
Automated Color Selection Using Semantic Knowledge

Catherine Havasi
MIT Media Lab

havasi@media.mit.edu

Robert Speer
MIT Media Lab
rspeer@mit.edu

Justin Holmgren
MIT

holmgren@mit.edu

Abstract

Colorizer is a program that hypothesizes color values that
represent a given word or sentence, taking into account
both physical descriptions of objects and their emotional
connotations. This new application of common sense
reasoning uses background knowledge about the world
to build a model of the connections between everyday
things, and uses this model to guess an appropriate color
for a word. Colorizer can run over either static text or
real time input, such as a speech recognition stream. It
has applications in games, the arts, and webpage design.

Introduction

When people think about objects they encounter in the world,
the object’s properties, such as color, play a major role. It
isn’t coincidence that many color names contain the names
of nouns such as “midnight blue”, “lemon yellow”, and “sky
blue”. Although we do not have precise color words for every
object we encounter, the colors of objects are a big part of
our common sense knowledge.

If we are to create a common sense model which works
and reasons in the “real”, non-textual world, we need ways
to understand and incorporate color as well as other types of
non-textual information like sound, touch, and vision.

Here, we describe a system which builds a model of the
way people think about colors, and uses this model to asso-
ciate colors with words, phrases, or larger body of text. This
system, Colorizer, uses common sense knowledge from the
Open Mind Common Sense project (OMCS) and a combi-
nation of color data from several sources to build its model
using a technique called spectral association.

Grounding Common Sense

When John McCarthy introduced the notion of “common
sense” in his seminal 1959 paper (McCarthy 1959), he dis-
cussed how much information, from high-level mental pro-
cesses such as theory of mind, cause and effect, and simple
physics, goes into understanding natural language beyond
the words themselves. Traditionally, the OMCS project has
focused on textual, affective, and word-based common sense

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

knowledge, but common sense also involves spatial, visual,
temporal and physics-related knowledge (Davis 1990).

As a step beyond reasoning about text, then, we wish to
begin to incorporate into common sense systems other forms
of ground knowledge, such as images or sound samples with
descriptions. This combined data would represent an even
wider range of representations, which could be used to solve
new problems and allow the system to reason about and get
input from an even broader portion of the real world.

The Domain of Colors

As a first step in this process, we have created Colorizer, a
program that guesses a color to represent a given input word
or sentence by taking into account both physical descriptions
of objects and emotional connotations. Colorizer provides
a link between discrete textual input and continuous feature
values, and begins to provide a link between linguistic and
other types of common sense.

As we work to ground our primarily linguistic knowledge
in different kinds of data, we have chosen to first explore the
domain of color. We consider color an interesting domain for
a few reasons.

Much of the way people think about common sense is
visual, and examining color lets us work with one kind of
visual information without the normal difficulties associated
with computer vision projects. Additionally, with the rise of
computational creativity and computer aided design, it seems
important to give computers a sense of objects’ colors and
the meanings behind color choices.

The question of color prediction from background knowl-
edge isn’t well researched, possibly because of the amount
of knowledge it requires. NodeBox’s PRISM (Smedt and
Bleser 2010) tool attempts to come up with a color palette
associated with a word or concept by selecting colors from
the webpages of top search hits, but it is not intended to select
an individual, representative color for a word, and is mostly
intended as a visualization or creative tool.

Using Common Sense

To create a system which automatically chooses the color
which best matches incoming text, we must build on a system
which models the way people think about the world. For this
purpose, we use Open Mind Common Sense (OMCS).

40

Commonsense Knowledge: Papers from the AAAI Fall Symposium (FS-10-02)



Figure 1: Some of the nodes and links in ConceptNet.

OMCS has been compiling a corpus of common sense
knowledge from volunteers on the Internet since 1999. It
currently has a corpus of over one million simple English
statements which tend to describe how objects relate to one
another, the goals and desires people have, and what events
and objects cause which emotions. The data in OMCS has a
reliablity score derived from how many people have approved
an assertion or independently asserted the knowledge.

These statements are then automatically transformed into a
semantic network representation, called ConceptNet (Havasi,
Speer, and Alonso 2007)(Liu and Singh 2004). ConceptNet
represents concepts as nodes which are connected by a set
of 21 different relationships such as PartOf and CreatedBy.
These nodes represent individual words or longer noun or
verb phrases that appear in English, disregarding stopwords
and suffixes. A portion of ConceptNet appears in Figure 1.

Collecting Crowd-sourced Color Data

In order to guess colors, even using common sense knowl-
ege, we must start out with some data about what colors
people associate with various real-world objects and abstract
concepts.

We acquire our color information from three sources: Con-
ceptNet, NodeBox, and the XKCD Web survey of color
names.

NodeBox

One source of a priori color information is from the color
database of NodeBox (Experimental Media Group 2010),
a Python library for graphics programming. As part of an
included color visualization toolkit, NodeBox provides a
mapping from a small number of words to eleven pre-defined
colors: blue, brown, green, grey, orange, pink, purple, red,
white, and yellow.

An average of 90 concepts are paired with each color by
designers at NodeBox. Some objects are paired with mul-
tiple colors. Examples of pairings range from the standard
(Christmas is red and green, while melancholy is blue) to the
more abstract (peace is pink and loyalty is yellow).

We build an association matrix with the colors and words
pairs, normalized so the words match ConceptNet concepts,
if possible.

ConceptNet

Within ConceptNet, there is already some color information
provided as assertions about the colors of objects. These are
particularly useful to us because they already use Concept-
Net’s representation of concepts, which we map all our other
data onto.

Most of these assertions fall under the HasProperty rela-
tion, which connects objects to properties that might describe
them, such as small, round, or blue. Whenever the target of
a HasProperty relation is a color in NodeBox’s list of basic
colors, we include it as a data point describing the color of
that object.

XKCD

In March 2010, Randall Munroe, author of a popular Web
comic called XKCD, asked his readers to participate in a
survey about color names. The setup of the survey was
simple: it would generate a random color, show it to the user,
and ask the user to name that color. The survey instructions
encouraged both straightforward and creative color names,
so a color might be described as “purple”, “eggplant”, “dusty
prune”, or “painful bruise purple”. After compiling the survey
results, Munroe made the raw data available on his Web site
(Munroe 2010).

There were two forms of the survey: one chose colors at
random from the entire RGB space, while the other asked
only about fully-saturated colors. We made use of the data
from the first version, which contains over 2.3 million associ-
ations between colors and names collected from over 150,000
users.

Matching colors with concepts

When encountering a word for which we must provide a color,
the first thing we do is check to see if we already have a color
(or colors) for this concept in our knowledgebase. These are
the colors provided by the resources which we incorporated,
or colors already found as properties in ConceptNet.

We do not rely on matching the exact name of a color,
such as “lemon yellow” or “light minty green”. We want
to associate the color “lemon yellow” with the individual
concepts “lemon” and “yellow”, because it is a useful data
point about what they look like. For this, we make use of
ConceptNet’s existing ability to extract concept names from
phrases. Beyond simple tokenization, this allows discovery of
multiple-word concepts (extracting “swimming pool” from
“chlorinated swimming pool”) and normalization of word
endings (extracting “cloud” from “ocean under dark clouds”).

We consider any concept that is matched to three or more
colors in the color survey this way to have a color, in addition
to all the concepts that were assigned colors from ConceptNet
and NodeBox. Because this gives us multiple color values for
most concepts, we next need a way to identify a consensus
color value for each concept.

Identifying color centroids

The data we have compiled, particularly from Munroe’s color
survey, give us a scattered set of color values for each color
name. For many color names, one can assume that there is

41



Figure 2: A chromaticity diagram (a vs. b in Lab coordinates) of the color centroids of all concepts. Larger concept names
represent more information.

a ”true” color value that many people roughly agree on, and
that the color values we have are approximate observations
to that true color value. Similarly, we can treat these as
observations about ConceptNet concepts: a color identified
as “lemon yellow” gives us an observation for the concept
lemon and the concept yellow.

Munroe identified consensus color values from his data
using the “average of a bunch of runs of a stochastic hill-
climbing algorithm” (Munroe 2010), with the details of the
algorithm left unspecified. We choose instead to find a point
that we call the color centroid, which is approximately the
observation with the smallest total distance to all other obser-
vations.

Finding the color centroid requires measuring distances
between colors. RGB values are not ideal for this, because
they do not correspond to the way people perceive color
differences. For example, two shades that people identify
as “bright green” can be very far apart in RGB, and green
and blue are as far apart as red and blue even though people
perceive them as being closer. Instead, whenever we measure
differences between colors, we choose to do so in the CIE
Lab color space, which is designed so that equal Euclidean
distances correspond to equal perceived differences (Schand
2007).

We convert all the RGB observations from Munroe’s color
survey to Lab coordinates using the sRGB standard, and we
also represent color descriptions that appear in ConceptNet
and NodeBox as observations at specific points in Lab space.

A statement that ”money is green”, for example, would pro-
duce an observation for the concept ”money” at the CIE Lab
point representing saturated green.

We define the color centroid of a concept as follows: first
find the component-wise median of all its observations (the
point with the median L value, median a value, and median
b value), and then return the actual observation that is closest
to that point in Euclidean distance. Using a median (which
minimizes the mean distance) instead of a mean (which mini-
mizes the mean-square distance) ensures that concepts with
a wide range of color values do not simply appear gray and
washed-out.

Interpolating unknown colors

What we have described so far allows Colorizer to extract
color values from a large database of observations about
colors. It can identify colors for concepts such as “eggplant”,
“clay”, or “bright” just by looking up their color centroid. The
interesting task that we will now describe is to synthesize a
reasonable color for an unknown concept.

When Colorizer is asked for the color of a concept for
which it has color data, it can simply return the centroid of
that color data, as described above. When it is asked for
the color of an unknown concept, it uses a nearest-neighbor
smoother to interpolate the color using the known colors
of concepts that are semantically related to it. This mea-
sure of semantic relatedness, which takes advantage of the
large amounts of background knowledge in ConceptNet, is

42



described in the next section.
The nearest-neighbor smoother takes in a list of concepts

and their respective “relatedness” to the target concept. It
chooses the ten most related concepts that have known colors,
and returns a weighted average of those colors, using the
relatedness score as the weight. What remains is to define the
measure of relatedness, which we do using the background
knowledge that ConceptNet provides.

Spectral association

Interpolating a color for an unknown concept depends on a
measure of semantic relatedness. For example, if the color
of “inlet” is unknown, we want to use facts such as “an inlet
is part of a river” and “a river contains water” to infer that
it should take its color from concepts such as “river” and
“water”.

One way to measure the connectedness between a pair
of concepts numerically is to perform a number of steps of
spreading activation. One node begins with an activation
value of 1.0, and at each step, each node will distribute some
of its activation to its neighbors. The weighted average of a
number of steps of spreading activation will give a measure of
relatedness, or “association”, between all nodes and a target
node.

This can be time-consuming to calculate, so instead we
take advantage of a dimensionality-reduced representation of
the concept graph to calculate these association values all at
once. This technique, which we call “spectral association”, is
a variant of the AnalogySpace representation that OMCS uses
to reason over ConceptNet (Speer, Havasi, and Lieberman
2008).

We can represent the concept graph as a square, symmetri-
cal association matrix, C, whose rows and columns are both
labeled with concepts. When two concepts are connected
by an assertion in ConceptNet, we put the weight of that
assertion in ConceptNet in the two appropriate entries of C.
All remaining entries are 0. After constructing the matrix, we
scale it so that its rows and columns are unit vectors.

Applying C to a vector containing a single concept spreads
that concept’s value to its connected concepts. Applying
C2 spreads that value to concepts connected by two links
(including back to the concept itself). To spread the activation
through any number of links, with diminishing returns, the
operator we want is:

1 + C +
C2

2!
+

C3

3!
+ ... = eC

We can calculate this odd operator, eC , because we can
factor C using the spectral decomposition. As a square sym-
metric matrix, C can be represented as V ΛV T , where V is an
orthogonal real matrix of its eigenvectors and Λ is a diagonal
matrix of its eigenvalues. At this step, we can ease computa-
tion by performing dimensionality reduction, keeping only
the largest eigenvalues and their corresponding eigenvectors.

We can raise this expression to any power and cancel
everything but the power of Λ. Therefore, eC ≈ V eΛV T .
This expression lets us calculate spreading activation from
any concept or combination of concepts quickly. While its
result is a very large, dense matrix, the relevant entries or

rows can be computed lazily by multiplying by each of the
factors separately.

As one final step, we rescale this expression to put the
association values on a consistent scale. Let V ′ = V eΛ/2,
so that eC = V ′V ′T . If we normalize the rows of V ′ to
unit vectors, yielding V ′′, then V ′′V ′′T (a matrix whose
values we can still compute lazily from these two factors)
will give us association values for all concepts that have a
maximum of 1.0, instead of having much larger values for
highly-connected concepts such as “person”.

Some examples of the most-activated concepts starting
from particular concepts are:
• table → table, salt shaker, dining room, chair, furniture

store, carpenter, table cloth, glass front cupboard, bar stool,
tablecloth . . .

• keyboard → keyboard, send email, laptop, PC, personal
computer, access Internet, CPU, motherboard, accomplish
task, search information . . .

• sad → sad, sob, weep, wail, sadness, upset, shy, water in
eye, deep sadness, tear . . .
We call this technique “spectral association”, not because

it inherently has anything to do with colors, but because it
uses the spectral decomposition to relate entries to each other
in a semantic network.

To find candidate concepts for interpolating the color of
an unknown word or phrase, then, Colorizer will start from a
vector of all concepts that appear in it, similarly to the way
the concepts were extracted in the first place – so, for exam-
ple, “orange peel” will activate the concepts “orange peel”,
“orange”, and “peel”. It then applies spectral association to
that vector, and choose the most associated concepts that
have known colors from the result. Each concept’s color is
not guaranteed to be unique — it’s possible for two concepts
to have the same RGB color.

Some examples of the results of spectral association and
interpolation appear in the table of evaluation results, Table 1.

Evaluation
In order to evaluate Colorizer, we can divide up the large
amounts of data that Munroe’s color survey provides into
training and test data. We do this in the form of a “leave N
out” test, where we hold out all the information about certain
colorful concepts from the training data, and evaluate the
predicted color values against those held-out color values.

Because Colorizer assigns colors to concepts that can ap-
pear in many color names, we need to be careful to com-
pletely separate the training and test data. We randomly
designate a number of concepts from ConceptNet to be “test
concepts”, and then place any color name that contains any
of those concepts into the test set. If “lemon” is a test con-
cept, for example, then the training set will contain no color
survey answers including the word “lemon”. We can then test
whether Colorizer can infer the color associated with “lemon”
according to its semantically related concepts.

Test setup

We randomly selected 200 concepts that appeared in both
ConceptNet and the color survey. We held out color names

43



Concept Related concepts Test color Colorizer
teddy bear ferret, bear, small

dog, sloth. . .
#8a3e0c #988168

bruise discomfort,
trauma, unpleas-
ant, open sore. . .

#72435f #a57e70

slime relish, vegetable,
plant leaf, jade. . .

#80b638 #3cc243

paper output, pencil,
publish, report,
page. . .

#e2daa2 #ac9c95

azalea tulip, bloom, lilac,
daffodil. . .

#d3458b #cd9a94

ocean water Pacific Ocean, sea,
Indian Ocean, sea-
water. . .

#66dad2 #717aa6

Table 1: Some examples of how Colorizer reconstructs colors
in the test data.

including those concepts from the training data set, and in-
cluded them in the test data set if there were at least three
data points for that concept, giving us 98 usable items of test
data.

For each test concept, we considered the color centroid
of all its data points to be the “correct” color to test against.
Then, we compared various distances in the Lab color space:

• The distance from the correct color to 50% gray, as a
baseline

• The distance from the correct color to the color that Col-
orizer predicts for the concept

• The distance from the correct color to an arbitrary other
color for the same concept in the test data, to determine
“human-level performance”

Results

The baseline distance over our test data was 49.0 – that is,
a trivial system could predict that everything was gray and
get an average distance of 49.0. At the other end of the
scale, the average “human-level” distance that came from
looking up points in the actual test data was 39.9. Colorizer’s
performance, at an average distance of 42.3, was noticeably
closer to human-level than to the baseline.

A one-way ANOVA shows that these methods differ sig-
nificantly in performance (F (2, 194) = 5.47, p < .01).
A further Tukey HSD test shows that Colorizer performs
significantly better than the baseline at the p < .05 level
(HSD[.05] = 6.75), while the difference between Colorizer
and human-level agreement is in fact nonsignificant. These
results are shown in Figure 3.

Using Colorizer

Colorizer can be used to add color to static free text such
as poetry or speeches. In addition to artistic applications,
automatic color choice can show the changes in emotion in a
document and help to analyze its flow of ideas. Colorizer can

Figure 3: An evaluation of Colorizer’s accuracy in predicting
colors.

also be used in more free-form games to help automatically
design and color elements that users create.

To demonstrate, we have created a web application which
uses Colorizer to create a color visualization of text and
poems, whose output appears in Figure 4. The application
creates the visualization by applying Colorizer on multiple
levels. First, individual words are colored, then lines of
text, then paragraphs, and finally a color is selected for the
entire document. These colors are then layered with partial
transparency to form the visualization.

For this application, we created a measure of “colorful-
ness”,which is a numerical representation of how much color
is part of an object’s representation. Concepts were defined
to be more colorful when they were used more times in our
input data or were inferred to be related to many of the “col-
orful” training concepts. Words with lower colorfulness have
less of an effect on the color of their surrounding text, and
are shown with a lower alpha value (more transparency) than
colorful concepts.

The Colorizer process can be performed quickly over data
that arrives in a stream, making it suitable for a wide variety
of applications. We have combined Colorizer with streaming
speech recognition to create an application which smoothly
picks a color most appropriate to what is being said at the
time. This has applications in storytelling, art, theater, impro-
visation, and children’s play.

Conclusion

We believe our results are an encouraging step in the pro-
cess of linking textual common sense information with other
modalities of knowledge. Because our color selector per-
forms close to humans’ level of agreement in matching colors
to concepts, it has the potential to be a useful component in
art and design applications.

A limitation of this work so far is that it only generates
single colors for single meanings. Some concepts are best
expressed by sets of colors, or color schemes. An extension
that we plan to explore is to find multiple representative color

44



Figure 4: Colorizer matches colors to the images and emo-
tions of an E. E. Cummings poem.

centroids, instead of a single overall centroid, in order to
generate color schemes. These could be used to automatically
suggest colors for graphic designs based on the text that is
being conveyed.

In the future, we will continue to explore applications
which can benefit from automatically created colors and color
schemes. We also plan to apply similar techniques to another
sensory modality, creating a mapping between concepts and
audio information such as ambient sounds and music.

References

Davis, E. 1990. Representations of Commonsense Knowl-
edge. Morgan Kaufmann.
Experimental Media Group. 2010. Nodebox. NodeBox
web site. http://nodebox.net/code/index.php/
Home.
Havasi, C.; Speer, R.; and Alonso, J. 2007. ConceptNet
3: a flexible, multilingual semantic network for common
sense knowledge. In Recent Advances in Natural Language
Processing.
Liu, H., and Singh, P. 2004. ConceptNet: A practical
commonsense reasoning toolkit. BT Technology Journal
22(4):211–226.
McCarthy, J. 1959. Programs with common sense. In Pro-
ceedings of the Teddington Conference on the Mechanization
of Thought Processes, 75–91. London: Her Majesty’s Sta-
tionery Office.
Munroe, R. 2010. Color survey results. XKCD
blog. http://blog.xkcd.com/2010/05/03/
color-survey-results/.
Schand, J. 2007. Colorimetry. Wiley-Interscience.
Smedt, T. D., and Bleser, F. D. 2010. Nodebox Prism. Node-
Box web site. http://nodebox.net/code/index.
php/Prism.
Speer, R.; Havasi, C.; and Lieberman, H. 2008. Analogy-
Space: Reducing the dimensionality of common sense knowl-
edge. Proceedings of AAAI 2008.

45


