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Abstract 

Background: As the rupture of cerebral aneurysm may lead to fatal results, early 
detection of unruptured aneurysms may save lives. At present, the contrast-unen-
hanced time-of-flight magnetic resonance angiography is one of the most commonly 
used methods for screening aneurysms. The computer-assisted detection system for 
cerebral aneurysms can help clinicians improve the accuracy of aneurysm diagnosis. As 
fully convolutional network could classify the image pixel-wise, its three-dimensional 
implementation is highly suitable for the classification of the vascular structure. How-
ever, because the volume of blood vessels in the image is relatively small, 3D convolu-
tional neural network does not work well for blood vessels.

Results: The presented study developed a computer-assisted detection system for 
cerebral aneurysms in the contrast-unenhanced time-of-flight magnetic resonance 
angiography image. The system first extracts the volume of interest with a fully auto-
matic vessel segmentation algorithm, then uses 3D-UNet-based fully convolutional 
network to detect the aneurysm areas. A total of 131 magnetic resonance angiography 
image data are used in this study, among which 76 are training sets, 20 are internal test 
sets and 35 are external test sets. The presented system obtained 94.4% sensitivity in 
the fivefold cross-validation of the internal test sets and obtained 82.9% sensitivity with 
0.86 false positive/case in the detection of the external test sets.

Conclusions: The proposed computer-assisted detection system can automatically 
detect the suspected aneurysm areas in contrast-unenhanced time-of-flight magnetic 
resonance angiography images. It can be used for aneurysm screening in the daily 
physical examination.
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Background

Among people without comorbidity, with an average age of 50 years, the prevalence of 

unruptured intracranial aneurysms is about 3.2% in a population without comorbidity 

[1]. �ough it has a strong latency, some aneurysms may show no symptoms for years 

or even decades, the rupture of one aneurysm may lead to serious neurological seque-

lae and may be fatal. Under such circumstances, the prediction of when an aneurysm 

will rupture becomes very important. Hence, an automated detection system for cer-

ebral aneurysms may help clinicians in the earlier and more accurate diagnosis of 

aneurysms. TOF-MRA as a non-invasive imaging technique shows promising diag-

nostic accuracy compared with DSA, which is the gold standard diagnostic method 

for aneurysm [2]. �erefore, TOF-MRA is currently one of the most commonly used 

methods for screening aneurysms, of which 3.0 T is the most popular [3].

Deep neural networks have been used to detect cerebral aneurysms since 2017 [4–

9]. Up until now, several methods have been proposed in this field [4–17]. Nakao et al. 

[6] detected 94.2% (98/104) of aneurysms with 2.90 FPs/case, with sensitivity of 70.0% 

at 0.26 FPs/case. Ueda et  al. [8] obtained 91% sensitivity at 6.60 FPs/case. Hanaoka 

et al. [10] obtained 80.0% sensitivity at 3.00 FPs/case. However, the proposed works 

only use 2D CNN networks or hand-engineered features. Moreover, because fully 

convolutional network (FCN) has greatly improved the state-of-art in image segmen-

tation, it also plays an important role in the detection of lesions in medical imaging 

[18–20].

On the other side, computer-assisted detection (CAD) system is not only one 

method that detects lesions in the medical images, but it is also an end-to-end system 

composed of multiple algorithms with multiple steps. �e purpose of the CAD sys-

tem is to enable doctors to achieve faster and more accurate detection of lesions with 

the aid of computers without the need for excessive engineering knowledge.

In this paper, we developed a CAD system for cerebral aneurysms in TOF-MRA, 

using this system, the clinicians could get (1) a three-dimensional mesh model of 

intracranial artery, which could be used for hemodynamic analysis, and (2) the sus-

pected areas of aneurysms, which were detected using an FCN-based network. �e 

whole process is fully automated, clinicians only need to select the image data and 

then check if the area marked by the system is an aneurysm.

Results

In this study, we used sensitivity and false-positive rates as indicators to evaluate the pro-

posed method. All the aneurysms were considered positive. As the result of the system 

was a spherical area, if more than 30% of the aneurysm was in this spherical area, then 

this spherical area was considered a true-positive case, otherwise false-positive case.

We split the patients into three sub-datasets: a training dataset, an internal test 

dataset, and an external test dataset set. �e number of cases in the three datasets 

was 76, 20, and 35, respectively. Using the internal test dataset, we do a fivefold cross-

validation of the model, and the sensitivity is 94.41% ± 1.05%. �en we test the model 

in the external test dataset, which is not used in the training of the model. �e char-

acteristics of the external test dataset are shown in Table 1.
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�e external test dataset is acquired with the same factors like the training dataset 

and internal test dataset. �e characteristics of the external test dataset are shown in 

Table 1. Among the patients in the external test sets (35 patients totally, age ranges 

from 17 to 76), 22 are female (age range 17–76 years; mean age, 55 ± 15) and 13 are 

male (age range 42–75 years; mean age, 59 ± 10). Among these patients, 42% are over 

60  years old, and 51.4% have hypertension. �e max diameter of aneurysms ranges 

from 2.00 to 23.10 mm, and 40% of which are under 5 mm. �e distribution of aneu-

rysms covers the internal carotid artery area, middle cerebral artery area, anterior 

cerebral artery area, posterior cerebral artery area, but no basilar artery area and 

vertebral artery area. �e aneurysms’ average size is 6.86 mm in the internal carotid 

artery area, 5.95 mm in the anterior cerebral artery area, 7.22 mm in the middle cere-

bral artery area and 4.28 mm in the posterior cerebral artery area, respectively. In the 

above areas, the largest aneurysm is located in the internal carotid artery area (Fig. 1).

Overall, 36 aneurysms were acquired in the external test dataset, annotated by two 

radiologists with 3 years’ experience, their annotations matched in these 35 cases and 

double-checked by one radiologist with 10 years’ experience. Using our CAD system to 

detect the aneurysms in the dataset, as we tune the threshold which defines whether a 

voxel is aneurysm or vessel, we find that the true-positive cases remain the same when 

the threshold is above 0. Our CAD system detected 82.9% of all the annotated aneu-

rysms, with 0.86 false positive/case. Among the 6 undetected cases, 3 are female and 3 

are male, age ranges from 35 to 69, 3 have hypertension, the distribution covers anterior 

cerebral artery, middle cerebral artery area, and internal carotid artery area, and the max 

diameter ranges from 2.60 to 5.67 mm. Our environment is CPU: Intel Core i9-9900K, 

Table 1 The detailed characteristics of external test dataset

Characteristics External test dataset

No. of patients 35

No. of male patients 13

No. of female patients 22

Mean age (year) 57 ± 14

Male patients (year) 59 ± 10

Female patients (year) 55 ± 15

Hypertension patients 18

No. of aneurysms 35

Mean size of aneurysms 6.48 ± 4.00

Size of aneurysms

 < 3.0 2

 3.0–4.9 11

 5.0–9.9 17

 ≥ 10.0 5

Location of aneurysms

 Internal carotid artery area 19

 Middle cerebral artery area 5

 Anterior cerebral artery area 8

 Posterior cerebral artery area 3

 Basilar artery area 0

 Vertebral artery area 0
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RAM: 32  GB, GPU: NVIDIA GeForce RTX 2080Ti, Win10 professional, Tensorflow 

1.14.0, Keras 2.0.8. In our environment, it took an average of 56 s to process one case of 

data and detect all possible aneurysms in the data (Fig. 2).

Discussion and conclusion

In our study, TOF-MRA source images were obtained at 3.0 T with the same imaging 

parameters. �e composition of age, gender and size are fully random, in line with daily 

conditions, which made the system more generalizable by minimizing over-fitting. �e 

system detects 94.41% (mean of fivefold) and 82.9% (29 of 35) of aneurysms in the inter-

nal test dataset and external test datasets, respectively. By analyzing the result of the 

external test dataset, our CAD system performs the same in different gender subgroups 

and different age subgroups. �e max diameter of the aneurysm has a significant effect 

on detection performance. �e system detects 100% aneurysms with the max diameter 

larger than 10 mm, both in the internal test dataset and external dataset, and perform 

better in the detection of 5–10 mm objects than 3–5 mm ones. Since there are only 2 

aneurysms smaller than 3 mm, the result cannot prove the performance on this size. �e 

system detects 83.3% (15 of 18) of aneurysms in hypertension patients, which is basi-

cally the same as that for patients without hypertension. �e proposed system detects all 

the aneurysms in the MCA and PCA areas and performs the same in the ICA and ACA 

areas. �rough the results, it can be seen that the proposed system performs relatively 

well in various types of data. �e three-dimensional network can make full use of the 

three-dimensional features of the data as a basis for judgment, and is, therefore, suit-

able for blood vessel data, especially for the judgment of similar structures such as vessel 

bifurcation, vascular angle, and vascular tumor. However, the problem with the three-

dimensional network is that it requires more training data and is highly sensitive to 

Fig. 1 Examples of volume-rendered images. a, b The detected aneurysms by the proposed system. c, d The 
undetected aneurysms

Fig. 2 Subgroup analysis of sensitivity
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noise. Direct use of the original data may result in incorrect classification results due to 

the complexity of the background. In the aneurysm CAD system proposed here, all the 

intracranial arterial regions containing the inside of the aneurysm were first extracted, 

and then a full convolutional network-based method was used to automatically detect 

the aneurysm, and the sensitivity was 82.9%. With the potential for practical applica-

tions, it is foreseeable that increasing the number and type of input data will significantly 

improve the performance and generalization capabilities of the system. Besides, intro-

ducing attention mechanisms or changing the network structure (e.g., DeepLabV3 [21]), 

better results may also achieved. We believe the methods above can improve our system 

and get better performance, and we will continue to work for that.

Methods

Materials

�e ethics board of our institution comprehensively reviewed and approved the protocol 

of this study. Two of the authors of this paper (H.L. and L.Y.) are radiologists with 5 years 

and 10 years of work experience, respectively. �ey diagnosed all the aneurysms in this 

study, with the DSA as ground truth.

Patients

A total of 131 patients (all have unruptured cystic aneurysm) underwent contrast-unen-

hanced 3D TOF-MRA. Patients were selected randomly from outpatient and physical 

examinations, with a period from 2016.03 to 2017.11. �e aneurysms of the patients in 

this experiment were detected because the patients had symptoms such as headache, or 

were accidentally found due to other reasons. And all the sets were annotated by drawing 

the whole aneurysm areas. �en the patients were divided into three datasets: Training 

dataset, Internal Test dataset, and External Test dataset. Among the patients in training 

dataset and internal test dataset, 65 were female and 31 were male, age ranges from 28 to 

86. Among these patients, 37.5% were over 60 years old. �e max diameter of aneurysms 

ranges from 1.39 to 21.00 mm, and 38.5% of which were under 5 mm. �e distribution 

of aneurysms covered the internal carotid artery area, middle cerebral artery area, ante-

rior cerebral artery area, posterior cerebral artery area, basilar artery area, and vertebral 

artery area (Table 2). In the training dataset, there were 80 aneurysms (4 patients had 

double cases, and 72 patients had single case). In the internal test dataset, there were 25 

aneurysms (4 patients had double cases, 1 patient had triple cases, and 14 patients had 

single cases). �e aneurysms’ average size was 6.60  mm in the internal carotid artery 

area, 7.01 mm in the anterior cerebral artery area, 8.24 mm in the middle cerebral artery 

area and 6.42 mm in the basilar artery area, respectively. In the above areas, the largest 

aneurysm was located in the middle cerebral artery area.

Datasets

In this study, TOF-MRA source images were used to develop the algorithms. All 

angiography examinations were performed with a 3.0-T system (GE Discovery 

MR750), with the same imaging factors (repetition time/echo time, 25  ms/5.7  ms; 

flip angle, 20°; field of view, 220 mm; section thickness, 1.2 mm; acquisition matrix, 

320*256,reconstructed to 1024*1024; acquisition time, 2  min 14  s). A total of 131 
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TOF-MRA image sets were collected, of which 76 were training dataset, since we used 

a deep neural network-based algorithm to detect the aneurysms, 76 image sets were 

not enough to achieve sufficient classification performance for the network model. 

We augmented the image sets with flipping (by transverse section), discrete Gaussian 

noise filter (variance: 4.0, max kernel width: 32 pixels), and histogram equalization 

filter in turn, and finally got 608 image sets for training. �e internal test dataset was 

also augmented in the same way and got 160 image sets. Of course, we also resampled 

all the image sets to isotropic and cropped them, so the no-content edges would not 

affect the training (Fig. 3).

Development of the CAD system

In our system, we designed two main steps: first, automatic segmentation of the artery 

vascular voxels; second, aneurysm detection based on deep neural networks. And there 

were two pipelines, one for the training of the neural network model, as the preparation 

of the system, the other for the actual detection of the aneurysms in the real data and 

show the results to users. So the clinicians only need to input DICOM image sets and 

then the system would show where the aneurysms were with a high likelihood (Fig. 4).

Step one: segmentation

�e input was DICOM datasets, which is in the form of a volume. In view of the many 

three-dimensional features of cerebral arteries, our method processed the image data 

as volume from start to finish. In the segmentation step, the input image data were pre-

processed using N3 bias field correction and histogram normalization. �en the vessel 

Table 2 Detailed characteristics of training dataset and internal test dataset

Characteristics Training dataset Internal test dataset

No. of examinations 76 20

No. of male patients 24 7

No. of female patients 52 13

Mean age (year) 56 ± 11 56 ± 10

Male patients 56 ± 10 56 ± 10

Female patients 58 ± 13 56 ± 10

Hypertension patients 39 9

No. of aneurysms 80 26

Mean size of aneurysms 6.86 ± 4.23 6.30 ± 3.56

Size of aneurysms

 < 3.0 10 3

 3.0–4.9 23 6

 5.0–9.9 30 15

 ≥ 10.0 17 2

Location of aneurysms

 Internal carotid artery area 40 14

 Middle cerebral artery area 13 9

 Anterior cerebral artery area 11 2

 Posterior cerebral artery area 13 0

 Basilar artery area 2 1

 Vertebral artery area 1 0
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region was enhanced using a sigmoid filter, the total transform is given by the formula 

below, with α = 400 and β = 600:

Seed points on skull were selected automatically based on the bounding-box method. 

�is method used a cube to wrap the skull from the outside and shrank it. When the 

faces of the cube came into contact with the skull, the contact points were used as the 

seed points. �e auto-threshold region was allowed to grow from the seed points and 

smooth the results, then the skull region voxels were obtained. �e lower threshold 

of the region-growing method was 30% of the maximum intensity, and upper thresh-

old was the maximum intensity. �ese voxels were cut off from the pre-processed data 

and the skull was removed. Since the high signal area in TOF-MRA data was mainly 

skull and vessels, artery blood vessel accounted for a large part of the left high signal 

objects. We binarized the data based on the intensity region of the vessel, set all voxels 

greater than the background density value to 1. �en we performed connected domain 

statistics, arranged connected domains according to the number of voxels it contains, 

f (x) = (Max − Min) ·
1

(

1 + e−
x−β
α

) + Min.

Fig. 3 Aneurysms in our dataset a 4 mm single, b 22.3 mm single, c double aneurysms

Fig. 4 Workflow of the proposed CAD system for cerebral aneurysms
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and selected seed points from the 5 connected domains that are ranked first. In most 

instances, the selected seed area was the main branch of artery vessels. Since the inten-

sity of the vessels in TOF-MRA data followed the Gaussian distribution [22], the upper 

and lower thresholds of the region-growing method were decided automatically as μ + σ 

and μ − σ (μ stands for the estimated mean and σ stands for the standard deviation). 

With the automatic region growth, vessel voxels were segmented from the TOF-MRA 

data, reconstructed the surface of the vessel using the marching cubes method, then 

the surface mesh model of artery vessels was obtained. �e mesh model could be used 

in the hemodynamic analysis since it was the inner surface of vessels. �e target of the 

CAD system was the detection of aneurysms; to do the detection, the vessel voxels were 

dilated using radius 10 sphere kernel, and the vessel area and its neighbor area were the 

input of step two. �e auto-segmented vessel area output of step one covered 100% of 

the labeled aneurysms in our dataset (Fig. 5).

Step two: detection

In this step, we used a deep neural network to detect the aneurysms in the image. Since 

the blood vessel was a continuous structure in three dimensions, and usually had a long 

radial length, traditional 2D CNNs could not be applied on the important 3D structure 

features, which were widely used in clinical diagnosis. Fully convolutional networks 

(FCNs), such as U-Net, made full use of every pixel in the image and brought seman-

tic segmentation to a practical level. In this paper, we chose an improved 3D-UNet [23] 

as our detection method. �e structure of this network was below. Inspired by U-Net, 

this network could process 3D input blocks of 128*128*128 voxels, and also comprised a 

context aggregation pathway as U-Net. Besides, they employed deep supervision to the 

network by injecting gradient signals.

To train our model, we augmented the 96 image sets to 768, using flipping (by trans-

verse section), histogram normalization, discrete Gaussian noise filter (variance: 4.0, 

max kernel width: 32 pixels, sequentially. �e image sets were then cropped and resa-

mpled to 128*128*128. �e annotations were dilated based on the center of the labeled 

area, all annotations were dilated to a sphere with the same radius. �e way to choose 

the radius was above 3 voxels under 128*128*128, which was above 3% of the length of 

axis. After the dilation, the annotations had two labeled objects, the vessel area as back-

ground, and aneurysms as foreground. �en 76 of the 96 image sets were selected as 

training datasets and put into the network for training. �e initial factors were: batch 

size = 1, initial learning rate = 5e−4, optimization function was Adam, the weights were 

initialized using the default initializer (glorot_uniform) of Keras. After about 200 epochs 

the learning process got an early stop; it costs 10 h in our environment.

Fig. 5 Workflow of the segmentation in the proposed CAD system
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After training, we obtained the deep neural network model and used it to predict the 

new TOF-MRA image; the image was processed by step one, got the vessel area, then 

the model would predict each voxel in the vessel area. �e model would give the likeli-

hood of each voxel to be normal vessel or aneurysm. �ese possibilities were binarized 

at a threshold of 0.5, a value greater than 0.5 was converted to 1 and a value less than 0.5 

was converted to 0. �en each voxel of the vessel area was classified into 2 labels: vessel 

area and aneurysm area. �e voxels of one label were all connected to be one compo-

nent, so we took the center of the aneurysm area and draw a sphere from this point, with 

the radius the same as used to dilate the annotations. �e area inside the sphere had a 

high probability to be an aneurysm, and clinicians could check the area more carefully to 

make the diagnosis (Fig. 6).

Abbreviations

TOF-MRA: Time-of-flight magnetic resonance angiography; DSA: Digital subtraction angiography; CNN: Convolutional 
neural networks; FCN: Fully convolutional network; CAD: Computer-assisted detection; CPU: Computer-assisted detec-
tion; RAM: Random access memory; GPU: Graphic processing unit; MCA: Middle cerebral artery; PCA: Posterior cerebral 
artery; ICA: Internal carotid artery; ACA : Anterior cerebral artery; BA: Basilar artery; VA: Vertebral artery; FP: False-positive 
cases; DICOM: Digital Imaging and Communications in Medicine (DICOM) is the standard for the communication and 
management of medical imaging information and related data.

Acknowledgements

Not applicable.

Authors’ contributions

GC suggested the CAD system for cerebral aneurysm. GC and XW implemented it and analyzed the images. HL and LY 
acquired and annotated the MR angiography images. DY and GD reviewed the results of the imaging diagnosis. YL was a 
major contributor in writing the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by National Key Research and Development Plan (2018YFC0116904), National Natural Science 
Foundation of China (61672236), Jiangsu Key Technology Research Development Program (BE2017663), Suzhou Industry 
Technological Innovation Projects (SYG201707), Suzhou Science and Technology Development Project (SZS201818), 
Lishui Key Technology Research Development Program (2019ZDYF09, 2019ZDYF17).

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

The ethics board of Huashan Hospital comprehensively reviewed and approved the protocol of this study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Fig. 6 Workflow of the aneurysm detection using 3D-UNET



Page 10 of 10Chen et al. BioMed Eng OnLine           (2020) 19:38 

Author details
1 Academy for Engineering and Technology, Fudan University, 20 Handan Road, Shanghai 200433, China. 2 Suzhou Insti-
tute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou 215163, China. 
3 Department of Radiology, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Road, Shanghai 200040, China. 

Received: 15 December 2019   Accepted: 17 April 2020

References

 1. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, 
comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10(7):626–36.

 2. Sailer AM, Wagemans BA, Nelemans PJ, de Graaf R, van Zwam WH. Diagnosing intracranial aneurysms with MR angiogra-
phy: systematic review and meta-analysis. Stroke. 2014;45(1):119–26.

 3. Kaufmann TJ, Huston JI, Cloft HJ, Mandrekar J, Gray L, Bernstein MA, Atkinson JL, Kallmes DF. A prospective trial of 3T 
and 1.5T time-of-flight and contrast-enhanced MR angiography in the follow-up of coiled intracranial aneurysms. Am J 
Neuroradiol. 2010;31(5):912–8.

 4. El Hamdaoui H, Maaroufi M, Alami B, Chaoui N, Boujraf S. Computer-aided diagnosis systems for detecting intracranial 
aneurysms using 3D angiographic data sets. In: 2017 international conference on advanced technologies for signal and 
image processing (ATSIP). IEEE; 2017, p. 1–5.

 5. Moccia S, De Momi E, El Hadji S, Mattos LS. Blood vessel segmentation algorithms—review of methods, datasets and 
evaluation metrics. Comput Methods Programs Biomed. 2018;158:71–91.

 6. Nakao T, Hanaoka S, Nomura Y, Sato I, Nemoto M, Miki S, Maeda E, Yoshikawa T, Hayashi N, Abe O. Deep neural 
network-based computer-assisted detection of cerebral aneurysms in MR angiography. J Magn Reson Imaging. 
2018;47(4):948–53.

 7. Nemoto M, Hayashi N, Hanaoka S, Nomura Y, Miki S, Yoshikawa T. Feasibility study of a generalized framework for devel-
oping computer-aided detection systems—a new paradigm. J Digit Imaging. 2017;30(5):629–39.

 8. Ueda D, Yamamoto A, Nishimori M, Shimono T, Doishita S, Shimazaki A, Katayama Y, Fukumoto S, Choppin A, Shimahara 
Y. Deep learning for MR angiography: automated detection of cerebral aneurysms. Radiology. 2018;290(1):187–94.

 9. Yu L, Cheng J-Z, Dou Q, Yang X, Chen H, Qin J, Heng P-A. Automatic 3D cardiovascular MR segmentation with densely-
connected volumetric convnets. In: International conference on medical image computing and computer-assisted 
intervention. Springer; 2017, p. 287–95.

 10. Hanaoka S, Nomura Y, Takenaga T, Murata M, Nakao T, Miki S, Yoshikawa T, Hayashi N, Abe O, Shimizu A. HoTPiG: a novel 
graph-based 3-D image feature set and its applications to computer-assisted detection of cerebral aneurysms and lung 
nodules. Int J Comput Assist Radiol Surg. 2019;14:2095–107.

 11. Hamdaoui HE, Maaroufi M, Alami B, Chaoui NE, Boujraf S. Computer-aided diagnosis systems for detecting intracranial 
aneurysms using 3D angiographic data sets: Review. In: International conference on advanced technologies for signal 
and image processing; 2017, p. 1–5.

 12. Hentschke CM, Beuing O, Paukisch H, Scherlach C, Skalej M, Tönnies KD. A system to detect cerebral aneurysms in 
multimodality angiographic data sets. Med Phys. 2014;41(9):1904.

 13. Malik KM, Anjum SM, Soltanian-Zadeh H, Malik H, Malik GM. A framework for intracranial saccular aneurysm detection 
and quantification using morphological analysis of cerebral angiograms. IEEE Access. 2018;6:7970–86.

 14. Xiao R, Ding H, Zhai F, Zhou W, Wang G. Cerebrovascular segmentation of TOF-MRA based on seed point detection and 
multiple-feature fusion. Comput Med Imag Graph. 2018;69:1–8.

 15. Duan H, Huang Y, Liu L, Dai H, Chen L, Zhou L. Automatic detection on intracranial aneurysm from digital subtraction 
angiography with cascade convolutional neural networks. Biomed Eng Online. 2019;18(1):1–18.

 16. Sabour S, Li Z-Y. Reproducibility of image-based computational models of intracranial aneurysm; methodological issue. 
Biomed Eng Online. 2016;15(1):109.

 17. Wong KKL, Wang D, Ko JKL, Mazumdar J, Le T-T, Ghista D. Computational medical imaging and hemodynamics frame-
work for functional analysis and assessment of cardiovascular structures. Biomed Eng Online. 2017;16(1):35.

 18. Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach 
Intell. 2014;39:640–51.

 19. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. ArXiv 2015, 
abs/1505.04597.

 20. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from 
sparse annotation. In: Medical image computing and computer-assisted intervention; 2016, p. 424–32.

 21. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected CRFs. IEEE Transac Pattern Anal Mach Intell. 2018;40(4):834–48.

 22. Wen L, Wang X, Wu Z, Zhou M, Jin JS. A novel statistical cerebrovascular segmentation algorithm with particle swarm 
optimization. Neurocomputing. 2015;148:569–77.

 23. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH. Brain tumor segmentation and radiomics survival predic-
tion: contribution to the brats 2017 challenge. In: International MICCAI Brainlesion Workshop. Springer; 2017, p. 287–97.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Discussion and conclusion
	Methods
	Materials
	Patients
	Datasets
	Development of the CAD system
	Step one: segmentation
	Step two: detection


	Acknowledgements
	References


