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Abstract

Objectives—We propose a novel computational approach for the automated classification of 

classic versus atypical usual interstitial pneumonia (UIP).

Materials and Methods—33 patients with UIP were enrolled in this study. They were 

classified as classic versus atypical UIP by a consensus of two thoracic radiologists with more 

than 15 years of experience using the American Thoracic Society evidence–based guidelines for 

CT diagnosis of UIP. Two cardiothoracic fellows with one year of subspecialty training provided 

independent readings. The system is based on regional characterization of the morphological 

tissue properties of lung using volumetric texture analysis of multiple detector CT images. A 

simple digital atlas with 36 lung subregions is used to locate texture properties, from which the 

responses of multi-directional Riesz wavelets are obtained. Machine learning is used to aggregate 

and to map the regional texture attributes to a simple score that can be used to stratify patients 

with UIP into classic and atypical subtypes.

Results—We compared the predictions based on regional volumetric texture analysis with the 

ground truth established by expert consensus. The area under the receiver operating characteristic 

curve of the proposed score was estimated to be 0.81 using a leave-one-patient-out cross-

validation, with high specificity for classic UIP. The performance of our automated method was 

found to be similar to that of the two fellows and to the agreement between experienced chest 

radiologists reported in the literature. However, the errors of our method and the fellows occurred 

on different cases, which suggests that combining human and computerized evaluations may be 

synergistic.
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Conclusions—Our results are encouraging and suggest that an automated system may be useful 

in routine clinical practice as a diagnostic aid for identifying patients with complex lung disease 

such as classic UIP, obviating the need for invasive surgical lung biopsy and its associated risks.

Introduction

Idiopathic pulmonary fibrosis (IPF) is a specific form of progressive fibrosing parenchymal 

pneumonia of unknown cause, and is the leading cause of end-stage lung disease requiring 

transplantation accounting for over 50% of lung transplants [1]. Median survival for patients 

with IPF remains dismal at 3 years after diagnosis. [2, 3, 4]. IPF is associated with the 

histologic and/or radiologic pattern of usual interstitial pneumonia (UIP) [5, 6]. Candidates 

for surgical biopsy must be carefully selected as the procedure is invasive, costly and carries 

significant risks in patients with possible UIP. Specifically, an acute exacerbation of their 

lung disease is an uncommon but potentially fatal complication following biopsy [2]. 

Surgical lung biopsy can be obviated when the clinical and radiographic impression are 

typical of UIP [7, 8, 9, 10]. However, atypical appearances of UIP are common, accounting 

for 30% to 50% of patients [2, 11]. In this context, candidate selection for lung biopsy 

requires a multidisciplinary consensus of clinicians and radiologists experienced in 

intersitial lung diseases, found only in specialized centers of practice.

The classic computed tomography (CT) appearance of UIP is characterized by basal- and 

peripheral-predominant reticular abnormality and honeycombing [2, 12] (see Table 1). 

Importantly, a confident CT diagnosis of UIP also requires the absence of atypical findings. 

The accurate identification of classic UIP requires meticulous characterization of 

parenchymal abnormalities as well as appropriate anatomic localization, mosty accurately 

performed by experienced thoracic radiologists [13]. The characterization of lung 

parenchymal abnormalities such as honeycombing, reticulation and ground glass requires 

the appreciation of subtle three-dimensional (3D) morphological tissue properties (e.g., 

parenchymal texture) shown in Figure 1. A challenge is that visual inspection demonstrates 

low reproducibility [14]. The importance of relating these patterns to their anatomical 

location in the lungs (upper, middle, lower zones, etc.) adds another level of complexity and 

is subject to high inter-observer variation.

The automated computerized recognition of lung tissue types in chest CT has been an active 

research domain to assist image interpretation and enhance diagnosistic accuracy [15]. Most 

studies are based on 2-D texture analysis on a slice basis [16, 17, 18]. Few studies fully 

leverage the wealth of 3-D data contained in contemporary volumetric CT datasets, 

specifically employing 3-D solid texture analysis [14, 19, 20]. Even more infrequent is an 

approach which localizes tissue texture properties in the lung anatomy. The latter is of 

crucial importance, not only for the differential diagnosis of diffuse lung diseases, but also 

because the typical appearance of most tissue types differs in distinct regions of the lung. 

The elaboration of a detailed digital atlas of the lungs is challenging mainly due to 

substantial inter-subject variations in pulmonary architecture and breathing cycle, especially 

for patients with IPF in whom fibrotic architectural distortion is a characteristic feature. A 

digital lung tissue atlas based on inter-subject 3-D image registration has been proposed to 

overcome this challenge [21]. This approach has recently been refined with a landmark-
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based coordinate system [22], which proved to be more robust to changes in structures 

across individuals. To our knowledge, this approach has not yet been used to characterize 

interstitial lung disease. Zrimec et al. developed a basic atlas to improve classification of 

honeycombing [23]. However, their approach is based on peripheral lung regions only 

(neither vertical nor lateral characterization), which are analysed with 2-D texture features 

extracted on axial slices.

In this paper, we used a basic anatomic atlas to define and extract morphological tissue 

properties (i.e., 3-D texture) from 36 anatomical subregions of the lung parenchyma. The 

latter were aggregated to create computational models of the radiological phenotypes for 

classic and atypical UIP. We hypothesize that the characterization of these radiological 

phenotypes differentiates the UIP subtypes, specifically classic versus atypical UIP. In order 

to produce an automated system for this classification task, machine learning was employed 

to derive a score from the regional texture attributes. This score identified patients with 

typical versus atypical UIP, the latter requiring further evaluation (e.g., biopsy) to confirm 

the diagnosis of IPF. To the best of our knowledge, our work is the first attempt to 

automatically differentiate the UIP subtypes using computational methods.

Materials and Methods

Dataset

CT examinations of 33 patients with biopsy-proven UIP/IPF from – anonymous – were 

retrospectively reviewed. Examinations were performed in compliance with national 

legislation and Declaration of Helsinki guidelines, with institutional review board (IRB) 

waiver of informed consent for this retrospective analysis. Two thoracic radiologists with 

more than 15 years of experience worked in consensus to classify each patient as classic 

versus atypical UIP based on the American Thoracic Society evidence-based guidelines for 

CT diagnosis of IPF/UIP listed in Table 1 [1]. There were 15 patients categorized as having 

a classic UIP and 18 patients with an atypical UIP appearance on CT. Additional readings 

were performed by two cardiothoracic fellows, each having one year specialty training to 

establish an optimal human performance. A volumetric CT scan was available for each 

patient, which was acquired within the year of the biopsy proven diagnosis. The standard 

routine protocols yielded a computed tomography dose index (CTDI) of 19.51 ± 8.81mGy 

and a dose length product (DLP) of 622.11 ± 269.97mGy-cm. CT scans were reconstructed 

with slice thicknesses of 0.625mm (1), 1mm (15), 1.25mm (14) and 2mm (3). The spacing 

between slices are 0.6mm (3), 1mm (13), 1.25mm (14), 2mm (3), and the pixel spacings are 

in the range of 0.59 to 0.82mm. All volumes were resampled to have isotropic cubic voxels 

of 0.59 × 0.59 × 0.59mm3 using cubic spline interpolation. This ensures that the physical 

dimensions (i.e., image scales and directions) are comparable between patients.

3-D anatomical atlas of the lungs

A simple anatomical atlas of the lung served as a 3-D reference to localize the various lung 

tissue types. The locations were chosen according to the predominant pattern sites of classic 

UIP (see Table 1). First, semi-automated segmentation of the lung volumes was carried out 

with a graphical user interface [24]. The user initiated a region growing algorithm from a 
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seed point placed inside the lungs. The growing 3-D region mimics the propagation of air in 

lungs, where each neighboring voxel is added to the region Mlung if the summed value of its 

own neighbors differs by less than a threshold value defined by the user. The lungs are 

divided vertically into apical, middle lung and basal regions based on the center of mass of 

Mlung (see Table 2). The axial division results into central, intermediate and peripheral lung 

regions. Left, right, anterior and posterior regions are defined based on the intersections of 

the coronal and sagittal plane. The intersections of all 10 lung divisions results in 36 

subregions.

3-D texture quantification using Riesz wavelets

3-D multiscale Riesz filterbanks were used to characterize the morphological properties of 

the lung parenchyma in volumetric CT. These filters are advantageous for texture 

characterization because they quantify the local amount of directional image patterns at 

multiple scales. Second-order Riesz wavelets were used [25, 26], yielding 6 filters per image 

scale that are oriented along the main image directions X, Y, Z and three diagonals XY, XZ 

and YZ (see Figure 2). Likewise, Riesz wavelets allow for a complete coverage of image 

scales and directions. We hypothesize that the local morpholgical tissue properties of the 

normal lung, ground glass, reticulation and honeycombing can be expressed as the 

combinations of the responses of the oriented filters. The filters were implemented at 

multiple scales to analyze both fine morphological structures and coarser reticulations of the 

lung parenchyma.

Regional lung texture analysis

The prototype regional distributions of the morphological tissue properties of classic versus 

atypical UIPs were learned using support vector machines (SVM). The SVM is a supervised 

machine learning algorithm that can learn the complex relationship between a group of 

variables (i.e., the vector vl) and the presence or absence of a class from an ensemble of 

examples called the training set [27]. Once the SVM model has been built from the example 

cases, it can predict the class of an unseen case with a confidence score (called “computer 

score” thereinafter). The group of variables feeding SVMs consisted of the responses (i.e., 

energies) of the multiscale Riesz filters in each of the 36 anatomical regions of the lungs 

(see Figure 3). The size of the vector vl regrouping the responses of the 6 Riesz filters at 4 

scales from the 36 regions was equal to 864.

In order to compare Riesz wavelets with other features that could capture the radiological 

phenotype of diffuse lung disease, two different feature groups were extracted for each 

region to provide a baseline performance: 15 histogram bins of the gray levels in the 

extended lung window [-1000; 600] Hounsfield Units (HU), and 3-D gray-level co-

occurrence matrices (GLCM) [28]. Statistical measures from GLCMs are popular texture 

attributes that were used by several studies in the literature to characterize the morphological 

properties of lung tissue associated with interstitial lung diseases [19, 20, 16, 17]. They 

consist in counting the co-occurrence of voxels with identical gray level values that are 

separated by a distance d, which results in a co-occurrence matrix. Eleven statistics were 

extracted from the se matrices [28] as texture attributes. The choices of d and the number of 

gray levels were optimized by considering values in {-3; 3} and {8, 16, 32}, respectively. 
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The size of the vector of attributes vl was 540 for the gray-level histogram attributes (called 

“HU” thereinafter) and 396 for the GLCM attributes.

Results

A leave-one-patient-out cross-validation (LOPO CV) evaluation was employed to estimate 

the performance of the proposed approach. The LOPO CV consisted of using all patients but 

one to train the SVM model and to measure the predition performance on the remaining test 

patient. The prediction performance was then averaged over all possible combinations of 

training and test patients. Receiver operating characteristic (ROC) curves of the system's 

performance in classifying between classic and atypical UIP are shown in Figure 4 for 

different feature groups and their combinations. ROC curves were obtained by varying the 

decision threshold between the minimum and the maximum of the score provided by the 

SVMs. A maximum area under the ROC curve (AUC) of 0.81 was obtained with the 

regional Riesz attributes, which suggests that prediction was correct for more that 4 out of 5 

patients. The performance of HU and GLCMs attributes was close to random (0.54 and 0.6 

for HU and GLCMs, respectively). On the other hand, predictive SVM models based on the 

responses of the Riesz filters, averaged over the entire lungs, had an AUC of 0.72.

Our system's performance was also compared with the interpretations of two fellowship-

trained cardiothoracic fellows, each having one year of experience. Interobserver agreement 

was assessed with Cohen's kappa statistic [29] and percentage of agreement (i.e., number of 

times the two observer agreed). The comparisons are detailed in Tables 3 and 4. The 

operating points of the two independent observers are reported in Figure 4 (top right). A 

detailed analysis of the six cases that were misclassified by our system is shown in Table 5 

with representative CT images, including predictions from the computer and the two fellows 

compared with the consensus classification. The system predicted 2 classic UIP cases as 

atypical UIP, and 3 atypical UIP cases as classic UIP. A comprehensive analysis of all 33 

cases is illustrated in the supplemental Table. Overall, 7 incorrect predictions were made by 

the fellows and 6 incorrect predictions by the computer. The fellows and the computer made 

only two common errors (cases 1 and 13).

Discussion

We developed a novel computational method for the automated classification of classic 

versus atypical UIP based on regional volumetric texture analysis. This constitutes, to the 

best of our knowledge, a first attempt to automatically differentiate the UIP subtypes with 

computational methods. An SVM classifier yielded a score that predicts if the UIP is classic 

or atypical. The classifier was based on a group of attributes that characterize the 

radiological phenotype of the lung parenchyma—specifically, the morphological properties 

(i.e., texture) of the parenchyma. Since diffuse lung diseases can vary in the distribution and 

severity of abnormalities throughout the lungs, we extracted our quantiative image features 

from 36 anatomical regions of the lung. To our knowledge, adding this spatial 

characterization to the computational model is also innovative, and it is particularly relevant 

for assessing diffuse lung disease.
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System performance and comparison with chest specialists

The proposed approach successfully predicted UIP subtypes for more than 4 out of 5 

patients (AUC=0.81) with high specificity for classic UIPs. This performance is encouraging 

and suggests that an automated system may be useful in routine clinical practice for 

radiologists with limited experience in interpretation of diffuse lung diseases. The detailed 

case analyses (see supplemental Table) reveal that, with the exception of one case (case 20), 

the computer score was able to sort and grade patients from highly atypical (e.g., cases 2 and 

3) to classic (e.g., case 33). The observer agreement between the computer and the 

consensus was associated with a kappa value of 0.63 and a percentage of agreement of 

81.82, which is considered as being substantial in the literature [29]. The performance of the 

computer was found to be comparable to cardiothoracic fellows with one year of specialty 

training (see Figure 4 top right). The agreement between each of the two fellows and the 

computer was moderate (i.e., 0.51 and 0.57 kappa values and 75.8% and 78.8% agreement) 

when compared with their excellent inter-reader agreement (i.e., kappa value and percentage 

of agreeement of 0.94 and 97% respectively). However, the agreement between each of the 

fellows with the consensus classification (our gold standard) is considerably lower (i.e., 0.63 

and 0.57 kappa values and 81.8% and 78.8% agreement). Interestingly, the agreement 

between the computer and the consensus was comparable to the agreement between the 

fellows and the consensus, suggesting that while the algorithm can still be improved in terms 

of agreement with the consensus, the current method performs at least as well as 

cardiothoracic fellows. The performance was also consistent with the inter-reader agreement 

between two expert radiologists (i.e., 4 and 8 years of experience, kappa value of 0.67) 

reported by Assayag et al. in [13]. Since the target application for this algorithm is for 

general radiologists, the proposed system could considerably improve their performance, a 

study which we plan to undertake.

Detailed case analysis of the system's performance

Our cohort had a much higher proportion of atypical UIPs accounting for over half the 

cases, which likely reflects a selection bias. In current practice, only cases that are atypical 

have histologic/pathologic confirmation, which was required for this cohort analysis. Many 

of the cases had subtle findings that required adhering very strictly to the guidelines for 

classification by the consensus, which may account for 3/6 erroneous predictions of atypical 

UIP by the computer (see Table 5 and the supplemental Table). We believe that the 

algorithm would perform better in a real-world setting, which does not reflect unusual cases 

referred to a quaternary academic institution.

Erroneous predictions of classic UIP by the computer occurred in 2 patients (24 and 27) 

where bronchiectasis was mistaken for honeycombing (see Table 5). This can be a difficult 

task even for experienced chest radiologists, but will constitute a target for further 

improvement of the system. One patient with diffuse disease without definite basilar 

predominance was also misclassified as classic UIP by the computer.

Overall, 7 incorrect predictions were made by the cardiothoracic fellows and 6 incorrect 

predictions by the computer. Combining these predictions results in only 2 incorrect 
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predictions out of 33 (i.e. 94% correct predictions) demonstrating the potential benefit of 

computer-assisted diagnosis in the setting of UIP.

Comparison of the quantitative image features

The gray-level histograms (i.e., HU) failed to predict the UIP subtypes and 3-D GLCMs 

provided a slightly better specificity for classical UIPs. 3-D Riesz wavelets provided an 

AUC of 0.81, which was found to be higher than 3-D GLCMs and HU. The combination of 

Riesz and HU did not led to a performance improvement. This can be explained by the fact 

that the distinction between tissue types associated with UIP requires a fine characterization 

of the volumetric morphological tissue properties (i.e., 3-D texture) that only 3-D Riesz 

wavelets were able to extract. The prototype gray-level distributions of ground glass, 

reticular and honeycombing may not be sufficiently distinct to accurately discriminate 

among them, as shown in Figure 1. The comparison between global and regional texture 

analysis (see Figure 4 right) highlights the importance of localizing tissue texture properties, 

which is consistent with the medical knowledge [1].

Overall, we believe that our automated system may be useful in general radiology practices, 

accounting for the majority of sites where patients with IPF are initially evaluated, to 

accurately identify patients with classic UIP for which an unnecessary surgical biopsy can 

be avoided. The high resolution imaging of lung disease afforded by modern-day CT 

provides accurate 3-D anatomic/pathologic fidelity in patients with classic UIP features. A 

confident CT diagnosis of classic UIP can eliminate the need for an invasive surgical biopsy 

to confirm this diagnosis; this underscores the importance of an accurate and reliable 

interpretation of the CT examination. This task is often challenging, particularly in less 

specialized practice centers without access to experts experienced in interstitial lung disease. 

Nevertheless, reduction of needless invasive biopsies is desired when possible to reduce 

costs, and more importantly, to avoid unnecessary morbidity/mortalty in UIP patients. We 

recognize several limitations of the current work, including the small number of cases 

included in the study and the use of a very simple digital atlas of the lung anatomy. Future 

work will include validating our results in an independent data set and performing regional 

learning of 3-D rotation-covariant texture models of normal, ground glass, reticular and 

honeycombing [26, 30].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Common parenchymal appearances of UIP in CT.
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Figure 2. 
Second-order Riesz filters characterizing edges along the main image directions X, Y, Z and 

three diagonals XY, XZ and YZ.
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Figure 3. 
The 36 sub-regions of the lungs localized the prototype regional distributions of the texture 

properties.
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Figure 4. 
ROC analysis of the system's performance. Classic UIP is the positive class. Left: 

comparison of various feature groups using the digital lung tissue atlas. 3-D Riesz wavelets 

provide a superior area under the ROC curve (AUC) of 0.81. Right: importance of the 

anatomical atlas when compared to an approach based on the global tissue properties and 

comparison of the computer's and cardiothoracic fellows' performance. Bottom: probability 

density functions of the computer score for classic (red) and atypical UIP (blue) based on 

regional Riesz texture analysis and the computer's operating point highlighted in the upper 

right subfigure. Atypical UIP is associated with a negative score, which implies that positive 

scores predict classic UIPs with high specificity.
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Table 1

Radiological criteria for UIP [1].

Classic UIP (all required) Inconsistent with UIP (any)

• Peripheral, basal predominance

• Reticular abnormality

• Honeycombing with or without traction 
bronchiectasis

• Absence of features listed as inconsistent 
with UIP pattern

• Upper or mid-lung predominance

• Peribronchovascular predominance

• Extensive ground glass abnormality (extent > reticular abnormality)

• Profuse micronodules (bilateral, predominantly upper lobes)

• Discrete cysts (multiple, bilateral, away from areas of honeycombing)

• Diffuse mosaic attenuation/air-trapping (bilateral, in three or more lobes)

• Consolidation in bronchopulmonary segment(s)/lobe(s)
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Table 2

Localization of the lung masks. The lungs are split perpendicularly to 4 axes [24].

⊥ vertical ⊥ axial ⊥ coronal ⊥ sagittal

apical, central, basal peripheral, middle, axial left, right anterior, posterior
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Table 3

Interobserver agreement (Cohen's kappa statistic).

Cohen's kappa consensus fellow 1 fellow 2 computer (regional Riesz texture analysis)

consensus 1 - - -

fellow 1 0.629 1 - -

fellow 2 0.569 0.9374 1 -

computer (regional Riesz) 0.633 0.506 0.569 1
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Table 4

Interobserver agreement (% of times that the observers agreed).

% agreement consensus fellow 1 fellow 2 computer (regional Riesz texture analysis)

consensus 100 - - -

fellow 1 81.82 100 - -

fellow 2 78.79 96.97 100 -

computer (regional Riesz) 81.82 75.76 78.79 100
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Table 5

Detailed analysis of the six cases that were missclassified by our system. Coronal and axial views of the lung 

parenchyma in CT are shown with a window level of -500 HU and a width of 1400 HU.

1. Computer score: -1.13 (atypical UIP) ✗ 6. Computer score: -0.82 (atypical UIP) ✗

 consensus: classic UIP  consensus: classic UIP

 fellow 1: atypical UIP ✗  fellow 1: classic UIP ✓

 fellow 2: atypical UIP ✗  fellow 2: classic UIP ✓

13. Computer score: -0.34 (atypical UIP) ✗ 20. Computer score: 0.01 (classic UIP) ✗

 consensus: classic UIP  consensus: atypical UIP

 fellow 1: atypical UIP ✗  fellow 1: atypical UIP ✓

 fellow 2: atypical UIP ✗  fellow 2: atypical UIP ✓

24. Computer score: 0.1 (classic UIP) ✗ 27. Computer score: 0.24 (classic UIP) ✗

 consensus: atypical UIP  consensus: atypical UIP

 fellow 1: atypical UIP ✓  fellow 1: atypical UIP ✓

 fellow 2: atypical UIP ✓  fellow 2: classic UIP ✗
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