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Abstract

Smart home technologies offer potential benefits for assisting clinicians by automating health 

monitoring and well-being assessment. In this paper, we examine the actual benefits of smart 

home-based analysis by monitoring daily behaviour in the home and predicting standard clinical 

assessment scores of the residents. To accomplish this goal, we propose a Clinical Assessment 

using Activity Behavior (CAAB) approach to model a smart home resident’s daily behavior and 

predict the corresponding standard clinical assessment scores. CAAB uses statistical features that 

describe characteristics of a resident’s daily activity performance to train machine learning 

algorithms that predict the clinical assessment scores. We evaluate the performance of CAAB 

utilizing smart home sensor data collected from 18 smart homes over two years using prediction 

and classification-based experiments. In the prediction-based experiments, we obtain a statistically 

significant correlation (r = 0.72) between CAAB-predicted and clinician-provided cognitive 

assessment scores and a statistically significant correlation (r = 0.45) between CAAB-predicted 

and clinician-provided mobility scores. Similarly, for the classification-based experiments, we find 

CAAB has a classification accuracy of 72% while classifying cognitive assessment scores and 

76% while classifying mobility scores. These prediction and classification results suggest that it is 

feasible to predict standard clinical scores using smart home sensor data and learning-based data 

analysis.
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 I. Introduction

Smart home sensor systems provide the capability to automatically collect information about 

a resident’s everyday behavior without imposing any restrictions on their routines. 

Researchers have designed algorithms that use such collected information to recognize 

current activities, prompt individuals to perform needed activities, or perform home 

automation. Another important use of such sensor data is to predict clinical assessment 

scores or monitor the health of an individual by monitoring the resident’s daily behavior or 

Activities of Daily Living (ADL).

Several clinical studies support a relationship between daily behavior and cognitive and 

physical health [1]. Everyday activities like cooking and eating are essential ADLs that are 

required to maintain independence and quality of life. Decline in the ability to independently 

perform ADLs has been associated with placement in long-term care facilities, shorter time 

to conversion to dementia, and a lower quality of life for both the functionally-impaired 

individuals and their caregivers [2].

In this paper, we investigate whether smart home-based behavior data can be used to predict 

an individual’s standard clinical assessment scores. We hypothesize that a relationship does 

exists between a person’s cognitive/physical health and their daily behavior as monitored by 

a smart home. We monitor the daily behavior of a resident using smart home sensors and 

quantify their cognitive/physical health status using standard clinical assessments. To 

validate this hypothesis, we develop an approach to predict the cognitive and physical health 

assessment scores by making use of real-world smart home sensor data.

We propose a Clinical Assessment using Activity Behavior (CAAB) approach to predict the 

cognitive and mobility scores of smart home residents by monitoring a set of basic and 

instrumental activities of daily living. CAAB first processes the activity-labeled sensor 

dataset to extract activity performance features. CAAB then extracts statistical activity 

features from the activity performance features to train machine learning algorithms that 

predict the cognitive and mobility scores. To evaluate the performance of CAAB, we utilize 

sensor data collected from 18 real-world smart homes with older adult residents. An activity 

recognition (AR) algorithm labels collected raw sensor data with the corresponding 

activities.

CAAB utilizes sensor data collected from actual smart homes without altering the resident’s 

routine and environment. Therefore, the algorithmic approach offers an ecologically valid 

method to characterize the ADL parameters and assess the cognitive and physical health of a 

smart home resident [3]. To the best of our knowledge, our work represents one of the first 

reported efforts to utilize automatically-recognized ADL parameters from real-world smart 

home data to predict the cognitive and physical health assessment scores of a smart home 

resident.

 II. Related Work

The relationship between in-home sensor-based measurements of everyday abilities and 

corresponding clinical measurements has been explored using statistical tools and 
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visualization techniques. Researchers have correlated sensor measurements of sleep patterns, 

gait, and mobility with standard clinical measurements and self-report data. In one such 

work, Paavilainen et al. [4] monitored the circadian rhythm of activities of older adults living 

in nursing homes using the IST Vivago WristCare system. In this study, they compared the 

changes in activity rhythms with clinical observations of subject health status. In a separate 

study, these researchers [5] studied the relationship between changes in the sleep pattern of 

demented and non-demented individuals over a 10-day period.

Several other researchers have considered the relationship between sensor-based activity 

performance and clinical health assessment. For example, Robben et al. [6] studied the 

relationship between different high-level features representing the location and transition 

patterns of an individual’s indoor mobility behavior with the Assessment of Motor and 

Process Skills (AMPS) scores. Similarly, Suzuki and Murase [7] compared indoor activities 

and outings with Mini-Mental State Examination (MMSE) scores. Dodge et al. used latent 

trajectory modeling techniques to explore the relationship between gait parameters and 

cognition [8]. Similarly, LeBellego et al. [9] investigated the relationship between indicators 

such as mobility and agitation with patient health status in a hospital setting.

In other work, researchers such as Galambos et al. [10] developed techniques to visualize 

long-term monitoring of sensor data including activity level and time spent away from home 

[10], [11]. Similarly, other researchers have developed techniques to visualize activity and 

behavioral patterns by monitoring them with smart home sensors [12], [13], and by 

monitoring consumption of electricity usage [14].

In our earlier work, we demonstrated a correlation between smart home sensor-based 

performance measures of simple and complex ADLs and validated performance measures 

derived from direct observation of participants completing the ADLs in a smart home 

laboratory [15]. Here we extend this prior work by further investigating this relationship 

between continuous sensor data collected from real-world smart homes and specific 

components of standard clinical assessment scores.

 III. Problem Formulation

We assume that smart home sensors produce a continuous sequence of time-stamped sensor 

readings, or sensor events. These sensors continuously generate raw sensor events while 

residents perform their routine activities of daily living. We use an activity recognition 

algorithm to automatically annotate each of these sensor events with a corresponding 

activity label. Activity recognition algorithms map a sequence of raw sensor events onto an 

activity label Ai, where the label is drawn from the predefined set of activities A = {A1, A2,
…, An}. Our activity recognition algorithm generates a label that corresponds to the last 

event in the sequence (i.e., the label indicates the activity that was performed when the last 

event was generated). Activities from set A can be recognized even when the resident 

interweaves them or multiple residents perform activities in parallel.
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CAAB extracts activity performance features from activity-labeled smart home sensor data 

and utilizes these features to predict standard clinical assessment scores. Therefore, there are 

two steps involved in CAAB:

• Modeling the ADL performance from the activity-labeled smart home 

sensor data.

• Predicting the cognitive and mobility scores using a learning algorithm.

 Activity modeling

We extract a d-dimensional activity performance feature vector Pi =< Pi,1,…, Pi,d > to model 

the daily activity performance of an activity Ai. Observation Pi,d,t provides a value for 

feature d of activity Ai observed on day t (1 ≤ t ≤ T). The set of all observations in Pi is used 

to model the performance of Ai during an entire data collection period between day 1 and 

day T.

Additionally, during the same data collection period, standard clinical tests are administered 

for the resident every m time units, resulting in clinical assessment scores S1, S2, …, Sp (p = 
T/m). In our setting, the clinical tests are administered biannually (m = 180 days). Therefore, 

the clinical measurements are very sparse as compared to the sensor observations. The 

baseline clinical measurement, S1, is collected after an initial 180 days of smart home 

monitoring.

 Clinical assessment/Clinical assessment scores prediction

CAAB’s goal is to accurately predict clinical assessment scores at time k, or Sk, using 

activity performance data Pi between time points j and k, j < k.

CAAB relies on an activity recognition (AR) algorithm to generate labeled data for the 

performance feature vector that is an integral component of activity modeling. The method 

for activity recognition is explained briefly later in this paper and explored in detail 

elsewhere [16]. Here, we utilize our own AR algorithm and focus on the additional steps that 

comprise CAAB.

 IV. Experimental Setup

We use CAAB approach to analyze data collected in our CASAS smart homes1 [17] and in 

our corresponding clinical measurements. Below, we explain the smart home test bed, smart 

home sensor data, and standard clinical data that are collected as a part of the study.

 A. CASAS Smart home test bed

The CASAS smart home test beds used in this study are single-resident apartments, each 

with at least one bedroom, a kitchen, a dining area, and at least one bathroom. The sizes and 

layouts of these apartments vary between homes. The homes are equipped with combination 

motion/light sensors on the ceilings and combination door/temperature sensors on cabinets 

and doors. These sensors in the smart home test beds unobtrusively and continuously 

1http://casas.wsu.edu
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monitor the daily activities of its residents. The CASAS middleware collects these sensor 

events and stores the data on a database server. Figure 1 shows a sample layout and sensor 

placement for one of the smart home test beds.

The residents perform their normal activities in their smart apartments, unobstructed by the 

smart home instrumentation. Figure 2 provides a sample of the raw sensor events that are 

collected and stored. Each sensor event is represented by four fields: date, time, sensor 

identifier, and sensor value. The raw sensor data does not contain activity labels. We use our 

AR activity recognition algorithm, described in Section V-A, to label individual sensor 

events with corresponding activity labels.

 B. Residents

Residents included 18 community-dwelling seniors (5 females, 13 males) from a retirement 

community. All participants are 73 years of age or older (M = 84.71, SD = 5.24, range 73 – 

92) and have a mean education level of 17.52 years (SD = 2.15, range 12 – 20). At baseline 

S1, participants were classified as either cognitively healthy (N = 7), at risk for cognitive 

difficulties (N = 6) or experiencing cognitively difficulties (N = 5). One participant in the 

cognitively compromised group met the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-IV-TR) criteria for dementia [18], while the other four individuals met 

criteria for mild cognitive impairment (MCI) as outlined by the National Institute on Aging-

Alzheimer’s Association workgroup [19]. Participants in the risk group had data suggestive 

of lowered performance on one or more cognitive tests (relative to an estimate of premorbid 

abilities), along with sensory and/or mobility difficulties.

 C. Clinical tests

Clinicians biannually administered standardized clinical, cognitive, and motor tests to the 

residents. The tests included the Timed Up and Go mobility measure (TUG) as well as the 

Repeatable Battery for the Assessment of Neuropsychological Status measure of cognitive 

status (RBANS) as detailed in Table II. We create a clinical dataset using TUG and RBANS 

scores obtained from biannual clinical tests. Figure 3 plots the distribution of these two 

scores against the ages of the participants.

 V. Modeling Activities and Mobility

 A. Activity recognition algorithm

Activity recognition algorithms label activities based on readings (or events) that are 

collected from smart environment sensors. As described earlier, the challenge of activity 

recognition is to map a sequence of sensor events onto a value from a set of predefined 

activity labels. These activities may consist of simple ambulatory motion, such as walking 

and sitting, or complex basic or instrumental activities of daily living, depending upon what 

type of underlying sensor technologies and learning algorithms are used.

Our activity recognition algorithm, AR [22], recognizes activities of daily living, such as 

cooking, eating, and sleeping using streaming sensor data from environmental sensors such 

as motion sensors and door sensors. These motion and door sensors are discrete-event 
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sensors with binary states (On/Off, Open/Closed). Human annotators label one month of 

sensor data from each smart home with predefined activity labels to provide the ground truth 

activity labels for training and evaluating the algorithm. The inter-annotator reliability 

(Cohen’s Kappa) values of the labeled activities in the sensor data ranged from 0.70 to 0.92, 

which is considered moderate to substantial reliability. We use the trained model to generate 

activity labels for all of the unlabeled sensor data.

AR identifies activity labels in real time as sensor event sequences are observed. We 

accomplish this by moving a sliding window over the data and using the sensor events 

within the window to provide a context for labeling the most recent event in the window. 

The window size is dynamically calculated based on the current sensor. Each event within 

the window is weighted based on its time offset and mutual information value relative to the 

last event in the window. This allows the events to be discarded that are likely due to other 

activities being performed in an interwoven or parallel manner. We calculate a feature vector 

using accumulated sensor events in a window from the labeled sensor data collected over a 

month. The feature vector contains information such as time of the first and last sensor 

events, temporal span of the window, and influences of all other sensors on the sensor 

generating the most recent event based on mutual information. Currently, AR recognizes the 

activities we monitor in this project with 95% accuracy based on 3-fold cross validation. An 

example of activity-labeled sensor data is presented in Figure 2 [22]. More details on this 

and other approaches to activity recognition are found in the literature [16].

 B. Modeling performances of activities and mobility performances

The first CAAB step is to model the performance of the activities in set A. We model 

activity performance by extracting relevant features from the activity-labeled sensor data. 

For each activity Ai ∈ A, we can represent such performance features using the d-

dimensional activity performance feature vector Pi =< Pi,1, Pi,2, …, Pi,d >.

Depending upon the nature of the sensor data and the performance window we want to 

monitor, we can aggregate activity performance Pi for activity Ai over a day, week, or other 

time period. In our experiments, we aggregate activity performance features over a day 

period (the time unit is one day). For example, if we calculate the sleep activity performance 

Pi,1,t as the time spent sleeping in the bedroom on day t, the observation Pi,1,t+1 occurs one 

day after observation Pi,1,t. For each individual, we calculate activity performance features 

for the entire data collection period T for all activities in the activity set A (1 ≤ t ≤ T).

For our experiments, we model activity performance using two (d = 2) specific activity 

performance features, a time-based feature and a sensor-based feature {Pi,1,Pi,1}. Feature 

Pi,1 represents the duration of activity Ai and Pi,2 represents the number of sensor events 

generated during activity Ai. We have provided evidence in previous studies that these two 

features are generalizable to other activities, are easily interpretable, and can model how the 

residents perform their daily activities [15]. In addition to capturing activity performance, 

we also represent and monitor a person’s overall mobility. Mobility refers to movement 

generated while performing varied activities (as opposed to representing a single activity of 

its own) and is therefore represented using two different types of features: the number of 
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sensor events triggered throughout the home and the total distance that is covered by 

movement throughout the course of a single day (see Table III).

 C. Selection of ADLs

In this study, we model a subset of automatically-labeled resident daily activities. These 

activities are sleep, bed to toilet (a common type of sleep interruption), cook, eat, relax, and 

personal hygiene. We also capture and model a resident’s total mobility in the home.

 1) Sleep—The effects of aging include changes in sleep patterns that may influence 

cognitive and functional status. For example, individuals over the age of 75 have been found 

to experience greater fragmentation in nighttime sleep (e.g., [23]), which concurrently 

causes decreased total sleep time and sleep efficiency. Sleep problems in older adults can 

affect cognitive abilities [24] and have been associated with decreased functional status and 

quality of life. Moreover, individuals with dementia often experience significant disruption 

of the sleep-wake cycle. Thus, the effects of sleep on the health of older adults are important 

clinical construct that both clinicians and caregivers are interested in understanding [25].

Using AR, we recognize sensor events that correspond to sleep (in the bedroom, as opposed 

to naps taken outside the bedroom) and bed-to-toilet activities. We then extract the time 

spent and number of sensor events features that correspond to these two activities. As listed 

in Table III, four features model a smart home resident’s sleep activity. The value for the 

time-based sleep feature is calculated as the total number of minutes spent in sleep on a 

particular day and the value for the sensor-based sleep feature is calculated as the number of 

sensor events that are triggered over the course of one day while the resident slept. Similarly, 

the time-based bed to toilet feature is calculated as the total number of minutes spent in bed 

to toilet activity on a particular day. We exclude the sensor-based feature that calculate 

number of times sensor events are triggered on bed to toilet activity because our data shows 

that the number of sensor events generated when performing the bed to toilet activity is often 

very low. Because of the known importance of sleep and its relationship with physical and 

cognitive health, we conduct a separate analysis of sleep and bed to toilet parameters from 

the other activities that are analyzed as a group [25], [26].

 2) Mobility—Mobility is the ability of an individual to move around their home 

environment and the community. Mobility impairments limit an individual’s ability to 

maintain independence and quality of life and are common predictors of institutionalization 

among older adults [27]. Evidence supports a close connection between executive brain 

function and walking speed [28]. Therefore, we separately model mobility as an everyday 

behavioral feature. We model the mobility of a smart home resident based on the number of 

sensor events they trigger and the total distance they cover in a day while in the home 

(estimated based on known distances between motion sensors placed in the home). As listed 

in Table III, the value for the distance-based mobility feature is calculated as the total 

distance covered by a resident in one day (our aggregation time period) while inside the 

home. Similarly, the value for the sensor-based mobility feature is calculated as the number 

of sensor events that a resident triggers over the course of one day while moving around in 

the home.
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 3) Activities of Daily Living—Basic activities of daily living (e.g., eating, grooming) 

and the more complex instrumental activities of daily living (IADLs; e.g., cooking, 

managing finances), are fundamental to independent living. Data indicate that increased 

difficulties in everyday activity completion (e.g., greater task inefficiencies, longer activity 

completion times) occur with older age [29], [30]. Clinical studies have also demonstrated 

that individuals diagnosed with MCI experience greater difficulties (e.g., increased omission 

errors) completing everyday activities when compared with healthy controls [31], [32]. 

Therefore, clinicians argue the importance of understanding the course of functional change 

given the potential implications for developing methods for both prevention and early 

intervention [30].

In our work, we consider five activities of daily living (in addition to sleep): cook, eat, 

personal hygiene, leave home, and relax. We note that the “relax” activity represents a 

combination of watching TV, reading, and napping that typically takes place in a single 

location other than the bedroom where the resident spends time doing these activities, such 

as a favorite chair. We focus on these activities because they are activities of daily living that 

are important for characterizing daily routines and assessing functional independence. For 

each of these activities, we calculate the total activity duration. Our data shows the number 

of sensor events generated when performing these activities is often very low. Thus, for 

these activities, we exclude features that calculate number of times sensor events are 

triggered. As listed in Table III, we calculate the value for the time-based ADL feature as the 

total number of minutes spent in an activity on a particular day.

Algorithm 1 CAAB approach

1: Input: Activity performance features

2: Output: Statistical activity features

3: Initialize: Feature vector

4: //T1 and T2 are two consecutive clinical testing time points

5: Given: T1,T2

6: Given: skip size = 1

7: while T1 < (T2 − W) do

8:  for each activity performance feature do:

9:   Place a window of size W at T1.

10:   Remove missing observations and detrend based on the observations that fall into this window.

11:   Calculate the variance, autocorrelation, skewness, kurtosis and change features (Algorithm 2) using the 
observations in the window.

12:   Append these values to the feature vector.

13:   T2 = T1 + skip size

14:  end foreach

15: end while

16: return average(Feature matrix)

 D. Activity feature extraction

The second CAAB step is to extract statistical features from the activity performance vector. 

CAAB extracts features from the time series-based representation of activity performance 
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and uses these to train a machine-learning algorithm. Namely, we extract four standard time 

series features and one new change feature. We will refer to these five features as statistical 

activity features. Table IV lists the complete set of activity features.

 1) Statistical activity features—To calculate the first four features, CAAB runs a 

sliding window (e.g., window size, W = 30 days) over each of the activity performance 

features listed in Table III and calculates variance, autocorrelation, skewness, and kurtosis 

using the observations from data that falls within the sliding window. The sliding window 

starts at one clinical assessment time point and ends at the next assessment time point, thus 

capturing all of the behavior data that occurred between two subsequent assessments. For 

example, CAAB calculates the variance, autocorrelation, skewness, and kurtosis of the 

duration feature for each activity based on duration observations that fall inside each W-

sized data window. CAAB repeats the process and calculates these four statistical activity 

features for all other activity performance features for all of the activities in set A.

Before calculating these features, CAAB first removes the time series trend from the sliding 

window observations in order to remove the effect of non-stationary components (e.g. 

periodic components) in the time series [33]. For this step, CAAB fits a Gaussian or a linear 

trend to the data within the sliding window. CAAB then detrends the data by subtracting the 

fitted trend from the data. CAAB slides the window by one day (skip size=1) and re-

computes all of the statistical activity features. For each feature, CAAB slides a window 

through the sensor home data and computes the final feature values as an average over all of 

the windows. Algorithm 1 explains the steps.

In addition to these standard four different time series features, we propose a fifth feature, a 

change-based feature, to characterize the amount of change in an individual’s activity 

performance. Algorithm 2 details the steps in calculating this new feature. In order to 

compute this feature, CAAB uses a sliding window of size W days and divides an activity 

performance feature observations that fall in W into two different groups. The first group 

contains feature observations that fall in the first half of W and second group contains 

feature observations that fall in the other half. CAAB then compares between these two 

groups of feature observations using a change detection algorithm. For the current work, we 

use the Hotelling-T test algorithm [34]. However, we can also apply other change detection 

algorithms. CAAB then slides the window by one day (skip size = 1) and re-computes the 

change feature. CAAB calculates the final change value as the average over all windows. 

Similar to the other four statistical activity features computed in the previous section, CAAB 

computes the value of the change feature for each of the activity performance features listed 

in Table III.

Algorithm 2 Calculation of change feature

1: Input: Activity performance features

2: Initialize: CH = [ ]

3: //T1 and T2 are two consecutive clinical testing time points

4: Given: T1,T2

5: Given: skip size = 1
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6: W = window size

7: while do T1 < (T2 − W):

8:  for each activity performance feature do:

9:   Place window of size W at T1.

10:   Remove missing values that fall into this window.

11:   Put first half of W in the group A and second half in the group B.

12:   //Returns True or False.

13:   change = Hotelling T-test (A,B)

14:   append(CH, change)

15:   T1 = T1 + skip size

16:  end foreach

17: end while

18: return average(CH)

We note that the change feature is different from the variance feature that CAAB calculates 

earlier. While variance measures the variability of samples around its mean, the change 

feature empirically calculates the “chance” of observing a change when two sample groups 

each of size n from the given activity performance features are compared with each other. 

Here, a higher amount of detected change indicates a greater chance of detecting changes in 

the activity performance feature.

 E. Clinical assessment

In the final step, CAAB predicts the clinical assessment scores of the smart home residents 

using the activity performance features computed from the activity labeled sensor data. 

CAAB first aligns the sensor-based data collection date with the clinical assessment-based 

data collection date before extracting statistical activity features. After extracting features 

and aligning the data, CAAB then trains a supervised machine learning algorithm and 

predicts the clinical assessment scores.

To accomplish this goal, CAAB extracts statistical activity features from the activity 

performance features that lie between any given two consecutive clinical testing points, t1 

and t2. Similarly, it obtains the clinical score S2 (or S1) at time point t2 (or t1). We consider 

the pair, statistical activity features and clinical score S2, as a point in the dataset and repeat 

the process for all of the smart home residents and for every pair of the consecutive clinical 

testing points. Algorithm 3 summarizes the steps involved to prepare the dataset.

Algorithm 3 Training set creation

1: Output: Training set to train the learning algorithm

2: Input: Activity performance features for all residents

3: Initialize: Empty training set TrSet

4: for each resident do

5:  for each consecutive clinical testing point T1 and T2 do

6:   F = CAAB (activity performance features between T1 and T2)

7:   S = clinical score(T1, T2)

8:   Append(F,S,TrSet)
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9:  end foreach

10: end foreach

The final step in the CAAB is to predict the clinical assessment scores. CAAB trains a 

learning algorithm to learn a relationship between statistical activity features and the clinical 

assessment scores using the dataset that is constructed. In this step, for each resident, at each 

time point (except the first one), CAAB predicts the clinical assessment scores using a 

learning algorithm.

We note that CAAB predicts clinical assessment scores based on the relationship that the 

learning algorithm models between the clinical assessment scores and behavior features. We 

followed this approach because there are very few clinical observations for a resident. 

Furthermore, we note that CAAB computes activity performance features by temporally 

following an individual over a period and computes statistical activity features by comparing 

past observations with current observations. In this way, CAAB uses an individual as their 

own baseline for predictive assessment.

 VI. Experimental Evaluation

 A. Dataset

As explained in Section IV-A, the CASAS middleware collects sensor data while monitoring 

the daily behavior of 18 smart home senior residents for approximately 2 years. We use the 

AR activity recognition algorithm to automatically label the sensor events with the 

corresponding activity labels. By running CAAB on the (activity-labeled) sensor data, we 

compute activity performance features and extract activity features from them. CAAB then 

creates a training set by combining the activity features and the corresponding clinical 

assessment scores (RBANS and TUG) to train a learning algorithm.

 B. Prediction

We perform the following four different prediction-based experiments to evaluate the 

performance of CAAB approach and its components: 1) We first evaluate the overall CAAB 

performance in predicting clinical assessment scores. Here, we train CAAB using the 

complete set of available features. We compare results from several representative 

supervised learning algorithms. 2) We then investigate the importance of different activity 

feature subsets by observing the resulting performance of CAAB in predicting the clinical 

assessment scores. 3) Next, we investigate the influence of parameter choices on 

performance by varying CAAB parameter values and analyzing the impact on prediction 

performance. 4) In the final experiment, we compare CAAB performance utilizing AR-

labeled activities with a baseline method that utilizes random activity labels.

We evaluate all of the above experiments using linear correlation coefficient (r) and mean 

squared error (RMSE). All performance values are generated using leave-one-out cross 

validation. The data for each participant is used for training or held out for testing, but is not 

used for both to avoid biasing the model. We use the following methods to compute our 

performance measures.
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• Correlation coefficient(r): The correlation coefficient between two 

continuous variables X and Y is given as:  where σx and 

σy are the standard deviations of X and Y and cov(X,Y) is the covariance 

between X and Y. In our experiments, we evaluate the correlation between 

the learned behavior model and clinical assessment scores. We will 

interpret the experimental results based on the absolute value of the 

correlation coefficient because our learning algorithm finds a nonlinear 

relationship between statistical activity features and the clinical 

assessment scores.

• Root Mean Squared Error (RMSE): If ŷ is a size-n vector of predictions 

and y is the vector of true values, the RMSE of the predictor is 

 1) Overall CAAB prediction performance—To validate the overall performance of 

CAAB performance, we compute correlations between the CAAB-predicted clinical 

assessment scores and the provided clinical assessment scores using the complete set of 

activity features and three different supervised learning algorithms:

• Support Vector Regression (SVR): Support vector regression uses support 

vector machine algorithm to make numeric predictions. The learning 

model can be expressed in term of support vectors and kernel functions 

can be used to learn a non-linear function. SVR uses the epsilon 

insensitive loss function that ignores errors that are smaller than threshold 

ε > 0. We use a linear kernel to generate all our prediction-based 

performance results [35].

• Linear Regression (LR): Linear regression models the relationship 

between the class and the features as the weighted linear combination of 

the features. The weights are calculated from the training data often using 

the least square approach.

• Random Forest (RF): Random forest builds an ensemble learner by 

creating multiple decision trees on different bootstrap samples of the 

dataset. It averages the predictions from these decision trees to make the 

prediction [35].

As listed in Table V, we observe that the performances of the learning algorithms in 

predicting the clinical assessment scores are similar. We also observe that the correlation 

values are all statistically significant. Because SVR performed best overall, we will conduct 

all of the remaining experiments using this approach. Additionally, we observe that the 

overall correlation between the predicted TUG scores and the actual TUG scores are weaker 

than the predicted RBANS and actual RBANS scores. The weaker correlation is likely due 

to the fact that there are only two activity performance features (mobility and leave home) 

that represent the mobility of an individual. Other activities such as cook, bed to toilet, and 

relax do not adequately represent the mobility of a resident.
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 2) CAAB prediction performance based on activity feature subsets—We 

perform a second set of prediction-based experiments using different subsets of statistical 

activity features to study and find the important sets of features as listed as follows:

1. We evaluate the prediction performances of the learning algorithm when it 

is trained using different subsets of statistical activity features.

2. We evaluate the result of using statistical activity features that belong to 

various subsets of ADLs.

In the first experiment, we study the significance of five major types of statistical activity 

features (autocorrelation, skewness, kurtosis, variance, and change) that CAAB extracts 

from the activity performance features. To perform this experiment, we create five different 

training sets, each of which contains a subset of the statistical activity features. For example, 

the first training set contains all of the variance-based features; the second training set 

contains all of the autocorrelation-based features etc. Using these training sets, we train five 

separate support vector machines. As listed in Table VI, we note that the performance of the 

SVR in predicting clinical assessment scores using the variance of the activity features is 

strong as compared to other major types of statistical activity features. Therefore, we 

hypothesize that the variance of activity performance is an important predictor. Additionally, 

we observe that skewness-based feature is important for predicting TUG clinical scores 

while it was slightly weaker for RBANS predictions.

For the second CAAB feature-based experiment, we study the relationship between the 

clinical assessment scores and the statistical activity features subsets that belong to various 

groups of ADLs. We create nine different ADL groups, each of which contains a 

combination of one or more activities (out of seven activities) and/or mobility. For each 

combination, we create a training set containing all statistical activity features belonging to 

the activities in that combination. In total, we create nine different training sets. As listed in 

Table VII, we make the following three observations:

1. In terms of single variables, sleep had the highest correlation with RBANS 

(r = 0.51). In contrast, mobility showed little correlation with either 

clinical score.

2. We observe that correlation is higher when we combine variables. 

Specifically, including automatically-recognized ADLs improved the 

correlation further for both RBANS (r = 0.61) and TUG (r = 0.48). 

RBANS showed highest correlation when all features are used (r = 0.72).

3. In the case of TUG, the only two variable combinations that lacked a 

significant correlation included mobility. Once again, adding 

automatically-recognized activities generally increases the correlation.

These results show that a relationship exists between RBANS and TUG clinical assessment 

scores with combined smart home-based parameters of sleep and ADLs. Our observations 

are interesting and align with results from prior clinical studies that have found relationships 

between sleep and ADL performance with cognitive and physical health [24], [36]. 

Furthermore, we also note that our observations are computed by making use of automated 
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smart home sensor data and actual clinical assessment scores. The smart home sensor data 

are ecologically valid because the smart home collects data from the real world environment 

and CAAB extracts features without governing, changing, or manipulating the individual’s 

daily routines.

 3) CAAB performance using different parameters—We perform two different 

experiments to study the effect of parameter choices on CAAB. In these two experiments, 

we train the learning algorithm using the complete set of features. We first study how the 

activity features extracted at different window sizes will affect the final performances of the 

learning algorithm. Second, we repeat the steps of the first experiment to study the effect of 

using different trend removal techniques.

In the first experiment, we compare performance using different window sizes and the SVR 

learning algorithm. We summarize the results in Figure 4. We observe that the strength of 

the correlation between the actual clinical assessment scores and predicted scores using 

features derived from smaller and mid-sized window is stronger than the larger-sized 

windows. One possible explanation is that larger windows encapsulate more behavior trends 

and day-to-day performance variation may be lost. Therefore, we use mid-sized (30 for 

RBANS and 55 for TUG) windows for all of our experiments.

In the second experiment, we compare three different trend removal techniques. We create 

three different training sets that result from removing a Gaussian trend, a linear trend, and no 

trend removal. The results are showed in Figure 4. We observe that the strength of the 

correlation coefficients is stronger and often RMSE values are smaller when we remove a 

Gaussian trend from the observations. Thus, in all of our remaining experiments, we remove 

a Gaussian trend from the data.

 C. CAAB performance using random activity labels

In our final prediction experiment, we compare CAAB performance using AR-labeled 

activities to CAAB performance using random activity labels. There are three main 

objectives of this experiment. First, we want to determine the importance of the role that the 

AR algorithm plays in CAAB. Second, we want to verify that CAAB is not making 

predictions based on random chance. Third, we let prediction performance based on random 

activity labels serve as a base-line or lower bound performance for comparison purposes. We 

expect CAAB performance using AR-labeled activities to significantly outperform the 

baseline performance.

To perform this experiment, we create a training set in which the statistical activity features 

(shown in Table III) are calculated from the sensor data that is randomly labeled with the 

activity instead of using AR algorithm to automatically generate activity labels. We 

performed this experiment using the following three steps: 1) We label raw sensor events by 

randomly choosing the activity labels from the activity set. We choose an activity assuming 

a uniform probability distribution over all activity classes. 2) We extract statistical activity 

features from the sensor data labeled with the random activities. 3) We train SVR using the 

statistical features and use clinical assessment scores as ground truth. Performance measures 

are computed as described in the previous sections.

Dawadi et al. Page 14

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As shown in Figure 5, we see that the strength of the correlation coefficients between 

predicted and actual clinical assessment scores are weak and that the RMSE values are high 

for the random approach. We also observed that the performances of the learning algorithms 

trained with features obtained from the AR labeled activities are significantly better than the 

random labels. Thus, we conclude that activity recognition plays a vital role in CAAB and 

that the CAAB predictions using statistical activity features extracted from AR labeled 

sensor data are meaningful and not obtained by chance.

 VII. Classification Experiments

To evaluate the performance of CAAB using various classification-based experiments to 

evaluate, we first discretize the continuous clinical assessment scores into two binary classes 

and then use a learning algorithm to classify smart home residents into one of these two 

clinical groups. Performing these experiments allows us to use traditional supervised 

learning-based methods and performance measures to evaluate CAAB, in contrast with the 

regression approaches that are utilized earlier in the paper. We train the learning algorithms 

using the CAAB-extracted statistical activity features. For all of the classification-based 

experiments, we use a support vector machine (SVM) as the learning algorithm [35]. SVM 

identify class boundaries that maximize the size of the gap between the boundary and data 

points. We perform the following four different classification experiments: 1) We first 

evaluate classification performances of the SVM in classifying discretized RBANS and TUG 

clinical assessment scores when they are trained with different subsets of statistical activity 

features and activity performance features. 2) In the second experiment, we repeat the first 

experiment by discretizing RBANS and TUG scores into binary classes at different 

thresholds. 3) Next, we study the classification performances of the learning algorithms 

trained using the activity features obtained from the sensor data labeled with random 

activities. 4) Finally, we evaluate the classification performance (error) by using a 

permutation-based test to ensure that the accuracy results are not obtained by a chance.

We evaluate the classification performance of the learning algorithm using area under the 

curve, G-mean, accuracy and error and generate them using leave-one-out cross-fold 

validation.

• ROC curves assess the predictive behavior of a learning algorithm 

independent of error cost and class distribution. The area under the ROC 

curve (AUC) provides a measure that evaluates the performance of the 

learning algorithm independent of error cost and class distribution.

• G-Mean is the square root of the product of the true positive and true 

negative rate [35]. 

• Accuracy is the percent of the correct predictions made by the learning 

algorithm by the total number of predictions. Accuracy = #Correct 

predictions/#Total predictions
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• Error is the percent of the incorrect predictions made by the learning 

algorithm by the total number of predictions. Error = 1 – Accuracy

 1) CAAB classification performance based on feature subsets

Similar to the prediction-based experiments, we first study the importance of different 

subsets of statistical activity features and subsets of activities. For the first experiment, we 

discretize clinical assessment scores (RBANS and TUG) into binary classes using an equal 

frequency binning technique. We then train multiple SVMs to learn the relationship between 

CAAB-extracted activity features and these discretized clinical assessment scores. We make 

three observations based on the classification performances presented in Tables VIII and IX.

1. From Table IX, we observe that the performance of the learning algorithm 

that is trained with the AR-labeled activities including sleep and ADLs 

performs generally better than using other single variables.

2. From Table VIII, we observe that the classification performances of the 

SVM when trained with variance-based activity features are better for both 

RBANS and TUG scores. It appears that skewnewss-based feature is only 

important for classifying RBANS clinical scores and not for the TUG 

classifications.

3. We note that the CAAB performance in the classification-based 

experiments involving smart home-based parameters of sleep and ADLs 

are similar to the performances in the prediction-based experiments.

In the second experiment, we evaluate the impact of CAAB performance of discretizing the 

continuous clinical assessment scores into binary classes at different cutoff thresholds. The 

objective of this experiment is to identify the range of thresholds that the learning algorithm 

can discriminate. For this experiment, we first discretize RBANS and TUG scores into 

binary classes at different thresholds. For this experiment, we use all the features to train the 

SVM with AdaBoost and generate performance metrics using leave one out cross validation. 

We use SVM/AdaBoost to handle the class imbalance in the dataset if there exists one[35]. 

The AdaBoost algorithm improves the accuracy of the “weak” learner by assigning greater 

weight to the examples that the learning algorithm initially fails to correctly classify [35]. 

The advantages of boosting the classifier to learn an imbalanced class is that since boosting 

weights the samples, it implicitly performs both up-sampling and down-sampling with little 

information loss and is also known to prevent overfitting [35]. As showed in Figure 6 we 

observe some variations in the performance of the learning algorithms when they are trained 

with class labels that were discretized at different thresholds; however, the majority of the 

classification performances are better than random classification performances (i.e., 50% 

accuracy for binary classes).

Additionally, based on Figure 6, we make four more observations:

• CAAB performance is generally better when the RBANS clinical score is 

discretized at thresholds within the lower range of RBANS (85 – 100) 

performances and within the higher range of RBANS (125 – 130) 
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performances. It appears that the learning algorithm does successfully 

distinguish between the two extreme groups.

• CAAB classification performance is best when the continuous TUG 

clinical score is discretized at scores 12 and 17. We note that a score of 12 

and above on the TUG puts individuals into the falls risk category [38]. 

Given that the TUG test measures the time that is required to comfortably 

complete the Timed Up and Go task, it appears that the learning algorithm 

can discriminate between the “slow performers” and the “fast performers.”

• However, we note that similar to the prediction-based experiment, 

performance of the classifier in classifying TUG based scores is weaker 

than the performance while classifying RBANS scores. As we mention 

previously, this weaker performance is likely due to the fact that there are 

only two activity performance features (mobility and leave home) that 

represent the mobility of an individual.

• Additionally, we note that CAAB performance in classifying both TUG 

and RBANS clinical labels are moderate to poor when the clinical scores 

are discretized into binary classes at the intermediate thresholds. We 

obtain moderate classification performances because the two classes are 

more likely to have “similar” activity performance and are therefore harder 

to distinguish from each other.

In the fourth experiment, we compare classification performance using AR-labeled activities 

and random activity labels. Similar to the prediction-based experiment, we expect the 

classification performance based on AR labeled activities to outperform the random method. 

As illustrated in Figure 7, we observe that AR-based classification outperforms classification 

with random activity labels and that the results are similar to the earlier regression-based 

experiments (t-test on g-mean, p < 0.05).

 2) Permutation-based test

In the final experiment, we determine whether the aforementioned performance results are 

obtained because of chance, rather than because of the effectiveness of CAAB. With the 

permutation-based evaluation method, we calculate a p-value to test a null hypothesis about 

the relationship between the class labels and features. This p-value is calculated as a fraction 

of times that the performance of CAAB on the dataset that is obtained by shuffling 

(permuting) the class labels exceeded the performance of CAAB on the original dataset. 

Similar to the first classification-based experiment, we first discretize RBANS at a threshold 

of 105.5 and TUG at a threshold of 12.5 using an equal frequency binning technique. We 

perform a test proposed in Ojala and Garriga [39].

H: We randomly permute the class labels to study the relationship between class labels and 

the features. The null hypothesis is that there exists no relationship between the data and the 

class labels.

Table X presents the results from the AR annotated data. Based on the null hypotheses H, we 

make the following observation: the statistically significant (p < 0.05) result for the null 
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hypothesis (H) indicates that there exists a relationship between the sensor-based activity 

performance and discretized RBANS and TUG labels.

We repeat this experiment using activity features derived from randomly-labeled activities. 

Table XI lists the results. Based on the p-values, we fail to reject the null hypothesis (H) that 

there exists no relationship between the class labels and features. Thus, we conclude that 

there exists a relationship between the smart home sensors-based activity features and 

standard clinical assessment scores (RBANS and TUG) and that the performance results are 

not obtained by chance.

 VIII. Conclusions and Future Works

In this paper, we described our CAAB approach to modeling a person’s activity behavior 

based on smart home sensor data. CAAB collects sensor data, models activity performance, 

extracts relevant statistical features, and utilizes supervised machine learning to predict 

standard clinical assessment scores. This represents a longitudinal approach in which a 

person’s own routine behavior and changes in behavior are used to evaluate their functional 

and mobility-based health. We validate our approach by performing several classification 

and prediction-based experiments. We found statistically significant correlations between 

CAAB-predicted and clinician-provided RBANS and TUG scores.

Our experiments are conducted using smart home data from 18 smart home residents and the 

majority of residents are cognitively healthy. Future work will include validation on larger 

population sizes encompassing a greater period of time. We note that CAAB is not intended 

to replace existing clinical measurements with the smart home-based predictions but may 

provide a tool for clinicians to use. We also note that an advantage of CAAB is that sparsely-

measured clinical scores can be enhanced using the continuously-collected smart home data 

and predictions. In the future, we will explore the clinical utility of smart home-based 

predictions and the role it can play in helping clinicians to make informed decisions.
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Fig. 1. 
CASAS smart home floor plan and sensor layout. The location of each sensor is indicated 

with the corresponding motion (M), light (LS), door (D), or temperature (T) sensor number.
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Fig. 2. 
Sample raw (left) and annotated (right) sensor data. Sensors IDs starting with M are motion 

sensors and IDs starting with D are door sensors.
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Fig. 3. 
Distribution of RBANS (left) and TUG (right) clinical assessment scores in the y-axis with 

respect to age in x-axis. The horizontal line represents a mean clinical score and the vertical 

line represents the mean age.
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Fig. 4. 
The correlation coefficients (top) and RMSE (bottom) between predicted and actual RBANS 

(left) and TUG (right) scores when we use different trend removal techniques and window 

sizes to train a SVR.
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Fig. 5. 
Correlation coefficients (top) and RMSE (bottom) between SVR-predicted and actual 

RBANS (left) and TUG (right) scores when we train SVR using features derived from 

randomly-labeled and AR-labeled activities. We use the complete set of statistical features to 

train the SVR.
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Fig. 6. 
Classification performance (AUC and G-Mean) of the SVM with boosting in classifying the 

discretized RBANS (left) and TUG (right) scores. We discretize the RBANS score into two 

classes at different thresholds and train the SVM using the complete feature set.
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Fig. 7. 
Classification performance (AUC and G-Mean) of the SVM while classifying RBANS (left) 

and TUG (right) clinical scores when the SVM is trained using features that are derived 

from randomly-annotated activities. We use the complete feature set to train the SVMs and 

discretize the clinical assessment scores into two classes.
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TABLE I

Major notations and meanings in CAAB

n Number of activities

T Total number of data collection days

A Set of n activities being modeled

Pi Activity performance feature vector for activity i modeled over data collection period T

Pi,d,t Activity performance feature d for activity i activity on day t

j Time point at which clinical measurements are made

Sj Clinical assessment score measured at time point j

W Sliding window size
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TABLE II

Variables in the standard clinical dataset

Variable name Description

Repeatable Battery for the Assessment 
of Neuropsychological Status (RBANS)

RBANS [20]. This global measure of cognitive status identifies and characterizes cognitive decline 
in older adults.

Timed Up and Go (TUG) TUG [21]. This test measures basic mobility skills. Participants are tasked with rising from a chair, 
walking 10 feet, turning around, walking back to the chair, and sitting down. The TUG measure 
represents the time required for participants to complete the task at a comfortable pace.
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TABLE III

Activity performance features extracted from the activity-labeled smart home sensor data

Group Variable Features

Mobility Mobility Total distance traveled, #Total sensor events

Sleep Sleep Sleep duration, #Sleep sensor events

Bed toilet transition Bed toilet transition duration

Cook Cook duration

Eat Eat duration

ADL Relax Relax duration

Personal hygiene Personal hygiene duration

Leave home Leave home duration
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TABLE IV

Statistical activity features (μ is the mean of the activity performance features p of size n).

Id Statistical features Definition Formula

1 Variance Variance is the measure of spread.

2 Autocorrelation Autocorrelation(AC) is the similarity between 
observations that are displaced in time. We calculate 
autocorrelation at lag 1.

3 Skewness Skewness measures the degree of asymmetry in the 
distribution of values.

4 Kurtosis Kurtosis measures the amount of peakedness of the 
distribution toward the mean.

5 Change Change characterizes the amount of change in an 
individual’s activity performance over time.

Algorithm 2

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2017 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dawadi et al. Page 32

TABLE V

Overall prediction performance of the different learning algorithms

Score Type Measure SVR LR RF

RBANS r 0.72** 0.64** 0.52**

RMSE 14.90 20.25 13.66

TUG r 0.45** 0.41* 0.41**

RMSE 5.87 7.62 5.22

*
p < 0.05,

**
p < 0.005
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TABLE X

Average error and p-value for our test using support vector machines and activity features extracted from the 

dataset that is derived from AR-annotated activities

Original Test 1

Class label Error Err (std) p

RBANS 0.27 0.52 (0.11) 0.009**

TUG 0.24 0.42 (0.05) 0.019*

*
p < 0.05,

**
p < 0.005
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TABLE XI

Average error and p-value for our test using support vector machines and activity features extracted from the 

dataset that is derived from randomly-labeled activities

Original Test1

Class label Error Err (std) p

RBANS 0.57 0.53 (0.07) 0.65

TUG 0.38 0.37 (0.11) 0.48
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