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Abstract

Cell migration is the driving force behind the dynamics of many diverse biological processes. Even though microscopy
experiments are routinely performed today by which populations of cells are visualized in space and time, valuable
information contained in image data is often disregarded because statistical analyses are performed at the level of cell
populations rather than at the single-cell level. Image-based systems biology is a modern approach that aims at
quantitatively analyzing and modeling biological processes by developing novel strategies and tools for the interpretation
of image data. In this study, we take first steps towards a fully automated characterization and parameter-free classification
of cell track data that can be generally applied to tracked objects as obtained from image data. The requirements to achieve
this aim include: (i) combination of different measures for single cell tracks, such as the confinement ratio and the
asphericity of the track volume, and (ii) computation of these measures in a staggered fashion to retrieve local information
from all possible combinations of track segments. We demonstrate for a population of synthetic cell tracks as well as for in
vitro neutrophil tracks obtained from microscopy experiment that the information contained in the track data is fully
exploited in this way and does not require any prior knowledge, which keeps the analysis unbiased and general. The
identification of cells that show the same type of migration behavior within the population of all cells is achieved via
agglomerative hierarchical clustering of cell tracks in the parameter space of the staggered measures. The recognition of
characteristic patterns is highly desired to advance our knowledge about the dynamics of biological processes.
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Introduction

Image-based systems biology is a growing field of research that

involves the development of methods for the quantitative analysis

and modeling of information contained in microscopic images.

Today, investigations of biological processes are often routinely

accompanied by microscopy experiments, however, in many cases

the acquired image data are eventually only used for illustrative

purposes. The disregard of valuable information that is contained

in these data is partly a consequence of lacking strategies for their

appropriate analysis [1].

In order to capture important details of a biological process

under consideration and to arrive at quantitative predictions, it is

generally required that algorithms capable of analyzing the specific

experimental data have to be developed first [2,3]. In particular,

algorithms for the automated characterization and parameter-free

classification of cell tracks at the single-cell level are currently

lacking. For example, while the time-dependent positions of cells

are recorded in microscopy experiments at the single-cell level, in

many cases the subsequent analysis is performed by statistical

means at the level of the cell population, where the absolute cell

positions in the biological sample and the relative temporal offset

between cell tracks are integrated out. In fact, analyzing image

data obtained at the single-cell level by statistical means at the level

of the cell population may strongly reduce the predictive power of

the analysis and may possibly even lead to incorrect conclusions

with regard to spatio-temporal changes in the cellular migration

behavior.

A prominent example concerns the interpretation of early

experimental studies on B cell migration in germinal centers,

where the cellular migration behavior was evaluated by statistical

analyses of cell populations from which it was predicted to be

purely random [4–6]. However, applying an image-based systems

biology approach, it was first observed by Figge et al. [7] and

subsequently confirmed by Beltman et al. [8] that the experimental

data are compatible with germinal center B cell tracks containing

combinations of random and directed track segments. Computer

simulations based on the image data suggested that these directed

segments could be induced by transient chemotaxis and it was

postulated that directed segments in the cell tracks are a necessary
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condition to reconcile the observed B cell migration behavior with

the peculiar zonal morphology in germinal centers [7,9]. In other

words, the cellular migration behavior was predicted to be

dependent on the cell position in the biological sample with cells

changing from a more random to a more directed mode of

migration at the germinal center zone boundary. Naturally, the

tailored cell track analysis by Beltman et al. [8] exploited this pre-

existing hypothesis on transient chemotaxis at the zone boundary

as well as additional prior knowledge with respect to the estimated

position of the germinal center zone boundary from experiment.

In general, however, it would be preferable to perform the

characterization and classification of the cellular migration

behavior in a fully automated fashion avoiding the use of any

prior knowledge.

The importance of analysing the migration behavior of single

cells was realized in recent microscopy experiments of cell

migration, e.g. for the guidance of dendritic cells by haptotactic

chemokine gradients towards lymphatic vessels [10], for B cell

trafficking within the T cell area to enter follicles in the lymph

node [11], and for neutrophil migration directed by inflammatory

chemokines [12]. The chemokine dependent migration of

neutrophils was shown to be influenced by various factors such

as the distance to the site of infection. Furthermore, the migration

was described to be of random walk type with directed behavior

when affected by chemokine gradients. Thus, neutrophil migration

shows a rich diversity of different types of migration behavior

emphasizing once again the need for single cell track analyses.

In this work, we take first steps towards a fully automated

characterization and parameter-free classification of cell track data

that can be generally applied to tracked objects as obtained from

image data. We identified the following two requirements to

achieve this aim: (i) combination of different measures such as the

confinement ratio and the asphericity of the cell track volume and

(ii) computation of these measures in a staggered fashion to

retrieve local information from all possible track segments. In this

way, the information contained in the cell track data is exploited

while drawing on prior knowledge is deliberately abandoned in

order to keep the analysis unbiased and general. The recognition

of characteristic patterns is of high interest. We demonstrate that

this can be achieved via hierarchical clustering of cell tracks in the

parameter space related to the confinement ratio and the volume

asphericity.

Figure 1. Schematic cell track characterization. (A) Example of a cell track segment. (B) The volume asphericity is determined by the cell
positions of the track segment that are viewed as uncorrelated data points. (C) Track segments with different time-orderings are compatible with one
and the same volume, including time-ordering based on closest data points (top) and time-ordering based on farthest data points (bottom). (D) The
confinement ratio is determined by the displacement over the length of the cell track segment. (E) The displacement ratio is determined by the
displacement over the maximal displacement of the cell track segment. (F) The outreach ratio is determined by the maximal displacement over the
length of the cell track segment.
doi:10.1371/journal.pone.0080808.g001

Cell Track Analysis
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Methods

This section summarizes the mathematical characterization of

cell tracks at the level of single cells and the classification of cell

tracks into different types of migration behavior.

Cell track characterization
The characterization of cell tracks at the level of single cells is

usually achieved by calculating characteristic measures, e.g. the

confinement ratio, which are computed along the track of a cell

relative to its initial position. Referring to these quantities as linear

measures when computed as a function of time, they are extended

for cell track characterization in the following way: (i) character-

istic measures are computed as staggered quantities, i.e. as a

function of time and for a varying starting time points along the

track, (ii) staggered measures are studied in a combined fashion,

and (iii) these measures are computed both in the presence and

absence of time-ordering with regard to cell positions. It should be

noted that, in contrast to earlier studies [13], we keep the time

resolution unchanged in the computation of the staggered

measures.

In general, a population of I cells in a d-dimensional spatial

environment at time point n is defined by the cell position vectors,

~rri(n)~(ri,1(n), . . . ,ri,d (n))
T : ð1Þ

Here, ri,k(n) denotes the kth dimension (with k~1, . . . ,d ) of the

position vector for the cell with identification number i (with

i~1, . . . ,I ) and n~1, . . . ,Niz1 refers to the number of time

points Niz1 of this cell. Assuming that cell positions are measured

at constant time intervals Dt, the track of the ith cell is uniquely

defined by the time-ordered sequence Ti(Niz1,1) of its position

vectors:

Ti(Niz1,1):f~rri(1),~rri(2), . . . ,~rri(Niz1)g : ð2Þ

Note that n~1 refers to the time point at which the cell is

observed in the system for the first time, i.e.~rri(1) denotes the initial
position of the ith cell.

The calculation of measures as staggered quantities implies that

computations are not based on Eq. (2) alone, but rather that all

possible combinations

Figure 2. Cell population analyses of cell track data consisting of three sub-populations with distinct types of migration behavior.
(A) Instantaneous speed distribution with average speed 5+1:25 mm/min. (B) Turning angle distribution with average angle 580

+480. (C)

Displacement curve showing linear dependence on the square-root of time for the overall cell population. Error bars correspond to the standard
deviation and are only shown at selected time points to enhance clarity. (D) Displacement curves for each sub-population separately: 100 cell tracks
of type 1 (red, see Fig. S1), 100 cell tracks of type 2 (green, see Fig. S2) and 300 cell tracks of type 3 (blue, see Fig. S3). Error bars correspond to the
standard deviation.
doi:10.1371/journal.pone.0080808.g002
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Ti(n,m)~f~rri(m),~rri(mz1), . . . ,~rri(n)g for 1ƒmƒnƒNiz1ð3Þ

of a cell track’s time-ordered segments are considered. An

example for a cell track segment is depicted in Fig. 1A. While

standard analyses of cell tracks by linear measures, e.g. based on

the confinement ratio, are performed for Ti(n,1) and the

corresponding number of function values scales with Ni,

computations in a staggered fashion imply that the number of

function values scales with Ni
2 for combinatorial reasons. Though

computationally more expensive, the advantage of this procedure

is that it allows identifying the transient characteristics of cell

tracks. Taking these transient characteristics into account turns out

to be a necessary requirement for the correct classification of cell

tracks into different types of migration behavior.

Leaving the time-ordering of cell positions along the track

segment out of consideration, cell positions of a track segment are

not viewed as subsequent data points but rather as a cloud of

uncorrelated data points. From this point of view the track

segment Ti(n,m) is represented by the gyration tensor Gi(n,m),

which defines the d-dimensional ellipsoidal volume that resembles

the shape of this cloud of data points [14,15]. The gyration tensor

is a symmetric d|d matrix with entries,

Gi,k,l(n,m)~Sri,k(t)ri,l(t)T(n,m){Sri,k(t)T(n,m)Sri,l(t)T(n,m) , ð4Þ

where k,l~1, . . . ,d are labels for the cartesian coordinates of

the d-dimensional spatial system. The averages are taken over

consecutive cell positions m to nz1 (with Ni§n§m) for the track

segment of the ith cell:

The averaging procedure is defined such that at least two cell

positions are involved, i.e. diagonal elements Gi,k,l(m,m) refer to

cell positions m and mz1. The d eigenvalues of the gyration

Figure 3. Characterization of cell populations by linear measures. Results are presented as time-dependent averages over the relevant cell
populations for each type of migration behavior (type 1: red curve, type 2: green curve, type 3: blue curve) and for the overall population (grey curve).
Error bars correspond to the standard deviation and are only shown at selected time points to enhance clarity. (A) Confinement ratio. (B) Volume
asphericity. (C) Outreach ratio. (D) Displacement ratio.
doi:10.1371/journal.pone.0080808.g003

Figure 4. Examples of cell tracks from different sub-
populations. One cell track for each type of migration behavior is
shown: a fairly straight cell track (type 1, red), a strongly confined cell
track (type 2, green) and a purely random cell track (type 3, blue).
doi:10.1371/journal.pone.0080808.g004

Cell Track Analysis
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tensor Gi(n,m) correspond to the squares of the gyration radii

Rk(n,m) (with k~1, . . . ,d ) defining the d-dimensional ellipsoidal

volume of track segment Ti(n,m). It should be noted, however,

that the uniquely defined d-dimensional ellipsoidal volume

Gi(n,m) of track segment Ti(n,m) is compatible with (n{mz2)!

different combinations of time-orderings in the cellular positions.

Staggered volume asphericity. The shape of the track

volume is characterized by universal quantities such as the

asphericity, Ad~Ad (n,m), which quantifies the deviation of the

track volume from a d-dimensional sphere (with d~2,3). It is

expressed in terms of the gyration radii Rk~Rk(n,m), i.e. the

square-roots of the d eigenvalues of the gyration tensor Eq. (4), and

is given by [15]:

Ad (n,m)~
1

d(d{1)SR2
l T

2
d

X

d

k~1

(R2
k{SR2

l Td )
2 , ð6Þ

where the average value

SR2
l Td~

1

d

X

d

l~1

R2
l ð7Þ

is taken in the d-dimensional space. It can be easily shown that

the value of the asphericity is restricted to 0ƒAdƒ1. In case all

gyration radii are identical, R1~ . . .~Rd , the track volume

corresponds to a d-dimensional sphere, which is reflected by

vanishing asphericity: Ad~0. This distribution of data points may

be interpreted as originating from the track of a cell that performs

random migration covering the space isotropically. In contrast, a

perfectly straight cell track implies that all but one Rk equal zero,

such that Ad~1 is indicative for the maximal deviation of the

track volume from the d-dimensional sphere.

The volume asphericity is illustrated in Fig. 1B, where the lack

of time-ordering of cell positions along the track segment gives rise

to (n{mz2)! different combinations that are compatible with the

same ellipsoidal volume, of which two extreme examples are

shown in Fig. 1C.

Staggered volume prolateness. In three spatial dimensions

(d~3), the shape of the track volume is further characterized by a

universal quantity referred to as prolateness. Intermediate values

of the asphericity, 0vA3v1, refer to ellipsoidal volumes that may

be prolate with R1&R2&R3 – i.e. corresponding to a cigar-shaped

volume along one spatial direction with confinement in the other

two spatial dimensions – or oblate with R1%R2&R3 – i.e.

corresponding to a random cell track in two spatial dimensions

with confinement along the third spatial direction. The prolateness

Pd~3~Pd~3(n,m) of the three-dimensional track volume is given

by [15]:

Pd~3(n,m)~
4

9

P
d~3
k~1 (R

2
k{SR2

l T3)

SR2
l T

3
3

z
1

4

 !

, ð8Þ

with 0ƒPd~3ƒ1. Inspection of this formula reveals that Pd~3&1

Figure 5. Linear measures for the three types of cell tracks shown in Fig. 4 (type 1: red, type 2: green, type 3: blue). (A) Confinement
ratio as a function of time. (B) Volume asphericity as a function of time. (C) Outreach ratio as a function of time. (D) Displacement ratio as a function of
time.
doi:10.1371/journal.pone.0080808.g005
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for prolate track volumes, while for oblate track volumes Pd~3&0.

Spherical track volumes yield intermediate values around

Pd~3&1=9. In passing we note that – for obvious reasons – the

prolateness does not represent a meaningful measure in dimen-

sions dv3.

Staggered confinement ratio. A measure for the confine-

ment of a cell track that does respect the time-ordering in the

sequence of cell positions is given by the confinement ratio [16].

This quantity compares the time-dependent length of the cell track

with that of the corresponding displacement vector, as is

schematically shown in Fig. 1D.

Figure 6. Heat maps of the staggered confinement ratio, staggered volume asphericity, staggered outreach ratio and staggered
displacement ratio for the three types of cell tracks shown in Fig. 4. (A) Type 1: fairly straight cell track. (B) Type 2: strongly confined cell
track. (C) Type 3: purely random cell track.
doi:10.1371/journal.pone.0080808.g006

Table 1. Average staggered measures of three representative synthetic cell tracks per migration type.

average staggered type 1: type 2: type 3:

measure fairly straight strongly confined purely random

confinement ratio 0.81 (0.86+0.05) 0.14 (0.13+0.02) 0.45 (0.39+0.05)

volume asphericity 0.80 (0.86+0.06) 0.39 (0.34+0.08) 0.57 (0.50+0.07)

outreach ratio 0.82 (0.86+0.05) 0.19 (0.18+0.02) 0.48 (0.44+0.04)

displacement ratio 0.99 (0.99+0.02) 0.69 (0.71+0.06) 0.93 (0.83+0.06)

volume prolateness 0.74 (0.81+0.08) 0.33 (0.28+0.06) 0.48 (0.41+0.07)

For each average staggered measure the values are highest (lowest) in the case of cell tracks of type 1 (type 2), while cell tracks of type 3 always assume intermediate
values. Values in brackets denote the average value and standard deviation for the average staggered measure of the corresponding sub-population. The Wilcoxon
rank-sum test revealed that the average staggered measures of different sub-populations were significantly different (pv10{10).
doi:10.1371/journal.pone.0080808.t001

Cell Track Analysis
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Figure 7. Hierarchical clustering of synthetic cell tracks in the parameter space of staggered measures. (A) Cell tracks from the three
sub-populations with different types of migration behavior, i.e. fairly straight (type 1: red), strongly confined (type 2: green) and purely random (type
3: blue), form distinct clusters in the space spanned by the average confinement ratio and the average volume asphericity. (B) Dendrogram obtained
from the agglomerative hierarchical clustering based on the euclidean distance between the centroids of groups of data points.
doi:10.1371/journal.pone.0080808.g007

Figure 8. Cell population analyses of cell track data obtained from neutrophil migration. (A) Instantaneous speed distribution with
average speed 3:7+3:1 mm/min. (B) Turning angle distribution with average angle 590

+510. (C) Displacement curve showing linear dependence on
the square-root of time. Error bars correspond to the standard deviation and are only shown at selected time points to enhance clarity. (D) Number of
cell tracks as a function of time.
doi:10.1371/journal.pone.0080808.g008

Cell Track Analysis
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The displacement vector between time points m and nz1 in

terms of the cell position vectors Eq. (1) is given by

~ddi(n,m)~~rri(nz1){~rri(m) , ð9Þ

where we assume without loss of generality that 1ƒmƒnƒNi.

The track length between time points m and nz1 can be

represented as

in terms of the displacement vector ~ddi(k,k) that refers to

subsequent time points k and kz1. The staggered confinement

ratio is then defined as the ratio of these two quantities,

Viewing Ci(n,m) as entries of the Ni|Ni matrix Ci, we note

that this matrix is symmetric because both the displacement vector

D~dd(m,n)D~D{~dd(n,m)D~D~dd(n,m)D and the track-segment length

l(n,m)~l(m,n) are invariant under the time reversal operation

n<m such that C(n,m)~C(m,n). Furthermore, the diagonal

elements of Ci take values Ci(k,k)~1 because D~ddi(k,k)D~li(k,k)

for all k. In general, 0ƒCi(n,m)ƒ1, since

li(n,m)~
X

nƒNi

k~m

D~ddi(k,k)D§D
X

nƒNi

k~m

~ddi(k,k)D~D~ddi(n,m)D ð12Þ

according to the triangle inequality D~aaDzD~bbD§D~aaz~bbD for real vectors

~aa and ~bb.
Staggered displacement ratio. The staggered displacement

ratio is depicted in Fig. 1E and is a variation of the staggered

confinement ratio. Here, the length of the cell track is replaced by

the length of the longest displacement vector, dmax
i (n,m), among

all possible pair combinations ~ddi(l,k) for the displacement vector

between time points m and nz1 (with mƒn):

dmax
i (n,m)~maxfD~ddi(l,k)DgDmƒkƒlƒn : ð13Þ

The staggered displacement ratio is then given by

Di(n,m)~
D~dd i(n,m)D

dmax
i (n,m)

ð14Þ

and corresponds to an extension of the previously applied quantity

Di(n,1) for the whole cell track [17]. For a perfectly straight track,

we obtain dmax
i (n,m)~D~ddi(n,m)D and Di(n,m)~1, while in general

the staggered displacement ratio takes values 0ƒDi(n,m)ƒ1. In

passing we note that the displacement ratio shares the symmetry

property Di(n,m)~Di(m,n) with the other staggered measures.

Note that the staggered displacement ratio Di(n,m) and the

staggered confinement ratio Ci(n,m) represent different aspects of

a cell track. Assuming that cells are not running on the spot, the

length of a cell track always increases with the next time step. In

contrast, except for perfectly straight tracks where

dmax
i (n,m)~li(n,m), the displacement vector with maximal length

does in general not increase continuously but may remain constant

over several time steps. Thus, while the confinement ratio

measures the displacement length relative to the track length,

the reference in the displacement ratio is set by the two most

distant cell positions in the track segment under consideration.

Staggered outreach ratio. We define the staggered outreach

ratio,

Oi(n,m):
Ci(n,m)

Di(n,m)
~

dmax
i (n,m)

li(n,m)
, ð15Þ

by combining the staggered confinement ratio Ci(n,m) and the

staggered displacement ratio Di(n,m). This symmetric measure,

Oi(n,m)~Oi(m,n), has the intuitive meaning that the length of a

track segment allows for a maximal displacement within the track

segment. Thus, as shown in Fig. 1F, while the confinement ratio

compares the direct path between track points at time points m

and nz1 with the corresponding length of the track segment, the

outreach ratio refers to the maximal displacement length that is

realized within this track segment.

Cell track classification
The classification of cell tracks according to their type of

migration behavior was realized by adopting the method of

hierarchical clustering from the field of data mining, which is

routinely applied to discover relevant patterns within large data

sets [18]. In the present context, hierarchical clustering of a

population of cell tracks is performed to identify sub-populations of

Figure 9. Hierarchical clustering of neutrophil cell tracks in the parameter space of two staggered measures. (A) Sub-populations of
cell tracks in the space spanned by the average confinement ratio and the average volume asphericity: fairly straight cell tracks (type 1: red), strongly
confined cell tracks (type 2: green) and purely random cell tracks (type 3: blue). In going from 2D to 4D clustering, eleven cell tracks change sup-
populations from type 1 to type 3 and from type 3 to type 2 (indicated in black). (B) Dendrogram obtained from the agglomerative hierarchical
clustering based on the euclidean distance between the centroids of groups of data points.
doi:10.1371/journal.pone.0080808.g009
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cell tracks that show similar migration behavior within a

continuum of observed behaviors.

The advantages of hierarchical clustering over other clustering

methods are that it is a generic approach with regard to the set of

unlabelled data points and that it is parameter-free. Hierarchical

clustering methods do not require any prior knowledge, e.g. on the

expected number of relevant clusters, since they are solely based

on a given distance measure. The comparison of distances

between groups of data points determines the strongest relation

between any two groups according to a distance criterion and a

hierarchy of clusters emerges by sequentially relating groups of

data points. Visualization of the corresponding nested structure in

terms of a distance-based dendrogram finally allows identifying

clusters of data points with related properties.

In general, all possible cluster configurations could be inferred

from the corresponding dendogram and in this way the whole

continuum of migration behavior in the cell track data could be

analyzed. In practice, we focused on the analysis of extreme types

of migration behavior, e.g. fairly straight cell tracks and strongly

confined cell tracks. To this end we mainly considered three

clusters allowing for the existence of mixed cell tracks in between

these two extremes. Whether or not the three identified clusters

yield a meaningful classification of the cell migration behavior

depends on the necessary condition that these clusters have

significantly different characteristic measures.

We applied the method of agglomerative hierarchical clustering,

i.e. the initial number of clusters equals the number of data points

and these clusters are sequentially grouped into larger clusters

following a bottom-up strategy. We represented cell tracks as data

points in the parameter space that is defined by the average values

of the staggered measures using the Euclidean distance metric.

Groups of data points were represented by their centroid position

that was obtained by averaging over the position of associated data

points and the number of relevant clusters was inferred from the

Table 2. Properties of neutrophil cell tracks per migration type for 2D clustering.

average properties type 1: type 2: type 3:

fairly straight strongly confined purely random

staggered confinement ratio 0:68+0:11 0:10+0:04 0:35+0:11

staggered volume asphericity 0:75+0:08 0:34+0:08 0:57+0:08

½mm�length of cell tracks 175:6+116:28 444:59+302:37 492:55+275:18

number of time points 129:4+105:1 858:1+186 492:8+280:6

number of cell tracks 125 17 149

staggered confinement ratio 0:87+0:03 0:30+0:12 0:65+0:09

staggered outreach ratio 0:87+0:03 0:37+0:11 0:68+0:07

½mm�length of cell tracks 80:41+40:89 510:96+274:52 187:68+111:90

number of time points 52:6+29:5 567:1+277:5 130:6+81:2

number of cell tracks 14 154 123

staggered confinement ratio 0:60+0:14 0:12+0:05 0:28+0:06

staggered displacement ratio 0:92+0:07 0:48+0:10 0:73+0:07

½mm�length of cell tracks 262:95+210:36 433:11+254:91 557:35+297:63

number of time points 199:8+180:1 800+232:3 602:4+262

number of cell tracks 190 27 74

staggered volume asphericity 0:75+0:08 0:33+0:08 0:57+0:09

staggered outreach ratio 0:72+0:08 0:18+0:04 0:42+0:11

½mm�length of cell tracks 164:71+99:82 444:59+302:37 486:56+273:41

number of time points 116:9+78:6 854:1+186 486279:7

number of cell tracks 118 17 156

staggered volume asphericity 0:68+0:11 0:33+0:09 0:52+0:10

staggered displacement ratio 0:90+0:08 0:40+0:08 0:66+0:07

½mm�length of cell tracks 296:18+236:62 468:01+240:16 525:07+307:59

number of time points 243:9+227 804+232:7 656:1+266

number of cell tracks 215 12 64

staggered outreach ratio 0:72+0:08 0:19+0:05 0:42+0:10

staggered displacement ratio 0:94+0:06 0:48+0:10 0:79+0:09

½mm�length of cell tracks 167:54+102:86 431:33+264:02 497:75+277:40

number of time points 115:7+73 843+176:7 478:6+270:4

number of cell tracks 122 25 144

For each average staggered measure the values are highest (lowest) in the case of type 1 (type 2) cell tracks, while cell tracks of type 3 always assume intermediate
values. These results are shown together with the cell track length, number of time points and number of neutrophils per migration type for all possible combinations
of 2D clustering. The Wilcoxon rank-sum test revealed that the average staggered measures of different sub-populations were significantly different (pv10{10).
doi:10.1371/journal.pone.0080808.t005
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corresponding dendrogram. This enabled us to identify clusters of

cell tracks with comparable type of migration behavior. To test for

the necessary condition that identified clusters have significantly

different characteristic measures, we first checked whether these

values obtained from a cluster’s cell tracks were normally

distributed. This was achieved by performing the Shapiro-Wilk

test and for sufficiently large p-values (e.g., pw0:1) the data were

considered to be normally distributed. In this case, the average

values of a characteristic measure for two clusters were tested for

significant difference using Welch’s t-test. However, in most cases

the Shapiro-Wilk test revealed that the data were not normally

distributed and a Wilcoxon rank-sum test was performed to test for

a significant difference in the average values of the characteristic

measure.

Cell track data. To illustrate the information contained in

the staggered measures of cell tracks, we generated and analyzed

synthetic cell track data of specific types in three spatial

dimensions. The analysis was extended to in vitro experiments on

neutrophil migration in two spatial dimensions to demonstrate that

real cell track data obtained from manually tracked time-lapse

data generated by confocal laser scanning microscopy can be

classified into different types of migration.

Migration of synthetic cells. Synthetic cell tracks were

generated by a self-written computer algorithm focusing on three

different types: fairly straight cell tracks (type 1), strongly confined

cell tracks (type 2), and purely random cell tracks (type 3). It should

be noted that the description of migration types has to be taken

with some care, because this will depend on the spatial and

temporal scale of the microscopy experiment, respectively, on the

size of the field of view and on the imaging time.

Each cell track was generated in a three-dimensional spatial

environment for 100 time points with time step Dt~1 min. In

each time step, a new speed value v and turning angle a were

randomly chosen. It should be noted that v and a define,

respectively, the slant height and the opening angle of a cone and

the new cell position was located at a randomly chosen position on

the rim of this cone.

The instantaneous cell speed v was drawn from the normal

distribution

p(v)~

exp {
(v{�vv)2)

2s2v

� �

ffiffiffiffiffiffi

ps2v
2

q

1zerf �vv
ffiffiffiffiffiffi

2s2v

p

" # ! , ð16Þ

where erf (x):2=
ffiffiffi

p
p ðx

0

exp ({t2)dt denotes the error function

Table 3. Properties of neutrophil cell tracks per migration type for 3D clustering.

average properties type 1: type 2: type 3:

fairly straight strongly confined purely random

staggered confinement ratio 0:69+0:10 0:10+0:04 0:35+0:11

staggered volume asphericity 0:74+0:08 0:34+0:08 0:57+0:09

staggered outreach ratio 0:72+0:08 0:18+0:04 0:41+0:11

½mm�length of cell tracks 165:37+99:84 444:59+302:37 492:36+272:55

number of time points 117:1+77:9 854:1+186 493:1+277:7

number of cell tracks 121 17 153

staggered confinement ratio 0:69+0:10 0:10+0:03 0:35+0:10

staggered volume asphericity 0:74+0:08 0:38+0:10 0:57+0:09

staggered displacement ratio 0:95+0:05 0:46+0:09 0:78+0:09

½mm�length of cell tracks 173:97+113:69 426:64+273:35 498:37+277:14

number of time points 125:2+93 839:8+186:5 486:1+272:1

number of cell tracks 125 22 144

staggered confinement ratio 0:70+0:09 0:11+0:04 0:36+0:11

staggered outreach ratio 0:72+0:08 0:19+0:05 0:43+0:10

staggered displacement ratio 0:95+0:05 0:48+0:10 0:79+0:09

½mm�length of cell tracks 161:41+93:46 431:33+264:02 489:28+277:21

number of time points 112:2+68:1 843:4+176:7 466:9+272:1

number of cell tracks 116 25 150

staggered volume asphericity 0:74+0:08 0:38+0:10 0:58+0:09

staggered outreach ratio 0:72+0:08 0:18+0:04 0:42+0:10

staggered displacement ratio 0:95+0:05 0:46+0:09 0:79+0:09

½mm�length of cell tracks 164:53+99:31 426:64+273:35 492:88+275:51

number of time points 114:7+72 839:8+186:5 480+275

number of cell tracks 119 22 150

For each average staggered measure the values are highest (lowest) in the case of type 1 (type 2) cell tracks, while cell tracks of type 3 always assume intermediate
values. These results are shown together with the cell track length, number of time points and number of neutrophils per migration type for all possible combinations
of 3D clustering. The Wilcoxon rank-sum test revealed that the average staggered measures of different sub-populations were significantly different (pv10{10).
doi:10.1371/journal.pone.0080808.t002
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that ensures normalization of Eq. (16) over the whole speed range

v§0. We set the average speed �vv~5 mm/min{1 and the standard

deviation sv~1:25 mm/min{1.

The turning angle a was drawn on the interval a~½0; p� from
the normal distribution

p(a,a0,sa)~

exp ({
(a{a0)

2

2s2a
)

ffiffiffiffiffiffi

ps2a
2

q

erf
a0
ffiffiffiffiffiffi

2s2a

p

" #

zerf
p{a0
ffiffiffiffiffiffi

2s2a

p

" # ! , ð17Þ

where the center a0 and the width sa of the Gaussian were

adjusted for the different types of cell tracks. In the case of type 1

cell tracks, we set p1(a)~p(a,a0~0,sa~0:25), implying that cell

tracks became fairly straight since average turning angles were of

the relatively small size 110

+90 (see Fig. S1). In contrast, cell

tracks of type 2 were generated from the distribution

p2(a)~p(a,a0~p,sa~1:0), with the typical size of average

turning angles around 1350

+340, i.e. turns per time step were

relatively large and cell tracks became strongly confined in space

(see Fig. S2). For cell tracks of type 3, we set

p3(a)~p(a,a0~p=4,sa~0:5), resulting into average turning

angles of intermediate size 490

+250 (see Fig. S3).

A population of synthetic cell tracks was composed of three sub-

populations with fractions fj , where j refers to the type of

migration behavior and
X3

j~1
fj~1. Choosing the population

size to be I~500 cell tracks with f1~f2~20% and f3~60%, the

combined turning angle distribution p(a)~
X3

j~1
fjpj(a) is

characterized by the average turning angle 580

+480.

Migration of neutrophils. In vitro experiments on neutrophil

migration were performed to generate microscopic image data

that were analyzed by manual cell tracking. All cells used in this

study were isolated from organs of mice. Before organ harvest the

mice were sacrificed painlessly by deep narcosis with isoflurane

anesthetics followed by cervical dislocation according to institu-

tional guidelines and no invasive procedures were carried out

using live animals. According to the German Tierschutzgesetz

(TSchG) the use of animal tissue following painless sacrifice and

without any further treatment of live animals is not considered an

animal experiment and therefore does not require ethical

approval. However, the animal welfare officer was informed and

had to collect information on the number of animals used for tissue

donation. This information was forwarded to the local authorities

(LANUV, Nordrhein Westfalen). The neutrophils were isolated

from the four hind leg long bones of a C57/BL6 mouse as

previously described in detail [19]. Briefly, bone marrows were

flushed from the bones with a syringe, and transformed into single

cell suspensions by pipetting. Single cell suspensions were

subjected first to two rounds of osmotic erythrocyte lysis followed

by negative immunomagnetic isolation using the Mouse Neutro-

phil negative isolation kit (Miltenyi, Germany). Cells were

suspended in an RPMI based medium containing 10% FCS and

adjusted to a concentration of 3:3|106 cells/ml. 30ml of this

solution were added to the culture section of an Ibidi mSlide VI 0.4

(Ibidi, Germany). Injected cells were allowed to settle for ten

minutes in the incubator before both supplier wells were each filled

with 60ml medium. Then, cells visible in the culture section were

imaged in a fully automated inverted cell culture microscope with

environmental control (Leica, Germany) using a 40| lens with

conventional widefield illumination. The spatial resolution of the

images was 0:45mm/pixel and the resolution in time was one

frame per 18 seconds. The migration of neutrophils was recorded

(see Movie S1) for manual tracking based on the series of images.

The manual tracking of the cell was performed using the public

domain open source software ImageJ [20] in combination with the

MTrackJ plugin [2]. ImageJ requested about 3 GB of RAM for the

movie of 1:3 GB size. After movie import manual cell tracking was

performed by highlighting the centroid of the cell under

consideration and retrieving the x- and y-coordinates. The cell

was subsequently followed through all frames of the movie and the

procedure repeated for all cells. Neglecting cells that did not fully

enter the field of view, the number of considered cell tracks was

291. The number of time steps for these cell tracks ranged from 24

to 960 with average number 358+305. The accuracy in the

manual determination of the cell centroid was checked by

repeating the procedure for more than 6|103 different cell

positions. We found that the centroids of neutrophils, which have

diameters in the range 6{8 mm, were accurately measured within

an isotropic standard deviation of +0:28 mm.

Results

We present the results on the automated characterization and

parameter-free classification for synthetic cell tracks generated on

the computer as well as for neutrophil migration observed in

microscopy experiments.

Table 4. Properties of neutrophil cell tracks per migration type for 4D clustering.

average properties type 1: type 2: type 3:

fairly straight strongly confined purely random

staggered confinement ratio 0:69+0:10 0:10+0:03 0:35+0:10

staggered volume asphericity 0:74+0:08 0:38+0:10 0:58+0:09

staggered outreach ratio 0:72+0:08 0:18+0:04 0:42+0:10

staggered displacement ratio 0:95+0:05 0:46+0:09 0:79+0:09

½mm�length of cell tracks 164:53+99:31 426:64+273:35 492:88+275:51

number of time points 114:7+72 839:8+186:5 480+275

number of cell tracks 119 22 150

For each average staggered measure the values are highest (lowest) in the case of type 1 (type 2) cell tracks, while cell tracks of type 3 always assume intermediate
values. These results are shown together with the cell track length, number of time points and number of neutrophils per migration type for 4D clustering. The
Wilcoxon rank-sum test revealed that the average staggered measures of different sub-populations were significantly different (pv10{10).
doi:10.1371/journal.pone.0080808.t003
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Cell population analyses obscure heterogeneity in cell
track data
A statistical analysis was performed for a population of I~500

synthetic cell tracks that were generated in silico as outlined in the

Methods section. The cell population was composed of three sub-

populations each representing a distinct type of migration

behavior with a different fraction of cell tracks: fairly straight cell

tracks (type 1, see Fig. S1) with fraction f1~20%, strongly

confined cell tracks (type 2, see Fig. S2) with fraction f2~20%,

and purely random cell tracks (type 3, see Fig. S3) with fraction

f3~60%.

In Fig. 2, we present the results of a cell population analysis.

Based on the given cell tracks, we inferred the instantaneous speed

distribution with average speed 5+1:25 mm/min, the turning

angle distribution with average angle 580

+480 and the displace-

ment curve. The latter was obtained by computing the vector
~ddi(n,1) according to Eq. (9) for the ith cell and by averaging the

length of the displacement vector over all cell tracks at time point

n. Of note, for a population of purely random cell tracks,

SD~ddi(n,1)DTI is expected to scale linear with the square-root of time

t~nDt,

SD~ddi(n,1)DTI~
ffiffiffiffiffiffiffiffi

6M
p

ffiffi

t
p

, ð18Þ

where

S . . . TI~
1

I

X

I

i~1

. . . ð19Þ

refers to the population average and M denotes the motility

coefficient of the cells in three-dimensional space [21]. In contrast,

for a population of cell tracks consisting of perfectly straight cell

tracks only, SD~ddi(n,1)DTI is expected to scale linear with time,

SD~ddi(n,1)DTI~v
ffiffi

t
p 2

, ð20Þ

assuming a constant cell speed v.

Interestingly, even though 20% of all cell tracks in the cell

population were of type 1 – i.e. corresponding to fairly straight cell

tracks – the overall displacement curve still showed a linear scaling

behavior (see Fig. 2C). We estimated the corresponding motility

coefficient from the slope of the displacement curve to be

M&32:7 mm2=min at times tw1 min. This example clearly

demonstrates that a cell track analysis based on the cell population

can be misleading, since the population’s composition out of

different sub-populations with distinct types of migration behavior

is in general not known a priori.

Figure 10. Hierarchical clustering of neutrophil cell tracks in the parameter space of four staggered measures. (A) Dendrogram
obtained from the agglomerative hierarchical clustering based on the euclidean distance between the centroids of groups of data points. The
clustering was performed in the space spanned by the average confinement ratio, average volume asphericity, average displacement ratio and
average outreach ratio. (B) Representative cell tracks of the cluster with fairly straight cell tracks. (C) Representative cell tracks of the cluster with
strongly confined cell tracks. (D) Representative cell tracks of the cluster with purely random cell tracks.
doi:10.1371/journal.pone.0080808.g010
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In the present case of synthetic cell track data, the statistical

analysis can as well be performed for each of the three sub-

populations separately to demonstrate their differences in the

scaling behavior with time (see Figs. S1–S3 and Fig. 2D). For the

sub-population with cell tracks of type 1 the scaling behavior was

found to be linear with time, i.e. quadratic in
ffiffi

t
p

, where the

proportionality constant v1~5 mm=min was estimated from the

average speed �vv of all cells. Note that deviations from this scaling

behavior at later time points reflect the fact that cell tracks of this

population were chosen to be fairly but not perfectly straight and

that the instantaneous speed was not constant but drawn from the

distribution of speed values. On the other hand, in accordance

with the underlying random migration behavior, the displacement

for the sub-populations with cell tracks of type 2 and type 3 scaled

linearly with the square-root of time and the corresponding

motility coefficients were computed from the slopes of the

displacement curves to be M2&0:9 mm2=min and

M3&13:5 mm2=min, respectively. As expected, M2%M3, since

type 2 cell tracks were much more strongly confined than type 3

cell tracks.

We conclude that the population analysis of cell track data does

not only obscure relatively small heterogeneities in the cell track

data, e.g. as was suggested for germinal center B cells in the

presence of weak and transient chemotaxis [7], but even shows

severe shortcomings in cases where the composition of the cell

track population does have a significant heterogeneity over

different sub-populations. The difference between sub-populations

with characteristic migration behavior can not be resolved at the

level of cell population analyses.

Linear measures yield poor characterization of cell
migration
The analysis of cell tracks can be extended to the calculation of

various measures, such as volume asphericity A(n,1), volume

prolateness P(n,1), confinement ratio C(n,1), displacement ratio

D(n,1) and outreach ratio O(n,1) (see Methods section and Fig. 1).

We refer to these measures as linear measures, since they were

computed at time point n along the cell track relative to the initial

position of the cell (at time point m~1). The results are shown in

Fig. 3 for the population of all synthetic cell tracks and for each

sub-population separately.

Figure 11. Neutrophil cell track with ID 1 switching sub-populations in going from 2D to 4D clustering. (A) Neutrophil with track ID 1
switched from sub-population of type 3 (random migration) to type 2 (strongly confined migration). (B) Heat maps of the staggered confinement
ratio, staggered volume asphericity, staggered outreach ratio and staggered displacement ratio.
doi:10.1371/journal.pone.0080808.g011
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It is instructive to briefly discuss the confinement ratio

C(n,1)~SCi(n,1)TI~S
D~dd i(n,1)D

li(n,1)
TI ð21Þ

which is obtained for the ith cell track as the ratio of the length of

the direct path D~ddi(n,1)D between the initial and the current position

n over its current track length li(n,1) and by taking the population

average Eq. (19) over all relevant cell tracks. A perfectly straight

cell track is characterized by D~ddi(n,1)D~li(n,1) with confinement

ratio Ci(n,1)~1, indicating that the track is not confined at all. In

contrast, a cell that does not migrate along a perfectly straight

track has a path length that is always larger than the length of its

displacement vector, li(n,1)wD~ddi(n,1)D, and, thus, Ci(n,1)v1 for

nw1. Assuming, for the sake of simplicity, that the instantaneous

cell speed v is constant, the length of a cell track is linearly scaling

with time, li(n,1)~vt, irrespective of the type of migration

behavior. For a population of cells performing random walk

migration the length of the average displacement vector scales

according to Eq. (18) with the square-root of time, such that the

average confinement ratio behaves as C(n,1)!1=
ffiffi

t
p

. In principle,

after a sufficiently large number of time steps n, the confinement

approaches zero: C(n&1,1)?0. If the population of cell tracks

consists of different sub-populations with distinct types of

migration behavior or if single cell tracks consist of a mixture of

random and straight segments, the convergence of C(n&1,1) can

be slow, depending on the relative contributions from random and

Figure 12. Neutrophil cell track with ID 245 switching sub-populations in going from 2D to 4D clustering. (A) Neutrophil with track ID
245 switched from sub-population of type 1 (fairly straight migration) to type 3 (random migration). (B) Heat maps of the staggered confinement
ratio, staggered volume asphericity, staggered outreach ratio and staggered displacement ratio.
doi:10.1371/journal.pone.0080808.g012

Table 5. Average staggered measures for two examples of
neutrophil cell tracks that switch between sub-populations.

average staggered

measures track ID 1 track ID 245

confinement ratio 0.10 0.50

volume asphericity 0.62 0.87

outreach ratio 0.18 0.59

displacement ratio 0.47 0.78

2D ? 4D clustering type 3 ? type 2 type 1 ? type 3

In going from 2D to 4D clustering, confinement ratio and volume asphericity
are complemented by outreach ratio and displacement ratio that enforce
switching between sub-populations of different types of migration behavior.
doi:10.1371/journal.pone.0080808.t004

Cell Track Analysis

PLOS ONE | www.plosone.org 14 December 2013 | Volume 8 | Issue 12 | e80808



straight migration. This can give rise to ambiguous situations, as

was observed for the confinement ratios plotted in Fig. 3A, where

the grey curve refers to the overall cell population and can hardly

be distinguished from the sub-population of cell tracks with pure

random walk migration (type 3, blue curve).

It can be concluded that the confinement ratio C(n,1) provides

only a poor characterization of cell migration that may not suffice

to infer distinct sub-populations for different types of migration

behavior. The same statement holds for the other linear measures,

as can be seen in Fig. 3B–D. In case of the volume asphericity

A(n,1), type 2 and type 3 migration can not be distinguished at

large time points n&1. This is a direct consequence of the fact that

the number of cell tracks, which are upto a scaling factor

compatible with one and the same track volume, increases with the

number of time points n like n-factorial (n!). Therefore, popula-

tions of type 2 and type 3 can become comparable with regard to

the value of the volume asphericity for n&1. Furthermore,

A(n&1,1) approaches a finite value indicating that the cell track

topology is not spherical, which is a consequence of the fact that

the underlying distributions for the turning angle and the speed

are not homogeneous in both cases (see Figs. S2 and S3).

In passing we note that the time-dependent behavior of the

volume prolateness P(n,1) was generally observed to be very

similar to the volume asphericity (see Fig. S4A for comparison

with Fig. 3B). This similarity is expected for cell tracks with prolate

topology, i.e. associated with cigar-shaped ellipsoidal volumes,

which is in agreement with the above considerations on the

volume asphericity alone. Since in any case the application of

volume prolateness is limited to cell tracks in three spatial

dimensions, we did not consider this measure in what follows to

keep the subsequent analysis most general. However, this measure

may contribute additional information in the rare event of a cell

population that is characterized by cell tracks with oblate topology

in three spatial dimensions.

Next, the outreach ratio O(n,1) in Fig. 3C shows a time-

dependent behavior that is similar to that of the confinement ratio.

While this was expected for fairly straight cell tracks where the

maximal displacement equals the current displacement of the cell,

this was also found for the two populations with cell tracks of type

2 and type 3. Once again, this reflects the prolate topology of these

cell tracks and since this characteristic behavior can always be

expected for non-homogeneous distributions of speed and turning

angle, the discrimination between cell tracks of type 2 and type 3

by O(n,1) is as unpromising as by C(n,1). Finally, the displace-

ment ratio D(n,1) in Fig. 3D showed an overall shift to higher

values but beyond that no characteristic features could be

identified that would provide direct information on the compo-

sition of the cell population.

In summary, linear measures of cell populations are altogether

lacking the sensitivity required for an unambiguous discrimination

of different types of migration behavior at the level of a population

of cells.

Staggered measures are sensitive to local migration
behavior
Analyses at the population level yield only a poor characteriza-

tion of cell migration and, thus, do not provide the information

required to decompose a cell population into different sub-

populations with distinct migration behavior. We therefore

extended the above considerations by computing the linear

measures for single cell tracks in order to identify characteristic

signatures that could be related to their migration behavior. In

Fig. 4, we plot three synthetic cell tracks that were chosen as

representatives from the three sub-populations. The corresponding

linear measures Ci(n,1), Ai(n,1), Di(n,1) and Oi(n,1) for the ith

cell track are summarized in Fig. 5, while for the volume

prolateness Pi(n,1) we refer to Fig. S4B.

We found that, as expected, linear measures of single cell tracks

convey more detailed information on the migration behavior. For

example, focusing on the cell track of type 3 migration (blue curves

in Fig. 5), the confinement ratio still scaled like 1=
ffiffi

t
p

on average.

However, temporal phases with increasing values of Ci(n,1)

corresponded to track segments that were relatively straight (see

Fig. 5A). A clear identification of these transient phases was

hindered by short-term fluctuations in Ci(n,1), however, we

generally observed these to be reduced for the outreach ratio

Oi(n,1) (see Fig. 5C). Correspondingly, in the transient regions of

increasing track straightness, the volume asphericity Ai(n,1)

increased as well (see Fig. 5B), since the overall track volume

progressively deviated from a sphere and became more prolate

(see Fig. S4B for comparison with Pi(n,1)). A similar observation

was made for the displacement ratio Di(n,1) (see Fig. 5D), which

reached high values in the transient regions of increasing track

straightness.

While linear measures of single cell tracks generally convey

more detailed information, they still do suffer from the burden that

quantities at time point n are computed as the average over all

previous time points m with 1ƒmƒn. This implies that identical

track segments at different positions along the cell track give rise to

different impact on the linear measures, since the track segment at

the later time point enters the averaging relative to the initial time

point with less weight. Therefore, with increasing number of time

points linear measures lose sensitivity for temporal changes in the

cell migration behavior.

To capture the local migration behavior we extended the

computation of linear measures to the staggered measures Ci(n,m),

Ai(n,m), Di(n,m) and Oi(n,m). In this case, each point m along the

cell track was considered as the initial point of the cell track, i.e.

linear measures were separately computed relative to each

previous time point along the cell track segment with mƒn. As

was shown in the Methods section, each staggered measure

corresponds to a symmetric matrix with entries varying between 0

and 1. These matrices can be represented by heat maps with the

common property that the value along the diagonal is always 1,

since n~m involves one migration step which always is a straight

step by construction.

In Fig. 6, we plot the heat maps of the staggered measures for

the three representative cell tracks presented in Fig. 4, while for the

volume prolateness Pi(n,m) we refer to Fig. S5. The first column

of a heat map is identical to the linear measure along the cell track

relative to the initial position of the cell track and was presented in

Fig. 5. Going along the diagonal of the matrix corresponds to

advancing the initial position of the cell track in the calculation of

the linear measure that is again shown downwards along the

corresponding column. The staggered measures contain detailed

information on the local migration behavior of the cell. For

example, large values of the staggered measures correspond to

straight track segments and their spatial distribution in the

biological sample can be directly inferred via the matrix from

the occurrence of the corresponding temporal phase (see Eq. (3)).

The advantage of computing staggered measures with regard to

the characterization of cell migration is obvious: identical track

segments at different positions along the cell track give rise to the

same impact on the linear measures, since the track segment at the

later time point enters the averaging relative to its shifted initial

time point with the same weight. For example, in the case of the

type 3 cell track (see Fig. 6C) the heat map for the confinement

ratio contains several extended regions centered along the
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diagonal with large values that are indicative for straight track

segments. In the first column of the heat map, which corresponds

to the linear measure Ci(n,1) in Fig. 5A (blue curve), these regions

only appear as shifted and smeared out regions being less

pronounced at later time points. Similarly, the volume asphericity

Ai(n,1) (see blue curve in Fig. 5B) can be misleading because local

changes in Ai(n,m) (see Fig. 6C) get averaged out: with increasing

number of time points n the degeneracy of the ellipsoidal volume is

increasing like n! reflecting the loss of information at the local

scale. In other words, large values in Ai(n,1) can be maintained

indicating fairly straight migration even though the values Ai(n,m)

at the local scale are small because strongly confined track

segments exist.

We conclude that the inference of the spatial accumulation of

straight track segments can be achieved on the basis of staggered

measures that accurately capture the local migration behavior of

cells. The analysis of heat maps for the staggered measures is

straightforward and readily allows identifying the spatial distribu-

tion of specific migration types in the biological sample by the

unique relation between time points and absolute positions in the

sample.

Hierarchical clustering reveals heterogeneity in cell track
data
Exploiting the fact that staggered measures of cell tracks are

sensitive to the local migration behavior, we considered the

possibility to annotate cell track data by the average values of the

staggered measures, e.g. we computed the average staggered

confinement ratio from the corresponding matrix by

Ci~
1

N2

X

N

n~1

X

N

m~1

Ci(n,m) , ð22Þ

and similar for the other staggered measures. It should be noted

that averaged staggered measures are strongly biased by the

transient migration behavior of the cell tracks, since the average of

the linear measure relative to the initial cell position, Ci(N,1),

enters the averaging procedure only with weight 1=N. This implies

that averaging staggered measures conveys local information and

the results for the three representative cell tracks shown in Fig. 4

are summarized in Table 1. We found for each average staggered

measure that the largest and smallest values are obtained,

respectively, for fairly straight cell tracks (type 1) and strongly

confined cell tracks (type 2). Intermediate values for the average

staggered measures were attributed to type 3 cell tracks performing

random walk migration.

These findings led us to consider average staggered measures as

the basis of a parameter space where cell tracks can be clustered by

their migration behavior. In fact, a plot of the population of 500

synthetic cell tracks in the parameter space defined by Ci and Ai is

shown in Fig. 7A and readily reveals three distinct clusters

referring to type 1 (red), type 2 (green) and type 3 (blue) cell tracks.

Applying the method of agglomerative hierarchical clustering

using the Euclidean distance metric with regard to the centroid

position of groups of data points (see Methods section), we

obtained the dendrogram presented in Fig 7B. As expected, the

three clusters inferred from the dendrogram correspond to the

clusters for the three types of migration in Fig. 7A.

Of note, the identified clusters of sub-populations could not be

obtained in the parameter space of average linear measures. For

example, we computed the average confinement ratio of the linear

measure,

SCi(n,1)T~
1

N

X

N

n~1

Ci(n,1) , ð23Þ

and correspondingly for the linear volume asphericity. In close

analogy to Fig. 7 for the average staggered measures, we computed

the average linear measures for each cell track and represented the

data points in the parameter space of average linear measures (see

Fig. S6A). We found that clustering in this parameter space did

not recover the a priori known sub-populations with different types

of migration behavior. In Fig. S6B we plotted the three sub-

populations predicted from clustering based on average linear

measures in the parameter space of average staggered measures

for direct comparison with Fig. 7A. To quantify this observation,

we determined the true positives (TP), false positives (FP), true

negatives (TN) and false negatives (FN ) for each of the three sub-

populations in Fig. S6B and then computed the corresponding

accuracy A~(TPzTN)=(TPzFPzTNzFN) of the classifica-

tion (see Table S1 for details). We obtained A~0:958 for fairly

straight cell tracks (type 1), A~0:438 for strongly confined cell

tracks (type 2) and A~0:396 for purely random cell tracks (type 3).

This gives rise to an accuracy of A~0:396 for the overall

classification and these values should be contrasted with those

from clustering based on average staggered measures that always

yield the maximal value A~1:000 for each migration type

separately as well as for the overall classification. This shows the

importance of local information contained in the staggered

measures for the clustering of cell tracks.

Going beyond the analyses of synthetic cell tracks, we applied

the automated characterization and parameter-free classification

also to real cell track data, which were obtained by manually

tracking neutrophils that we observed by in vitro microscopy

experiments in two spatial dimensions. In Fig. 8 we plot the results

of a cell population analysis in terms of the speed distribution with

average speed 3:7+3:1 mm/min, turning angle distribution with

average angle 590

+510 and the average displacement as a

function of the square-root of time. Note that a total number of

291 cells was tracked up to roughly 5 hours (288 minutes) with an

average track duration of nearly 2 hours (107 minutes). Of course,

in the present case, nothing is known a priori about the existence of

sub-populations.

Due to the rich diversity of cell tracks in general, their

classification into different types of migration behavior can be a

challenging task. In contrast to the data set of synthetic cell tracks,

it can be expected that experimental data points in the parameter

space of the average staggered measures are not organized in

clearly distinct clusters. Reasons for these effects being correlations

between the speed and the turning angle in cellular migration or

different lengths of experimental cell tracks following a non-

uniform distribution. The latter impact may be reduced by

restricting the analysis to cell tracks with a minimum number of

time points. Therefore, describing sub-populations in picturesque

terms like fairly straight, strongly confined and purely random should be

taken with some care and understood as, respectively, combina-

tions of relatively high, low, and intermediate values in the average

staggered measures. In addition, clustering results may depend on

the combination of the four average staggered measures that give

rise to eleven possible parameter spaces, i.e. six and four

combinations for clustering in a two-dimensional (2D) and three-

dimensional (3D) parameter space, respectively, and one param-

eter space for 4D clustering that combines all four average

staggered measures.

Cell Track Analysis

PLOS ONE | www.plosone.org 16 December 2013 | Volume 8 | Issue 12 | e80808



The result of 2D clustering is shown in Fig. 9 where the average

staggered confinement ratio and the average staggered volume

asphericity form the basis of the parameter space. In contrast to

the case of synthetic cell tracks (see Fig. 7), neutrophil cell tracks

were found to be much more spread out and a clear distinction

between clusters of cell track types was not apparent. Nevertheless,

the three clusters inferred from the dendogram of hierarchical

clustering are colored in red, green and blue in Fig. 9A and were

found to be clearly distinct in their migration behavior. This was

determined by computing the average and standard deviation in

the staggered measures for each cluster (see Tables 2–4 and

Fig. S7). Performing statistical tests as outlined in the Methods

section revealed that the average staggered measures of different

sub-populations were significantly different (pv10{10). Further-

more, we also checked the cluster size because small clusters may

contain only a few outliers (see Tables 2–4 and Fig. S8). Note that

cell tracks of type 1 strongly differ in the average length of cell

tracks compared with type 2 and type 3 cell tracks. This is a direct

consequence of the limited field of view that is traversed by these

relatively straight cell tracks, as can be deduced from the

correlation with the average number of time steps (see Tables 2–

4). For the same reasons, the highest average number of time steps

is found for cell tracks of type 2 because strongly confined cell

tracks were monitored during a large fraction of the recording

time.

Changing the dimension of the parameter space to 4D

clustering based on all four average staggered measures revealed

that the migration type of only eleven out of 291 cell tracks – i.e.

less than 4% – was affected (see Tables 2 and 4 and Fig. S8): six

cell tracks changed sub-populations from type 1 to type 3 and five

cell tracks changed sub-populations from type 3 to type 2. All

other cell tracks were classified to the same sub-populations as

obtained from 2D clustering with the average staggered confine-

ment ratio and the average staggered volume asphericity. The

dendrogram of 4D clustering together with representative cell

tracks per migration type are presented in Fig. 10.

Based on 4D clustering, a cell population analysis was

performed for each sub-population separately (see Figs. S9–S11).

We found that the average speed and average turning angle of

type 1 cell tracks is given by, respectively, 4:8+2:9 mm/min and

430

+400 and the displacement curve scales with
ffiffi

t
p 2

during the

first few minutes. In contrast, cell tracks of type 2 (type 3) have

average speed 2:1+2:5 mm/min (3:8+3:1 mm/min) and average

turning angle 730

+540 (570

+500) with displacement curves

scaling roughly linear with
ffiffi

t
p

. The corresponding motility

coefficients were inferred from the linear slopes to be M2&0:96

mm2=min for type 2 and M3&12:96 mm2=min for type 3 cell

tracks.

We stress again that the identified clusters of sub-populations

could not be obtained in the parameter space of average linear

measures. This is shown in Fig. S12, where we plotted the

parameter space of average linear measures using red, green and

blue color according to the cell migration types 1, 2, and 3,

respectively, that were previously obtained from the clustering in

the parameter space of average staggered measures (see Fig. 9).

The data points appeared to be strongly intermixed, indicating –

as expected from the above considerations for synthetic cell tracks

– that identification of sub-populations with the same migration

behavior is not possible in the parameter space of average linear

measures.

In summary, we demonstrated that hierarchical clustering can

be successfully applied to identify sub-populations of different

migration types contained in a population of real cell track data.

The resulting sub-populations were found to be quantitatively

robust against changing dimensions of the parameter space from

2D clustering based on the average staggered confinement ratio

and the average staggered volume asphericity to 4D clustering

based on all four average staggered measures.

Combination of staggered measures improves
classification results
Our result regarding the quantitative robustness of the identified

sub-populations with regard to 2D and 4D clustering was further

investigated by comparing all eleven combinations of the four

staggered measures for 2D clustering (six combinations abbrevi-

ated by CA, CO, CD, AO, AD and OD), 3D clustering (four

combinations abbreviated by CAO, CAD, COD and AOD) and

4D clustering (one combination abbreviated by CAOD). This

detailed analysis was motivated by the fact that the eleven

switching cell tracks in the CAOD clustering in 4D were not

always located at the borders of their sub-populations in CA

clustering in 2D, as indicated in Fig. 9A in black color. Thus, even

though switching upon changing the dimension of the parameter

space was exclusively observed between clusters that were direct

neighbors, it obviously was associated with more drastic changes in

the sub-populations than just a fine-tuning at the borders between

neighboring clusters.

The analysis revealed that the combination of average staggered

measures strongly influences the classification result. A quantita-

tive summary of the analysis for all eleven combinations of 2D, 3D

and 4D clustering is presented in Tables 2–4 and plotted in

Fig. S7 for the average staggered measures and in Fig. S8 for the

number of cell tracks per sub-population. The main finding is that

the combination of the staggered confinement ratio and the

staggered volume asphericity plays the key role in the meaningful

clustering of cell tracks (CA clustering). This can be explained by

their opposing view on cell track segments, because a small value

in the average staggered confinement ratio may still be balanced

by an increased value in the average staggered volume asphericity

for a globally elongated cell track that is locally coiled. In contrast,

since the average staggered confinement ratio and the average

staggered outreach ratio characterize cell tracks in a similar

fashion, it is not surprising that the combination of these two

quantities alone yielded unreasonable classification results (CO

clustering). This interpretation is confirmed by the observation

that replacing the average staggered confinement ratio by the

average staggered volume asphericity did again yield quantita-

tively comparable results in combination with the average

staggered outreach ratio (AO clustering).

Following this line of argumentation, it can be concluded that

the average staggered displacement ratio in two spatial dimensions

is more related to the average staggered volume asphericity than to

any other measure. Therefore, clustering based on these two

measures yielded unreasonable results (see Table 2 for AD

clustering). Interestingly, we observed that the average staggered

displacement ratio behaves differently in combination with the

average staggered confinement ratio and the average staggered

outreach ratio (compare CD and OD clustering in Fig. S7).

Going from 2D to 3D clustering, we generally observed that the

numerical results got more stabilized and were already compara-

ble to the values obtained from 4D clustering (see Figs. S7 and S8).

To investigate whether higher-dimensional clustering induces

reasonable adjustments of lower-dimensional clustering, we

analyzed by way of example two cell tracks that switched sub-

populations between 2D clustering based on the average staggered

confinement ratio and the average staggered volume asphericity

(CA clustering) and 4D clustering (CAOD clustering). These cell
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tracks are shown in Figs. 11 and 12 and are characterized by

average staggered measures that are summarized in Table 5.

The neutrophil track with ID 1 was classified into the sub-

population of randomly migrating cells (type 3) by CA clustering in

2D, even though it is obviously strongly confined (see Fig. 11): with

more than four hours tracking time (250 minutes) it was one of the

longest cell tracks, while its maximal displacement remained well

below 40 mm. The neutrophil track with ID 245 also reached a

maximal displacement in the order of 40 mm, however, the

tracking time was only 20 minutes in this case and it was classified

into the sub-population of fairly straight cell tracks (type 1) by CA

clustering (see Fig. 12), even though due to a large turning angle

close to 1800 the end point of the track was only a few micrometers

apart from its start point. The intuitive choice of sub-populations

for these cells were automatically assigned by CAOD clustering in

4D: neutrophil track with ID 1 was classified as a strongly confined

cell track (type 2) and neutrophil track with ID 245 switched to the

sub-population of randomly migrating cells (type 3).

In both cases the reason for the misclassification in CA

clustering was due to a high value in the average staggered

volume asphericity (see Table 5), which is a direct consequence of

the elongated shapes of these cell tracks (see Figs. 11 and 12). We

recall that the volume asphericity completely neglects the time-

ordering in the sequence of cell positions. Therefore, whatever a

cell’s exact type of migration is, elongated volumes of data points

will receive a high asphericity score, which can compensate for a

small confinement ratio and by that result in a misclassification.

The impact of the volume apshericity is balanced by including

other measures like the outreach ratio and the displacement ratio

that together give a more accurate quantitative description of the

cell track.

We conclude that the combination of staggered measures

generally improved classification results towards higher-dimen-

sional clustering. Quantitative discrepancies were mostly observed

for different combinations of 2D clustering and the combination of

the average staggered confinement ratio and the average staggered

volume asphericity plays a key role in achieving reasonable

clustering that can be further stabilized by higher-dimensional

clustering.

Discussion

The considerable progress in microscopy technologies during

recent years enabled unprecedented exploration of biological

systems, including the migration of cells that drives the dynamics

of many biological processes. Image-based systems biology aims at

quantitatively analysing and modeling these processes based on the

information contained in microscopic image data. In this work we

presented a novel approach to perform automated characteriza-

tion and parameter-free classification of cell tracks at the single-cell

level that avoids integrating out absolute cell positions in the

biological sample and relative temporal offsets between cell tracks,

which usually is the drawback of statistical analyses at the level of

cell populations. At the heart of our approach is the discovery that

by computing characteristic measures in a staggered fashion, i.e.

separately for each possible segment of a cell track, we can

characterize cell tracks based on the local information and can

classify them into sub-populations with common properties from a

combination of these measures.

In the present study, we focused on the following four measures

that can be computed for cell tracks in any spatial dimension: (i)

confinement ratio corresponding to the ratio of the displacement

between two points over the length of the cell track between these

points, (ii) volume asphericity characterizing the deviation of the

cloud of uncorrelated cell positions in a track segment from a

spherical volume, (iii) outreach ratio corresponding to the maximal

displacement within a track segment over its length, and (iv)

displacement ratio measuring the ratio of the displacement

between the start and end point of a track segment over the

maximal displacement contained in this segment. Viewing cell

tracks as a way to probe the local environment in the biological

sample, the local recognition of characteristic patterns can only be

achieved by computing these measures in a staggered fashion,

whereas this information gets obscured in the commonly

performed computation of such measures as linear quantities.

Other charming aspects of the staggered measures are that they

are (i) representable by heat maps, (ii) straightforwardly interpret-

able, (iii) universally applicable and (iv) computationally cheap.

The superiority of staggered measures over linear measures can

be explained as follows. Linear measures suffer from the burden

that quantities at some time point are computed as the average

over all previous time points. This implies that identical track

segments occurring at different positions along the cell track give

rise to different impact on the linear measures, since the track

segment at the later time point enters the averaging relative to the

initial time point with less weight. Therefore, with increasing

number of time points linear measures lose sensitivity for temporal

changes in the cell migration behavior. In contrast, computing

staggered measures has the following advantage with regard to the

characterization of cell migration: identical track segments within

the cell track are resolved by their different starting points in the

staggered measure and contribute to the average of the staggered

measure with the same weight.

Most importantly, as was demonstrated both for synthetic cell

track data generated in silico as well as for neutrophil track data

from microscopy experiments, the average staggered measures

convey information that can be combined and exploited to classify

cell tracks into sub-populations with common properties. This is a

direct consequence of the fact that these average values contain

more local information on the cell track than in the case of

averaging linear measures. Therefore, spanning a parameter space

by the average staggered measures, cell tracks are represented as

points that can be clustered by the parameter-free method of

agglomerative hierarchical clustering. The resulting dendrogram

uncovered the heterogeneity in the considered population of cells

and three clusters in the continuum of migration behavior could

be identified that corresponded to sub-populations with (i) fairly

straight, (ii) strongly confined and (iii) purely random cell tracks. It

should be noted that these short descriptions of sub-populations

should be taken with some care and it is more appropriate

referring to them as combinations of (i) high, (ii) low, and (iii)

intermediate values in the average staggered measures, respec-

tively.

We generally observed that the numerical results depend on the

dimension of the parameter space and that clustering on only two

average staggered measures requires a careful combination. In

particular, combining the average staggered confinement ratio and

the average staggered volume asphericity produced the best results

for 2D clustering relative to 4D clustering involving all four

staggered measures. Misclassifications occurred in a few percent of

cases when cell tracks happened to cover fairly elongated volumes

while the local migration behavior was quite random. These rare

events induced a dilemma between the average staggered

confinement ratio and the average staggered volume asphericity

that could, however, be resolved by increasing the dimension of

the parameter space.

Finally, it is possible to exploit the information of a staggered

measure contained in its heat map in order to study dynamic
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changes in the migration behavior of single cells. Mapping clusters

of cell tracks with similar migration behavior back into a system’s

spatial environment allows drawing conclusions on the structure

and morphology of biological samples. The general formulation of

our approach promotes its broad application to tracks of arbitrary

objects and its straightforward extension with regard to other

staggered measures that may further improve the results on the

automated characterization and parameter-free classification of

tracks.

Supporting Information

Figure S1 Cell track population of type 1. (A) Examples of

cell tracks. (B) Instantaneous speed distribution. (C) Turning angle

distribution.

(TIF)

Figure S2 Cell track population of type 2. (A) Examples of

cell tracks. (B) Instantaneous speed distribution. (C) Turning angle

distribution.

(TIF)

Figure S3 Cell track population of type 3. (A) Examples of

cell tracks. (B) Instantaneous speed distribution. (C) Turning angle

distribution.

(TIF)

Figure S4 Volume prolateness for populations and
single cell tracks. The dependence of the volume prolateness

on time is comparable to that of the volume asphericity. (A)

Population of all cell tracks (grey), type 1 population (red), type 2

population (green) and type 3 population (blue) (see Fig. 3B). Error

bars correspond to the standard deviation and are only shown at

selected time points to enhance clarity. (B) Selected cell tracks of

each population type (see Figs. 4 and 5B).

(TIF)

Figure S5 Staggered volume prolateness for single cell
tracks. The dependence of the staggered volume prolateness on

time is comparable to that of the staggered volume asphericity (see

Fig. 6).

(TIF)

Figure S6 Clustering of synthetic cell track data in the
parameter space of average linear measures. (A) Synthetic
cell track data in the the parameter space of the average linear

confinement ratio and the average linear volume asphericity. Red,

green and blue color refer to the three sub-populations obtained

from hierarchical clustering. (B) Representation of synthetic cell

track data in the parameter space of average staggered measures as

obtained from hierarchical clustering in the parameter space of

average linear measures (see Fig. 7).

(TIF)

Figure S7 Average staggered measures of neutrophil
tracks per sub-population for 2D, 3D and 4D clustering.
The method of clustering is abbreviated by the initial C for

confinement ratio, A for volume asphericity, O for outreach ratio

and D for displacement ratio. Each averaged staggered measure is

plotted for sub-population of type 1 (red), type 2 (green) and type 3

(blue). (A) Average staggered confinement ratio. (B) Average

staggered volume asphericity. (C) Average staggered outreach

ratio. (D) Average staggered displacement ratio.

(TIF)

Figure S8 Number of neutrophil tracks per sub-popu-
lation for 2D, 3D and 4D clustering. The method of

clustering is abbreviated by the initial C for confinement ratio, A

for volume asphericity, O for outreach ratio and D for

displacement ratio. Number of neutrophil cell tracks for sub-

population of type 1 (red), type 2 (green) and type 3 (blue).

(TIF)

Figure S9 Cell population analyses obtained by 4D

clustering for 119 fairly straight neutrophil cell tracks

(type 1). (A) Instantaneous speed distribution with average speed

4:8+2:9 mm/min. (B) Turning angle distribution with average

angle 430

+400. (C) Displacement curve showing quadratic

dependence on the square-root of time. Error bars correspond

to the standard deviation and are only shown at selected time

points to enhance clarity.

(TIF)

Figure S10 Cell population analyses obtained by 4D

clustering for 22 strongly confined neutrophil cell tracks

(type 2). (A) Instantaneous speed distribution with average speed

2:1+2:5 mm/min. (B) Turning angle distribution with average

angle 730

+540. (C) Displacement curve showing linear depen-

dence on the square-root of time. Error bars correspond to the

standard deviation and are only shown at selected time points to

enhance clarity.

(TIF)

Figure S11 Cell population analyses obtained by 4D

clustering for 150 purely random neutrophil cell tracks

(type 3). (A) Instantaneous speed distribution with average speed

3:8+3:1 mm/min. (B) Turning angle distribution with average

angle 570

+500. (C) Displacement curve showing linear depen-

dence on the square-root of time. Error bars correspond to the

standard deviation and are only shown at selected time points to

enhance clarity.

(TIF)

Figure S12 Cell track data in the parameter space of

average linear measures. Cell track data in the the parameter

space of the average linear confinement ratio and the average

linear volume asphericity. Red, green and blue color refer to the

cell migration types 1, 2, and 3, respectively, that were previously

obtained from the clustering in the parameter space of average

staggered measures (see Fig. 9).

(TIF)

Movie S1 Time-lapse microscopy experiment of in vitro

neutrophil migration.

(AVI)

Table S1 Quantitative evaluation of clustering results

for synthetic cell track data in the parameter space of

average linear measures.

(PDF)
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