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Abstract

We present an algorithm to detect deadlocks in concur-

rent message-passing programs. Even though deadlock is

inherently non-compositional and its absence is not pre-

served by standard abstractions, our framework employs

both abstraction and compositional reasoning to alleviate

the state space explosion problem. We iteratively con-

struct increasingly more precise abstractions on the ba-

sis of spurious counterexamples to either detect a dead-

lock or prove that no deadlock exists. Our approach is

inspired by the counterexample-guided abstraction refine-

ment paradigm. However, our notion of abstraction as well

as our schemes for verification and abstraction refinement

differ in key respects from existing abstraction refinement

frameworks. Our algorithm is also compositional in that

abstraction, counterexample validation, and refinement are

all carried out component-wise and do not require the con-

struction of the complete state space of the concrete sys-

tem under consideration. Finally, our approach is com-

pletely automated and provides diagnostic feedback in case

a deadlock is detected. We have implemented our technique

in the MAGIC verification tool and present encouraging re-

sults (up to 20 times speed-up in time and 4 times less mem-

ory consumption) with concurrent message-passing C pro-

grams. We also report a bug in the real-time operating sys-

tem Micro-C OS version 2.70.
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1 Introduction

Ensuring that standard software components are assem-

bled in a way that guarantees to delivery reliable services

is an important task for system designers. Ensuring the

absence of deadlock of a composite system is an example

of a stringent requirement that has to be satisfi ed before

a system can be deployed in real life. This is especially

true for safety-critical systems, such as embedded systems

or plant controllers, that are expected to always service re-

quests within a fi xed time limit or be responsive to exter-

nal stimuli. Moreover, in case a deadlock is detected, it is

highly desirable to be able to provide system designers and

implementers with appropriate diagnostic feedback.

However, despite signifi cant efforts, validating the ab-

sence of deadlock in systems of realistic complexity re-

mains a major challenge. The problem is especially acute

in the context of concurrent programs that communicate

via mechanisms with blocking semantics, e.g., synchronous

message-passing and semaphores. The primary obstacle

is the well-known state space explosion problem whereby

the size of the state space of a concurrent system in-

creases exponentially with the number of components. Two

paradigms are usually recognized as being the most effec-

tive against the state space explosion problem: abstraction

and compositional reasoning. Even though these two ap-

proaches have been widely studied in the context of for-

mal verifi cation [17, 11, 27, 19], they fi nd much less use in

deadlock detection. This is possibly a consequence of the

fact that deadlock is inherently non-compositional and its

absence is not preserved by standard abstractions (see Ex-

ample 3). Therefore, a compositional and abstraction-based

deadlock detection scheme, such as the one we present in

this article, is especially signifi cant.

Counterexample-guided abstraction refi nement [22]

(CEGAR for short) is a methodology that uses abstraction

in an automated manner and has been successful in veri-

fying real-life hardware [10] and software [3] systems. A

CEGAR-based scheme iteratively computes more and more

precise abstractions (starting with a very coarse one) of

a target system on the basis of spurious counterexamples



until a real counterexample is obtained or the system is

found to be correct. The approach presented in this arti-

cle combines both abstraction and compositional reason-

ing within a CEGAR-based framework for verifying the ab-

sence of deadlocks in concurrent message-passing systems.

More precisely, suppose we have a system M composed

of components M1, . . . ,Mn executing concurrently. Then

our technique checks for deadlock in M using the following

three-step iterative process:

1. Abstract. Create an abstraction M̂ such that if M has

a deadlock, then so does M̂ . This is done component-

wise without having to construct the full state space of

M .

2. Verify. Check if M̂ has a deadlock. If not, report ab-

sence of deadlock in M and exit. Otherwise let π be a

counterexample that leads to a deadlock in M̂ .

3. Refine. Check if π corresponds to a deadlock in M .

Once again this is achieved component-wise. If π cor-

responds to a real deadlock, report presence of dead-

lock in M along with counterexample derived from π

and exit. Otherwise refi neM̂ on the basis of π to ob-

tain a more precise abstraction and repeat from step 1.

In our approach, systems as well as their components are

represented as fi nite Labeled Transition Systems (LTSs), a

form of state machines. Note that only the verifi cation stage

(step 2) of our technique requires explicit composition of

systems. All other stages can be performed one component

at a time. Since verifi cation is performed only on abstrac-

tions (which are usually much smaller than the correspond-

ing concrete systems), this technique is able to signifi cantly

delay the state space explosion problem. Finally, when a

deadlock is detected, our scheme provides useful diagnos-

tic feedback in the form of counterexamples.

To the best of our knowledge, this is the fi rst

counterexample-guided, compositional abstraction refi ne-

ment scheme to perform deadlock detection on concurrent

systems. We have implemented our approach in our C ver-

ifi cation tool MAGIC [24] which extracts LTS models from

C programs automatically via predicate abstraction [34, 6].

Our experiments with a variety of benchmarks have yielded

encouraging results (up to 20 times speed-up in time and

4 times less memory consumption). We have also discov-

ered a bug in the real-time operating system Micro-C OS

version 2.70.

The rest of this article is organized as follows. In Sec-

tion 2 we summarize related work. This is followed by some

preliminary defi nitions and results in Section 3. In Section 4

we present our abstraction scheme, followed by counterex-

ample validation and abstraction refi nement in Section 5

and Section 6 respectively. Our overall deadlock detection

algorithm is described in Section 7. Finally, we present ex-

perimental results in Section 8 and conclude in Section 9.

2 Related Work

The formalization of a general notion of abstraction fi rst

appeared in [14]. The abstractions used in our approach are

conservative. They are only guaranteed to preserve ‘unde-

sirable’ properties of the system (e.g., [21, 11]). Conserva-

tive abstractions usually lead to signifi cant reductions in the

state space but in general require an iterated abstraction re-

fi nement mechanism (such as CEGAR) in order to establish

specifi cation satisfaction. CEGAR [22, 10] is an iterative

procedure whereby spurious counterexamples to a specifi -

cation are repeatedly eliminated through incremental refi ne-

ments of a conservative abstraction of the system. CEGAR

has been used, among others, in [29] (in non-automated

form), and [3, 31, 23, 18, 8, 12].

CEGAR-based schemes have been used for the verifi -

cation of both safety [3, 10, 18, 6] (i.e., reachability) and

liveness [5] properties. Compositionality has been most ex-

tensively studied in process algebra (e.g., [20, 28, 32]), par-

ticularly in conjunction with abstraction. Abstraction and

compositional reasoning have been combined [7] within a

single two-level CEGAR scheme to verify safety proper-

ties of concurrent message-passing C programs. None of

these techniques attempt to detect deadlock. In fact, the ab-

stractions used in these schemes do not preserve deadlock

freedom and hence cannot be used directly in our approach.

Deadlock detection has been widely studied in various

contexts. One of the earliest deadlock-detection tools, for

the process algebra CSP, was FDR [16]; see also [33, 4, 26,

32, 25]. Corbett has evaluated various deadlock-detection

methods for concurrent systems [13] while Demartini et

al. have developed deadlock-detection tools for concurrent

Java programs [15]. However, to the best of our knowledge,

none of these approaches involve abstraction refi nement or

compositionality in automated form.

3 Background

In this section, we present some preliminary defi nitions

and results (many of which originate from CSP [20, 32])

that are used in the rest of the article.

Definition 1 (Labeled Transition System) A Labeled

Transition System (LTS) is a quadruple (S, init ,Σ, T ) such

that: (i) S is a finite non-empty set of states, (ii) init ∈ S

is an initial state, (iii) Σ is a finite set of actions (alphabet)

and (iv) T ⊆ S × Σ × S is a transition relation.

Given an LTS M = (S, init ,Σ, T ), we write S(M) and

Σ(M) to mean S and Σ respectively. We also write s
a
→ s′



to mean (s, a, s′) ∈ T . If s
a
→ s′ we say that there ex-

ists a transition from s to s′ labeled by a. The successor

function Succ : S(M) × Σ(M) → 2S(M) is defi ned as:

Succ(s, a) = {s′ | s
a
→ s′}. In the remainder of this arti-

cle, we use 〈x, y, . . .〉 to denote sequences and a to denote

concatenation of sequences. Our notions of paths and traces

are standard and are presented next.

Definition 2 (Path) A path of an LTS M is a finite non-

empty sequence 〈s0, a0, s1, a1, . . . , an−1, sn〉 such that: (i)

s0 = init and (ii) for 0 ≤ i < n, si

ai→ si+1. We write

Path(M) to denote the set of all paths of M .

Definition 3 (Trace) Let M be an LTS. A finite se-

quence 〈a0, . . . , an−1〉 ∈ Σ(M)∗ is a trace of M

iff there exist s0, s1, . . . , sn ∈ S(M) such that

〈s0, a0, s1, a1, . . . , an−1, sn〉 ∈ Path(M).

Paths and traces are usually represented with the letters

π and θ respectively.

A state s is said to refuse an action a iff there is no tran-

sition from s labeled by a. The refusal of a state is the set

of all actions that it refuses. Suppose θ is a sequence of ac-

tions and F is a set of actions. Then (θ, F ) is said to be a

failure of an LTS M iff M can participate in the sequence

of actions θ (i.e., θ is a trace of M ) and then reach a state

whose refusal is F . Finally, M has a deadlock iff it can

reach a state which refuses the entire alphabet Σ(M). We

now present these notions formally.

Definition 4 (Refusal) Let M be an LTS and s ∈ S(M).

Then Ref (s) = {a ∈ Σ(M) | ∀s′ ∈ S(M) � s
a
9 s′}.

Definition 5 (Failure) Let M be an LTS. A pair (θ, F ) ∈
Σ(M)∗ × 2Σ(M) is a failure of M iff the following con-

dition holds: writing θ = 〈a0, . . . , an−1〉, there exist

s0, s1, . . . , sn such that (i) 〈s0, a0, s1, a1, . . . , an−1, sn〉 ∈
Path(M) and (ii) F = Ref (sn). We write Fail(M) to de-

note the set of all failures of M .

Definition 6 (Deadlock) An LTS M is said to have a dead-

lock iff (θ,Σ(M)) ∈ Fail(M) for some θ ∈ Σ(M)∗.

Example 1 Figure 1 shows two LTSs M1 and M2. Let

Σ(M1) = {a, b, c} and Σ(M2) = {a, b′, c}. Then M1

has seven paths: 〈P 〉, 〈P, a,Q〉, 〈P, a,R〉, 〈P, a,Q, b, S〉,
〈P, a,R, b, S〉, 〈P, a,Q, b, S, c, T 〉, and 〈P, a,R, b, S, c, T 〉.
It has four traces: 〈〉, 〈a〉, 〈a, b〉, and 〈a, b, c〉, and

four failures (〈〉, {b, c}), (〈a〉, {a, c}), (〈a, b〉, {a, b}), and

(〈a, b, c〉, {a, b, c}). Hence M1 has a deadlock. Also, M2

has four paths, four traces, four failures and a deadlock.

The notion of parallel composition is central to our ap-

proach. We assume that when several components are exe-

cuted concurrently, they synchronize on shared actions and
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Figure 1. Two sample LTSs M1 and M2. Initial
states are doubly circled.

proceed independently on local actions. This notion of par-

allel composition has been used in, e.g., CSP [20, 32], and

by Anantharaman et al. [2].

Definition 7 (Parallel Composition) Let M1 =
(S1, init1,Σ1, T1), . . . , Mn = (Sn, initn,Σn, Tn) be

LTSs. Then their parallel composition, denoted by

M1 ‖ . . . ‖ Mn, is the LTS (S‖, init‖,Σ‖, T‖) such that

(i) S‖ = S1 × . . . × Sn, (ii) init‖ = (init1, . . . , initn),

(iii) Σ‖ =
⋃n

i=1 Σi, and (iv) (s1, . . . , sn)
a
→ (s′1, . . . , s

′
n)

iff for 1 ≤ i ≤ n the following condition holds: if a ∈ Σi

then (si, a, s′
i
) ∈ Ti, and otherwise si = s′

i
.

Example 2 Figure 2 shows the LTS M1 ‖ M2 where M1

and M2 are the LTSs shown in Figure 1.
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Figure 2. Parallel composition of LTSs M1 and
M2 from Figure 1.

Given a trace of a concurrent system M‖, one can con-

struct projections by restricting the trace to the alphabets of

each of the components of M‖.

Definition 8 (Projection) Consider LTSs M1, . . . ,Mn.

Let M‖ = M1 ‖ . . . ‖ Mn. For 1 ≤ i ≤ n, the projection

function Proj i : Σ(M‖)
∗ → Σ(Mi)

∗ is defined inductively

as follows (we write θ ↓ i to mean Proj i(θ)):

1. 〈〉 ↓ i = 〈〉.



2. If a ∈ Σ(Mi) then (〈a〉aθ) ↓ i = 〈a〉a(θ ↓ i).

3. If a 6∈ Σ(Mi) then (〈a〉aθ) ↓ i = θ ↓ i.

Defi nitions 7 and 8 immediately lead to the following

lemma, which essentially highlights the compositional na-

ture of failures. Its proof, as well as the proofs of related

results, are well-known [32].

Lemma 1 Let M1, . . . ,Mn be LTSs. Then (θ, F ) ∈
Fail(M1 ‖ . . . ‖ Mn) iff there exist F1, . . . , Fn such that:

(i) F =
⋃n

i=1 Fi, and (ii) for 1 ≤ i ≤ n, (θ ↓ i, Fi) ∈
Fail(Mi).

4 Abstraction

In this section we present our notion of abstraction. Our

framework employs quotient LTSs as abstractions of con-

crete LTSs. Given a concrete LTS M , one can obtain a

quotient LTS as follows. The states of the quotient LTS

are obtained by lumping together states of M ; alternatively,

one can view these lumps as equivalence classes of some

equivalence relation on S(M). Transitions of the quotient

LTS are defi ned existentially.

Definition 9 (Quotient LTS) Let M = (S, init ,Σ, T ) be

an LTS and R ⊆ S × S an equivalence relation. For

an arbitrary s ∈ S we let [s]R denote the equivalence

class of s. M and R then induce a quotient LTS MR =
(SR, initR,ΣR, TR) where: (i) SR = {[s]R | s ∈ S},

(ii) initR = [init ]R, (iii) ΣR = Σ, and (iv) T R =
{([s]R, a, [s′]R) | (s, a, s′) ∈ T}.

We write [s] to mean [s]R when R is clear from the con-

text. MR is often called an existential abstraction of M .

The states of M are referred to as concrete states while

those of MR are called abstract states. We use the Greek

letter α to represent abstract states, and continue to denote

concrete states with the Roman letter s.

Quotient LTSs have been studied in the verifi cation liter-

ature. In particular, the following result is well-known [9].

Proposition 1 Let M be an LTS, R an equivalence rela-

tion on S(M), and MR the quotient LTS induced by M

and R. If 〈s0, a0, s1, a1, . . . , an−1, sn〉 ∈ Path(M), then

〈[s0], a0, [s1], a1, . . . , an−1, [sn]〉 ∈ Path(MR).

Example 3 Note the following facts about the LTSs in Fig-

ure 3: (i) M1 and M2 both have deadlocks but M1 ‖ M2

does not; (ii) neither M3 nor M4 has a deadlock but M3 ‖
M4 does; (iii) M1 has a deadlock and M3 does not have

a deadlock but M1 ‖ M3 has a deadlock; (iv) M1 has a

deadlock and M4 does not have a deadlock but M1 ‖ M4

does not have a deadlock; (v) M1 has a deadlock but the

quotient LTS obtained by lumping all the states of M1 into

a single equivalence class does not have a deadlock.

M1 M2

M3 M4

a
b

b
a

a b
c c

b a

Figure 3. Four sample LTSs. Initial states are

doubly circled.

As Example 3 highlights, deadlock is non-compositional

and its absence is not preserved by existential abstractions

(nor is it preserved by universal abstractions). So far we

have presented well-known defi nitions and results to pre-

pare the background. We now present what constitute the

core technical contributions of this article. We begin by in-

troducing the notion of abstract refusals.

Definition 10 (Abstract Refusal) Let M be an LTS, R ⊆
S(M) × S(M) an equivalence relation, and MR the quo-

tient LTS induced by M and R. Then the abstract refusal

function AbsRef : S(MR) → 2Σ(MR) is defined as fol-

lows:

AbsRef (α) =
⋃

s∈α

Ref (s)

For a parallel composition of quotient LTSs, we extend the

notion of abstract refusal as follows. Let MR1

1 , . . . ,MRn

n

be quotient LTSs. Let α = (α1, . . . , αn) ∈ S(MR1

1 ‖ . . . ‖
MRn

n ). Then AbsRef (α) =
⋃n

i=1 AbsRef (αi).

Next, we introduce the notion of abstract failures, which

are similar to failures, except that refusals are replaced by

abstract refusals.

Definition 11 (Abstract Failure) Let M̂ be an LTS for

which abstract refusals are defined (i.e., M̂ is either a

quotient LTS or a parallel composition of such). A pair

(θ, F ) ∈ Σ(M̂)∗ × 2Σ(M̂) is said to be an abstract

failure of M̂ iff the following condition holds: writing

θ = 〈a0, . . . , an−1〉, there exist α0, α1, . . . , αn such that

(i) 〈α0, a0, α1, a1, . . . , an−1, αn〉 ∈ Path(M̂) and (ii) F =

AbsRef (αn). We write AbsFail(M̂) to denote the set of all

abstract failures of M̂ .

The following lemma essentially states that the failures

of an LTS M are always subsumed by the abstract failures

of its quotient LTS MR.

Lemma 2 Let M be an LTS, R ⊆ S(M)×S(M) an equiv-

alence relation, and MR the quotient LTS induced by M

and R. Then for all (θ, F ) ∈ Fail(M), there exists F ′ ⊇ F

such that (θ, F ′) ∈ AbsFail(MR).



Proof 1 1. From (θ, F ) ∈ Fail(M) and Def-

inition 5: let θ = 〈a0, . . . , an−1〉 and

〈s0, a0, s1, a1, . . . , an−1, sn〉 ∈ Path(M) such

that F = Ref (sn).

2. From 1 and Proposition 1:

〈[s0], a0, [s1], a1, . . . , an−1, [sn]〉 ∈ Path(MR).

3. From 2 and Definition 11: (θ,AbsRef ([sn])) ∈
AbsFail(MR).

4. From Definition 10: AbsRef ([sn]) ⊇ Ref (sn).

5. From 3, 4 and using F ′ = AbsRef ([sn]) we get our

result.

�

As the following two lemmas show, abstract failures are

compositional: the abstract failures of a concurrent system

M‖ can be decomposed naturally into abstract failures of

the components of M‖. Proofs of Lemmas 3 and 4 follow

the same lines as Lemma 1.

Lemma 3 Let MR1

1 , . . . ,MRn

n be quotient LTSs, and

〈α0, a0, . . . , ak−1, αk〉 ∈ Path(MR1

1 ‖ . . . ‖ MRn

n ). Let

θ = 〈a0, . . . , ak−1〉 and αk = (α1
k
, . . . , αn

k
). Then for

1 ≤ i ≤ n, (θ ↓ i,AbsRef (αi)) ∈ AbsFail(MRi

i
).

Lemma 4 Let MR1

1 , . . . ,MRn

n be quotient LTSs. Then

(θ, F ) ∈ AbsFail(MR1

1 ‖ . . . ‖ MRn

n ) iff there ex-

ist F1, . . . , Fn such that: (i) F =
⋃n

i=1 Fi, and (ii) for

1 ≤ i ≤ n, (θ ↓ i, Fi) ∈ AbsFail(MRi

i
).

In the rest of this article we often make implicit use

of the following facts. Let MR1

1 , . . . ,MRn

n be quotient

LTSs. Then Σ(MR1

1 ‖ . . . ‖ MRn

n ) =
⋃n

i=1 Σ(MRi

i
) =⋃n

i=1 Σ(Mi) = Σ(M1 ‖ . . . ‖ Mn).
The notion of abstract failures leads naturally to the no-

tion of abstract deadlocks.

Definition 12 (Abstract Deadlock) Let MR1

1 , . . . ,MRn

n

be quotient LTSs and M̂‖ = MR1

1 ‖ . . . ‖ MRn

n .

M̂‖ is said to have an abstract deadlock iff

(θ,Σ(M̂‖)) ∈ AbsFail(M̂‖) for some θ ∈ Σ(M̂‖)
∗.

Let MR1

1 , . . . ,MRn

n be quotient LTSs and M̂‖ = MR1

1 ‖

. . . ‖ MRn

n . Clearly, M̂‖ has an abstract deadlock iff

there exists 〈α0, a0, α1, a1, . . . , an−1, αn〉 ∈ Path(M̂‖)

such that AbsRef (αn) = Σ(M̂‖). We call such a path a

counterexample to abstract deadlock freedom, or simply an

abstract counterexample. It is easy to devise an algorithm to

check whether M̂‖ has an abstract deadlock and also gen-

erate a counterexample in case an abstract deadlock is de-

tected. We call this algorithm AbsDeadlock .

AbsDeadlock explores the reachable states of M̂‖ in,

say, breadth-fi rst manner. For each state α, it checks if

AbsRef (α) = Σ(M̂‖). If so, it generates a counterexample

from the initial state to α by standard techniques, reports

the presence of an abstract deadlock and terminates. If no

state α with AbsRef (α) = Σ(M̂‖) can be found, it reports

the absence of abstract deadlocks and terminates. Since M̂‖

has a fi nite number of states and transitions, AbsDeadlock

always terminates with the correct answer.

The following lemma shows that abstract deadlock free-

dom in the composition of quotient LTSs entails deadlock

freedom in the composition of the corresponding concrete

LTSs.

Lemma 5 Let M1, . . . ,Mn be LTSs and R1, . . . , Rn

equivalence relations on S(M1), . . . , S(Mn) respectively.

If MR1

1 ‖ . . . ‖ MRn

n does not have an abstract deadlock

then M1 ‖ . . . ‖ Mn does not deadlock either.

Proof 2 It suffices to prove the contrapositive. Let us de-

note M1 ‖ . . . ‖ Mn by M‖ and MR1

1 ‖ . . . ‖ MRn

n by M̂‖.

Now suppose M‖ has a deadlock.

1. By Definition 6: (θ,Σ(M‖)) ∈ Fail(M‖) for some

θ = 〈a0, . . . , ak−1〉.

2. From 1 and Lemma 1: there exist F1, . . . , Fn such

that: (i)
⋃n

i=1 Fi = Σ(M‖) and (ii) for 1 ≤ i ≤ n,

(θ ↓ i, Fi) ∈ Fail(Mi).

3. From 2(ii) and Lemma 2: for 1 ≤ i ≤ n, ∃F ′
i
⊇ Fi

such that (θ ↓ i, F ′
i
) ∈ AbsFail(MRi

i
).

4. From 2(i) and 3:
⋃n

i=1 F ′
i
⊇

⋃n

i=1 Fi = Σ(M‖) =

Σ(M̂‖), thus
⋃n

i=1 F ′
i

= Σ(M̂‖).

5. From 3, 4 and Lemma 4: (θ,Σ(M̂‖)) ∈ AbsFail(M̂‖).

6. From 5 and Definition 12: M̂‖ has an abstract dead-

lock.

�

Unfortunately, the converse of Lemma 5 does not hold

(a counterexample is not diffi cult to fi nd and we leave this

task to the reader). Suppose therefore that AbsDeadlock

reports an abstract deadlock for MR1

1 ‖ . . . ‖ MRn

n along

with an abstract counterexample π. We must then decide

whether π also leads to a deadlock in M1 ‖ . . . ‖ Mn or

not. This process is called counterexample validation and is

presented in the next section.



5 Counterexample Validation

In this section we present our approach to check the va-

lidity of an abstract counterexample returned by AbsDead-

lock.

Definition 13 (Valid Counterexample) Let

MR1

1 , . . . ,MRn

n be quotient LTSs and let π =
〈α0, a0, . . . , ak−1, αk〉 be an abstract counterexample

returned by AbsDeadlock on MR1

1 ‖ . . . ‖ MRn

n . Write

θ = 〈a0, . . . , ak−1〉 and αk = (α1
k
, . . . , αn

k
). We say

that π is a valid counterexample iff for 1 ≤ i ≤ n,

(θ ↓ i,AbsRef (αi

k
)) ∈ Fail(Mi).

A counterexample is said to be spurious iff it is not valid.

Let M be an arbitrary LTS, θ ∈ Σ(M)∗, and F ⊆ Σ(M).
It is easy to design an algorithm that takes M , θ, and F as

inputs and returns TRUE if (θ, F ) ∈ Fail(M) and FALSE

otherwise. We call this algorithm IsFailure and give its

pseudo-code in Figure 4. Starting with the initial state, Is-

Failure repeatedly computes successors for the sequence

of actions in θ. If the set of successors obtained at some

point during this process is empty, then (θ, F ) 6∈ Fail(M)
and IsFailure returns FALSE. Otherwise, if X is the set of

states obtained after all actions in θ have been processed,

then (θ, F ) ∈ Fail(M) iff there exists s ∈ X such that

Ref (s) = F . The correctness of IsFailure should be clear

from Defi nition 5.

Algorithm IsFailure (M, θ, F )

// M is an LTS, θ ∈ Σ(M)∗, F ⊆ Σ(M)
suppose M = (S, init ,Σ, T ) and θ = 〈a0, . . . , an−1〉;
let X := {init};

for i := 0 to n − 1
let X :=

⋃
s∈X

Succ(s, ai);
if X = ∅ return FALSE;

end-for;

return
∨

s∈X
(Ref (s) = F );

Figure 4. Algorithm IsFailure returns TRUE if
(θ, F ) ∈ Fail(M) and FALSE otherwise.

Lemma 6 Let MR1

1 , . . . ,MRn

n be quotient LTSs and let π

be an abstract counterexample returned by AbsDeadlock

on MR1

1 ‖ . . . ‖ MRn

n . If π is a valid counterexample then

M1 ‖ . . . ‖ Mn has a deadlock.

Proof 3 Let us denote M1 ‖ . . . ‖ Mn by M‖ and MR1

1 ‖

. . . ‖ MRn

n by M̂‖. Also let π = 〈α0, a0, . . . , ak−1, αk〉,
θ = 〈a0, . . . , ak−1〉, and αk = (α1

k
, . . . , αn

k
).

1. Since π is an abstract counterexample:

AbsRef (αk) = Σ(M̂‖) = Σ(M‖).

2. From 1 and Definition 10:
⋃n

i=1 AbsRef (αi

k
) =

AbsRef (αk) = Σ(M‖).

3. Counterexample is valid: for 1 ≤ i ≤ n, (θ ↓
i,AbsRef (αi

k
)) ∈ Fail(Mi).

4. From 3 and Lemma 1: (θ,
⋃n

i=1 AbsRef (αi

k
)) ∈

Fail(M‖).

5. From 2, 4 and Definition 6: M‖ has a deadlock.

�

6 Abstraction Refi nement

In case the abstract counterexample π returned by Ab-

sDeadlock is found to be spurious, we wish to refi ne our

abstraction on the basis of π and re-attempt the deadlock

check. In this section we present our abstraction refi nement

scheme. We begin with the notion of abstract successors.

Definition 14 (Abstract Successor) Let M be an LTS,

R ⊆ S(M) × S(M) an equivalence relation, and let

s ∈ S(M) and a ∈ Σ(M). Then AbsSucc(s, a) = {[s′] ∈
S(MR) | s′ ∈ Succ(s, a)}.

In other words, α is an abstract successor of s un-

der action a iff M has an a-labeled transition from s to

some element of α. In our framework, abstraction refi ne-

ment involves refi ning an existing equivalence relation on

the basis of abstract successors. More precisely, given

M , R, α ∈ S(MR) and A ⊆ Σ(M), we denote by

Split(M,R,α,A) the equivalence relation obtained from

R by sub-partitioning the equivalence class α according

to the following scheme: ∀s, s′ ∈ α, s and s′ belong to

the same sub-partition of α iff ∀a ∈ A � AbsSucc(s, a) =
AbsSucc(s′, a).

Note that the equivalence classes (abstract states) other

than α are left unchanged. It is easy to see that

Split(M,R,α,A) is a refi nement of R. In addition,

Split(M,R,α,A) is a proper refi nement of R iff α is split

into more than one piece, i.e., if the following condition

holds: (PR) There exist a ∈ A, s, s′ ∈ α, and α′ ∈ S(MR)
such that α′ ∈ AbsSucc(s′, a) and α′ 6∈ AbsSucc(s, a).

In our approach, abstraction refi nement involves com-

puting proper refi nements of equivalence relations based

on abstract successors. This is achieved by the algorithm

AbsRefine presented in Figure 5. More precisely, AbsRe-

fine takes the following as inputs: (i) an LTS M , (ii) an

equivalence relation R ⊆ S(M) × S(M), (iii) a trace

θ ∈ Σ(M)∗, and (iv) a set of actions F ⊆ Σ(M). In

addition, the inputs to AbsRefine must obey the following

two conditions: (AR1) (θ, F ) ∈ AbsFail(MR) and (AR2)

(θ, F ) 6∈ Fail(M). AbsRefine then computes and returns a

proper refi nement of R.



Algorithm AbsRefine (M,R, θ, F )

// M is an LTS, θ ∈ Σ(M)∗, F ⊆ Σ(M)
// R ⊆ S(M) × S(M) is an equivalence relation

1: suppose θ = 〈a0, . . . , ak−1〉;
2: find π = 〈α0, a0, . . . , ak−1, αk〉 ∈ Path(MR)

such that F = AbsRef (αk);
// π exists because of condition AR1

3: let X := α0;

4: for i := 0 to k − 1
5: let X := (

⋃
s∈X

Succ(s, ai)) ∩ αi+1;

6: if X = ∅ return Split(M,R,αi, {ai});
7: end-for;

8: return Split(M,R,αk,AbsRef (αk));

Figure 5. Algorithm AbsRefine for doing ab­
straction refinement.

We now establish the correctness of AbsRefine. We con-

sider two possible scenarios.

1. Suppose AbsRefine returns from line 6 when the value

of i is l. Since αl

al→ αl+1 we know that there exists

s ∈ αl such that αl+1 ∈ AbsSucc(s, al). Let X ′ de-

note the value of X at the end of the previous iteration.

For all s′ ∈ X ′, αl+1 6∈ AbsSucc(s′, al). Note that

X ′ 6= ∅ as otherwise AbsRefine would have terminated

with i = l − 1. Therefore, there exists s′ ∈ X ′ such

that αl+1 6∈ AbsSucc(s′, al). Hence the call to Split

at line 6 satisfi es condition PR and AbsRefine returns a

proper refi nement of R.

2. Suppose AbsRefine returns from line 8. We know

that at this point X 6= ∅. Pick an arbitrary s ∈
X . It is clear that there exist s0, . . . , sk−1 such that

〈s0, a0, . . . , sk−1, ak−1, s〉 ∈ Path(M). Hence by

condition AR2, Ref (s) 6= F . Again s ∈ αk, and from

the way π has been chosen at line 2, F = AbsRef (αk).
Hence by Defi nition 10, Ref (s) ⊆ F . Pick a ∈
Σ(M) such that a ∈ F and a 6∈ Ref (s). Then

AbsSucc(s, a) 6= ∅. Again since a ∈ AbsRef (αk)
there exists s′ ∈ αk such that a ∈ Ref (s′). Hence

AbsSucc(s′, a) = ∅. Hence the call to Split at line

8 satisfi es condition PR and once again AbsRefine re-

turns a proper refi nement of R.

7 Overall Algorithm

In this section we present our iterative deadlock de-

tection algorithm and establish its correctness. Let

M1, . . . ,Mn be arbitrary LTSs and M‖ = M1 ‖ . . . ‖ Mn.

The algorithm IterDeadlock takes M1, . . . ,Mn as inputs

and reports whether M‖ has a deadlock or not. If there is a

deadlock, it also reports a trace of each Mi that would lead

to the deadlock state. Figure 6 gives the pseudo-code for

IterDeadlock . It is an iterative algorithm and uses equiv-

alence relations R1, . . . , Rn such that, for 1 ≤ i ≤ n,

Ri ⊆ S(Mi) × S(Mi).

Algorithm IterDeadlock (M1, . . . ,Mn) // (Mi)’s are LTSs

1: for i := 1 to n : let Ri := S(Mi) × S(Mi);
2: forever do

// abstract and verify

3: let x := AbsDeadlock(MR1

1 , . . . ,MRn

n );
4: if (x = ‘no abstract deadlock’) then

report ‘no deadlock’ and exit;

5: suppose π = 〈α0, a0, . . . , ak−1, αk〉 is the

counterexample reported by AbsDeadlock ;

6: suppose θ = 〈a0, . . . , ak−1〉 and αk = (α1
k
, . . . , αn

k
);

// validate counterexample

7: find i ∈ {1, 2, . . . , n} such that

¬IsFailure(Mi, θ ↓ i,AbsRef (αi

k
));

8: if no such i then report ‘deadlock’
and the (θ ↓ i)’s as counterexample;

// refine abstraction

9: let Ri := AbsRefine(Mi, Ri, θ ↓ i,AbsRef (αi

k
));

10: end-do;

Figure 6. Pseudo­code for algorithm
IterDeadlock .

Theorem 1 The algorithm IterDeadlock is correct and al-

ways terminates.

Proof 4 First we argue that both AR1 and AR2 are sat-

isfied every time AbsRefine is invoked on line 9. The

case for AR2 follows from Lemma 3 and the fact that

〈α0, a0, . . . , ak−1, αk〉 ∈ Path(MR1

1 ‖ . . . ‖ MRn

n ). The

case for AR2 is trivial from line 7 and the definition of Is-

Failure.

Next we show that if IterDeadlock terminates it does so

with the correct answer. There are two possible cases:

1. Suppose IterDeadlock exits from line 4. Then we know

that MR1

1 ‖ . . . ‖ MRn

n does not have an abstract

deadlock. Hence by Lemma 5, M1 ‖ . . . ‖ Mn does

not have a deadlock.

2. Otherwise, suppose IterDeadlock exits from line 8.

Then we know that for 1 ≤ i ≤ n, (θ ↓
i,AbsRef (αi

k
)) ∈ Fail(Mi). Hence by Definition 13,

π is a valid counterexample. Therefore, by Lemma 6,

M1 ‖ . . . ‖ Mn has a deadlock.

Finally, termination follows from the fact that the AbsRe-

fine routine invoked on line 9 always produces a proper re-

finement of the equivalence relation Ri. Since each Mi has



only finitely many states, this process cannot proceed indef-

initely. (In fact, the abstract LTSs converge to the bisim-

ulation quotients of their concrete counterparts, since Ab-

sRefine each time performs a unit step of the Paige-Tarjan

algorithm [30]; however in practice deadlock freedom is

often established or disproved well before the bisimulation

quotient is achieved.)

�

8 Experimental Results

We implemented our technique in the MAGIC tool.

MAGIC extracts fi nite LTS models from C programs using

predicate abstraction. These LTSs are then analyzed for

deadlock using the approach presented in this article. Once

a real counterexample π is found at the level of the LTSs

MAGIC analyzes π and, if necessary, creates more refi ned

models by inferring new predicates. Our actual implemen-

tation is therefore a two-level CEGAR scheme. We elide

details of the outer predicate abstraction-refi nement loop as

it is similar to our previous work [7].

Figure 7 summarizes our results. The ABB benchmark

was provided to us by our industrial partner, ABB [1] Cor-

poration. It implements part of an interprocess communi-

cation protocol (IPC-1.6) used to mediate communication

in a multi-threaded robotics control automation system de-

veloped by ABB. The implementation is required to sat-

isfy various safety-critical properties, in particular, dead-

lock freedom. The IPC protocol supports multiple modes

of communication, including synchronous point-to-point,

broadcast, publish/subscribe, and asynchronous commu-

nication. Each of these modes is implemented in terms

of messages passed between queues owned by different

threads. The protocol handles the creation and manipulation

of message queues, synchronizing access to shared data us-

ing various operating system primitives (e.g., semaphores),

and cleaning up internal state when a communication fails

or times out.

In particular, we analyzed the portion of the IPC protocol

that implements the primitives for synchronous communi-

cation (approx. 1500 LOC) among multiple threads. With

this type of communication, a sender sends a message to a

receiver and blocks until an answer is received or it times

out. A receiver asks for its next message and blocks until a

message is available or it times out. Whenever the receiver

gets a synchronous message, it is then expected to send a

response to the sender. MAGIC successfully verifi ed the ab-

sence of deadlock in this implementation.

The SSL benchmark represents a deadlock-free system

(approx. 700 LOC) consisting of one OpenSSL server and

one OpenSSL client. The UCOSD-n benchmarks are de-

rived from the Micro-C OS version 2.7, a real-time op-

erating system for embedded processors, and consist of n

threads (approx. 6000 LOC) executing concurrently. Ac-

cess to shared data is protected via locks. This implemen-

tation suffers from deadlock. In contrast, the UCOSN-n

benchmarks are deadlock-free. The RW-n benchmarks im-

plement a deadlock-free reader-writer system (194 LOC)

with n readers, n writers, and a controller. The controller

ensures that at most one writer has access to the critical sec-

tion. Finally, the DPN-n benchmarks represent a deadlock-

free implementation of n dining philosophers (251 LOC),

while DPD-n implements n dining philosophers (163 LOC)

that can deadlock. As Figure 7 shows, even though the im-

plementations are of moderate size, the total state space is

often quite large due to exponential blowup.

All our experiments were carried out on an AMD Athlon

XP 1600+ machine with 1 GB of RAM. Values under Iter-

Deadlock refer to measurements for our approach while

those under Plain correspond to a naive approach involving

only predicate abstraction refi nement. We note that Iter-

Deadlock outperforms Plain in almost all cases (the only

exception being dining philosophers with deadlock). In

many cases IterDeadlock is able to establish deadlock or

deadlock freedom while Plain runs out of time. Even when

both approaches succeed, IterDeadlock can yield over 20

times speed-up in time and require over 4 times less mem-

ory (RW-6).

9 Conclusion

We presented a novel algorithm to detect deadlocks

in concurrent blocking message-passing programs. The

strength of our approach is that it leverages the two powerful

paradigms of abstraction and compositional reasoning, de-

spite the fact that deadlock is non-compositional and its ab-

sence is not preserved by standard abstractions. In addition,

our technique is automated and employs iterative abstrac-

tion refi nement to scale to real-life examples. Experimental

results demonstrate the effectiveness of our approach on in-

dustrial benchmarks. We believe it can be improved further

by using assume-guarantee style reasoning, and we plan to

investigate this issue in the future.
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