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ABSTRACT

Estimation of the atmospheric wind field based on cloud tracking using a time sequence of satellite

imagery is an extremely challenging problem due to the complex dynamics of the imaging instruments and
the underlying non-linear phenomena of cloud formation and weather. Cloud motion may involve both
partial fluid motion and partial solid motion, which we model as semi-fluid motion. Motion algorithm

with subpixel accuracy using differential geometry invariants of surfaces was developed to track clouds.
The motion model is general enough to include both physical and geometrical constraints. Typically,
a polynomial displacement function is used to model the local deformation behavior of a surface patch
undergoing semi-fluid motion. The cloud tracking algorithm recovers local cloud surface deformations using

a sequence of dense depth maps and corresponding intensity imagery, that captures the time evolution of

cloud-top heights. - Either intensity or depth information can be used by the semi-fluid motion analysis
algorithm. A dense disparity or depth map that can be related to cloud-top heights is provided by the
Goddard Automatic Stereo Analysis (ASA) module for input to the motion analysis module. The results
of the automatic cloud tracking algorithm are extremely promising with errors comparable to manually

tracked winds. Experiments were performed on GOES images of Hurricanes Frederic, Gilbert and Luis.
and a temporally dense 1.5 minute time interval thunderstorm sequence covering Florida region. Future

work involves using multispectral information, incorporating robustness, cloud motion segmentation and

adaptive searching for improving operational cloud-tracking performance.

1 Introduction

The estimation of cloud-top structure and motion using multiple sateffite views is an extremely challenging

problem due to the complex dynamics of the imaging instruments and the underlying non-linear phenom-

ena of cloud formation and weather. Accurate cloud heights and winds are important for a number of

meteorological and climate applications [3, 10, 11, 1] such as cloud model verification, physically-based nu-
merical weather prediction and data assimilation, and radiation balance estimation for Mission to Planet
Earth type climate baseline studies. Stereoscopic multispectral measurement of cloud heights and time
sequential estimation of cloud winds using geostationary and polar orbiting satellite-based instruments are
essential because they provide information which is independent of other meteorological measurements.

The computational approach to cloud structure and motion estimation involves two primary modules
[141. The first module estimates stereo-based cloud structure using a hierarchical, multi-resolution coarse-
to-fine search strategy with image warping at each level [1.5] and has been parallelized for the Maspar
parallel machine having 16,384 processors. The second module estimates motion using a sequence of dense

depth maps and corresponding intensity imagery, in order to capture the time evolution of cloud heights
and has also been parallelized on Maspar parallel machine [12]. The IISS is a visualization tool that was
developed for rapidly analyzing gigabyte-sized geophysical datasets [4], and was enhanced to visualize the

results of the stereo analysis and semi-fluid motion estimation algorithms. This paper addresses motion

122 /SP!E Vol. 2812 O-8194-2200-2/96/$6.OO

Downloaded from SPIE Digital Library on 26 Apr 2011 to 66.165.46.178. Terms of Use:  http://spiedl.org/terms



analysis part of our earlier work, which appeared in the Internatirnal Conferene on Cómnter Vision '5

[14] . A brief overview of motion analysis for cloud tracking is presented next , followed by a description of

the algorithms.

1.1 Motion Analysis

There can be two types of motions in general: rigid and non-rigid {8J. Cloud motion is a special case
of non-rigid motion, where there is both partial fluid and partial solid motion, that we describe as being
semi-fluid motion. The motion of objects exhibit a wide variation in behavior ranging from the simplest
ideal frictionless rigid motion to the most complex turbulent fluid motion. Elastic motion deals with
shape changes of continuous surfaces, and fluid motion deals with particle motion in which there is usually

no continuity constraint among neighboring particles that are free to move according to the underlying
dynamics. Although there has been an increasing amount of research in the individual categories of motion

behavior, there have not been many attempts to combine different classes of motion models. In the fluid
motion case when the local continuity of a surface is partially preserved, it should be advantageous to
use both the characteristics of local continuity required for estimating surface properties, along with the
flexibility oflarger localized particle motion that would otherwise violate most local continuity assumptions.

An ideal example of this category of motion, which we call semi-fluid motion is the non-rigid motion of
clouds. Other examples may be found in the atmospheric sciences, as well as in hydrospheric modeling
of ocean eddies and currents that mix and split thus maintaining some larger scale features identifiable in

multi-spectral imagery, or biological cells that undergo fission or fusion processes. Time varying properties
of clouds represent a prototypical example of semi-fluid motion behavior and offers a new experimental
area for further investigation of non-rigid motion models.

We now present definitions of each motion type based on differential geometric variations during the
motion [8J. Corresponding error measures are also presented, which can be used to estimate motion
parameters and point correspondences for each nonrigid motion model. Error measure is represented by
ER, which is expressed in terms of differential geometric parameters such as Gaussian curvature (K), mean

curvature (H), Unit-normal (n), coefficients of first fundamental form (E, F, G) and Discriminant (D).
Note that the parameters corresponding to the deformed surface are represented by primes such as K' for
Gaussian curvature, n' for unit-normal etc. Each model is based on geometry oniy, and new motion models
can be added to the list by forming more generic relationships. The reader is suggested to refer to [2] or
any other related text for a detailed description of differential geometry.

Rigid motion preserves the 3-D distances between any two points in an object. The object does
not stretch or bend; hence both mean curvature and Gaussian curvature on the surface of the object
remains invariant.

ER = (K' — K)2 + (H' — H)2

Isometric motion is nonrigid motion which preserves lengths along the surface as well as angles
between curves on the surface.

ER = (Jç —
Jç)2

From the Figure 1.1, we can deduce that AB=A'B', AC=A'C' and 6 =6' in this type of motion.

Homothetic motion is a uniform expansion or contraction of a surface, where stretching (t) is
constant throughout the surface.

ER = (K't2 — K)2
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Figure 1: Changes in Lengths and Angles Between Curves for Characterization of Nonrigid Motion Types

From the Figure 1.1, we have the ratio between the curves as constant, i.e, (AB/A'B' = AC/A'C' =

constant), and also 9 = 9'.

Conformal motion is nonrigid motion which preserves angles between curves on the surface during
motion, but not lengths. Stretching (t) is different at different points of the surface, however is same

in different directions of any given point.

6R (E'—t2E)2+(F'—t2F)2+(G'—t2G)2

From the Figure 1.1, we can deduce that 9 = 9' in this type of motion.

Elastic motion is a nonrigid motion whose oniy constraint is some degree of continuity or smooth-
ness. Motion at each point can be described by any polynomial function s. This kind of solid object
motion is the most difficult to analyze. Following relations represent elastic motion when sufficiently
small.

rots can be defined as follows:

ER = (n' — n x rots)2 & ER = (D' — Ddivs)

1 1

rots= r1 xs1+r2xs2
where. r is the position vector of a point, represented by (u, v, z(u, v)) and E, G are the first funda-
mental coefficients. Note that the subscripts 1, 2 indicate differentiation w.r.t to u, v respectively.

Semi-fluid motion is a combination of elastic and fluid motion. This motion type will be elaborated
more in coming sections.

Fluid motion is general nonrigid motion that need not be continuous. It may involve topological
variations and turbulent deformations.

Each motion model presented above is a subset of the one at a higher level. Thus, the motion parameter
becomes more generic as the complexity of the motion model used is increased. Input to these models
can be a pair of range, intensity, or both types of images. In order to estimate point correspondence,
error measure (ER) is applied to each correspondence hypothesis over a template map. Each hypothesis
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correspondence will then have a corresponding error measure, the minimum of which represents a good
estimate for the correspondence. More than one correspondence can also be estimated with confidence
measures for each hypothesis. ER represents confidence measure when the underlying motion assumption

is followed.

2 Automatic Motion Analysis

In this paper, we present a novel approach to estimate the point correspondences and motion parameters of
a cloud element undergoing deformation. A unified algorithm having two approaches of motion analysis has

been developed on the Maspar parallel machine. First approach utilizes a continuots motion model, where
individual cloud elements under deformation are assumed to be continuous. Second approach assumes
a semi-fluid motion model, where local continuity constraints are violated during deformation. Detailed
description of the mathematical formulation used in these approaches is given below.

A local small deformation assumption can be used to derive relationships between unit-normals of
a point on the surface before and after motion, and also between the curvatures at the point during
deformation. We build on these derivations [16, 7] for automatic motion analysis of clouds. Consider
a point defined parametrically as, z(x, y), on a surface that undergoes small deformation changes and is
transformed to the point z'(x", y'). The following relationship holds between the corresponding unit-normals

[16, 7]: In=n—nxrots (1)

where n corresponds to the unit-normal of a point before motion, and n' is the unit-normal of the same
point after motion. The displacement function, s models the non-rigid motion of the local neighborhood
or small patch around the point of interest and can be expressed in the imaging instrument coordinate
system at the initial time step as,

S = (x' — x, y' — y, z'(x', y') — z(x, j)). (2)

The rotation or curl of the displacement function denoted as, ro s , is given by,

rot s = z1 X S1 + z2 X S2. (3)

The subscripts 1 and 2 indicate differentiation with respect to the parameters x and y respectively and the

denominators, E (= z1 zi) and G (= z2 z2), are coefficients of the first fundamental form [16]. Polynomial

functions are the simplest models for the local displacement function of a small patch undergoing small
deformation. In our cloud-motion experiments, and in order to derive simple analytical relationships for
differential geometry parameters, a small patch is assumed to undergo a local affine transformation defined

s(x,y)= (a2x + by+ c,ax + bay-f- c,akx + bklI+ Ck). (4)

Let the unit-normal of a point before motion be defined as, n = (ni, n, nk) and the unit-normal of the
same point after motion as, n' = (n, n, n). Surface normals and other intrinsic surface properties are
estimated by using locally fitted quadratic surfaces for each small patch though the relationship between
the normals (1) holds for all surface models. From (1), (2), (3) and (4), the following linearly independent

equations can be derived [7, 9]:

flkZl (n — flkZ2 — fl'\ mi — flkZl — n\ flkZ2 k ,
E G E 0,

(5)
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nz2 ri fl

[—---a + ——b + _2.L_aj
+

dö_bj -ak bk k +
mkj

0. (6)

The components of the displacement function, s(.), are the unknowns in the above equations. Although the

displacement function has nine unknowns, Eq. (2) can be used to solve for the constant terms. Using (5) and

(6) provides two independent constraints for each point correspondence, so three point correspondences
are needed to solve for the six unknowns in the affine displacement model (4). Using just three point
correspondences is not as reliable as the least squares minimization approach described next.

Since each small patch is assumed to experience small continuous deformations locally, the continuity

constraint can be used to hypothesize a set of point correspondences or equivalently a template mapping
7JR, between corresponding patches. The hypothesis point set or search area is defined as LR with the
subscript R used to indicate that the hypothesis testing is done using range or disparity data. The best
match is the hypothesis which minimizes the total sum of the squared errors, given by (5) and (6) defined

as ER1 (x, y) and ER2(X, y) respectively,

ER(X,Y) : (ERi(X,Y))2+(ER2(X,Y))2. (7)
iEiR

The error function (7) can be minimized w.r.t each of the six unknowns, (ai, b, a, b, ak, bk), in the
affine displacement function, resulting in six equations that can be solved using the hypothesized patch

correspondence(s). Once c,c, ck are calculated using Eq. (2), the displacement function (4) for a local
patch is completely specified. Using the estimated displacement function associated with each hypothesis
the errors ER(X, y) can be ranked. The matching hypothesis associated with the smallest error is assumed
to represent the deformable motion.

The minimization procedure is suitable for locally continuous surfaces that have small deformations.
However, it needs to be modified to include semi-fluid motion where the continuity constraint is relaxed
locally. Intensity-based information is used to complement the matching process discussed above which
relies primarily on local surface shape characteristics and depth analysis. The algorithm for semi-fluid
motion analysis has three steps. The first step deals with determining a set of possible semi-fluid template
mappings using intensity information for each local patch. The second step evaluates the error for each
hypothesized correspondence provided by the template mapping and selects the most reliable semi-fluid
mapping. The third step is to refine the motion parameters of the semi-fluid mapping to sub-pixel accuracy.

The neighborhood template mapping for rR can be continuous as shown in Fig. 2(a), or quite dis-
continuous under semi-fluid motion as shown in Fig. 2(b). Evaluating all possible semi-fluid template

mappings between corresponding neighborhoods is combinatorially explosive. Determining the most plau-
sible semi-fluid template mapping is made more tractable by using intensity information and tracking
intensity features. For the cloud motion experiments, the discriminant was used as an intensity-based

differential geometry parameter [9, 16]. The intensity-based algorithm allows small local regions within the
template to undergo discontinuous semi-fluid motion. Other techniques such as optic flow-based segmen-
tation that can be adapted to robustly estimate the local semi-fluid template mapping for motion tracking
are also being investigated [5]. In order to determine the best semi-fluid mapping, Eq. (7) that measures
the error in the surface or range normal constraint, is evaluated for each correspondence hypothesis using
the semi-fluid template maps generated in the previous step. The error ER(x, y) is computed within a small

patch neighborhood for the pixel of interest and overlapping windows are used in computing the errors (5)

and (6). The reliability in selecting the appropriate template mapping is improved by evaluating the error
function over the entire neighborhood of points (riR), rather than at a single feature or individual pixel.
The template mapping correspondence hypothesis with the minimum error is assumed to represent the
best estimate of the local semi-fluid motion behavior. The total error ER(X, y) can be used as a confidence
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Figure 2: Local non-rigid deformation can be continuous as shown in the template mapping (a), or discon-

tinuous under semi-fluid motion as shown in (b).

measure when the underlying motion assumption is valid. In our implementation, one can choose contin-
uous, or semi-fluid motion model for cloud motion analysis. Figure 3 describes the processing steps of our
algorithm as a flow chart. Semi-fluid motion tracking to sub-pixel accuracy is obtained by minimizing an
energy function involving Gaussian curvature variations within the pixel. For a small patch defined by

the vector functioif, r(x, y, z), that undergoes small deformation, the Gaussian curvatures before and after

motion, K and K" respectively are related as [9],

K'— (G+2r2.s21\ (E+2ri.si2"s
2D(1+9) D(1+9) )i D(1+9) )2

=
(19)2A+f(xY) (8)

The discriminant (or infinitesimal area) at the point of interest is D (=EG), and 9 is the divergence or
dilation at the same point. Dilation can be defined as the unit expansion/contraction of the feature during
deformation and is expressed as,

9=divs= r1•s1+r2•s2 . (9)

3 Experiments

Motion analysis experiments are performed on GOES images of Hurricanes Frederic, Gilbert and Luis,
and a temporally dense 1.5 minute time interval thunderstorm sequence covering Florida region. In this
section, we present the analysis of hurricanes Frederic and Luis, and Florida thunderstorm. The output of
motion analysis algorithm (implemented on the Maspar) is a dense estimate of tracked fields on the cloud
images. Thresholding based on local intensity variations is performed to filter out point tracks in non-
cloudy regions. A local quadratic surface is fitted to estimate the various differential geometric measures
that were used in the algorithm.

Figure 4 shows the thresholded particles that were tracked through the four frames of hurricane Fred-
eric having a time interval of 7.5 minutes between each successive frame. Stereo of all the four frames
are available from GOES-E and GOES-W satellites which subtend an angle of about 135° with respect
to the center of the Earth providing a very large baseline for stereo analysis. Automatic stereo analysis
was first performed on the stereo pairs to estimate the disparity. The estimated depth map time sequence
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Differential Geometric
Invariants:

k = Gaussian curvature at ti
k = Gaussian curvature at t2
Xl = Unit-normal at ci
N = Unit-normal at c2
d = Discrimiriant at ti
D = Discriminant at t2

Notion Parameters:

0 = Dilation
S Displacement function

Figure 3: Automatic Motion Analysis

along with corresponding intensity images from the eastern sateffite were used to perform semi-fluid motion

analysis. Since the time interval between frames is comparatively high, we perform semi-fluid motion anal-

ysis with larger template and search areas than those used for other data sets below (template=121X121,

search= 13X13).
Figure 5 shows the thresholded particles that were tracked in a Florida thunderstorm sequence. There

are 49 image sequences of this data with a 1.5 minute time interval (stereo is not available). Top row
represents the tracked results of a continuous motion model (template=11X11, search=9X9) applied to this

data set, and the bottom row represents results generated by a semi-fluid motion model (template=11X11,
search=9X9). Typically, it has been observed that continuous motion model estimates better tracks than
semi-fluid model when the time interval is small; continuity constraints are preserved in short intervals.

Finally, motion analysis was performed on 490 frames of one-minute hurricane Luis data (10:23 UTC to

22:26 UTC. 06 Sep. 1995). Figure 6 depicts the thresholded particles that were tracked. Top row indicates
the tracked particles at a given instant (1128 UTC), and the bottom row indicates tracked particles for
the successive frame (1129 UTC). Continuous motion model (template=11X11, search=9X9) is used for
the analysis, as the time interval is short enough so as to maintain continuity constraints of the cloud
elements. Visualization of color-coded velocity tracks has also been generated for a qualitative assessment
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of the cloud-drift wind estimation. Please contact one of the authors to request for a corresponding video.
Validation of the cloud motion analysis is underway. So far, evaluation of the algorithm is performed

by comparing the automatic tracking results with manual tracking analysis. An integrated system has
been developed wherein the user can track a cloud element in a time sequence and immediately initiate
the automatic tracking system. Cloud-drift winds can be generated from both the manual and automatic
methods for validation. A complete statistical analysis of the tracked cloud-drift wind velocities can be
obtained using the above mentioned system. Results thus far have been very promising, with RMS error as

low as 5 mt/sec when well-defined cloud structures are being tracked. The algorithm fails when the cloud

elements being tracked do not have structural variations or if there are multiple motions of clouds . We

concentrate on this problem in our future direction, where cloud motion classification is performed before

applying the motion model. A comprehensive error analysis of the algorithm in tracking different types of

clouds is currently being performed.

4 Conclusions

We present a parallel algorithm for motion analysis that can produce dense motion fields (at every pixel) for

a time-varying sequence. This algorithm has been implemented on the massively parallel Maspar computer.
The algorithm can be applied to a pair of time-varying intensity data, surface or range data, or both
intensity and surface data. A number of experiments using real sateffite GOES imagery were performed.
The algorithm produces favorable results compared to manually tracked cloud winds. However, additional

validations are necessary for an operational performance of the algorithm in cloud-drift wind estimation.
Further research is needed to develop automatic parameter tuning methods for selecting optimum

window sizes and various thresholds for different scenes using possibly machine learning methods. In

addition to affine, higher-order polynomial and non-linear displacement functions guided by experiment
can be used. Future work involves using adaptive hierarchical non-square template and search windows,

using multispectral information, coupling stereo and motion estimation [6] , improving the accuracy of
the estimated motion field by using robust estimation [13], relaxation labeling or regularization, and post
processing the motion field by using cloud classification.
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