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Abstract

One of the many services that intelligent systems can provide is the automated assessment of 

resident well-being. We hypothesize that the functional health of individuals, or ability of 

individuals to perform activities independently without assistance, can be estimated by tracking 

their activities using smart home technologies. In this paper, we introduce a machine learning-

based method for assessing activity quality in smart homes. To validate our approach we quantify 

activity quality for 179 volunteer participants who performed a complex, interweaved set of 

activities in our smart home apartment. We observed a statistically significant correlation (r=0.79) 

between automated assessment of task quality and direct observation scores. Using machine 

learning techniques to predict the cognitive health of the participants based on task quality is 

accomplished with an AUC value of 0.64. We believe that this capability is an important step in 

understanding everyday functional health of individuals in their home environments.

Index Terms

Smart environments; Machine learning

I. INTRODUCTION

The maturing of ubiquitous computing technologies has allowed for application of these 

technologies to areas of critical need. One such area is ubiquitous monitoring of an 

individual’s cognitive and physical health. The possibilities of using smart environments for 

health monitoring and assistance are perceived as “extraordinary” [10] and are timely given 

the aging of the population [1][3].

We hypothesize cognitive impairment can be evident in everyday task performance. We also 

postulate that differences in task performance can be automatically detected between 

cognitively healthy (CH) individuals and those with dementia and mild cognitive 
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impairment (MCI) using smart home and ubiquitous computing technologies. In one of the 

first projects to focus on this question, we investigate approaches for quantifying task 

performance and relate the automated scores to cognitive health of individuals.

Clinicians are interested in understanding everyday functioning of individuals to gain 

insights about difficulties that affect quality of life. Everyday functioning encompasses daily 

functional abilities such as cooking, managing finances, driving, and activities of daily 

living that individuals must complete to live competently and independently. In addition, 

deficits and changes in everyday functioning are considered as precursors to serious 

cognitive problems such as dementia and MCI [12]. As proxy measures for everyday 

functioning, clinicians use performance-based simulation measures administered in a 

laboratory and/or self-report and informant-report questionnaires of activities of daily living. 

Though these methods are thought to reflect activity performance in realistic settings, the 

assessment techniques are questioned for their ecological validity [6]. For example, self-

report and informant-report are subject to reporter bias while data collected via simulation 

measures in a clinical setting may not capture subtle details of activity performance that 

occur in a home [22]. Among these methods, direct observation of the individual to 

determine everyday functional status is considered the most ecologically valid [6] [24].

When observing individuals performing everyday activities, clinicians can derive 

information about how well the individual is able to perform the activities. If important steps 

are skipped or performed incorrectly then the benefit of the activity is not realized and the 

mistake may be indicative of a health condition. Such activity mistakes may include 

forgetting to turn off the burner or taking a long time to complete a simple activity. When 

activities can be assessed in an individual’s own environment, they can help in 

characterizing daily behavior and pinpointing cognitive or physical difficulties.

In this paper, we propose a machine learning methodology to automatically quantify the 

quality of the performance of an activity with respect to how other individuals perform the 

same activity. We implement our approach to activity assessment in our smart home test bed 

and correlate our automated scores with measurements derived from direct observation of 

participant performances. Finally, we analyze correlation between activity quality and health 

diagnosis.

II. RELATED WORK

A smart home can be viewed as an environment in which computing and communications 

technologies employ artificial intelligence techniques to reason about and control our 

physical home setting [8]. In a smart home, sensor events are generated while residents 

perform their daily routines. A smart home is an ideal environment for performing 

automated health monitoring and assessment. Using this setting, no constraints are made on 

the resident’s lifestyle. As an example, Pavel et al. [17] hypothesized that change in mobility 

patterns are related to change in cognitive ability. They tested this theory by observing 

changes in mobility as monitored by motion sensors and found evidence to support the 

relationship between these changes and symptoms of cognitive decline. Lee and Dey [15] 

designed an embedded sensing system and presented information to older adults to 
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determine if this information was useful to them in gaining increased awareness of their 

functional abilities.

The ability to perform automated assessment of task quality and cognitive health has 

recently been given a boost because activity recognition techniques are becoming more 

capable of accurately identifying the current task [7]. In our experiments, we rely upon 

environmental sensors including infrared motion detectors and magnetic door sensors to 

gather information about complex activities such as cooking, sleeping, and eating. The 

techniques we describe in this paper can also make use of wearable sensors such as 

accelerometers [23] as well as RFID tags and shake sensors [20].

While smart environment technologies have been studied extensively for the purposes of 

activity recognition and context-aware automation, less attention has been directed toward 

using the technologies to assess the quality of tasks performed in the environment. Some 

earlier work has measured activity correctness for simple sequential tasks. Cook et al. [9] 

developed a model to assess the completeness of activities. Similarly, Hodges et al. [14] 

correlate sensor events gathered during a coffee-making task with an individual’s 

neuropsychological score. Rabbi et al. [22] designed a sensing system to assess mental and 

physical health using motion and audio data. Allin and Ecker [2] used computer vision 

techniques to correlate motor statistic of stroke survivor’s motion obtained from multiple 

digital cameras with expert functional scores on the Arm Motor Ability Test.

In contrast to these other projects, we are analyzing data from parallel and interwoven 

activities and are correlating sensor features with scores derived from direct observation of 

performance on a complex task. This represents one of the first reported projects to use 

smart home technologies to automate such assessment for a large group of participants.

III. Background

The goal of this project is to perform automated assessment of tasks performed in a smart 

home. Given a sequence of sensor events that are generated while an activity is being 

performed, our algorithm will map the sequence onto a quantitative score. We assume that 

sufficient sensors exist to capture activity progression in detail and that the smart home 

captures the timing for each sensor event. In this project, we also assume that activities are 

complex with a number of independent sub-activities that may be interwoven with steps 

from other activities or sub-activities. This situation represents a challenge that recently has 

been addressed by the activity recognition community [21] [26].

A. The Test bed

Data is collected and analyzed using the Washington State University CASAS on-campus 

smart home test bed, an apartment that contains a living room, a dining area, and a kitchen 

on the first floor and two bedrooms, an office, and a bathroom on the second floor. The 

apartment is instrumented with motion sensors on the ceiling, door sensors on cabinets and 

doors, and item sensors on selected kitchen items. The test bed contains temperature sensors 

in each room, sensors to monitor water and burner use, and a power meter to measure 

electricity consumption. Item sensors are placed on a set of items in the apartment to 
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monitor their use. Figure 1 shows the sensor layout in the CASAS smart home test bed. 

Activities for this study were performed in the downstairs of the apartment while an 

experimenter monitored the participant upstairs via a web camera and remotely 

communicated to the participant using a microphone and a speaker.

Sensor events are generated and stored while participants perform activities. Each sensor 

event is represented by four fields: date, time, sensor identifier, and sensor message. The 

data files and corresponding video are examined by humans who annotate the data with the 

activity that is being performed that causes the sensor event to be generated. A sample of the 

collected sensor events, together with the corresponding labeled activities, is shown in 

Figure 2. The CASAS middleware collects sensor events and stores them in a SQL database. 

All software runs locally on a Dream Plug computer.

Formally, the input data to our algorithm is a sequence of sensor events, E, that is generated 

as an individual performs an activity, A, which is comprised of subtasks A1..An. A subtask 

Ai is represented by the corresponding sequence of n sensor events e1..en, the start time of 

the activity, the end time of the activity, and the activity label. Activity subtasks can be 

initiated in an arbitrary order and some activities or activity subtasks can be interwoven or 

parallelized. We state that activity A at sensor event ei is parallelized if there is more than 

one subtask open (started but not ended) at that time.

B. The Day Out Task

The ability to multi-task, or perform concurrent tasks or jobs by interleaving, has been said 

to be at the core of competency in everyday life [5]. We therefore designed a “Day Out 

Task” (DOT), a naturalistic task that participants complete by interweaving subtasks. 

Participants were told to imagine that they were planning for a day out, which would include 

meeting a friend at a museum at 10am and later traveling to the friend’s house for dinner. 

The eight subtasks that need to be completed to prepare for the day out are explained and 

participants are told to multi-task and perform steps in any order to complete the preparation 

as efficiently as possible. Participants are also provided with a list and brief description of 

each subtask that they can refer to during DOT completion. The eight subtasks are:

1. Magazine: Choose a magazine from the coffee table to read on the bus ride.

2. Heating pad: Microwave for 3 minutes a heating pad located in the kitchen 

cupboard to take on the bus.

3. Medication: Right before leaving, mime taking motion sickness medicine found in 

the kitchen cabinet.

4. Bus map: Plan a bus route using a provided map, determine the time that will be 

needed for the trip and calculate when to leave the house to make the bus.

5. Change: Gather correct change for the bus.

6. Recipe: Find a recipe for spaghetti sauce in a book and collect ingredients to make 

the sauce with a friend.

7. Picnic basket: Pack all of the items in a picnic basket located in the closet.
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8. Exit: When all the preparations are made, take the picnic basket to the front door.

C. Experimental Setup

Participants initially completed standardized and experimental neuropsychological tests in a 

lab. A Neuropsychology faculty member analyzed the test data to diagnose participant’s 

cognitive health. Participants in the dementia group met DSM-IV-TR criteria for dementia 

[4], which includes the presence of multiple cognitive deficits that negatively affect 

everyday functioning and represent a decline from a prior level of functioning. Inclusion 

criteria for MCI were consistent with the diagnostic criteria defined by Petersen [18] [19] 

and with criteria outlined by the National Institute on Aging – Alzheimer’s Association 

workgroup [1].

After completing the clinical tests, participants attempted the DOT task in our smart home 

test bed. While participants were completing the DOT, two experimenters (trained graduate 

students) remained upstairs in the apartment, watching participant performances through live 

feed video. As participant completed the DOT, the examiners recorded the time each subtask 

began and ended, events being interweaved, and subtasks goals being completed (e.g., 

retrieves magazine). As the individuals perform activities in the smart home, generated 

sensors events are recorded. Research team members (graduate students) annotated the 

sensor data to relate events with the label of the subtask that the individual was performing 

when the event was triggered. Figure 2 shows a sample of the collected and annotated sensor 

data. Subtask accuracy scores and task sequencing scores were later assigned by coders after 

watching the video. Figure 3 illustrates this process.

To validate our approach for activity assessment, we include participants (N=179) who 

completed at least two of the eight DOT subtasks. Among the participants included for 

analysis, 145 were cognitively healthy, 2 were diagnosed with dementia and 32 were 

diagnosed with MCI. We excluded 14 dementia participants who could not complete at least 

two DOT subtasks. The participant pool included 141 females and 38 males, with 37 (N=37 

CH) participants under 45 years of age (Young Young), 27 participants (N=4 MCI, N=23 

CH) age 45–59 (MiddleAge), 84 (N=1 dementia, N=20 MCI, N=63 cognitively healthy) 

participants age 60–74 (YoungOld), and 31 (N=1 dementia, N=8 MCI, N=22 CH) 

participants age 75+ (OldOld). The participants who completed only two subtasks took 10.4 

± 3.44 minutes in average to complete DOT while participants who completed all subtasks 

completed DOT in 9.83±3.26 minutes to complete DOT. In average, participants took 10.33 

± 3.85 minutes to complete DOT task.

D. Task Scoring

Two trained neuropsychologists watched the video data and, in conjunction with examiner-

recorded data, assigned a task accuracy score and a sequencing score. The task accuracy 

score was based on the correctness and completeness of each of the eight subtasks. A correct 

and complete subtask received a lower score while an incorrect, incomplete, or uninitiated 

subtask received a higher score. The scoring criteria are listed in Tables 1 and 2. The final 

accuracy score was obtained by summing the individual scores of each task and thus ranged 

from 8 to 32. The task sequencing score represents whether the participant sequenced six of 
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the DOT subtasks correctly. Participants received 1 point for each correct sequence (e.g., put 

the heating pad in the microwave for 3 minutes as one of the first four subtasks). The 

normalized range of scores is 1 to 6 such that lower score indicates a more correct and/or 

efficient sequencing of subtasks. Two coders, blinded to group assignment, independently 

assigned scores to participants based on specific criteria as they directly viewed the 

participants’ task performance. Inter-rater reliability agreement for the accuracy and 

sequencing scores was 97.88% and 99.57%, respectively, and was calculated by dividing the 

number of responses by the total discrepancies due to double scoring [24]. Figure 4 shows 

the distribution of the direct observation scores, accuracy, and sequencing score grouped by 

participant cognitive diagnosis.

IV. FEATURE EXTRACTION

To assess an individual’s performance on the DOT, we derive features from sensor data that 

reflect task performance and can be input to a machine learning algorithm to quantify task 

quality. We define DOT performance based on the nature of activity completion and 

execution of the activity subtasks. A participant efficiently executes DOT if he multitasks 

DOT subtasks and sequences them correctly. Similarly, time taken to complete the entire 

DOT activity and number of sensors triggered during activity completion explains the 

participant’s DOT performance. Features were chosen based on prior studies which found 

that, in comparison to cognitively healthy older adults, individuals with MCI complete 

everyday activities (e.g., locating nutrition information on food labels, making toast, 

medication management) more slowly and commit more errors, including errors of 

commission, omission [24], and task sequencing/tracking [25]. We note that in this study the 

activity start points and end points were generated by human annotators. However, we can 

use activity recognition algorithms to automate this step [26]. These features are explained 

below.

A. Duration

We use the duration feature to represent the total wall clock time that the participant takes to 

complete the entire set of DOT activities. The time to complete an activity can indicate 

participant’s age, mobility and overall cognitive health. If subtasks are executed 

independently then we can consider the time for each subtask as a separate feature. For the 

DOT, subtasks are interleaved and performed in parallel, so we consider time taken for the 

entire DOT.

B. Number of Sensors and Sensor Events

This feature reflects the spatial areas and objects that are manipulated while DOT is being 

performed. The number of sensors indicates the number of different sensor identifiers that 

generate events during the DOT, while the number of sensor events keeps track of the 

number of events that is generated by each unique sensor in the space. These counts provide 

insight on the type of activities that are being performed and how well the participant stays 

on the task. For example, some participants wandered out of the normal activity region, used 

incorrect tools for a subtask, or explored the same space, cabinet or region repetitively as 

they attempted to complete the appropriate subtask.
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B. Parallelism

Participants in our study were encouraged to multitask the DOT subtasks as much as 

possible to complete the DOT quickly. The ability to multitask varied dramatically among 

individuals and was expected to present a challenge for those with dementia and MCI. We 

were therefore interested in quantifying the amount of parallelism or multitasking that 

existed in an individual’s performance of the DOT.

To quantify parallelism, we introduce a variable called activity level, ai, that represents the 

number of activities that are open (i.e., that have been started but not completed), at the time 

that sensor event i is generated. A set of activity levels {a1, a2,..,an} can be defined for all of 

the sensor events that were generated during the DOT. To represent this set more succinctly 

we employ run length encoding (RLE). A run for an activity level is a string of equal-valued 

activity levels. RLE encodes runs of activity levels as activity levels with corresponding 

counts, as shown in Figure 5. Based on run length encoding, we derive a M × N run length 

matrix P, where M is the maximum activity level and N is the length of the sensor sequence. 

Each element of the matrix, P(x,y), represents the number of runs of length y corresponding 

to activity level x, or the number of times that activity level x occurs y consecutive times. A 

similar technique has been used to analyze computed tomography volumetric data to capture 

various text characteristics [11].

We introduce two measures, the High Activity-Level Run Measure (HALRM) and the Low 

Activity-Level Run Measure (LALRM), to capture a participant’s level of task parallelism 

that occurred over a sequence of sensor events. If a participant parallelizes subtasks for a 

longer period of time we expect his HALRM to be high, while if he does not parallelize 

subtasks his LALRM measure would be high.

(1)

(2)

Based on these two measures, we define the parallelizing index, Pindex, to represent the 

amount of task interweaving that is performed. Pindex is computed as the ratio of HALRM 

to LALRM, as shown in Equation 3.

(3)

As Equation 3 indicates, a higher parallelizing index indicates a higher level of parallelism 

in the activity. It does not reflect a higher quality of DOT. For example, a participant may 

have a high Pindex because he initiated many of the subtasks. On the other hand, he may 

leave subtasks incomplete or take a long time to complete the subtasks. The Pindex does 
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provide particularly useful insights on task quality when combined with the other task 

features.

C. Number of Complete Activities

Not all participants completed all DOT subtasks. We thus introduce an ActivitiesCompleted 

feature which indicates whether the participant completed all of the DOT subtasks.

D. Pattern Sequencing

In the case of a complex activity such as the DOT, subtasks can be performed with many 

order variations. For instance, one participant might choose a magazine first, while another 

might start by first looking up a recipe. Participants are expected to parallelize subtasks for 

efficiency. However, some subtask sequences and parallelisms are more efficient than 

others. As an example, if a participant starts the DOT by microwaving a heating pad, they 

are able to complete other tasks while waiting for the microwave to finish. If they wait until 

the end of the DOT to microwave the heating pad this parallelism is not possible. We 

hypothesize that the sequence in which tasks are performed influences the amount of 

parallelism that can be achieved and thereby affects the efficiency of the overall task.

To represent task sequencing choices, we define a DOT sequencing vector s1, s2,..,s8 that 

encodes the order in which an individual started various tasks (in the DOT, there are 8 such 

tasks to choose from). For example, the sequencing vector (2, 3, 1, 4, 5, 6, 7, 8) indicates 

that the 2nd task in the set was initiated first, followed by the 3rd task, then the 1st task, and 

so forth. If an individual does not initiate a particular task, then the corresponding position in 

the vector sequence is treated as missing based on the sequences that were performed by 

others in the population.

E. Activity Interruptions

In the case of activities that involve waiting for an event (e.g., waiting for the Heating Pad to 

warm up), interrupting the activity to finish other tasks is both efficient and is an indication 

that the participant is capable of generating more complex plans that interweave multiple 

activities. However, for activities that take a short time to complete such as Change and Bus/

Map, participants will likely complete the task without interruptions. To capture differences 

in interruptions on various activities, we define activity interruption features based on all 

DOT subtasks. For long activities, such interruptions may indicate that the participant is able 

to generate a complex and efficient DOT solution.

The set of extracted features is summarized and categorized in Table 3. We hypothesize that 

these smart home features will allow us to provide automated task quality scores that 

correlate with task scores obtained by direct observation.

V. AUTOMATED SCORING

DOT task accuracy and task sequencing scores are derived from direct observation of 

participant’s task performance. We used machine learning techniques to identify correlation 

between our automated feature set based on smart home sensor data and the direct 
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observation scores. We describe two approaches to automated scoring: supervised learning 

and using unsupervised learning techniques.

A. Supervised Scoring Models

We formulate the automated scoring problem as a supervised learning problem in which a 

learning algorithm learns a function that maps the sensor-derived features to the direct 

observation scores. We use a support vector machine (SVM) with sequential machine 

optimization and bootstrap aggregation or bagging to learn the mapping. Support vector 

machines identify class boundaries that maximize the size of the gap between the boundary 

and data points. The bootstrap aggregation improves performance of an ensemble learning 

algorithm by training the base classifiers on randomly-sampled data from the training set. 

The learner averages individual numeric predictions to combine the base classifier 

predictions and generates an output for each data point that corresponds to the highest-

probability label. We use both supervised regression and classification algorithms in our 

supervised scoring models.

B. Unsupervised Scoring Models

A score that is generated by a supervised learning algorithm predicts the quality of an 

activity in a way that emulates human-assigned scores. In contrast, unsupervised techniques 

use characteristics of the data itself to identify natural boundaries between activity 

performance classes. Here we derive unsupervised scores using a dimensionality reduction 

technique. Dimensionality reduction techniques reduce a high-dimensional dataset to one 

with a lower dimension. We use this to reduce the feature set to a single numeric score.

While we use Principal Component Analysis (PCA) to reduce the dimension, many 

reduction techniques would be appropriate for this task [16]. PCA is a linear dimensionality 

reduction technique that converts sets of features in a high-dimensional space to linearly 

uncorrelated variables, called principal components, in a lower dimension such that the first 

principal component has the largest possible variance, the second principal component has 

the second largest variance, and so forth. After reducing the dimension, we use min-max 

normalization to convert the variables to a uniform range.

C. Cognitive Assessment Models

In our final step, we evaluate the use of smart home techniques to automate the cognitive 

health assessment of participants based on sensor-based features that describe their activity 

performance. We map each participant to one of the three cognitive groups: Dementia (D), 

Mild Cognitive Impairment (MCI), or Cognitively Healthy (CH). To accomplish this, we 

extract the same sensor-based activity features that were used for the earlier experiments, as 

explained in Section 4. We obtain ground truth cognitive health labels for each participant 

from a battery of standardized and experimental neuropsychological tests that were 

administered in a clinical setting. We then train learning algorithms to learn a mapping from 

the sensor-based activity features to the cognitive health label (CH, MCI or D).
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VI. EVALUATION

Our goal is to design smart home technologies to automate assessment of task quality and of 

cognitive health. We evaluate our approaches using data collected on a smart home test bed. 

We evaluate the two tasks separately. To evaluate the ability to automate assessment of task 

quality, we compare scores generated from our smart home algorithm with direct 

observation scores generated from neuropsychologists and to evaluate the ability to 

automate assessment of cognitive health, we compare diagnoses generated from our 

algorithms with diagnoses based on clinical tests.

We perform four experiments to evaluate our smart home-based task quality assessment 

algorithms. First, we measure the correlation between subsets of our smart home sensor 

features and direct observation scores (Section A.1). Second, we measure the correlation 

between the entire set of sensor features and direct observation scores (Section A.2). Third, 

we assess how well a SVM correctly classifies task quality, using the direct observation 

scores as ground truth labels (Section A.3). Finally, we determine how well the scores 

derived using unsupervised algorithm correlates with direct observation scores (Section B.

1).

In addition, we evaluate learning algorithms using different participant groups that we 

construct based on their cognitive diagnosis (D, MCI, and CH) and number of subtasks they 

complete. Since the number of cognitively healthy participants is large, we further divide 

them to Older adults (Middle Age, Young Old, and Old Old) and Younger adults (Young 

Young). These sample groups have different heterogeneity. We refer to a sample group as 

heterogeneous if it contains examples of both well-conducted and poorly conducted 

activities. Training set containing instances of cognitively healthy individuals who commit 

fewer mistakes tend to be less heterogeneous as compared to training set containing 

instances of both cognitively healthy individuals and individuals with MCI who often 

commit more mistakes. Similarly, individuals who complete fewer subtasks normally 

commit more mistakes than individuals who complete a higher number of subtasks. By 

training learning algorithm using these sample subsets, we can understand how the 

heterogeneity impacts the performance of the learning algorithms and helps us to understand 

the features of these different groups.

We next evaluate the ability of our learning algorithm to map smart home activity sensor 

features to a cognitive health diagnosis. We train learning algorithms using smart home data 

and the cognitive health assessments provided by trained clinicians (Section C) and evaluate 

them using two metrics: the Area under the ROC curve (AUC) and the F-score.

ROC curves assess the predictive behavior of a learning algorithm independent of error cost 

and class distribution. We plot false positives vs. true positive at various threshold settings 

to obtain a ROC curve. The area under the ROC curve (AUC) provides a measure that 

evaluates the performance of the learning algorithm independent of error cost and class 

distribution [30]. Similarly, the F-score is the harmonic mean of the precision and recall and 

is defined as [30]:
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A. Evaluation of Supervised Scoring Models

A.1 Feature Subset Correlation—For our experiment, we consider alternative feature 

subsets summarized in Tables 4 and 5. For each subset, we generate the correlation 

coefficient between the feature values derived from smart home sensor data and the 

experimenter direct observation scores (the accuracy score and sequencing score). In 

addition, we also analyze varying subsets of participants. Specifically, we consider 

subgroups of participants corresponding to the individuals with dementia (sample D), 

individuals with MCI (sample M), older adults (sample OA), and younger adults (sample 

YA). The objective of the experiment is to identify the correlation that exists between smart 

home task feature subsets for each participant and the activity quality score for the 

participant provided by trained clinicians and based on direct observation of the activity.

From Tables 4 and 5, we see that correlations between most of the feature subsets and direct 

observation accuracy/sequencing scores are statistically significant. We find that the 

correlation between the smart home features and the observation-based accuracy score is 

stronger than the correlation with observation-based sequencing scores. A possible reason is 

that the task accuracy score quantifies the correctness and completeness of the eight DOT 

subtasks, which reflects the same type of information captured by smart home features. In 

contrast, the sequencing score quantifies how the DOT subtasks were sequenced, which is 

not as extensively captured by smart home features.

We find that feature subsets correlate differently with different training sample subsets. For 

instance, in Table 4 DOT features have stronger correlation with task accuracy score but 

parallelism feature has weak correlation when we train learning algorithms with cognitively 

healthy younger adult group (column {YA}). This indicates that a learning algorithm can 

better predict task accuracy with DOT features than parallelism features when training set 

contains examples of cognitively healthy individuals. Similarly, in Table 4 we see that the 

parallelism features correlates higher when sample subsets of training data contain 

individuals with MCI and younger adults (column {M,YA}) but does not when it contains 

cognitively healthy individuals(column {YA}) indicating that parallelism features can better 

represent differences between younger adults and MCI. Thus, we see that predictive power 

of a feature set depends on participant groups.

In addition, we visualize the relationship between selected feature types and the direct 

observation scores. Figure 6 plots the order in which subtasks were initiated within the 

DOT. As the figure shows, most participants placed Bus Map first in their sequence and 

almost all participants initiated the Exit subtask last. There is a fairly consistent choice of 

ordering among the subtasks for all participants, with the greatest variation occurring in 

positions 3, 6, and 7 of the sequence. We thus conclude that task sequencing plays an 

important role in such a complex activity as the DOT and should be analyzed as a part of 

overall task quality.
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In a separate step, we plot the relationship between Pindex (the parallelism feature) and the 

direct observation scores. As shown in the left plot in Figure 7, Pindex consistently increases 

with accuracy score. The figure also shows a relationship between Pindex and the sequence 

score, although it is not as distinct. We note that when a participant initiates but does not 

complete subtasks their task quality degrades which increases their Pindex score. 

Correspondingly, as mentioned in Table 1, their accuracy score increases as well.

A.2 Combined Feature Correlation—In this experiment, we use the SVM regression 

and bootstrap aggregation to learn a regression model that finds a fit between the combined 

set of feature values and the accuracy and the sequencing direct observation score. There are 

two objectives of this experiment. The first objective is to evaluate the correlation between 

the smart home DOT features and direct observation scores (accuracy and sequencing 

scores). The second objective is to study how the correlations between the smart home 

features and direct observation scores vary as different subsets of participants are 

considered. We first analyze the relationship for separate participant groups based on how 

many subtasks they completed then we look at the relationship for the participant groups 

based on their cognitive diagnosis. The results are summarized in Tables 6 and 7. In each 

table, the first row shows the correlation between the entire participant subgroup and the 

direct observation scores.

We find that the correlation depends on the heterogeneity in the samples. For example, the 

strongest correlation is found when examining the population subgroup that contains both 

MCI and cognitively healthy younger adults and the weakest correlation is found when 

examining only cognitively healthy individuals. Similarly, we find that the correlation 

decreases as participant subgroups that completed more subtasks are included. This is 

because having a large number of incorrect and inefficient tasks helps the learning algorithm 

to make better predictions due to the variation that is present in the data. The variations in 

the samples of cognitively healthy individuals who completed all subtasks are relatively low.

We also find that the correlation is consistently stronger for the accuracy score than the 

sequencing score. This is because the accuracy score takes into account the mistakes that an 

individual makes in a subtask while the sequencing score only considers how a participant 

initiated an activity. When we examine the correlation between the combined set of features 

and the direct observation scores for the entire population, we see that the coefficient is 

fairly high (r=0.79 for the accuracy score, p<0.005). This result indicates that automatically 

derived feature values generated from smart home data do provide valuable information that 

can be used to assess task quality and that the quality score is fairly consistent with those 

obtained through direct observation.

A.3 Supervised Classification of Task Quality—In this experiment, we train multiple 

learning models to classify task quality score. We choose the accuracy score as our basis of 

comparison with automated scores because the correlation coefficients between features 

derived from sensor data with the accuracy score were consistently higher than the 

correlation between features from the sensor data and the sequencing score. We divide the 

scores into two classes using equal-frequency binning. Table 8 shows the results of the 

experiments when all samples are included. All results are generated using leave one out 
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cross validation. The machine learning models that are tested include an SMO-based support 

vector machine, a neural network, and a naïve Bayes classifier. We see that learning 

algorithms are indeed effective at classifying task quality based on direct observation scores.

B. Evaluation of Unsupervised Scoring Models

In our next experiment, we analyze the correlation between unsupervised learning model-

based generation of a sensor-derived score using Principal Component Analysis and the 

direction observation-based accuracy score and sequencing score. The objective of this 

experiment is to test the performance of unsupervised learning models in predicting DOT 

activity quality scores and determine if the performance of an unsupervised algorithm is 

comparable to that of a supervised learning algorithm. We first analyze the relationship for 

separate participant groups based on how many subtasks they completed then we look at the 

relationship for the participant groups based on their cognitive diagnosis. The results are 

summarized in Tables 9 and 10. Figure 8 shows the plot of the PCA score that is obtained by 

reducing the feature space to a single dimension as a function of the accuracy and 

sequencing scores.

Similar to previous observations, we find that the correlation depends on the heterogeneity 

in the samples. For example, the strongest correlation is found when examining the 

population subgroup that contains both MCI and cognitively healthy younger adults. The 

correlation coefficient between the unsupervised score and the direct observation accuracy 

score is 0.57 (p<0.005). This indicates that a fairly strong positive correlation exists between 

the automated scores and experimenter-generated scores of task quality. Furthermore, this 

value is similar to the values generated for the SVM model, which indicates that task quality 

can be computed directly using smart home sensor data without relying on training from 

human-provided scores.

C. Evaluation of Cognitive Assessment Models

The second goal of this project is to design a learning approach to automate cognitive health 

assessment based on smart home features. For this study, we map each participant to one of 

three labels: CH, MCI, or Dementia (D). We use labels provided by clinical testing to train 

the learning algorithm. Note that this data is based on a battery of standardized and 

experimental neuropsychology tests administered in a laboratory setting and not on the 

smart home data. We handle the assessment as a set of binary classification problems.

Class imbalance is a challenge in learning a discriminative model between these three 

classes. While there are 145 cognitively healthy individuals, there are 32 individuals with 

MCI and only 2 participants with dementia. Part of this imbalance is because many dementia 

participants had difficulty completing basic everyday tasks independently. Class imbalance 

affects classification performance because machine-learning models tend to label the points 

with the majority class label. To address this issue, we use cost sensitive versions of 

machine learning algorithms for each of the base classifiers. A cost sensitive classifier 

assigns misclassification costs separately for individual class labels and reweights the 

samples during training according to this cost. This allows the classifier to achieve overall 
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strong performance even when the training points are not evenly divided among the 

alternative classes [27], as is the case with this dataset.

We initially train a learning algorithm to label CH and MCI participants. We use PCA to 

reduce the dimensionality of the feature vector and train a cost-sensitive version of a support 

vector machine. We compare this with an alternative approach in which we handled the 

class imbalance by under-sampling the majority class so that the ratio of the Cognitively 

Healthy group to the MCI group is 2:1. The results of this experiment are summarized in 

Table 11. To compare automated diagnosis based on smart home features with diagnosis 

based on direction observation features, we train a learning algorithm to map direct 

observation scores to cognitive health diagnosis labels. The AUC value for this mapping is 

0.68 in the best case (using naïve Bayes and under sampling). The predictive performance 

overall is not as strong as we would like to see for this case, in part because performance of 

CH and MCI participants is actually quite similar on familiar activities such as those used in 

the DOT. The individuals in these two groups do have quite a bit of overlap in functional 

performance as is evident in Figure 7.

Our next objective is to compare the Cognitively Healthy group with the Dementia group. 

We have a limited number of data points for the dementia group because out of 16 dementia 

participants only 2 completed the DOT. Hence, we perform an exploratory experiment to 

compare these two groups by under-sampling the Cognitively Healthy class so that the ratio 

of Cognitively Healthy data points to Dementia data points is 4:1 and ensuring that one 

Dementia participant would be used each time for training and the other would be used for 

testing. The results are averaged and summarized in Table 12. As expected, these two 

groups are much easier to distinguish. To obtain stronger classification performance, we can 

include all participants with dementia and represent the sensor features as missing for 

participants with dementia and noting the number of tasks that were completed as 0. These 

experiments provide evidence that the learning algorithm can indicate the cognitive health of 

an individual based on activity performance.

VII. Observations

Researchers have hoped that ubiquitous computing technologies could be used to support 

health monitoring and aging in place. This study provides an indication that with smart 

home sensor data and machine learning algorithms it is possible to automatically predict the 

quality of daily activities.

One must carefully interpret the results that we have mentioned. We note that the correlation 

(r) between smart home features and task accuracy scores is statistically significant. We can 

conservatively analyze the correlation coefficient using a coefficient of determination. We 

square the correlation coefficient to obtain the coefficient of determination. A coefficient of 

determination of 0.62 (r=0.79) means that the 62% of the variation in the dependent variable 

can be explained by the variation in the independent variable. Our current results show that 

our method explains nearly 62% variations in the direct observational scores. Unexplained 

variation can be attributed to limitations of sensor system infrastructures and algorithms.
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This implies that smart home technologies provides valuable information to assess the 

qualities of daily activities. In other hand, predicting cognitive health based on the 

performance on activities of daily living is an active research area in clinical research [24]. 

Thus, we believe that smart home based technologies can monitor activities of daily living 

and predict cognitive health of an individual. Our results indicate this as a possibility.

We observe from the experiments that the performance of automatic task quality prediction 

depends on the type of training samples. The learning algorithm offers accurate predictions 

when the training samples contain heterogeneous data points of both well-conducted 

activities and poorly-conducted activities. We observe that sequencing features are less 

indicative when all of the participant samples are cognitively healthy, while parallel features 

are indicative when we include MCI and younger adult participant samples. We therefore 

conclude that researchers need to carefully define and extract appropriate features from 

sensor data to use in building an assessment model. In addition, for our study the baseline 

for performance is a direct observation score based on coders observation of task 

performance. Two coders independently assigned scores to participants based on specific 

criteria as they directly viewed the participant’s task performance. We cannot ignore that 

there may be some error or bias in these direct observation scores. This error can be 

mitigated by increasing the number of clinicians scoring the activities or by automatically 

detecting and correcting for bias.

Our approach to perform automated cognitive health assessment using smart home sensors 

and algorithms has a few limitations. The first limitation is due to the coarse granularity of 

the home-based sensors. While environment sensors face fewer practical issues of user 

acceptance, placement, and battery charge, our algorithms would benefit from data provided 

by wearable, smart phone, and object sensors. Also, many participants with cognitive 

difficulties were not able to complete the activities. We can address this issue by increasing 

our sample of participants. We note that the complexity of DOT was necessary to capture 

differences in task performance between cognitively healthy and MCI participants, but 

additional tasks that are less complex but still involve multi-tasking can be devised for 

future studies.

Similarly, the limitations of experimental methodology are that assessment technique relies 

on participants completing scripted activities in a single smart home setting. These types of 

methods are argued to be ecologically valid [6] but participants can perform activities in an 

unnatural manner due to the unfamiliar environment, the scripted manner of the activity, or 

the awareness of being monitored. In addition, we use direct observation scores and 

clinician-based cognitive diagnosis as ground truth labels to train our learning models. 

Instead, we would like to learn models based on differences in natural activity performance 

between individuals who are known to be cognitive healthy and those who are known to 

have cognitive difficulties. Finally, some of the derived features rely on human annotation of 

sensor data. We can avoid this annotation step by using activity recognition algorithms that 

can recognize interleaved and parallel activities as well as activity steps.

The study described in this paper is a step toward our overall goal of performing cognitive 

health assessment in smart homes. The direct observation scores mentioned in this paper are 
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based on a traditional form of assessment in which patients travel to a lab or doctor’s office 

and are tested by trained clinicians. In contrast, smart home systems continuously monitor 

individuals in their natural environment and provide ecologically valid feedback on their 

everyday functioning. Clinicians and caregivers can use this information to make informed 

decisions about patient care.

There are additional issues to consider when implementing assessment systems in homes 

and comparing activity performance between individuals. Clustering algorithms can group 

individuals together who have similar lifestyles and ways of performing activities and we 

can perform comparative assessment for these subgroups. Alternatively, we can use an 

individual as their own baseline to look for changes in activity performance over time that 

might indicate changes in cognitive health. We need to carefully consider which activities to 

recognize, track, and use for assessment in everyday home environments. While sleep, 

exercise, and social interactions are common activities to monitor, other complex activity 

groups that involve multi-tasking are useful for performing automated assessment.

The cognitive assessment activity data used for this study is available for download at http://

ailab.wsu.edu/casas/datasets/assessmentdata.zip.

VIII. Conclusions and future work

In this work, we showed that machine-learning algorithms can be designed to perform 

automated assessment of task quality based on smart home sensor data that is collected 

during task performance. Our preliminary results indicate that smart homes and ubiquitous 

computing technologies can be useful for monitoring complex everyday functions and to 

automate assessment of daily activities. This capability is valuable for monitoring the well-

being of individuals in their own environments.

In our current work, we have focused on one complex activity, the DOT. We believe that the 

general approach is extensible to monitor a variety of activities, particularly for analysis 

across a population of individuals. In future work, we want to automate assessment and 

detect changes in functional independence using a person’s own performance baseline by 

analyzing longitudinal sensor data.
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Fig. 1. 
Apartment test bed floor plan and sensor layout.
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Fig. 2. 
Sensor file format and sample annotation. Sensor IDs starting with M are motion sensors, D 

are door sensors, T are temperature sensors, and P are power usage sensors. The data is 

annotated with the start and end points of the subtasks. The sample annotation shows a 

participant interweaving the Magazine, Bus/Map, and Change tasks.

Dawadi et al. Page 21

IEEE Trans Syst Man Cybern Syst. Author manuscript; available in PMC 2014 December 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3. 
Automated task assessment steps.
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Fig. 4. 
Distribution of the neuropsychologist direct observation scores, accuracy scores and 

sequencing scores, with participant’s cognitive diagnosis indicated by point type. Individual 

participants are organized by age on the x axis and by the corresponding score on the y axis.
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Fig. 5. 
Sets of activity levels for three participants. The first item of the set represents activity level 

at the initial sensor event. As activity progresses, sets are augmented with activity levels for 

different sensor events. For example, during the eighth sensor event e8, participant III has 

activity level 3 and participant I has 1. The run length matrix takes this activity level set as 

input.
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Fig. 6. 
DOT subtask order for the participants who completed all 8 subtasks. The x axis represents 

the subtask sequence position (1..8). The y axis represents the number of participants. Each 

bar corresponds to the number of participants that put a particular subtask in the given 

position of the subtask sequence order.
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Fig.7. 
Scatter plot of Pindex vs. Accuracy Score (top) and Pindex vs. Sequencing Score (down) 

with participant’s cognitive diagnosis indicated by point type. The point in the upper right 

represents a participant who started all DOT subtasks but could only complete two of them.
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Fig. 8. 
PCA score vs. Accuracy score (top) and PCA score vs. Sequencing score (down).
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Dawadi et al. Page 28

TABLE 1

CODING SCHEME TO ASSIGN ACCURACY SCORE TO EACH SUBTASK

Accuracy score Criteria

1 Complete/Efficient

2 Complete/Inefficient

3 Incomplete/Inaccurate

4 Never Attempted
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Dawadi et al. Page 29

TABLE 2

CODING SCHEME TO ASSIGN SEQUENCING SCORE TO EACH SUBTASK. TOTAL SEQUENCING 

SCORE IS THE COUNT OF “YES” RESPONSES TO THESE CRITERIA.

ID Criteria

1 Heating pad started as one of first four activities.

2 Picnic basket retrieved as one of first four activities.

3 Cost of bus fare determined prior to first attempt at retrieving change.

4 Recipe read prior to retrieving first food item.

5 Motion Sickness pill taken near end.

6 Picnic basket moved to front door as one of last two activities.
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TABLE 3

DOT FEATURE SET

Feature Set Feature Type

DOT features Duration, sensor counts, sensor events, activity completeness

Interruption features Number of activity interruptions

Sequencing features Sequence vector

Parallelism feature Pindex
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TABLE 6

CORRELATIONS BASED ON NUMBER OF SUBTASKS COMPLETED

#Completed subtasks Sample size
(n) Accuracy score Sequencing score

2 179 0.79**ǂ 0.45**ǂ

3 174 0.77**ǂ 0.36**ǂ

4 172 0.76**ǂ 0.41**ǂ

5 167 0.75**ǂ 0.37**ǂ

6 154 0.65**ǂ 0.43**ǂ

7 137 0.57**ǂ 0.48**ǂ

8 83 0.43**ǂ 0.49**ǂ

*
p<.05,

**
p<.005,

ǂ
p<0.05 with Bonferroni correction for n sample groups
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TABLE 7

CORRELATIONS BASED ON COGNITIVE DIAGNOSIS

Cognitive Diagnosis Sample size
(n) Accuracy score Sequencing score

{D,M,OA,YA} 179 0.79**ǂ 0.45**ǂ

{M,OA,YA} 177 0.80**ǂ 0.43**ǂ

{OA,YA} 145 0.75**ǂ 0.57**ǂ

{YA} 37 0.70**ǂ 0.41**ǂ

{M,YA} 69 0.81**ǂ 0.27*

{M} 32 0.75**ǂ −0.09

{M,OA} 140 0.78**ǂ 0.34**ǂ

*
p<.05,

**
p<.005,

ǂ
p<0.05 with Bonferroni correction for n sample groups
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TABLE 8

PERFORMANCE OF THE CLASSIFIERS ON THE CLASSIFICATION OF TASK QUALITY

Learning algorithm Accuracy F-score AUC

Class A Class B

SVM 80.45 0.84 0.76 0.85

Neural Network 79.33 0.82 0.74 0.85

Naïve Bayes 82.13 0.85 0.78 0.88
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TABLE 9

CORRELATIONS BASED ON NUMBER OF SUBTASKS THAT ARE COMPLETED USING PCA

#Completed subtasks Sample size (n) Accuracy score Sequencing score

2 179 0.57**ǂ 0.23**ǂ

3 174 0.46**ǂ 0.14

4 172 0.45**ǂ 0.13

5 167 0.50**ǂ 0.13

6 154 0.48**ǂ 0.13

7 137 0.47*ǂ 0.10

8 83 0.43**ǂ 0.10

*
p<.05,

**
p<.005,

ǂ
p<.05 with Bonferroni correction for n sample groups
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TABLE 10

CORRELATIONS BASED ON COGNITIVE DIAGNOISIS COMPUTED USING PCA

#Cognitive Diagnosis Sample size (n) Accuracy score Sequencing score

{D,M,OA,YA} 179  0.57**ǂ 0.23**ǂ

{M,OA,YA} 177  0.56**ǂ 0.23**ǂ

{OA,YA} 145  0.44**ǂ 0.17

{YA} 37 0.06 0.47**ǂ

{M,YA} 69  0.77**ǂ 0.38*

{M} 32  0.79**ǂ 0.32*

{M,OA} 140  0.51**ǂ 0.17*
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TABLE 11

PERFORMANCE OF THE MACHINE LEARNING CLASSIFIERS ON THE SUPERVISED 

CLASSIFICATION OF COGNITIVE HEALTH (MCI/COGNITIVELY HEALTHY)

Learning algorithm F-score AUC

Class A Class B

PCA + SVM with Cost Sensitive Learning 0.39 0.73 0.64

Under sampling of Majority Class + Bagged SVM 0.34 0.44 0.61
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TABLE 12

PERFORMANCE OF THE MACHINE LEARNING CLASSIFIERS ON THE SUPERVISED 

CLASSIFICATION OF COGNITIVE HEALTH (DEMENTIA/COGNITIVELY HEALTHY)

Learning algorithm F-score AUC

Class A Class B

Under sampling + Bagged SVM 0.52 0.52 0.58

Missing Values+ SVM 0.93 0.99 0.94
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