
Automated Composition of Motion Primitives for Multi-Robot Systems

from Safe LTL Specifications∗

Indranil Saha1,2, Rattanachai Ramaithitima2, Vijay Kumar2, George J. Pappas2 and Sanjit A. Seshia1

Abstract— We present a compositional motion planning
framework for multi-robot systems based on an encoding to
satisfiability modulo theories (SMT). In our framework, the
desired behavior of a group of robots is specified using a set of
safe linear temporal logic (LTL) properties. Our method relies
on a library of motion primitives, each of which corresponds
to a controller that ensures a particular trajectory in a given
configuration. Using the closed-loop behavior of the robots
under the action of different controllers, we formulate the
motion planning problem as an SMT solving problem and
use an off-the-shelf SMT solver to generate trajectories for the
robots. Our approach can also be extended to synthesize optimal
cost trajectories where optimality is defined with respect to
the available motion primitives. Experimental results show that
our framework can efficiently solve complex motion planning
problems in the context of multi-robot systems.

I. INTRODUCTION

Numerous applications, such as monitoring, surveillance

and disaster response, involve tasks that are performed better

by a team of robots rather than by a single robot. Collision-

free motion planning for such systems is a fundamental

problem in robot motion planning. Any generic solution to

the problem finds application in different domains, including

assembly planning [1], evacuation [2], search and rescue [3],

localization [4], object transportation [5], and formation

control [6].

In this paper, we address the motion planning problem

for multi-robot systems, where the robots have complex

dynamics, and complex specification of the system is given

in terms of a set of safe linear temporal logic (LTL)

properties [7]. Safe LTL is useful in capturing numerous

requirements related to multi-robot systems, for example,

maintaining a formation during the flight of the group of

robots, maintaining a precedence relationship between the

robots, maintaining a minimum distance between the robots

and so on.

The motion planning problem where the specification is

given in terms of some temporal logic has been addressed in

a number of recent works [8], [9], [10], [11], [12], [13], [14].

In these works, a finite model for the robot dynamics is first

*This work was supported in part by TerraSwarm, one of six centers
of STARnet, a Semiconductor Research Corporation program sponsored
by MARCO and DARPA, and by the NSF ExCAPE project (grants CCF-
1138996 and CCF-1139138).

1 Indranil Saha and Sanjit A. Seshia are with Department of Electrical
Engineering and Computer Science, University of California Berkeley
{indranil,sseshia}@eecs.berkeley.edu

2 Indranil Saha, Rattanachai Ramaithitima, Vijay Kumar and
George J. Pappas are with GRASP Lab, University of Pennsylvania
{isaha,ramar,kumar,pappasg}@seas.upenn.edu

generated using an abstraction process based on discretiza-

tion of the configuration space [15], and then game theoretic

synthesis techniques [8], [13] are used to generate high level

motion plans and low level control policies on the abstract

model. However, the abstraction algorithm and the synthesis

algorithm both scale exponentially with the dimension of

the configuration space, thus limiting the application of this

approach to simple systems with lower dimensions.

To solve the safe LTL motion planning problem for a

multi-robot system where the robots have complex dynamics,

we need to deal with a significantly higher-dimensional

system. We deal with the complexity of the problem by

decomposing it into two subproblems. First, we design a set

of controllers to control different aspects of the members

of the multi-robot system. For example, for a UAV, one

may have different controllers for moving it to different

positions and orientations. A controller together with the

corresponding closed-loop trajectory of the robot is termed

a motion primitive. Second, we utilize these motion prim-

itives to build a system of constraints where the decision

variables encode the choice of motion primitives used at any

discrete-time point on the trajectory. For the specifications

considered in this paper, the system of constraints involves

a Boolean combination of linear constraints. We leverage

the power of an off-the-shelf satisfiability modulo theories

(SMT) solver [16] to solve the system of constraints. To

render the constraint solving problem easier, we use a simple

over-approximation of the trajectories to simplify the set

of constraints that ensure collision avoidance amongst the

robots. Moreover, we show how an SMT solver can be used

to synthesize an optimal trajectory for each robot, where

optimality is defined with respect to the available motion

primitives.

Our motion planning technique can be viewed as a com-

positional (modular) synthesis technique, where we use an

SMT solver to compose a set of motion primitives to generate

trajectories for a group of robots. Several compositional

frameworks for robot motion planning have been proposed

in the past - motion description language [17], [18], [19], the

maneuver automata [20], sequential composition of closed-

loop behavior in the absence of noise [21], [22] and in

the presence of noise [23]. The motion planning problem

has also been reduced to constrained dynamical simulation,

where the trajectories are computed iteratively by solving a

set of constraints on the system [24], [25], [26]. Recently,

SMT solvers have been used in motion planning with rectan-

gular obstacles [27] and in synthesizing integrated task and

motion plans from plan outlines [28]. However, composing a

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
September 14-18, 2014. Chicago, IL, USA,

978-1-4799-6933-3/14/$31.00 ©2014 IEEE 1525

set of motion primitives to synthesize trajectories for a group

of robot using an SMT solver has not been attempted before.

In our experiments, we synthesize a sequence of primitives

to generate optimal trajectories for a group of 4 UAVs in a

4m × 4m workspace that contains a few obstacles. We use

these primitives to fly 4 nano quadrotors successfully in our

lab space. Our results show that the proposed approach can

efficiently solve complex motion planning problems in the

context of multi-robot systems.

II. PROBLEM

A. Preliminaries

1) Workspace: The workspace is represented as a 3D

occupancy grid map, where we decompose the workspace

into blocks using a uniform grid. We specify the size of

the workspace by the number of blocks in each dimension.

Each block is assigned a unique identifier. The identifier of

the lower left block is assigned the identifier (0, 0, 0). If

the identifier of a block is ID = (Ix, Iy, Iz) where Ix, Iy
and Iz are non-negative integers, then the identifiers of the

neighboring blocks are obtained by adding or subtracting 1
to the appropriate component(s) of ID. The unit of distance

is 1 block in the workspace. The distance between two

blocks with identifier ID1 = (Ix1
, Iy1

, Iz1
) and ID1 =

(Ix2
, Iy2

, Iz2
) is given by dist(ID1, ID2) = (Ix2

−Ix1
, Iy2

−
Iy1
, Iz2

− Iz1
).

Each block may either be free, or may be occupied by

an obstacle. We denote by OBS the set of all the identifiers

corresponding to the blocks that are occupied by an obstacle.

2) Motion Primitives: Motion primitives capture a set of

precomputed control laws that can be used to avoid solving

complex dynamical system in real-time. A motion primitive

consists of a precomputed control law that regulates the

outputs of the system as a function of time, the closed loop

trajectory of the robot under the action of the controller, and

the cost of executing the controller for a predefined duration

of time. Let U denote the set of available control laws. A

control law can be applied to the robot if it is in a particular

velocity configuration. A velocity configuration represents a

velocity with a constant magnitude and a direction. Let us

denote the set of all possible velocity configurations by V.

Definition 2.1 (Motion Primitive): A motion primitive is

formally defined as a 7-tuple: 〈u, τ, qi, qf , Xrf ,W, cost〉.
The symbol u ∈ U denotes a precomputed control input. The

symbol τ denotes the duration for which the control input is

applied to the robot. The symbols qi ∈ V and qf ∈ V are

the initial and the final velocity configurations of the robot,

respectively. The symbol Xrf ∈ R
3 denotes the distance of

the final position of the robot from the position where the

motion primitive is applied. The symbol W denotes the set of

relative blocks through which the robot passes to move from

its initial location to its final location. The symbol cost ∈ R+
denotes an estimated cost for executing the precomputed

control law for τ duration in free space.

3) Specification Language – Safe LTLf : We express the

behavioral specification of a multi-robot system using linear

temporal logic on finite traces [29], denoted by LTLf . Let

Π denote the set of atomic propositions. From the atomic

propositions π ∈ Π, any LTLf formula can be formulated

according to the following grammar:

φ ::= π | ¬φ | φ ∧ φ | © φ | φ U φ

Given the above grammar, we can define false and true

in the following way: false = φ ∧ ¬φ and true = ¬false.
Given negation (¬) and conjunction (∧), we can define

disjunction (∨), implication (⇒) and equivalence (⇔) in

the standard way. Moreover, given the temporal operators

next (©) and until (U), we can derive additional temporal

operators, for example, eventually (♦) and always (�). These

operators are derived as ♦φ = trueUφ and �φ = ¬♦¬φ.

The semantics of an LTLf formula is defined over a finite

sequence σ of the truth assignment to the propositions used

in the formula. Let us denote the length of the sequence σ by

length(σ). Let σ(i) demote the set of atomic propositions

that are true at the i-th position of σ, where 0 ≤ i ≤
length(σ) − 1. For an LTLf formula φ, we denote by

σ, i |= φ the fact that the sequence σ satisfies the LTLf

formula φ at location i, 0 ≤ i ≤ length(σ) − 1, and is

recursively defined as follows:

σ, i |= π iff π ∈ σ(i)
σ, i |= ¬φ iff σ, i 6|= φ

σ, i |= φ1 ∧ φ2 iff σ, i |= φ1 and σ, i |= φ2

σ, i |= ©φ iff i < length(σ) − 1 and σ, i+ 1 |= φ

σ, i |= φ1Uφ2 iff there exists i ≤ k ≤ length(σ) − 1
such that σ, k |= φ2

and for all i ≤ j < k, σ, j |= φ1

The sequence σ satisfies a formula φ, if σ, 0 |= φ.

In this paper, we consider only safety properties [7].

Hence, we use a subset of LTLf called safe LTLf which

is sufficient to express safety properties on finite traces.

Definition 2.2 (Safe LTLf): An LTLf formula is called

a safe LTLf formula if it can be represented using the

temporal operators next (©) and always (�).

Intuitively, the formula ©φ at any location i in the sequence

is true, if i < length(σ)−1 and the formula φ is true at the

i+1-th location of that sequence. The formula �φ holds for

a sequence, if φ is true at every location till the end of the

sequence.

B. Problem Definition

In this subsection, we define our problem formally.

Definition 2.3 (State of a robot): The state of a robot is

a pair 〈q,X〉, where q ∈ V is the velocity configuration of

the robot and X ∈ R
3 denotes its position.

Definition 2.4 (State of a Multi-Robot System): The state

of a multi-robot system with N robots is denoted by Φ =
[φ1, . . . , φN], where φi denotes the state of the i-th robot.

Definition 2.5 (Input motion planning problem instance):

An input motion planning problem instance is given by a

seven tuple P = 〈R, I, F, PRIM,OBS,L,Ψ〉, where

• R = {R1, . . . , RN} - The set of robots

• I - The set of initial states for the group of robots

• F - The set of final states for the group of robots

1526

• PRIM - A vector [PRIM1, . . . , PRIMN], where

PRIMi denotes the set of motion primitives available

for the i-th robot

• OBS - The set of blocks in the workspace, that are

occupied by obstacles

• L - The total number of hops in the trajectory

• Ψ - A set of safe LTLf properties that should always

be satisfied by the group of robots. The properties can

be classified into two groups:

1) Safety properties:

– Obstacle Avoidance: No agent faces a collision

with an obstacle

– Collision Avoidance: The agents do not collide

with each other

2) Behavioral properties:

The behavioral properties are provided in terms

of a safe LTLf formula, and is denoted by ξ.

The propositions used in ξ are defined using the

position component of the states of the robots.

The runtime behavior of a multi-robot system is given by a

discrete-time transition system T , where the state transitions

are defined in the following way.

Definition 2.6 (Transition): Let Φ1 = [φ11, . . . , φ1N] and

Φ2 = [φ21, . . . , φ2N] be two states of the multi-robot system,

and Prim = [prim1, . . . , primN], where primi ∈ PRIMi,

be a vector containing as elements the primitives applied to

individual robot in state Φ1 to bring them to state Φ2. The

transition from Φ1 to Φ2 is given by the following rule:

Φ1

Prim
−−−→ Φ2

iff ∀i ∈ {1, . . . , N}:

• φ1i.q = primi.qi
• φ2i.q = primi.qf
• φ2i.X = φ1i.X + primi.Xrf

• obstacle avoidance(Φ1,Φ2, P rim,OBS)
• collision avoidance(Φ1,Φ2, P rim)

The inputs to the predicate obstacle avoidance are Φ1 and

Φ2, the states before and after the transition, Prim, the

vector containing the primitives applied to individual robot

in state Φ1, and OBS, the set of obstacles. This predicate

is true if no robot trajectory between the states Φ1 and

Φ2 overlaps with the obstacles. Similarly, the inputs to the

predicate collision avoidance are Φ1 and Φ2 and Prim. The

predicate is true if no two robots collide with each other

while moving from state Φ1 to state Φ2.

Definition 2.7 (Trajectory): A trajectory of a multi-

robot system for an input problem instance P =
〈R, I, F, PRIM,OBS,L,Ψ〉 is defined as a sequence of

states Φ = (Φ(0),Φ(1), . . . ,Φ(L)) such that Φ(0) ∈ I and

Φ(L) ∈ F and the states are related by the transitions in the

following way:

Φ(0)
Prim1−−−−→ Φ(1)

Prim2−−−−→ Φ(2) . . .Φ(L−1)
PrimL−−−−→ Φ(L).

With the sequence of states Φ, we associate another

sequence σ = (s0, . . . , sL) of length L + 1, where si, i ∈

{0, . . . , L}, captures the truth assignment to the propositions

used in ξ in state Φ(i).
Definition 2.8 (Valid trajectory): A trajectory Φ, with σ

to be the sequence of truth assignments to the propositions

used in ξ in the corresponding states in Φ, is called a valid

trajectory, if σ satisfies the formula ξ, i.e., σ, 0 |= ξ.

Now we formally define the motion planning problem that

we solve in this paper.

Definition 2.9 (Motion Planning Problem): Given an in-

put problem instance P with the number of hops in the

trajectory for each robot to be L, synthesize a valid trajectory

of length L.

C. Example

In this section, we present an illustrative example of

motion planning for a group of quadrotors. A quadrotor

is a nonlinear underactuated dynamical system which can

be described in twelve-dimensional space (3D-position and

orientation and the corresponding time derivatives). The

control input for the system is net body force for each

rotor. The space of all possible control inputs is denoted by

U ∈ R+4. This system is known to be differentially flat [30].

This implies that full state space and control inputs can be

written as a function of the flat outputs and their derivatives.

For the quadrotor, the set of flat outputs are the 3D position

and yaw angle in an inertial frame, y = [rx, ry, rz, ψ].
Pivtoraiko et al. [31] has provided the method of offline

computation of motion primitives for a micro-UAV. We adapt

their method to compute the motion primitives.

Figure 1 shows the top view of a three

dimensional workspace. The black rectangular regions

denote the region occupied by some obstacles.

The set of obstacles OBS is given by OBS =
{(5, 0, h), (6, 0, h), (7, 0, h), (8, 0, h), (5, 1, h), . . .}. We

assume that the quadrotors maintain the same height h

during their flight, and thus we are only interested in the

obstacles occupying the blocks with h in the z component

of the identifiers.

In this example, the group consists of four quadrotors.

The circles labeled with I1, I2, I3 and I4 denote the initial

positions of the quadrotors. Our objective is to fly the group

of quadrotors from the initial location to a specified final

location while avoiding the obstacles.

We want to impose the following invariant properties on

the quadrotors during their flight:

• Maintaining formation: During the flight, the quadro-

tors have to be either in a straight-line in x, y or z

direction, or they should maintain a rectangular forma-

tion.

• Maintaining minimum distance: The distance between

the quadrotors may be different at different time in-

stances, but they have to maintain a specified minimum

distance between each other.

• Maintaining precedence: The quadrotors should main-

tain relative positions with respect to each other. For

example, during the flight the x coordinate of the

quadrotors at the location I1 and I2 should always

1527

I2

I1 I4

I3

F1

F2 F3

F4

A B

x

y

Fig. 1. A 19× 19 workspace with a few obstacles.

be less than the x coordinates of the quadrotors at the

location I3 and I4.

We aim to synthesize trajectories for a group of 4 quadro-

tors satisfying the following specification:

Spec 1: The quadrotors starting from location I1, I2,

I3 and I4 should reach location F1, F2, F3 and F4
respectively, maintaining the above specified properties on

formation, minimum distance and precedence.

Spec 2: The quadrotors at the location I1 and I2 should

occupy any block in the rectangular region B and the other

two quadrotors should occupy any block in the rectangular

region A. We also want the quadrotors to maintain the

properties on formation and minimum distance.

Note that we do not include the property on maintaining

precedence in the second specification. This is due to the

fact that the final state in the second specification does not

satisfy the precedence constraint.

III. CONSTRAINT BASED MOTION COMPOSITION

In this section, we describe the system of constraints

that model the motion planning problem introduced in

Section II. Given an input problem instance P =
〈N, I, F, PRIM,OBS,L,Ψ〉, our objective is to generate

a system of constraints where the primitive at each state

is considered to be the decision variable. For each robot

Rj ∈ R, at each time instant t ∈ {0, . . . L}, the state of

robot Rj is denoted by Φj(t). For each robot Rj ∈ R, at

each time instant t ∈ {0, . . . L− 1}, the primitive applied to

robot Rj is denoted by Primj(t + 1). The constraints can

be classified into two categories:

• General Constraints. These constraints are common

to any motion planning problem for a set of robots.

In Section III-A, we describe the general constraints

related to the motion planning problem for a group of

robots.

• Property Specific Constraints. These constraints de-

pend on the safe LTLf properties we wish to impose

on the runtime behavior of the robots. In Section III-

B we illustrate how we generate constraints to impose

some runtime properties on the group of robots.

The system of constraints that we solve is conjunction of

all these constraints.

A. General Constraints

Here we present the constraints that are common to any

motion planning problem for a set of robots.

Initial state: The state of the group of robots at time t = 0
is an element of the specified set of initial states I .

Φ(0) ∈ I (III.1)

Final state: The state of the group of robots at the discrete
time point t = L is equal to an element of the set of specified
final states F .

Φ(L) ∈ F (III.2)

Obstacle position: We use the predicate obstacle to indicate
whether a position is blocked by an obstacle. The input to
the predicate is a position X in the workspace. The predicate
is true if there is an obstacle at that position. Otherwise, the
predicate is false.

∀X ∈ OBS, obstacle(X) = true ∧
∀Y /∈ OBS, obstacle(Y) = false

(III.3)

Primitive selection: For each robot Rj ∈ R, the primitive
Primj(t+1) at the time instance t ∈ {0, . . . , L− 1} is cho-
sen from the set of primitives PRIMj for the corresponding
robot.

∀Rj ∈ R, ∀t ∈ {0, . . . , L−1} : Primj(t+1) ∈ PRIMj (III.4)

Ensuring continuity of trajectories: For each robot Rj ∈
R, at each time instant t, the position Φj(t).X is equal to
the vector sum of its position Φj(t − 1).X at time (t − 1)
and the relative position associated with the primitive chosen
at the time instant (t− 1).

∀Rj ∈ R, ∀t ∈ {1, . . . , L} :
Φj(t).X = Φj(t − 1).X + Primj(t).Xrf

(III.5)
Ensuring conformance between two consecutive motion

primitives: For each robot Rj ∈ R, the initial configuration
of the primitive applied at each time instant t is equal to the
final configuration of the primitive applied at the previous
discrete time instant (t− 1).

∀Rj ∈ R, ∀t ∈ {1, . . . , L − 1} :
Primj(t + 1).qi = Primj(t).qf

(III.6)

Obstacle avoidance: This set of constraints ensures that
the robots do not collide with an obstacle when they move
from one point to another point. These constraints capture
the predicate obstacle avoidance in Section II-B.

∀Rj ∈ R, ∀t ∈ {0, . . . , L − 1}, ∀w ∈ Primj(t + 1).W :
obstacle(Φj .X + w) = 0

(III.7)
Collision avoidance: This set of constraints ensures that

the robots do not collide with each other. These constraints
capture the predicate collision avoidance in Section II-B.

∀t ∈ {0, . . . , L − 1}, ∀Ri ∈ R, ∀Rj ∈ R\{Ri}
∀wi ∈ Primi(t + 1).W, ∀wj ∈ Primj(t + 1).W :

Φi(t).X + wi 6= Φj(t).X + wj

(III.8)

1528

B. Constraints Capturing Behavioral Requirements

In this section we illustrate how we capture safe LTL
specification in the system of constraints. Let ξ denote the
behavioral property of the multi-robot system and σ =
[s0, . . . , sL] denote the sequence that captures the truth
assignment to the propositions used in ξ at discrete time
instants 0, . . . , L. For an atomic proposition π, we denote
π(si) as the truth assignment of π in si. We denote σi as
the suffix of the sequence σ that starts from index i. If α
and β are two subsequences of σ, we denote by α;β the
concatenation of the two subsequences. Now, we define the
encoding E of the safe LTL property ξ recursively as the
following:

E(σ, ξ) = true for σ = []
= π(s0) for σ = s0; σ1 and ξ = π
= E(σ, ξ1) ∧ E(σ, ξ2) for ξ = ξ1 ∧ ξ2

= ¬ E(σ, ξ′) for ξ = ¬ξ′

=
V

i∈{0,...,L}

E(σi, ξ
′) for ξ = �ξ′

= E(σ1, ξ
′) for σ = s0; σ1 and ξ = ©ξ′

We now illustrate the encoding above on the example invari-

ant properties introduced in Section II-C. The properties are

of the form ξ = �ξ′, where ξ′ is the Boolean combination of

the propositions using the position components of the states

of the robots.

1) Maintaining formation: We assume that the number of

robots N is a square of a natural number. Our objective is

to keep the robots always either in a straight line in x, y or

z direction, or in a rectangular formation. This is achieved

using the following set of constraints. The variable gxtij

(gytij , gztiz) is set to 1 if and only if at the discrete time

instance t, the x (respectively, y, z)-coordinates of robot Ri

and robot Rj are the same, and either y (resp. z, x) co-

ordinates or z (resp. x, y) co-ordinates of the two robots are

not the same.

∀t ∈ {0, . . . , L}, ∀Ri ∈ R, ∀Rj ∈ R\{Ri} :
(gxtij = 1) ⇔ ((Φi(t).X.x = Φj(t).X.x) ∧
((Φi(t).X.y 6= Φj(t).X.y) ∨ (Φi(t).X.z 6= Φj(t).X.z)))
(gytij = 1) ⇔ ((Φi(t).X.y = Φj(t).X.y) ∧
((Φi(t).X.z 6= Φj(t).X.z) ∨ (Φi(t).X.x 6= Φj(t).X.x)))
(gztij = 1) ⇔ ((Φi(t).X.z = Φj(t).X.z) ∧
((Φi(t).X.x 6= Φj(t).X.x) ∨ (Φi(t).X.y 6= Φj(t).X.y)))

(III.9)

Now the following constraints ensure that for each discrete
time instance t, the value of the sum of gxtij for all robots
Ri and Rj correspond to values specific to a straight line in
x, y or z direction, or a rectangular formation.

∀t ∈ {0, . . . , L} :
sum gxt =

P

i∈{1,...,N}

P

j∈{1,...,N}\{i} gxtij ∧
sum gyt =

P

i∈{1,...,N}

P

j∈{1,...,N}\{i} gytij ∧
sum gzt =

P

i∈{1,...,N}

P

j∈{1,...,N}\{i} gztij ∧
((sum gxt = N × (N − 1) ∧ sum gyt = 0 ∧ sum gzt = 0) ∨
(sum gxt = 0 ∧ sum gyt = N × (N − 1) ∧ sum gzt = 0) ∨
(sum gxt = 0 ∧ sum gyt = 0 ∧ sum gzt = N × (N − 1)) ∨
(sum gxt = N × (

√
N − 1) ∧ sum gyt = N × (

√
N − 1) ∧

sum gzt = N × (
√

N − 1)))
(III.10)

2) Maintaining minimum distance: At each discrete time
instant, the distance between any two quadrotors is at least
one block.

∀t ∈ {0, . . . , L}, ∀Ri ∈ R, ∀Rj ∈ R\{Ri} :
| Φi(t).X.x − Φj(t).X.x |> 1 ∨
| Φi(t).X.y − Φj(t).X.y |> 1 ∨
| Φi(t).X.z − Φj(t).X.z |> 1

(III.11)

3) Maintaining precedence: The robots have to maintain
relative position with each other. For N = 4, assuming that
the robots always maintain the same height, the constraints
maintaining precedence are given below:

∀t ∈ {0, . . . , L}
Φ1(t).X.x ≤ Φ3(t).X.x ∧ Φ1(t).X.x ≤ Φ4(t).X.x ∧
Φ2(t).X.x ≤ Φ3(t).X.x ∧ Φ2(t).X.x ≤ Φ4(t).X.x ∧
Φ1(t).X.y ≤ Φ2(t).X.y ∧ Φ1(t).X.y ≤ Φ3(t).X.y ∧
Φ4(t).X.y ≤ Φ2(t).X.y ∧ Φ4(t).X.y ≤ Φ3(t).X.y

(III.12)

The following theorem presents the completeness of our

method.

Theorem 3.1: Completeness of Primitive-Based Path

Planning. Given an input motion planning problem instance

P with the set of primitives for the robots given in PRIM

and a desired length of trajectory L, if the system of

constraints is not satisfiable, there does not exist a trajectory

of length L, that can be synthesized using the primitives in

PRIM .

C. Rectangular Abstraction for Collision avoidance

In Equation III.8, the constraints ensure that the trajectory

of one robot does not intersect the trajectory of another

robot. This is performed by comparing each block on the

trajectory of one robot with each block on the trajectory of

another robot and ensuring that there is no common block

on these two trajectories. However, block-wise ensuring

collision avoidance becomes a bottleneck in solving the

constraints due to the large number of constraints that are

generated in this manner. To alleviate this inefficiency, we

rather abstract a trajectory with a rectangular region. The

rectangular region is an over-approximation of the set of

blocks contained in the trajectory. Figure 2(a) and Figure 2(c)

show the blocks covered by trajectories corresponding two

two different primitives, and Figure 2(b) and Figure 2(d)

show the corresponding rectangular over-approximation. In

Figure 2(a) and Figure 2(c), the circle with a label ‘I’

(‘F’) denotes the initial (final) point on the trajectory, and

the intermediate triangles denote the blocks through which

the trajectory passes. To ensure collision avoidance, we can

enforce that the rectangular region over-approximating the

trajectories of any two robots do not intersect with each

other. We introduce two new fields in the tuple representing

a primitive: ll and ur. The field ll (ur) captures the relative

position of the lower left (upper-right) corner of the rectangle

over-approximating the area covering the relative positions

of the blocks on the trajectory corresponding to the primitive.

Now the following constraints ensure collision avoidance

between two robots.

1529

I F

(a) (b)

I

(c) (d)

F

Fig. 2. Abstraction for checking collision avoidance

∀t ∈ {0, . . . , L − 1}, ∀Ri ∈ R, ∀Rj ∈ R\{Ri} :
(Φi(t).X.x + Primi(t + 1).ll.x >

Φj(t).X.x + Primj(t + 1).ur.x) ∨
(Φi(t).X.x + Primi(t + 1).ur.x <

Φj(t).X.x + Primj(t + 1).ll.x) ∨ . . .
(Φi(t).X.z + Primi(t + 1).ur.z <

Φj(t).X.z + Primj(t + 1).ll.z)

(III.13)

We comment that the abstraction of the trajectories, though

makes solving the motion planning problem easier, causes

the loss of completeness.

D. Generating Optimal Trajectory

While generating a trajectory, an auxiliary goal is to

minimize the cost for all robots for traversing through the

generated trajectory. In our framework, this goal is achieved

in two steps. In the first step, we find the minimum value for

L such that a trajectory exists for that L. The algorithm for

finding the minimum value of L is given in Algorithm III.1.

The algorithm starts with guessing a suitable value for L,

given by L0. It uses two variable lb and ub to bound the

search space for the optimal value of L. Initially, the values

of lb and ub are set to 0 and ∞, respectively. In the first while

loop, we gradually increase the value of lb by a step size of

L0. The loop terminates when we get a value for L that can

generate a trajectory. When this while loop terminates, the

difference between ub and lb is L0. Now, in the second while

loop we perform a binary search in the range [lb, ub] to get

Lopt, the optimal value for L. The search terminates when

the difference between ub and lb becomes 1.
Once we find the value of Lopt, we want to find the

minimal-cost trajectory of length Lopt. Each primitive has an
associated cost. For robot Rj , the cost for using a primitive
at the time instant t is denoted by Primj(t+1).cost, where
Primj(t + 1) ∈ PRIMj . Let total cost denote the cost
incurred by all the robots to move from their initial location
to the final location. Thus, total cost is given by

total cost =
X

j∈{1,...,N}

X

t∈{0,...,L−1}

Primj(t + 1).cost. (III.14)

In our framework we can handle additional specification
that the total cost incurred by all the robots is bounded by a
specified cost C by having additional constraint

total cost < C. (III.15)

The trajectory with minimal cost can be found by solving
an optimization problem, where we minimize total cost
subject to the constraints described in Section III-A and
Section III-B. Let Copt denote the minimum value of C, such
that the constraint in (III.15) together with the constraints

Algorithm III.1: Computation of optimal trajectory length.

Input: P , the input motion planning problem instance

Output: Lopt, the minimum value for L for which a trajectory
exists

function findOptimalTrajectoryLength(P)
begin

L := L0; lb := 0; ub := ∞;
while true do

κ := generate constraints(P, L);
result := solve constraints(κ);
if result = SAT then

ub := L;
break;

else
L := L + L0; lb := L;

end
end
while (ub − lb > 1) do

L = ⌈(lb + ub)/2⌉;
κ := generate constraints(P, L);
result := solve constraints(κ);
if result = SAT then

ub = L; Lopt = L;
else

lb = L;
end

end
return Lopt;

end

described in Section III-A and Section III-B are satisfiable
To find the value of Copt, we perform a binary search in the
range [Cmin, Cmax], where Cmin and Cmax are given by

Cmin = N × L ×
“

min
k∈{1,...,N}

“

min
pr∈PRIMk

pr.cost
””

(III.16)

and

Cmax = N × L ×
“

max
k∈{1,...,N}

“

max
pr∈PRIMk

pr.cost
””

. (III.17)

We comment that the method presented here finds the

optimal trajectory with shortest possible length, which may

not be the optimal trajectory in general. There may exist a

longer trajectory with a smaller cost.

IV. APPLICATION TO QUADROTOR AND EXPERIMENTAL

RESULTS

A. Tool Implementation

We implement our motion planning algorithm in a tool

called Complan (for COmpositional Motion PLANner). The

architecture of Complan is shown in Figure 3. Complan

has two main components: (1) a tool that takes as input a

problem instance P , and generates a system of constraints

in the input language of an SMT solver, and (2) an SMT

solver that solves the constraints and generates a trajectory

in terms of primitives to be used for all the robots at the

intermediate points on the trajectory. We use Z3 [32] as the

backend SMT solver to solve the system of constraints.

1530

Constraint
Generator

SMT
Solver

(Z3)

Input Problem
Instance

P

Constraints

Trajectory

Infeasible

Fig. 3. Tool Architecture for Complan

(a) (b)

Fig. 4. (a) The workspace, (b) KMel Robotics NanoQuad quadrotor.

B. Workspace, Quadrotor and Motion Primitives

Figure 4(a) shows the workspace where we carry out

our experiments. Figure 4(b) shows the test vehicle used in

our experiment. The test vehicles are NanoQuad quadrotors

from KMel Robotics [33], each one has weight of 84g. All

quadrotors in our experiment share the same set of motion

primitives, which has been generated using the algorithm as

described in [34]. For two dimensional spaces, the velocity

profile has 9 configurations consisting of one hover state

and constant velocity in 8 uniform directions (N, E, S, W,

NE, SE, SW, NW). To reduce the complexity in synthesis,

we choose the same duration for all motion primitives.

Using the duration of 1.2sec, the algorithm in [34] yields

a set of 33 motion primitives. To generate the primitives

we use a cost function containing two components. The first

component is the estimated energy consumption which can

be derived from the control inputs. The second, the trajectory

smoothness, is the weighted sum of the snap of the trajectory

which penalizes the trajectories that require abrupt change

in acceleration and jerk. The cost corresponding to each

primitive is in the range of [0.298, 1.201].

C. Results

We report two case studies based on the two specifica-

tions mentioned in Section II-C. In both case studies, the

quadrotors move in a two dimensional plane. Thus, we ignore

the z-coordinate when referring to their positions. In both

case studies, the quadrotors initially located in the blocks

with ID (0, 8), (0, 10), (2, 10) and (2, 8). In the first case

study, the robots fly to the blocks with ID (16, 8), (16, 10),
(18, 10) and (18, 8) respectively, satisfying the constraints

on maintaining the specified formation, minimum distance

and the precedence. In the second case study, we want the

robots initially on the blocks with ID (0, 8) and (0, 10) to

fly in the region marked by B in Figure 1, and the other two

quadrotors to fly in the region marked by A, maintaining

specified formation and minimum distance. Our attempt to

generate a trajectory in the second case study reveals that

it is also not possible to generate a trajectory of reasonably

small length by maintaining the formation constraints. We

attempt to synthesize a trajectory until L = 20, but no

such trajectory exists. We then eliminate the constraints on

maintaining formation, and are able to generate a trajectory

that only satisfies the safe LTL specification on maintaining

the minimum distance between any two quadrotors at each

discrete time step.

Table I shows the experimental results for two case studies.

Our experiments were run in a 64-bit Linux Ubuntu 12.04.3

machine with an Intel(R) Core(TM) i7-3840QM CPU and

8GB RAM. For both the case studies, we carry out our

experiments with and without the rectangular abstraction for

collision avoidance as described in Section III. In each case,

we find the optimal value for the length L for which a

solution exists, the optimal cost, the total number of calls

to the SMT solver to compute the optimal trajectory (this

includes steps to compute Lopt and the optimal cost), and

the average amount of time the SMT solver took each time

it was invoked. In our search for the value of Lopt in

Algorithm III.1, we start with L0 = 5. As evident from the

results of both cases, our tool synthesizes the trajectories with

equal length and cost whether the rectangular abstraction is

used or not. However, the synthesis time reduces significantly

when we use the rectangular abstraction in generating the

constraints.

Figure 5(a) and Figure 5(b) show the synthesized optimal

plans for the two case studies. The four quadrotors are shown

using four different colors. The location of the quadrotors

are time stamped at each discrete time instants. Figure 5(c)

shows a non-optimal trajectory for the second case study,

though the trajectories have an equal number of intermediate

points to the optimal trajectories shown in Figure 5(b).

In our experiments, robots states are tracked using a Vicon

motion capture system. The control inputs are computed on

external computer using PID control. All codes are written

in C++ and ROS. A video capturing our experimental re-

sults is available at http://youtu.be/pSjGwhH29Zs.

Experimental results confirm that the generated trajectories

satisfy the desired specifications.

V. DISCUSSION

We introduce a compositional multi-robot motion planning

framework that uses precomputed motion primitives for a

group of robots and employs an SMT solver to synthesize

trajectories for the individual robots. Our planning technique

is offline, and while it is neither complete nor optimal in

general, we achieve completeness and optimality with respect

to the given set of motion primitives. One strength of our

motion planning framework is that we can synthesize plans

so as to meet complex behavioral requirements specified in

safe LTL. Additionally, our encoding to SMT means that

our framework will directly benefit from enhancements to

the expressiveness and efficiency of SMT solvers, an active

research topic in recent years.

1531

Destination Specification Without rectangular abstraction With rectangular abstraction
Lopt opt. cost # steps avg. time Lopt opt. cost # steps avg. time

Spec 1 13 39.36 12 2m57s 13 39.36 12 1m18s
Spec 2 12 34.85 12 5m1s 12 34.85 12 2m9s

TABLE I

EXPERIMENTAL RESULTS ON TWO CASE STUDIES.

(a) Plan for Spec 1 (Optimal)

(b) Plan for Spec 2 (Optimal)

(c) Plan for Spec 2 (Sub-optimal)

Fig. 5. The trajectories for two case studies: (a) An optimal plan for specification 1, (b) An optimal plan for specification 2, and (c) A sub-optimal plan
for specification 2

REFERENCES

[1] D. Halperin, J.-C. Latombe, and R. H. Wilson, “A general framework
for assembly planning: The motion space approach,” in Annual Sym-

posium on Computational Geometry, 1998, pp. 9–18.
[2] S. Rodrı́guez and N. M. Amato, “Behavior-based evacuation plan-

ning,” in ICRA, 2010, pp. 350–355.
[3] J. Jennings, G. Whelan, and W. Evans, “Cooperative search and rescue

with a team of mobile robots,” in ICRA, 1997.
[4] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic ap-

proach to collaborative multi-robot localization,” Autonomous Robots,
vol. 8, no. 3, pp. 325–344, 2000.

[5] D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams of
autonomous robots,” in IROS, 1995, pp. 235–242.

[6] T. Balch and R. Arkin, “Behavior-based formation control for multi-
robot teams,” IEEE Transaction on Robotics and Automation, vol. 14,
no. 6, pp. 926–939, 1998.

[7] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
in CAV, 1999, pp. 172–183.

[8] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Where’s Waldo?
Sensor-based temporal logic motion planning,” in ICRA, 2007, pp.
3116–3121.

[9] ——, “Temporal-logic-based reactive mission and motion planning,”
IEEE Transactions on Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[10] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in CDC, 2009, pp. 2222–
2229.

[11] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Motion planning with
hybrid dynamics and temporal goals,” in CDC, 2010, pp. 1108–1115.

[12] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. Automat. Contr., vol. 57, no. 11,
pp. 2817–2830, 2012.

[13] Y. Chen, J. Tumova, and C. Belta, “LTL robot motion control based
on automata learning of environmental dynamics,” in ICRA, 2012, pp.
5177–5182.

[14] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” I. J. Robotic Res., vol. 32, no. 8, pp. 889–911, 2013.

[15] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environments,” IEEE Trans-

actions on Robotics, vol. 21, no. 5, pp. 864–874, 2005.
[16] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability

modulo theories,” in Handbook of Satisfiability, A. Biere, H. van
Maaren, and T. Walsh, Eds. IOS Press, 2009, vol. 4, ch. 8.

[17] R. W. Brockett, “Formal languages for motion description and map
making,” Robotics, vol. 41, pp. 181–193, 1990.

[18] V. Manikonda, P. S. Krishnaprasad, and J. Hendler, “Languages,
behaviors, hybrid architectures and motion control,” Mathematical

Control Theory, pp. 199–226, 1998.
[19] W. Zhang and H. G. Tanner, “Composition of motion description

languages,” in HSCC, 2008, pp. 570–583.
[20] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion

planning for nonlinear systems with symmetries,” IEEE Transaction

on Robotics, vol. 21, no. 6, pp. 1077–1091, 2005.
[21] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential com-

position of dynamically dexterous robot behaviors,” The International

Journal of Robotics Research, vol. 18, no. 6, pp. 534–555, 1999.
[22] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-

Trees: Feedback motion planning via sums-of-squares verification,”
The International Journal of Robotics Research, vol. 29, no. 8, pp.
1038–1052, 2010.

[23] J. L. Ny and G. J. Pappas, “Sequential composition of robust controller
specifications,” in ICRA, 2012, pp. 5190–5195.

[24] M. Garber and M. Lin, “Constraint-based motion planning using
voronoi diagrams,” in Fifth International Workshop on Algorithmic

Foundations of Robotics, 2002.
[25] W. Moss, M. C. Lin, and D. Manocha, “Constraint-based motion syn-

thesis for deformable models,” Journal of Visualization and Computer

Animation, vol. 19, no. 3-4, pp. 421–431, 2008.
[26] R. Gayle, W. Moss, M. C. Lin, and D. Manocha, “Multi-robot

coordination using generalized social potential fields,” in ICRA, 2009,
pp. 106–113.

[27] W. N. N. Hung, X. Song, J. Tan, X. Li, J. Zhang, R. Wang, and P. Gao,
“Motion planning with Satisfiability Modulo Theroes,” in ICRA, 2014,
pp. 113–118.

[28] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki,
“SMT-based synthesis of integrated task and motion plans from plan
outlines,” in ICRA, 2014, pp. 655–662.

[29] G. D. Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in IJCAI, 2013.

[30] M. J. V. Nieuwstadt and R. M. Murray, “Real-time trajectory gener-
ation for differentially flat systems,” International Journal of Robust

and Nonlinear Control, vol. 8, no. 11, pp. 995–1020, 1998.
[31] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-UAV

motion replanning for exploring unknown environments,” in ICRA,
2013, pp. 2452–2458.

[32] L. M. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in
International Conference of Tools and Algorithms for the Construction

and Analysis of Systems (TACAS), 2008, pp. 337–340.
[33] “KMel robotics.” [Online]. Available: http://kmelrobotics.com/
[34] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and

control for quadrotors,” in ICRA, 2011, pp. 2520–2525.

1532

