE_RV and DONE_OP in HS_REGS block) employed in the
previous subsections 1V.C.1 and IV.C.2.

In this Bus System, the shared memory is used as a buffer not only for raw data from the input source but also for
processed data from each BAN shown in Figure 5. Example 5 depicts the details of the communication procedure

between BAN A and BAN B, and the other BANsin Figure 5 work in the same manner.

Example5: Communication in GBAVIII

We execute an MPEG2 decoder algorithm, which will be introduced in Section VI.A in GBAVIII, Bus System shown in
Figure 5. We first focus on describing the communication between BAN A and BAN B. We assume that the BANs
execute the algorithm in the functional parallel operation style and start the operation at the same time. BAN A reads an
MPEG2 raw video stream in the size of 1.47 KB, which is composed of Sequence Headers (SHs) and Group Of Pictures
(GOPs), from an external source and writes the stream data to input buffer, which is located in the global memory
Global SRAM in BAN G shown in Figure 5. After such an 1/0 processing, BAN A decodes the first SH and GOP while
BAN B processes the second SH and GOP after reading the part of stream from the Global SRAM. In this manner, the
video stream can be processed in parallel in each BAN. The step numbers in the following procedure correspond to the

numbers in Figure 13. Note that the variables DONE_RV and DONE_OP in the Global SRAM are all initially set to “0”.

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 17

The variables are located in the variable area of the Global SRAM in BAN G of Figure 5. As shown in Figure 13, which
depicts communication state diagram, the communication procedure between the BANSs is as follows.

(1) In BAN A, MPC755_A reads MPEG2 video stream from an external source and writes the stream to input buffer
(in the global memory Global SRAM of BAN G in Figure 5) for each PE, and then sets the variable DONE_RYV to
“17.

(2) MPC755_A processes the first SH and GOP and writes the processed data to output buffer in Global SRAM.

(3) While MPC755_A works as the step (2), MPC755_B reads the second SH and GOP from the Global SRAM after
reading a value “1” from DONE_RYV, and then the PE sets the variable DONE_RV to “0”. After that, the PE starts
processing its video stream.

(4) MPC755_B sets variable DONE_OP to “1” after finishing the data processing and writes the processed data to
the output buffer in Global SRAM.

(5) MPC755_A resets DONE_OP to “0” after reading value “1” in variable DONE_OP.

Please note that all four BANs in Figure 5 process the MPEG2 decoding. While the above description was for the

communication between BAN A and BAN B, the other BANs' communication works in the same manner as the

procedure described above.

MPC755 AinBAN A MPC755 BinBANB
(Sender) (Receiver)
DONE_RV="("

Wait DONE_RV (1.3)3.2)

DONE_RV ’_‘

.1 Read raw data

2)
from Global (1) (3.3) @)
SRAM in BAN G; @)
Process the data 3.2 Deassert
DONE_RV DONE_OP

DONE_OP=0’ .3 Process the data;

-

time

Wait DONE_OP

“
Assert DONE OP
DONE_OP=1"

@)

Deassert DONE_OP [Note] DONE_RV='0° and DONE_OP="0at the initial stage

Figure 13. Communication between BANsin GBAVIII

C.4 Communication in Hybrid and SplitBA

Asintroduced earlier, the Hybrid Bus System shown in Figure 6 is a combined Bus System of BFBA (see Figure 4)

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 18

and GBAVIII (see Figure 5); in other words, the Hybrid has both the Bi-FIFO bus and the global bus. Therefore, in
the case of using the Bi-FIFO bus in the Hybrid Bus System, the communication procedure is the same as the
procedure shown in Example 4. On the other hand, when using the global busin the Hybrid, the procedure isthe same
asthat of GBAVIII as shown in Example 5.

The SplitBA shown in Figure 7 also has shared memory blocks (e.g., SRAM in each Bus Subsystem) that can be
accessed from all PEs (e.g., MPC755_A, MPC755 B, MPC755_C and MPC755 D in Figure 7). Through the shared

memory, the communication procedure among PEs can be implemented in the same manner as shown in Example 5.

V. METHODOLOGY FOR BUS SYSTEM GENERATION

Based on the Bus System structure described in Subsection IV.A, our bus synthesis tool BusSyn generates the Bus
System examples shown in Subsection IV.B using two kinds of Libraries: Module Library and Wire Library. Inthis
section, we show how the Libraries are made and work in the tool in the first subsection. Then, using the Libraries, we

will show how to generate the Bus Systems in the next subsection.

A. Librariesfor Module Repository and Wiring

BusSyn uses two libraries to generate a Bus System. One is a Module Library that contains Modules to be
configured inside each BAN, and the other is a Wire Library for connecting the Modules inside a BAN and for
connecting the BANs inside a Bus Subsystem.

The Module Library contains not only input/output port information and behaviour of each module in Register
Transfer Level (RTL) Verilog but also many templates to generate specific modules (e.g., SRAM). Here, the
templates have parameters to configure each of the specific modules, and the modules are generated by assigning
specific valuesto the parameters. The Module Library contains the following components:

(A) <PE>: aprocessing element, where <PE> is one of MPC750, MPC755, MPC7410 or ARM9TDMI

(B) CBI_<PE>: aninterface Module between a PE (or CPU) and bus

(C) <memory>_comp: a memory template to be used to generate any size of behavioura memory, where

<memory> is one of SRAM or DRAM

(D) MBI_<memory>: an interface Module between a <memory> and bus, where <memory> is one of SRAM or

DRAM

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 19

(E) BB_<bb_type>: abus bridge, where <bb_type> is one of GBAVI or SplitBA

(F) ARBITER <arb type>: an arbiter Module, where <arb_type> is one of “Round Robin” or “Priority”

(G) ABI: an interface Module between arbiter and bus

(H) GBI_<bus type>: ageneric businterface Module, where <bus type> is one of GBAVI, GBVAIIl or BFBA

(1) SB_<bus type>: aModule for segment of bus (SB), where <bus_type> isone of GBAVI, GBVAIII or BFBA

Example 6: Module Library

As an example of a Module Library component, MBI_SRAM is shown in Figure 14. This component is for the
interface between an SRAM and a bus as shown in Figures 3, 4, 5, 6 and 7. In Figure 14, the library component name
is shown in the first line, “%module <library_name>", where <library_name> is MBI_SRAM. To specify MBI_SRAM'’s
property, there are three parameters, @MEM_A_WIDTH@ for physical memory address width, @MEM_D_WIDTH@
for memory data width and @BIT_DIFFERENCE@ for difference in bit width between CPU data bus width and memory
data bus width. For the interface between CPU bus A and 8MB SRAM in BAN A of Figure 4, the parameters are set as
follows: @MEM_A_WIDTH@=20, @MEM_D_WIDTH@=64 and @BIT_DIFFERENCE@=0. In this library, control
signals for reading from and writing to SRAM are decided by pin names: reb_local, sram_reb, web_local and sram_web.
Please note that we assume that all addresses, which appear on a bus, are physical addresses. Any virtual addresses

used by programs must be translated to physical addresses prior to placing them on the bus.

Fornodule MBI SFEAD

rmodule mbi_sram bfehXaddr local, web_local, reb_local, dh, dl,
sratn_addr, srarn web, sram_oeh, sram dog

pararneter MER A WIDTH = @WELL A WID THiE,

pararneter MEN D WIDTH = @WELL D WIDTHEE,

input [WEW_ A WIDTH-1:0] addr local,
itiput web_local;
itiput reb local,
itwout [31:0] diy

inout [31:0] dl

output [WER_A WIDTH-1:0] sramn_addr;
output sratn_weh;
output sratn_oeh;
itwout [WENR T WIDTH-1:0] sram_dg;

assign sram_addr =addr_local;

assign sram_web =web_local;

assign sram_oeb=reb_local,

assign sram_dg=(~web_local) ? {dh, dI}: @MEN_D_WIDTH@ b=,

aszign {dh, dl} =C-~reb_local) ? {@BIT_DIFFERFMNCE@ b0, sram dg[WER] T WIDTH-1:0]3: é64'bz;
endmodule

Foendmodule WMBI_SEAN

Figure14. MBI_SRAM component in Module Library

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 20

The Wire Library contains all possible combinations of legal connections between hardware blocks (e.g., between
Modulesin each BAN and between BANsin each Bus Subsystem). Thislibrary iswrittenin ASCII format as shown
in Figure 15, and there are several fields to specify connection information:

(A) wire name (w_name)

(B) wire width (w_width)

(C) module name (mx_name), where x indicates the module humber, 1 or 2

(D) port name in module x (mx_pname)

(E) most significant bit (MSB) of wire connected to a module x (mx_wmsb)

(F) least significant bit (LSB) of wire connected to a module x (mx_wilsbh)

Yowire <library name>

w_natne w_width ml_name ml pnamem] wimsh ml_wlsh
mZ_name mZ_pname mZ_wmsh m2_wlsh

Yoendwire

Figure 15. WireLibrary Format

In the Wire Library of Figure 15, m1_name and m2_name fields need to be different when a connection specifiesa
wire between different Modules or BANs. Examples 7 and 8 show the wire connection of these cases. However, to
specify a wire between/among BANS that have same 1/O ports in their pin names in a Bus Subsystem (e.g., the
connection between BAN A and BAN B in Figure 4), m1_name and m2_namein Figure 15 need to bethe same. This
caseisdescribed in Example 8 in detail, where Figure 17(b) shows detailed blocks and I/O pinsthat are related to each

BAN’s 1/O ports shown in Figure 17(a).

Example 7: Wire Connections in a BAN

As an example of a wire connection in a BAN, consider the wires between MBI_SRAM and SRAM_A in BAN A of
Figure 4 BFBA. Figure 16 shows the detailed wires connecting SRAM_A to MBI_SRAM: w_addr for address bus,
w_web for write enable, w_reb for read enable, w_csb for chip selection and w_dq for data bus. To specify the wires in
Figure 16, the wire information in the Wire Library is as follows:
%wire ban_bfba
w_addr 20 SRAM_A sram_addr 19 0 MBI_SRAM addr 19 0
w_web 1 SRAM_A sram_web 0 0 MBI_SRAM web 0 0

w_reb 1 SRAM_A sram_reb 0 0 MBI_SRAMreb 0 0

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 21

w_csb 8 SRAM_A sram_csb 7 0 MBI_SRAM ¢sb 7 0

w_dg 64 SRAM_A sram_dg 63 0 MBI_SRAM dqg 63 0

Y%endwire
SEAM A MBI_SRAM
w_add{19:0]
sram_addi[19:0] addi{19:0]
sram_web w_weh web
sraim_teb woreb rely
sram_csb[7:0] Sl csb[7:0]
w_dg[63:0]
sratm_dg[63:0] dg[63:0]
Figure 16. Wire Connection Example between SRAM A and MBI_SRAM in Figure 4
O

Example 8: Wire Connections between BANSs in a Bus System

This example shows how to form wire connections between BANSs in the Wire Library. BANs A, B, C and D are linked
as in a chain as shown in Figure 17(a), and the connections of the I/O ports shown in the left box of Figure 17(b) are
repeated between the BANSs. In this kind of wire connections, the wire names and their connections between the BANs
have the same names but with different suffixes as shown Figure 17(a). In this case, it is not necessary that we specify
all wires and their connections related to the BANs. Thus, we specify wires and their connections between only two
BANSs in the Wire Library; however, our tool serially connects the linked BANs by generating wires suffixed by an
enumerated number as shown in Figure 17(a). For that purpose, wire connections between BANs are specified by the
same module names in the m1_name field and the m2_name field in the Wire Library as shown in Figure 15; in this
example, the names are just “BAN[A,B,C,D]" as shown below. Here, “BAN[A,B,C,D]” means that the specified wire is
applied for BANs A, B, C and D. On the other hand, the wires between BANs having different connections from the link
have to be specified in the Wire Library as shown below. The connections between BAN B and BAN FFT in
Figure 17(a) show the case where we assume that BAN B has another bus to BAN FFT in addition to the bus
connecting BANs A, B, C and D. Here, the BAN FFT is a BAN having a hardware Fast Fourier Transform (FFT) IP.

Detailed wire connections between a pair of BANs A, B, C and D in Figure 17(a) are as follows: w_done_op(or rv)_cs
for handshake register selection, w_ban_web for write enable, w_ban_reb for read enable, w_fifo_cs for FIFO chip
selection and w_data for data bus as shown in Figure 17(a). In the connections between BAN B and BAN FFT, the
wires are as follows: w_fft_ad: address for FFT buffer, w_fft_data: data bus, w_fft_reb for read enable, w_fft web for
write enable, w_fft_srt for FFT start control and w_fft_ack for acknowledge of FFT end. The wire connections among

the BANs shown in Figure 17(a) are specified in the Wire Library as follows:

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002

%wire subsys_bfba

w_done_op_cs 2 BAN[A,B,C,D] done_op_cs_dn 1 0 BAN[A,B,C,D] done_op_cs_up 10
w_done_rv_cs 2 BAN[A,B,C,D] done_rv_cs_dn 1 0 BAN[A,B,C,D] done_rv_cs_up 10
w_ban_web 1 BAN[A,B,C,D] web_dn 0 0 BAN[A,B,C,D] web_up 0 0
w_ban_reb 1 BAN[A,B,C,D] reb_dn 0 0 BAN[A,B,C,D] reb_up 00
w_fifo_cs 1 BAN[A,B,C,D] fifo_cs_dn 0 0 BAN[A,B,C,D] fifo_cs_up 00
w_data 64 BAN[A,B,C,D] data_dn 63 0 BAN[A,B,C,D] data_up 63 0
w_fft_ad 12 BAN[B] addr_b 11 0 BAN[FFT] addr_fft 11 0

w_fft_data 64 BAN[B] data_b 63 0 BAN[FFT] data_fft 63 0

w_fft_reb 1 BAN[B] reb_b 0 0 BAN[FFT] reb_fft 0 0
w_fft_web 1 BAN[B] web_b 0 0 BAN[FFT] web_fft 0 O
w_fft_srt 1 BAN[B] srt_b 0 0 BAN[FFT] srt_fft 0 0
w_fft_ack 1 BAN[B] ack_b 0 0 BAN[FFT] ack_fft 0 0

Y%endwire
w_fft_addr[11.0]
ol » [addr m[110]
g—g—gﬂ il » | data_M[53:0]
w T web b BANFFT
w_ff_ et g -
w_{ft ack ack Rt
ol
A
— ldone op cs dn done op cs up |W_done_op_cs_! ®) w_done_op_cs_2 w_done_op_cs_3| done_op cs dn done_op_cs_up
done_rv_cs_dn done_rv cs_up w_done_rv_ce | w_done_rv_cz 2 w_done_rv_cz 3 done_rv cs_dn done_rv_cs_up
web_dn web_up w_ban_weh_1 w_ban_weh 2 w_ban_weh 3 wreb_dn web_up
reb_dn BAN A reb_up w_ban_reh 1 BANB w_ban_reb_2 BAN © w_ban_reh 3 reh_dn BAND reb_up
fifo_cs_dn fifo_cs_up w_fifo_es_| w_fifo_vs 2 w_fifo_ts 3 fifo_cs_dn fifo_cs_up
w_data_1[63:0] w_data_2[63:0] w_data_3[63:0]
data_dn[A3:0] data_up[A3:0] data_dn[d3:0] data_up[63:0]
r wdata 4[63.0]
w_data_4[63:0]
w_fifo_cs 4
w_han_reb_4
w_done_rv_cs 4
w_done_op_cs_4
(a) Connection among BANs
BANs A/B/C/D BAN FFT
y LCF‘U Bus &4/B
done_op_cs_dn N done_op_cs_up_
done_rv_cs_dn : done_rv_cs_up:
»| HS_REGS | weh_up |
—* reb_up, adde FR[11°0]
—_——
web_da Bifo_cs_cs u, PRI
» - data_up[63:0] L’
reb_dn . * SLLEN web_{ FFT
fifo_cs_cs_dn | PFEOE [T odyformaNB | jet B
data_dn[63:0] - N VR R O S
| data b[63:0], |
o reb_b- !
] web_b (A
CEBI | art b | !
MPCT50_ A | e MECT55 |ttt — ack_b.; i
I | —r I

Figure 17. Wire Connection Example between BANsin Figure 4

{b) 'O pins and blocks in each BAN in detail

22

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 23

B. Bus System Generation Sequence

We now show how to generate the Bus Systems shown in Section 1VV.B. Before that, we explain user options to
configure the user specific Bus System to be generated from our bus synthesis tool BusSyn. Then we detail the
algorithms of BusSyn.

To configure acustom Bus System in BusSyn, the user first entersinput options as shown in the right hand side box

of Figure 18. These options are input constraints used to generate a custom Bus System. Severa categoriesin these

options are as follows:

(A) Bus System Property: number of Bus Subsystemsin a Bus System.

(B) Bus Subsystem Property: number of BANS, number of buses and bus type in each bus, where the bus type is
one of GBAVI, GBAVIII, BFBA or SplitBA.

(C) Bus Property: address bus width, data bus width and Bi-FIFO depth for each bus type specified in each Bus
Subsystem, where the Bi-FIFO depth is available only for BFBA and Hybrid.

(D) BAN Property: CPU type or Non-CPU type and number of memoriesfor each BAN, wherethe CPU typeisone
of MPC750, MPC755 or ARM9TDMI, and the Non-CPU typeis one of DCT or MPEG2 decoder.

(E) Memory Property: memory type, address bus width and data bus width for each memory specified in each
BAN, where the memory type is one of SRAM, DRAM, DPRAM or FIFO. Note that this can easily be

extended to include additional memory types.

User Input List
ﬂ 1. Bus System

- Number of Bus Subsystems
‘ 2. Bus Subsystem

‘ User Options Input

- For Each Bus Subsystem
S ﬂ -2.1 Number of BANs
ffr—] : : -2.2 Number of buses
Module # M?fﬁfg;‘;}gg&?g;‘nﬂg;ﬁ & -2.3 Bus Type: GBAVI, GBAVIIL, BFBA or SphitBA
Library q 3. Bus Property
@ - For Each Bus Type
e . -3.1 Address bu.s width
j Bus Access Node(BAN) Integration -3.2 Data bus width
-3.3 Bi-FIFO depth in the case of BFBA
Wire I 4. BAN Property
Library :j e S G - - For Each BAN
us Subsystem (Generation -4.1 CPU Type: NONE, MPC750, MPC755,
T Il MPC7410 or ARMOTDMI
-4.2 Non-CPU Type: NONE, DCT or MPEG2 decoder
‘ Bus Systemn Generation -4.3 Number of Memaries
5. Memory Property
[- For Each BAN

U

Synthesizable
Verilog HDL code

- For Each Memory
-5.1 Type: NONE, SRAM, DRAM, DPRAM or FIFO
-5.2 Address bus width
-5.3 Data bus width

Figure 18. The Bus System Generation Sequence

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 24

The input sequence of user options is as follows. First, the user enters the number of Bus Subsystems for a Bus
System and specifies the number of BANs and a bus type for each Bus Subsystem. For the bus types selected in the
Bus Subsystem Property option, the user inputs Bus Property options for each bus type. The CPU Type or Non-CPU
Type and the number of memories areinputsin the BAN Property option if the user wantsto have these resourcesin a
BAN. Finally, the user inputs Memory Property for each selected memory in the BAN Property if any memory is

required inaBAN. How to use each option in a Bus System is shown in Example 9.

Example 9: User Input Option to Configure Bus System to Be Generated
A sequence of user input which specifies the BFBA Bus System shown in Figure 4 is as follows. The user first specifies
the number of Bus Subsystems by entering a “1” in Bus System Property (user option 1 in Figure 18) and inputs “4” for
the number of BANs (user option 2.1) that are BANs A, B, C and D in Figure 4. The user also inputs “BFBA” for the bus
type (user option 2.2) to specify the Bus Subsystem. For the bus type BFBA, the user assigns the fields of Bus Property
as follows: “32” for address bus width (user option 3.1), “64” for data bus width (user option 3.2) and “1024” for Bi-FIFO
depth (user option 3.3). Next, the user inputs the fields of BAN Property for each BAN specified in the Bus Subsystem
Property: “MPC755” for the CPU Type (user option 4.1), none for the Non-CPU Type (user option 4.2), and “1” for the
number of memories (user option 4.3). Finally, the Memory Property is inputted for one memory in each BAN: “SRAM”
for the memory type (user option 5.1), “20” for the address bus width (user option 5.2) and “64” for the data bus width

(user option 5.3) for 8 MB SRAM in each BAN-BAN A, B, C or D. The four SRAMs are labeled SRAM_A, _B, _C and

_Din Figure 4. The total amount of hon-cache memories in Figure 4 is 32 MB. O

According to the user options shown in the right hand box of Figure 18, the user can customize the bus architecture
of aBus System in our bus synthesistool BusSyn. As one of the customized bus architectures, the user might want to
generate a mixed bus architecture by using the bus architectures we defined (e.g., GBAVI, BFBA and GBAVIII).

Following Example 10 describes how to generate the customized bus architecture for a Bus System by the user options

in BusSyn.

Example 10: Customized Bus Architecture (Hybrid)

Suppose a user wants to generate a combined bus architecture from the custom buses explained earlier: specifically,
the combined bus architecture of both the Bi-FIFO bus from BFBA and the global bus from GBAVIIIl. As shown in
Figure 6, we call the Bus System having the combined bus architecture as Hybrid. To generate such a Bus System, the

user needs to input the user options shown in the right hand box of Figure 18 as follows.

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 25

First, the user enters “1” for the number of Bus Subsystems (user option 1). Then the Bus Subsystem property (user
option 2) is specified as follows: “4” for the number of BANs (user option 2.1), “2” for the number of buses (user
option 2.2), “BFBA” for the first bus type (user option 2.3), “GBAVIII” for the second bus type (user option 2.3). For the
specified buses, BFBA and GBAVIII, the user enters their properties, respectively. In the BFBA bus property, address
bus width (user option 3.1) is set to “32”, data bus width (user option 3.2) is inputted with “64”, and Bi-FIFO depth (user
option 3.3) is entered with “1024”. And in the GBAVII bus property, address bus width (user option 3.1) is “32", and data
bus width (user option 3.2) is “64”. Next, the user enters each BAN Property; the user specified that the Bus Subsystem
has four BANSs in the user option 2. In each BAN (e.g., BAN A, B, C and D) Property, CPU type (user option 4.1) is set
to “MPC755”, Non-CPU type (user option 4.2) is entered with “NONE", and the number of memories (user option 4.3) is
inputted with “1". Based on the user input entered so far, each BAN has a single memory block, and thus total four
memories are in the Bus Subsystem (see user option 2.1). Finally, Memory Property for each memory block (e.g.,

SRAM_A, _B, _C and _D shown in Figure 6) is entered as follows: “SRAM” for memory type (user option 5.1), “20” for

address bus width (user option 5.2) for 8 MB size, “64" for data bus width (user option 5.3). O

BPANGen{module name array, user option array, ban name){
/* Step 1 */
For each module name i in module name array. look up
module name iin the Module Library and extract
or generate the cormresponding RTL. Verilog code
for each module i;
/* Step 2 */
Read wire information from Wire Library for each B AMN;
For each module i,
/* Step 3 */
Read port information from module i;
7 Step 4 */
While port j iz not last portf
WWhile wire Kk iz not last wire{
Compare wire k information with port j information:
If wire k information iz matched with port j information,
add wire k. wire connection k and port j into each list;
H
¥

H

/¥ Step 5 */

Instiantiate the required MModules:;
Arite Verilog HDL. code for a BAMN;

Figure 19. Pseudo Codefor BAN Generation

We introduce an algorithm to generate BAN(S) inside a Bus Subsystem. Figure 19 shows the pseudo code of the
algorithm. In Step 1 of the code, Modules required in each BAN are either extracted from the Module Library or
generated based on the user specified inputs. After extracting and generating the Modules for a BAN, wire
information from the Wire Library isread in Step 2 and port information from each required Moduleisread in Step 3.
Step 4 of the code uses the wire and port information not only to decide required wire connections between Modules
but also to obtain exact 1/O ports of the BAN to be generated. Both ends of each wire are examined if the wire needsto

be connected to a Module and/or to a port of the BAN. Finally, in Step 5, BANGen() writes Verilog HDL code after

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 26

generating the instantiation code of the Modules based on wires, wire connections and the ports which are decided

from the previous Steps. Example 11 shows a sample BAN generation based on the BAN generation algorithm.

Example 11: BAN Generation
For BAN A of BFBA shown in Figure 4, the required Modules are as follows: MPC755, MBI_SRAM, HS_REGS,

CBI_MPC755, SRAM_A and Bi-FIFO. Step 1 of BANGen() in Figure 19 extracts the first three Modules (MPC755,
MBI_SRAM and HS_REGS), and the others are generated according to the user options: for example, SRAM_A is
generated according to SRAM parameters input by the user. In Step 2 of Figure 19, BANGen() reads wire information
(e.g., w_name “w_addr”, mx_name “SRAM_A" and mx_pname “sram_addr” in the format of Figure 15) from the Wire
Library. In Step 3 of Figure 19, BANGen() obtains port and Module information (e.g, “sram_addr” and “SRAM_A") from
each Module. Next, during Step 4, BANGen() compares the wire information, the port and Module information to
decide which wires (e.g., “w_addr”) need to be connected between the Modules. Finally, in Step 5 BANGen()

generates the instantiation code of the required Modules with the chosen wires and writes Verilog HDL code describing

BAN A. O

SubSy=sGen(BAN name array, user option array, subsystem name)?f
/*+ Step 1 *+/
Read wire information from Wire Library for each Bus SubSystem;
For each BPAN iin BAN name array,
/* Step 2 */
Read port information from BAN iifBAN i iz different
from BAN (i-1);
I+ Step 3
WVWhile port j is not last port{
While wire k is not last wiref
Compare wire k information with port j information;
If wire k information is matched with port j information,
add wire k and wire connection k into each list;
H

}

¥

i* Step 4 */

Instiantiate required B ANs;

Write Verilog HDL code for a Bus Subsystem;

Figure 20. Pseudo Code for Bus Subsystem Generation

Bus Subsystem generation is done through procedure that instantiates generated BANs according to the Bus
Subsystem Property and then wires the BANs together. The pseudo code of the agorithm for Bus Subsystem
generation is shown in Figure 20. In Step 1 and Step 2 of Figure 20, wire information is read from the Wire Library,
and port information is obtained from each BAN generated. Step 3 compares the ports and the wires so that required
wires and wire connections between BANSs are decided for a Bus Subsystem. In Step 4, SubSysGen() writes Verilog
HDL code after generating the instantiation code of required BANs including the wires and wire connections which

were decided in the previous Steps. Example 12 shows the procedure of Bus Subsystem generation based on pseudo

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 27

code shown in Figure 20.

Example 12: Bus Subsystem Generation

Consider the wire “w_data” and the port “fifo_dq_up” described in Example 8. To generate Figure 4 BFBA Bus
Subsystem (which, as shown in Figure 4, is also a Bus System), SubSysGen() reads wire information (e.g., “w_data”
and “fifo_dq_up”) from the Wire Library in Step 1 of Figure 20 and obtains port information (e.g., “fifo_dq_up”) from
BAN A generated in Example 11 in Step 2. After that, SubSysGen() compares the port information with the wire
information and decides which wires (e.g., “w_data”) will be connected to the appropriate ports (e.g., “fifo_dqg_up”) of
BAN A in Step 3. With the same method, in Step 3, SubSysGen() decides wires (e.g., “w_data") to be connected to the
appropriate ports (e.g., “fifo_dg_dn") of BANs B, C and D. Finally, SubSysGen() instantiates BANs A, B, C and D with

the wires and wire connections that are decided upon in Step 3 of Figure 20 and writes Verilog HDL code describing the

Bus Subsystem in Step 4. O

A Bus Subsystem becomes a Bus System if the user wants a single bus architecture for the entire chip instead of
multiple bus architecturesin the SoC. A Bus Systemisalso formed by connecting generated Bus Subsystems through
bus bridges (BBs). As we have explained throughout this section, BusSyn can generate Modules as well as do a
syntactic trandlation from high-level input description based on the user options to output synthesizable Verilog HDL

code for a multiprocessor SoC.

VI. EXPERIMENTAL RESULTS

A. Application Examples

Five kinds of bus architectures for a multiprocessor SoC were generated using BusSyn and then simulated to
evaluate the performance with three applications: a database example [22], an MPEG2 decoder [23][24] and an

Orthogonal Fregquency Division Multiplexing (OFDM) transmitter [25], which is used in wireless communications.

1) Database Example

As for the first application example to show the performance achievable with a custom Bus System, we have
developed a database example having many tasks. Thisexampleiswrittenin C code having 1700 lines. Asshownin

Figure 21, a database system may use several transactions to access objects in the other tasks. For example, in

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 28

Figure 21, task1 requests abject O, in task2 and accesses O, after obtaining alock. The lock is used to synchronize

mutually exclusive accesses of the database objects in a multiprocessor system.

Task1 Req. Object O Task?2
—1t B e
-_|_Ssccess. Object O
cuccess. hject Cal
* *

Reqg. & ccess Feq. ﬁccess\
Ohject O Ohject Oy Ohject O, Ohject Oy,
Feg. Object O,
I e
w—eagoess Ohiect Ol

Taslk3 Tasl4

Figure 21. Transactionsin Database Example

For the RTOS, we use ATALANTA RTOS Version 0.4 developed at Georgia Tech [26]. We have installed the
RTOS on each BAN, and tasks assigned on each BAN are executed on top of the RTOS. We simulated this example
in a variety of Bus Systems each with four processors. A total of forty-one tasks that form a subset of the database
example run: eleven on the processor in BAN A and ten on each processor in each of other BANs in the examples of
Bus Systems shown in Section 1V.B. As shown in Figure 22 for the data transfer from a server to clients, atask in a
server writes datarequested from clientsto a shared memory, and then tasksin the clientsread the datafrom the shared
memory and write the datato their local memories. Here, each task accesses one-hundred 32-bit wordsto or from the
shared memory. With this database example, each one of Bus Systems has intensive bus traffic on its bus due to
shared memory requests from each BAN, and thus we are able to observe a significant performance contrast among

Bus Systems.

Shared Memory

Server > :

rC]ient 1

Figure 22. Data Transfer from Server to Clients

2) OFDM Transmitter

OFDM employs several paralel channels with low bit rates whose main lobes of carriers are orthogonal and side
lobes of carriers are overlapping one another. This is an efficient way of carrying several subchannels in a fixed
bandwidth. The subcarriers are not separated by bandwidth but rather overlap their side lobes with each other. The

frequency spacing between the sub carriers is arranged such that they become orthogonal, and a Fast Fourier

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 29

Transform (FFT) is used for digital modulation/demodulation of each sub channel.

Figure 23 shows a simplified block diagram of an OFDM transmitter. First, the sub channels are modulated by an
Inverse FFT (IFFT), and then a cyclic extension is added to avoid inter symbol interference caused by the physical
channel. Here, the cyclic extension makes a packet of data be symmetric by attaching a block of head data to the data

tail asshown in Figure 24.

Cyelic Physical
Extension Channel

o

S

— b

Figure 23. The Block Diagram of an OFDM Transmitter

3*(Guard+Data) # of packet to be transmitted
e.g., 3*¥(512+2048)=7680 samples c.g., 8 packets
Train Pulse Guard + Data Guard + Data

1 packet data

S12) 0 1536 [S12] o 51242048=2560 samples

Figure24. OFDM Data Format

Figure 24 shows the OFDM data format being transmitted. The OFDM data stream starts with a train pulse block,
which allows a receiver to perform channel estimation and data synchronization, and guard and data packets follow
the train pulse block. One packet of OFDM data we simulated here contains a 2048-complex valued sample and a
512-complex valued guard signal, where the size of guard datais usually a quarter of the data block.

Figure 25 shows the flow chart of the OFDM transmitter, which, in our example, is written in C code having 922
lines. Thefirst three blocks (Initialization, Train Pulse Generation, and Symbol Generation) in Figure 25 are excluded
in calculating throughput since these routines are executed only once at the startup. The End of Packet (EOP) loop
controls data generation or data reading from an external device, which generates data to be transmitted. This EOP
loop is repeated as many times as the size of the data packet; meanwhile, the outer loop is also repeated as many times
as there are new data packets to be transmitted. The generated data is fed into the modulation block, which executes

bit reversal, IFFT, normalization of IFFT output and insertion of the guard signal, sequentially.

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002

s
i

; chaimel parameter
; clean databuffer
TrinPake
Feneration
Symbol
Feneration

v

ECQT=Em of Tran nussion
s ECP= Exd of Packet

Mo -

Ho
Diata
Feneration

Tes

'{:
I

“Tramsmit”

Modulaiion
- Bit Feversal
-IFFT
- Hommali=ing,
- Insert Guard

Figure25. T

he Flowchart of the OFDM Transmitter

30

In OFDM, the function assignment to be processed in each BAN is decided after careful analysis of each function’s

computational oad because a balanced load among BANsresultsin the fastest possible executiontime. Table | shows

alist of functionsin OFDM and outlines the function assignment in each BAN. The assigned functions on BAN A

seem heavier, but it is not the bottleneck of system performance because the first three functions listed for BAN A

(italicized in Table 1) are executed only once. Only data generation, symbol mapping and bit reversal functions are

iterated in BAN A. The function on BAN B, IFFT, unfortunately is difficult to split up due to the structure of the

IFFT.

Tablel.

The Function Assignment in Each BAN

Function Group

& Assigned BAN

E (BAN A)

Functions in OFDNM Transmitter

itialization (channel parameters, etc)
Train Pulse Generation

Svimbol Generation

Data Generation and Symbol Mapping
Bit Reverse for Inverse FFT

F (BAN B)

Inverse FFT

G (BANC)

Normalizing Inverse FET

H (BAND)

Normalization
Insertion of Guard Signal
Data Output

Mote: Ttalicized functions are executed only once when starting OFDM system.

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 31

Figure 26 describes the computation in each processor according to programming styles: pipelined paralel
algorithm (PPA) and functional parallel algorithm (FPA). Here E, F, G and H in Figure 26 indicate function groups
shown in Table . We programmed the OFDM transmitter algorithm in both PPA style and FPA style to see how the
styles affect performance. The FPA style proved to be faster in most cases because of a more balanced load on each
BAN. One packet of OFDM data here contains a 2048-complex valued samples and a 512-complex valued guard

signals.

BAN & BAN *
A E E A EFGH EFGH
B F F B EFGH EFGH
© G G C EFGH | EFGH
D H|lH|H|H D EFGH | EFGH
Time > Time >
(a) Pipelined Parallel Algorithm (b) Functional Parallel Algorithm

Figure 26. Software Programming Stylein OFDM

3) MPEG2 Decoder

MPEG?2 video isan | SO/IEC standard that specifies the syntax and the semantics of encoded video bit streams[23].
The data streams include parameters such as bit rates, picture sizes, resolutions. We borrowed an MPEG2 decoder
code, which iswritten in C code having 8788 lines, from the MPEG Software Simulation Group [24] to evaluate the
generated Bus Systems.

Figure 27(a) shows input video frames, and Figure 27(b) shows the functional parallel processing of the frames on
each BAN. In the video stream data it is assumed that each Intra frame (I) is followed by Predictive frame (P) as
shown in Figure 27(a), and a Group Of Picture (GOP) is composed of two frames (I and P). Each frame size is

specified with very small picture, 16 pixels by 16 pixels, because of the limitation of simulation speed.

SH: Bequence Header

‘ SH‘ GOP1 ‘ SH‘ SOP2 ‘ SH‘ GOFP3 ‘ s I: Intra frame, P: Predictive frame
:] Baw 1

A G3OF1 GOPs
B GOP2 FOPs
C GOP3 GOP7
D GOP4 GOPS

Time

(a) Video Strearmn (b Functional Parallel Operation

Figure 27. Input Video Stream and Functional Parallel Operation

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 32

For the MPEG2 decoder, we exclusively used the FPA style because it yielded the fastest results. As shown in
Figure 27(b), each GOP isassigned to aparticular BAN for functional parallel operation. All video framesfed to BAN
A from an input source are distributed to each BAN, and each decoded frame is handed over to BAN D at the end.
Here BAN A and BAN D perform not only MPEG2 decoding but also raw data input and decoded data output,

respectively.

B. Experimental Environment

As shown in Figure 28, BusSyn takes the user input as described in Section V.B and outputs synthesizable Verilog
HDL code for the specified custom Bus System. For the Bus System simulation, we use Seamless CVE, a
hardware/software co-verification tool, and X-Ray debugger from Mentor Graphics [27] together with VCS, aVerilog
HDL simulator from Synopsys [28]. We use the Synopsys Design Compiler to synthesize the Verilog HDL code to
logic gates. For this environment, we use a Sun workstation Ultra 60 having two 450MHz UltraSPARC |1 processors
and 2 GB of memory.

In this experiment, we use four MPC755s in Seamless CVE; each BAN has one MPC755 with 100 MHz external
clock, SYSCLK. The maximum frequency of SY SCLK, which dictates the maximum bus speed, is limited to 100
MHz in the PowerPC Hardware Specification (note that the internal clock speed can be much faster, e.g.,

500 MHz) [29]. However, our results are equally applicable to much faster bus clock speeds.

BUS SYNTHESIS TOOL SIMULATION ENVIRONMENT

mNPUT Ll
I:,::> ves |::> SEAMLESS <:| XRAY
User options

BUS SYNTHESIZABLE oo
SYNTHESIS VERILOG
HDL CODE

SYNTHESIS ENVIRONMENT
LIBRARIES

- IModules DESIGN
- WWires COMFILER

<:‘.

1

Figure 28. Experimental Environment

C. Comparison of Result

With the generated Bus Systems (shown in Figures 3, 4, 5, 6 and 7) and hand-designed examples of CCBA and

GGBA (shown in Figures 8 and 9), we eval uate the performance and verify the operation of each Bus System with an

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002

33

OFDM transmitter, an MPEG2 decoder and a database example. The Bus Systems have 32 MB total of memory,

respectively, and each processor (MPC755) embedded in each Bus System has 32KB of L1 I-cache and 32KB of

D-cache.

Tablell.
Evaluation Resultsin OFDM Transmitter

Bus)) Software
Case System Throughput [Mbps] Programming Style
1 BFBA 2.6504 PPA
2 GBAVI 2.1087 FPA
3 4.5599 FPA
4 GBAVII 2.2567 PPA
5 . 4.5599 FPA
6 Hybrid 2.6504 PPA
7 SplitBA 5.1132 FPA
8 4.3913 FPA
9 GGBA 2.1880 FPA

Note: 1. PPA: Pipelined Parallel Algorithm, FPA: Functional Parallel Algorithm
2. Data: 2048 complex samples and 512 guard complex samples per packet
3. Each Bus System having four PowerPCs supports instruction and data cache operations

Tablell showsthe results of our evaluation using an OFDM transmitter that in our example has 922 lines of C code

for the algorithm implementation and 696 lines of assembly code for processor runtime initialization and APIs. The

operation of BFBA and GBAV I iswell matched to the PPA style because BFBA and GBAV I only have data transfer

mechanisms between BANSs instead of having a memory shared among all BANs. SplitBA is composed of two Bus

Subsystems connected with a Bus Bridge, and the two Bus Subsystems operate independently. Therefore, in SplitBA,

it is more reasonable to use the FPA style. SplitBA (Case7 in Table I1) using the FPA style shows the best

performance among the Bus Systems in our example: OFDM transmission reaches a rate of 5.1132 Mbps, 16.44%

faster than GGBA, which we take as representative of a typical commercial bus. We can see in Table Il that the

throughput of each Bus System is significantly affected by the bus types we described and programming style (PPA vs.

FPA):

(A) In software programming style, FPA beats PPA in the OFDM transmitter application (e.g., Case 3 vs. 4 and

Case8vs. 9inTablell). Thereasonisthat, for OFDM, FPA balances the computational load better than PPA

does.

(B) Bus Systems using a shared memory for program and local data (e.g., GGBA) require more memory arbitration

time than in Bus Systems having separated local memories for program and local data for each BAN (e.g.,

GBAVIII) does. Thisarbitration time difference explains why GBAV 11 outperforms GGBA.

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 34

(C) SplitBA relieves bus traffic congestion due to shared memory requests from each BAN. Thereason isthe Bus
System has spited bus architecture, and thus each arbiter in each Subsystem deals with only half number of total
memory requests from each BAN. With this reason, SplitBA beats GGBA in our example (Case 7 vs. 8).

(D) A fast data transfer method between BANs such as Bi-FIFO of BFBA contributes to the performance

improvement observed for the PPA style (e.g., Case 1 > Case 4 > Case 9 > Case 2, in throughput).

Tablelll.
Evaluation Resultsin MPEG2 Decoder

Case Bus System Throughput [Mbps]
10 BEFBA 0.8594
11 GBAVI 0.8271
12 GBAVII 1.1444
13 Hybrid 1.1650
14 CCBA 1.0083

[bTote] 1 Picture size: 16 = 16
2. All Bus Systems run on four PowerPCs have Functional Parallel Algorithm

In our application, MPEG2 decoder has 8788 lines of C code for its algorithm and 697 lines of assembly code for
initialization routines and APIs. In the results shown in Table 111, Hybrid (Case 13) shows the best performance
because Hybrid exploits both BFBA’s and GBAV111’s bus features such as (i) fast data transactions between adjacent
BANSs using Bi-FIFOs and (ii) global data accesses in global memory from all BANs. The results also show that
Hybrid and GBAV 11 outperform CCBA dueto faster arbitration time in data read operations (3 cycles as compared to
5in CCBA). InTablelll, BFBA and GBAVI perform poorly because the data to be processed in each BAN hasto be
passed from BAN A to each BAN sequentially. Note that Hybrid, generated by BusSyn, outperforms CCBA by

15.54% in this example.

TablelV
Evauation Results in a Database Example

Case Bus System Execution Time [ns]
15 GGBA 2,241,100
16 SplitBA 1,317,804

[Mote] 1. Each Bus System is composed of 1 server task and 40 client tasks.
2. Each task accesses one-hundred datato or from the shared memeory.

In the database application example, for multi-thread operation, we employ the ATALNATA RTOS [26], which
requires a shared memory. We can support the use of the RTOS in GBAVI and BFBA; however, in this paper, we do
not simulate these Bus Systems with this application because the current versions of these Bus Systems do not have

such a shared memory. Furthermore, this application is an example using only a shared memory without using local

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 35

memories in the data transaction between the server and the clients. Therefore, when we assume that, in this example,
we do not use a Bi-FIFO bus nor local memories, Bus Systems having a global memory and single global bus (e.g.,
GBAVIII, Hybrid and GGBA) have the same performance factor due to the same bus components. For that reason, we
use one of these Bus Systems, GGBA (see Figure 9), as a baseline of performance comparison and compare the
performance only with SplitBA (see Figure 7) in this application. The performance of SplitBA is improved over
GGBA because of following two reasons. The first oneisthat SplitBA has better bus topology (e.g., split global bus
connected by a bus bridge (BB)) than GGBA have, and thus bus traffic due to the shared memory requestsis lessened.
The second oneisthat SplitBA has shared bus architecture in each Bus Subsystem so that all clients can easily access
object data from the server. This example has total of 1700 lines of C code for the algorithm and runs on top of the
ATALANTA RTOS. A tota of forty-one tasks are executed for clients and a server; BAN A in Figure 7 has one
server task and ten client tasks, and the other BANs in the figure each have ten client tasks, where each task accesses
one-hundred words (32 bits per data word) to or from a shared memory in each Bus System. In the experiment of the
database example shownin Table IV, SplitBA (Case 16 in Table IV) outperforms GGBA (Case 15in Table1V) witha
41% reduction in application execution time.

TableV.
Generation Time and Gate Count in the Generated Bus Systems

Bus 1 processor 8 processors 16 processors 24 processors

Time Gate Time Gate Time Gate Time Gate
[ms] count [ms] count [ms] count [ms] counts
BFBA 509 800 534 6,401 546 | 12,793 578 | 19,188
GBAV] 417 872 432 5,809 457 13,751 506 21,156
GBAVIIT 513 | 2,070 | 5342 | 14,746 | 363 | 30,798 | 590 | 48,395
Hybrid 763 | 2,973 | 859 | 21,869 | 928 | 44,847 | 983 | 69,697
SplitBA N/A N/A 413 4,207 440 8,605 491 16,110

[Note] Time: Bus genaration time, NAA: Mot Applicable
Gatecount: MAMND 2 gate count in TEMC 0.25um standard cell library

System

Table V shows the generation time for the Bus Systems generated using BusSyn. Table V also shows the gate
counts of the Bus System logic after synthesizing the logic using the LEDA TSMC 0.25um standard cell library with
the Synopsys Design Compiler. Since our goal is cycle accurate hardware/software cosimulation, we do not include
layout parameters such aswire areain our area estimates. Thus, after using our tool, extra work is required to obtain
layout accurate area and timing estimates for the final chip implementation. BusSyn can generate a Bus System
having any number of processors, but the table shows Bus Systems having a maximum of 24 processors. |In the
generation time column, each Bus System shown in Table V takes|essthan one second to generate using BusSyn. Our

experienceisthat porting GGBA or CCBA to our application examples, on the other hand, took about one week. The

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 36

week was spent understanding signal functions of the processors and the modeling of required Modules and their
interfaces. Note that BusSyn achieves performance superior to the hand design of GGBA and CCBA; furthermore, the
custom bus architecture is designed in a matter of seconds instead of weeks. This means we have a mgjor benefit that
is fast design space exploration of bus architectures across performance influencing factors such as bus types,
processor types and software programming style resulting in a system having higher performance. This goa is

accomplished through BusSyn, which allows the user to easily design a custom Bus System in a matter of seconds.

VIl. CONCLUSION

In this paper, we have described a methodology to generate custom Bus Systems for multiprocessor SoC designs.
We designed a bus synthesis tool BusSyn by exploiting this methodology. Using BusSyn, we have generated five
different Bus Systems as examples: BFBA, GBAVI, GBAVIII, Hybrid and SplitBA. In Section VI, the Bus Systems
are evaluated according to their performance and are verified in operation with three applications. an OFDM
transmitter, an MPEG2 decoder and a database example. Our methodology gives us a great benefit in fast design
space exploration of bus architectures across performance influencing factors such as bus types and software
programming style. We showed that BusSyn achieves performance superior to the hand design of asimple GGBA and

CCBA, but in amatter of secondsinstead of weeks for the hand design.

ACKNOWLEDGMENT

This research is funded by the State of Georgia under the Yamacraw initiative and by NSF under INT-9973120,
CCR-9984808 and CCR-0082164. We acknowledge donations received from Denali, Hewlett-Packard, Intel, LEDA,

Mentor Graphics, SUN and Synopsys.

REFERENCES

[1] K.Ryu, E. Shinand V. Mooney, "A Comparison of Five Different Multiprocessor SoC Bus Architectures," Proceedings of the EUROMICRO
Symposiumon Digital Systems Design (EUROMICRO' 01), pp. 202209, September 2001.

[2] K.RyuandV.Mooney, “Automated Bus Generation for Multiprocessor SoC Design,” Design, Automation and Test in Europe (DATE' 03),
pp. 282-287, March 2003.

[3] IBM, “CoreConnect Bus Architecture,” [Onling]. Available: http://www-3.ibm.com/chips/techlib/techlib.nsf/productfamilies/

CoreConnect_Bus_Architecture, 2002.

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 37

(4

(5]

(6]

(7

(8l

(9

(10

[11]

(12

[13

(14

(15

[16]

[17]

(18
(19

(20

[21]

(22

ARM, “AMBA Specification Overview,” [Onling]. Available: http://www.arm.com/armtech.nsf/html/AMBA? OpenDocument& style=
AMBA, 2002.

B. Cordan, “An Efficient Bus Architecture for System-on-a-Chip Design,” Proceedings of IEEE Custom Integrated Circuits Conference,
pp. 623-626, May 1999.

Sonics, “Sonics pNetwork Technicd Overview,” [Onling]. Available: http://www.sonicsinc.com/sonics/support/documentati on/'whitepapers/
data/Overview.pdf, 2002.

B. Dittenhofer, “Connecting Multi -Source IP to a Standard On Chip Architecture,” [Onling]. Available: http://www.pamchip.com/
pdf/CP-9248P.pdf.

M. Gasteier and M. Glesner, “Bus-Based Communication Synthesis on System-Level,” Proceedings of 9" International Symposium on
System Synthesis, pp. 65-70, November 1996.

R. A. Bergamaschi and W. Leg “Designing Sy stems-on-chip using cores,” Proceedings of the 38™ Design Automation Conference (DAC'00),
pp. 420-425, June 2000.

P. Chou, R. Ortega and G. Borridlo, “IPCHINOOK: An Integrated IP-based Design Framework for Distributed Embedded Systems,”
Proceedings of the 37" Design Automation Conference, June 1999.

D. Lyonnard, S. Yoo, A. Baghdadi and A. A. Jarraya,, “Automatic Generation of Application-Spedfic Architectures for Heterogeneous
Multiprocesor System-on-Chip,” Proceedings of the 39" Design Automation Conference, pp. 518-523, June 2001

F. Gharsdli, D. Lyonnard, S. Meftali, F. Rousseau and A. A. Jerraya, “Unifying Memory and Processor Wrapper Architecture in
Multiprocessor SoC Design,” Proceedings of the International Symposiumon System Synthesis (ISSS B), pp. 26-31, October 2002.

S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi and A. Jerraya, “A Generic Wrapper Architecture for Multi -Processor SoC Cosimulation
and Design,” Proceedings of the Tenth International Symposium on Hardware/Software Codesign (CODES' 01), pp. 195200, April 2001.

F. Gharsdli, S. Meftdli, F. Rouseau and A. Jerraya, “Automatic Generation of Embedded Memory Wrapper for Multiprocesor SoC,”
Proceedings of the 40" Design Automation Conference (DAC02), pp. 596-601, June 2002.

W. Cesério, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. Jerraya and M. Diaz-Nava, “Component -Based
Design Approach for Multicore SoCs,” Proceedings of the 40™ Design Automation Conference (DAC'02), pp. 789-794, June 2002.

W. Cesério, D. Lyonnard, G. Nicolescuy, Y. Paviot, S. Yoo, A. Jerraya, L. Gauthier and M. Diaz-Nava, “Multiprocessor SoC Platforms: A
Component-Based Design Approach,” IEEE Design & Test of Computers, vol. 19, no. 6, pp. 62-63, November 2002.

G. Nicolescu, S. Yoo, A. BouchhimaandA. A. Jerraya, “Validation in a Component-Based Design Flow for Multicore SoCs,” Proceedings of
the International Symposiumon System Synthesis (ISSS 02)pp. 162-167, October 2002.

Pentek, “Operating manual for Model 4290 and4291,” [Online]. Available: http://www.pentek.com/Products/Detail.cfm?M odel=4291, 2002.
C. Hsieh and M. Pedram, “Architectural Energy Optimization by Bus Splitting,” |EEE Transaction on Computer-Aided Design of Integrated
Circuitsand Systems, vol. 21, no. 4, pp. 408-414, April 2002.

J. L. Hennessy and D. A. Patterson, Computer Organization and Design, the Hardware and Sftware Interface, CA: Morgan Kaufmann
Publishers, Inc, 1994.

Ibid., pp. 551-558.

M. A. Olson, “Selecting and Implementing and Embedded Database System,” |EEE Computer, pp. 27-34, September 2000.

Technical Report GIT-CC-02-64, College of Computing, Georgia Institute of Technology, December 2002 38

[23] K.R.RaoandJ. J. Hwang, Technique & Standards for Image Video & Audio Coding, NJ: Prentice Hall PTR, 199.

[24] MSSG, “mpeg2encoder / mpeg2decoder, ” [onling]. Available: http://www.mpeg.org/M PEG/M SSG/Codec/readme.txt, 1996.

[259] D.KimandG.L. Stiber,” Performanceof Multiresolution OFDM on Frequensgl ective Fading Channels," IEEE Transaction on Vehicular
Technology, vol. 48, no. 5, pp. 1740-1746, September 1999.

[26] S. Di-Shi, D. Bloughand V. Mooney, “Atalanta: A New Multiprocessor RTOS Kernel for System-on-a-Chip Applications,” Georgia Institute
of Technology, College of Computing, Atlanta, GA. Tech. Rep. GIT-CC-02-19, March 22, Available: http://www.cc.gatech.edu/
tech_reports/.

[27] Mento Graphics, “Seamless Hardware/Software Co-Verification,” [Onling]. Available: http://www.mentor.com/seamlesgdatasheds/
seamless_ds.pdf, 2002.

[28] Synopsys, “VCS datashed,” [Onling]. Available: http://www.synopsys.com/products/simulation/vcs_ds.html, 2002.

[29] Motorola, “MPC 755A RISC Microprocesor Hardware Specification,” [Onling]. Available: http://e-www.motorola.com/webapp/sps/

site/prod_summary.jsp?code=M PC755& nodeld= 04M0ylg8ZH6, 2002.

